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Abstract. We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a
convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of
non-convex potentials: the uniqueness of ergodic component for ∇φ-Gibbs measures, the decay of covariances, the scaling limit
and the strict convexity of the surface tension.

Résumé. Nous considérons un modèle d’interfaces de type gradient indexé par le réseau avec une interaction donnée par la
pertubation non convexe d’un potentiel convexe. En utilisant une technique qui découple les sites pairs et impairs, nous démontrons
pour une classe de potentiels non convexes l’unicité de la composante ergodique, de la mesure de Gibbs du gradient, la décroissance
des covariances, la loi limite centrale et la stricte convexité de la tension superficielle.

MSC: 60K35; 82B24; 35J15

Keywords: Effective non-convex gradient interface models; Uniqueness of ergodic component; Decay of covariances; Scaling limit; Surface
tension

1. Introduction

1.1. The setup

Phase separation in R
d+1 can be described by effective interface models, where interfaces are sharp boundaries which

separate the different regions of space occupied by different phases. In this class of models, the interface is modeled
as the graph of a random function from Z

d to Z or R (discrete or continuous effective interface models). For more on
interface models, see the reviews by Funaki [20] or Velenik [27]. In this setting we ignore overhangs and for x ∈ Z

d ,
we denote by φ(x) ∈ R the height of the interface above or below the site x. Let Λ be a finite set in Z

d with boundary

∂Λ := {
x /∈ Λ,‖x − y‖ = 1 for some y ∈ Λ

}
, where ‖x − y‖ =

d∑
i=1

|xi − yi | for x, y ∈ Z
d (1)

and with given boundary condition ψ such that φ(x) = ψ(x) for x ∈ ∂Λ; a special case of boundary conditions are
the tilted boundary conditions, with ψ(x) = x · u for all x ∈ ∂Λ, and where u ∈ R

d is fixed. Let Λ := Λ ∪ ∂Λ and let
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dφΛ = ∏
x∈Λ dφ(x) be the Lebesgue measure over R

Λ. For a finite region Λ ⊂ Z
d , the finite volume Gibbs measure

νΛ,ψ on R
Z

d
with boundary condition ψ for the field of height variables (φ(x))x∈Zd over Λ is defined by

νΛ,ψ(dφ) = 1

ZΛ,ψ

exp
{−βHΛ,ψ(φ)

}
dφΛδψ(dφZd\Λ) (2)

with

ZΛ,ψ =
∫

RZd
exp

{−βHΛ,ψ(φ)
}

dφΛδψ(dφZd\Λ),

and where δψ(dφZd\Λ) = ∏
x∈Zd\Λ δψ(x)(dφ(x)) and determines the boundary condition. Thus, νΛ,ψ is characterized

by the inverse temperature β > 0 and the Hamiltonian HΛ,ψ on Λ, which we assume to be of gradient type:

HΛ,ψ(φ) =
∑
i∈I

∑
x,x+ei∈Λ

U
(∇iφ(x)

) + 2
∑
i∈I

∑
x∈Λ,x+ei∈∂Λ

U
(∇iφ(x)

)
, (3)

where the sum inside Λ is over ordered nearest neighbours pairs (x, x + ei). We denoted by

I = {−d,−d + 1, . . . , d} \ {0}

and we introduced for each x ∈ Z
d and each i ∈ I , the discrete gradient

∇iφ(x) = φ(x + ei) − φ(x),

that is, the interaction depends only on the differences of neighboring heights. Note that ei, i = 1,2, . . . , d , denote the
unit vectors and e−i = −ei . A model with such a Hamiltonian as defined in (3), is called a massless model with a
continuous symmetry (see [20]). The potential U ∈ C2(R) is a symmetric function with quadratic growth at infinity:

U(η) ≥ A|η|2 − B, η ∈ R, (A0)

for some A > 0,B ∈ R.

1.2. General definitions and notation

1.2.1. φ-Gibbs measures
For A ⊂ Z

d , we shall denote by FA the σ -field generated by {φ(x): x ∈ A}.

Definition 1.1 (φ-Gibbs measure on Z
d ). The probability measure ν ∈ P(RZ

d
) is called a Gibbs measure for the

φ-field with given Hamiltonian H := (HΛ,ψ)
Λ⊂Zd ,ψ∈RZd (φ-Gibbs measure for short), if its conditional probability

of FΛc satisfies the DLR equation

ν(·|FΛc)(ψ) = νΛ,ψ(·), ν-a.e. ψ,

for every finite Λ ⊂ Z
d .

It is known that the φ-Gibbs measures exist under condition (A0) when the dimension d ≥ 3, but not for d = 1,2,
where the field “delocalizes” as Λ ↗ Z

d (see [15]). An infinite volume limit (thermodynamic limit) for νΛ,ψ when
Λ ↗ Z

d exists only when d ≥ 3.
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1.2.2. ∇φ-Gibbs measures
Notation for the bond variables on Z

d . Let(
Z

d
)∗ := {

b = (xb, yb) | xb, yb ∈ Z
d ,‖xb − yb‖ = 1, b directed from xb to yb

};
note that each undirected bond appears twice in (Zd)∗. Let

Λ∗ := (
Z

d
)∗ ∩ (Λ × Λ), ∂Λ∗ := {

b = (xb, yb) | xb ∈ Z
d \ Λ,yb ∈ Λ,‖xb − yb‖ = 1

}
and

Λ∗ := {
b = (xb, yb) ∈ (

Z
d
)∗ | xb ∈ Λ or yb ∈ Λ

}
.

For φ = (φ(x))x∈Zd and b = (xb, yb) ∈ (Zd)∗, we define the height differences ∇φ(b) := φ(yb) − φ(xb). The
height variables φ = {φ(x);x ∈ Z

d} on Z
d automatically determines a field of height differences ∇φ = {∇φ(b);b ∈

(Zd)∗}. One can therefore consider the distribution μ of ∇φ-field under the φ-Gibbs measure ν. We shall call μ the
∇φ-Gibbs measure. In fact, it is possible to define the ∇φ-Gibbs measures directly by means of the DLR equations
and, in this sense, ∇φ-Gibbs measures exist for all dimensions d ≥ 1.

A sequence of bonds C = {b(1), b(2), . . . , b(n)} is called a chain connecting x and y, x, y ∈ Z
d , if xb1 = x, yb(i) =

xb(i+1) for 1 ≤ i ≤ n − 1 and yb(n) = y. The chain is called a closed loop if yb(n) = xb(1) . A plaquette is a closed loop
A = {b(1), b(2), b(3), b(4)} such that {xb(i) , i = 1, . . . ,4} consists of 4 different points.

The field η = {η(b)} ∈ R
(Zd )∗ , b ∈ (Zd)∗, is said to satisfy the plaquette conditions if

η(b) = −η(−b) for all b ∈ (
Z

d
)∗ and

∑
b∈A

η(b) = 0 for all plaquettes A in Z
d, (4)

where −b denotes the reversed bond of b. Let

χ = {
η ∈ R

(Zd )∗ which satisfy the plaquette condition
}

(5)

and let L2
r , r > 0, be the set of all η ∈ R

(Zd )∗ such that

|η|2r :=
∑

b∈(Zd )∗

∣∣η(b)
∣∣2e−2r‖xb‖ < ∞.

We denote χr = χ ∩ L2
r equipped with the norm | · |r . For φ = (φ(x))x∈Zd and b ∈ (Zd)∗, we define ηφ(b) := ∇φ(b).

Then ∇φ = {∇φ(b)} satisfies the plaquette condition. Conversely, the heights φη,φ(0) ∈ R
Z

d
can be constructed from

height differences η and the height variable φ(0) at x = 0 as

φη,φ(0)(x) :=
∑

b∈C0,x

η(b) + φ(0), (6)

where C0,x is an arbitrary chain connecting 0 and x. Note that φη,φ(0) is well-defined if η = {η(b)} ∈ χ .

Definition of ∇φ-Gibbs measures. We next define the finite volume ∇φ-Gibbs measures. For every ξ ∈ χ and finite
Λ ⊂ Z

d the space of all possible configurations of height differences on Λ∗ for given boundary condition ξ is defined
as

χΛ∗,ξ = {
η = (

η(b)
)
b∈Λ∗ ;η ∨ ξ ∈ χ

}
,

where η ∨ ξ ∈ χ is determined by (η ∨ ξ)(b) = η(b) for b ∈ Λ∗ and = ξ(b) for b /∈ Λ∗.
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Remark 1.2. Note that when Z
d \ Λ is connected, χΛ∗,ξ is an affine space such that dimχΛ∗,ξ = |Λ|. Indeed, fixing

a point x0 /∈ Λ, we consider the map χΛ∗,ξ → R
Λ, such that η → φ = {φ(x)} ∈ R

Λ, with φ(x) defined by

φ(x) =
∑

b∈Cx0,x

(η ∨ ξ)(b)

for a chain Cx0,x connecting x0 and x ∈ Λ. This map then well-defined and an invertible linear transformation.

Definition 1.3 (Finite volume ∇φ-Gibbs measure). The finite volume ∇φ-Gibbs measure in Λ (or more precisely, in
Λ∗) with given Hamiltonian H := (HΛ,ξ )Λ⊂Zd ,ξ∈χ and with boundary condition ξ is defined by

μΛ,ξ (dη) = 1

ZΛ,ξ

exp

{
−β

∑
b∈Λ∗

U
(
η(b)

)}
dηΛ,ξ ∈ P(χΛ∗,ξ ),

where dηΛ,ξ denotes the Lebesgue measure on the affine space χΛ∗,ξ and ZΛ,ξ is the normalization constant.

Let P(χ) be the set of all probability measures on χ and let P2(χ) be those μ ∈ P(χ) satisfying Eμ[|η(b)|2] < ∞
for each b ∈ (Zd)∗.

Remark 1.4. For every ξ ∈ χ and a ∈ R, let ψ = φξ,a be defined by (6) and consider the measure νΛ,ψ . Then
μΛ,ξ is the image measure of νΛ,ψ under the map {φ(x)}x∈Λ → {η(b) := ∇(φ ∨ ψ)(b)}b∈Λ∗ and where we defined
(φ ∨ ψ)(x) := φ(x) for x ∈ Λ and (φ ∨ ψ)(x) := ψ(x) for x /∈ Λ. Note that the image measure is determined only by
ξ and is independent of the choice of a. Let K

ψ
Λ : {φ(x)}x∈Zd → {η(b)}b∈(Zd )∗ , with η(b) := ∇(φ ∨ ψ)(b).

Definition 1.5 (∇φ-Gibbs measure on (Zd)∗). The probability measure μ ∈ P(χ) is called a Gibbs measure for the
height differences with given Hamiltonian H := (HΛ,ξ )Λ⊂Zd ,ξ∈χ (∇φ-Gibbs measure for short), if it satisfies the DLR
equation

μ(·|F(Zd )∗\Λ∗)(ξ) = μΛ,ξ (·), μ-a.e. ξ, (7)

for every finite Λ ⊂ Z
d , where F(Zd )∗\Λ∗ stands for the σ -field of χ generated by {η(b), b ∈ (Zd)∗ \ Λ∗}.

Remark 1.6. Proving the DLR equation (7) is equivalent to proving that for every finite Λ ⊂ Z
d and for all F ∈ Cb(χ)

we have∫
χ

μ(dξ)

∫
χΛ∗,ξ

μΛ,ξ (dη)F (η) =
∫

χ

μ(dη)F (η). (8)

(For a proof of this equivalence, see Remark 1.24 from [21].)

With the notations from (3) and Definition 1.3, let

Gβ(H) := {
μ ∈ P2(χ): μ is ∇φ-Gibbs measure on

(
Z

d
)∗ with given Hamiltonian H

}
.

Remark 1.7. Throughout the rest of the paper, we will use the notation φ,ψ to denote height variables and η, ξ to
denote height differences.

Shift-invariance and ergodicity. For x ∈ Z
d , we define the shift operators: σx : RZ

d → R
Z

d
for the heights by

σxφ(y) = φ(y − x) for y ∈ Z
d and φ ∈ R

Z
d
, and σx : R(Zd )∗ → R

(Zd )∗ for the bonds by (σxη)(b) = η(b − x), for
b ∈ (Zd)∗ and η ∈ χ . Then shift-invariance and ergodicity for μ (with respect to σx for all x ∈ Z

d ) is defined in
the usual way (see for example p. 122 in [20]). We say that the shift-invariant μ ∈ P2(χ) has a given tilt u ∈ R

d if
Eμ(η(b)) = 〈u,yb − xb〉 for all bonds b = (xb, yb) ∈ (Zd)∗.
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1.3. Results

Our state space R
Z

d
being unbounded, gradient interface models experience delocalization in lower dimensions d =

1,2, and no infinite volume Gibbs state exists in these dimensions (see [15]). Instead of looking at the Gibbs measures
of the (φ(x))x∈Zd , Funaki and Spohn proposed to consider the distribution of the gradients (∇iφ(x))i∈I,x∈Zd under
ν (see Definition 1.5) in the gradient Gibbs measures μ, which in view of the Hamiltonian (3), can also be given in
terms of a Dobrushin–Landford–Ruelle (DLR) description. Note that infinite volume gradient Gibbs measures exist
in all dimensions, in particular for dimensions 1 and 2, which is one of the reasons that Funaki and Spohn introduced
them. For a good background source on these models, see Funaki [20].

Assuming strict convexity of U :

0 < C1 ≤ U ′′ ≤ C2 < ∞, (9)

Funaki and Spohn showed in [19] the existence and uniqueness of ergodic gradient Gibbs measures for every fixed
tilt u ∈ R

d , that is, if Eμ(∇iφ(x)) = ui for all nearest-neighbour pairs (x, x + ei) (see also [10,26]). Moreover, they
also proved that the corresponding free energy, or surface tension, σ(u) ∈ C1(Rd) is convex in u; the surface tension,
defined in Section 7 of our paper, physically describes the macroscopic energy of a surface with tilt u, i.e., a d-
dimensional hyperplane located in R

d+1 with normal vector (−u,1) ∈ R
d+1. Both these results (ergodic component

and convexity of surface tension) were used in [19] for the derivation of the hydrodynamical limit of the Ginzburg–
Landau model.

In fact under the strict convexity assumption (9) of U , much more is known for the gradient field. At large scales it
behaves much like the harmonic crystal or gradient free fields which is a Gaussian field with quadratic U . In particular,
Brydges and Yau [7] (in the case of small analytic perturbations of quadratic potentials), Naddaf and Spencer [25] (in
the case of strictly convex potentials and tilt u = 0) and Giacomin, Olla and Spohn [22] (in the case of strictly convex
potentials and arbitrary tilt u) showed that the rescaled gradient field converges weakly as ε ↘ 0 to a continuous
homogeneous Gaussian field, that is

Sε(f ) = εd/2
∑
x∈Zd

∑
i∈I

(∇iφ(x) − ui

)
fi(εx) → N

(
0,Σ2

u(f )
)

as ε → 0, f ∈ C∞
0

(
R

d;R
d
)
, (10)

where the convergence takes place under ergodic μ with tilt u (see Theorem 2.1 in Giacomin, Olla and Spohn [22] for
an explicit expression of Σ2

u(f ) in (10) in the case with arbitrary tilt and see Biskup and Spohn [3] for similar results
in the non-convex case). This central limit theorem derived at standard scaling εd/2, is far from trivial since as shown
in Delmotte and Deuschel [11], the gradient field has slowly decaying, non-absolutely summable covariances of the
algebraic order

∣∣covν

(∇iφ(x),∇j φ(y)
)∣∣ ∼ C

1 + ‖x − y‖d
. (11)

All the above-mentioned results are proved under the essential assumption of strict convexity of the potential U , which
assumption is necessary for the application of the Brascamp–Lieb inequality and of the Helffer–Sjostrand random
walk representation (see [20] for a detailed review of these methods and results). While strict convexity is crucial for
the proofs, one would expect some of these results to be valid under more general circumstances, in particular also
for some classes of non-convex potentials. However, so far there have been very few results on non-convex potentials.
This is where the focus of this paper comes in, which is to extend the results known for strictly convex potentials to
some classes of non-convex potentials.

We will briefly summarize next the state of affairs regarding results for non-convex potentials, in the different
regimes at inverse temperature β . At low temperature (i.e. large β) using the renormalization group techniques devel-
oped by Brydges [6], Adams et al. [1] show in on-going work for a class of non-convex potentials, the strict convexity
of the surface tension for small tilt u. At moderate temperature (β = 1), Biskup and Kotecký [2] give an example of
a non-convex potential U for which uniqueness of the ergodic gradient Gibbs measures μ fails. The potential U can
be described as the mixture of two Gaussians with two different variances. For this particular case of U , [2] prove
co-existence of two ergodic gradient Gibbs measures at tilt u = 0 (see also Fig. 4 and example (a) in Section 3.2). See



824 C. Cotar and J.-D. Deuschel

also the work of Fröhlich and Spencer [17,18] in relation to the Coulomb gas, and the theory based on the infrared-
bound (e.g. Fröhlich, Simon and Spencer [16]). For high temperature (i.e. small β), we have proved in a previous
paper with S. Mueller [8] strict convexity of the surface tension in a regime similar to (A2) below. Our potentials are
of the form

U
(∇iφ(x)

) = V
(∇iφ(x)

) + g
(∇iφ(x)

)
,

where V,g ∈ C2(R) are such that

C1 ≤ V ′′ ≤ C2, 0 < C1 < C2 and −C0 ≤ g′′ ≤ 0 with C0 > C2.

Specifically, we assumed in [8] that

4

π
(12dC̄)1/2

√
βC1

1

C1

∥∥g′′∥∥
L1(R)

≤ 1

2
, where C̄ = max

(
C0

C1
,
C2

C1
− 1,1

)
.

The method used in [8], based on two scale decomposition of the free field, gives less sharp estimates for the tem-
perature than our current paper as the estimates also depend on C0. However, at this point it is not clear whether the
method introduced in [8] could yield any other result of interest than the strict convexity of the surface tension.

The aim of our current paper is to use an alternative technique from the one we used in [8] and relax the strict
convexity assumption (9) to obtain much more than just strict convexity of the surface tension; more precisely, we
also prove uniqueness of the ergodic component at every tilt u ∈ R

d , central limit theorem of form as given in (10) and
decay of covariances as in (11). As stated above, the hydrodynamical limit for the corresponding Ginzburg–Landau
model should then essentially follow from our results. Our main results are proven under the assumption that

C1 ≤ V ′′ ≤ C2, 0 < C1 < C2 and −∞ < g′′ ≤ 0 (A1)

and that the inverse temperature β is sufficiently small, that is if

β1/(2q)
∥∥g′′∥∥

Lq(R)
<

(C1)
3/2

2C
(q+1)/(2q)

2 (2d)1/(2q)
for some q ≥ 1, (A2)

or if

β3/4
∥∥g′∥∥

L2(R)
≤ (C1)

3/2

2(C2)5/4(2d)3/4
. (A3)

The condition (A1) with g′′ ≤ 0 may look a bit artificial, but as we elaborate in Remark 3.12 in Section 3 below, any
perturbation g ∈ C2 with compact support can be substituted for the g′′ ≤ 0 assumption in (A1). Note that in contrast
to the condition in our previous paper [8], ‖g′′‖L∞(R) can be arbitrarily large as long as ‖g′′‖Lq(R) is small. Note also
that using an obvious rescaling argument (see Remark 3.8), we can always reduce our assumption (A1) to the case
β = C1 = 1; then (A2), respectively (A3), states that our condition is satisfied whenever the perturbation g′′ is small
in the Lq(R), respectively g′ is small in the L2(R) sense.

Our main result is the following

Theorem 1.8 (Uniqueness of an ergodic μu). Let U = V + g, where U satisfy (A0) and V and g satisfy (A1) and
(A2) or (A1) and (A3). Then for every u ∈ R

d , there exists at most one ergodic, shift-invariant μu ∈ Gβ(H) with a
given tilt u ∈ R

d .

Let F ∈ C1
b(χr), where C1

b(χr) denotes the set of differentiable functions depending on finitely many coordinates
with bounded derivatives and where χr was defined in Section 1.2.2. For η,η′ ∈ χ , let

lim
ε→0

F(η + εη′) − F(η)

ε
= 〈

DF(η), η′〉 = ∑
b∈(Zd )∗

α(b)η′(b).
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We denote by

∂bF (η) := α(b) and ‖∂bF‖∞ = sup
η∈χ

∣∣∂bF (η)
∣∣. (12)

Another result we prove for our class of non-convex potentials is

Theorem 1.9 (Decay of covariances). Let u ∈ R
d . Assume U = V + g, where U satisfies (A0) and V and g satisfy

(A1) and (A2) or (A1) and (A3). Let F,G ∈ C1
b(χr). Then there exists C > 0 such that

∣∣covμu

(
F(η),G(η)

)∣∣ ≤ C
∑

b,b′∈(Zd )∗

‖∂bF‖∞‖∂b′G‖∞
1 + ‖xb − xb′ ‖d

, (13)

where b = (xb, yb) and b′ = (xb′ , yb′).

We also prove

Theorem 1.10 (Central limit theorem). Let u ∈ R
d . Assume U = V +g, where U satisfies (A0) and V and g satisfy

(A1) and (A2) or (A1) and (A3). Set

Sε(f ) = εd/2
∑
x∈Zd

∑
i∈I

(∇iφ(x) − ui

)
fi(εx),

where f ∈ C∞
0 (Rd ;R

d). Then

Sε(f ) ⇒ N
(
0,Σ2

u(f )
)

as ε → 0,

where Σ2
u(f ) can be identified explicitly as in Theorem 2.1 in [22], Σ2

u(f ) �= 0 for f �= 0, and ⇒ signifies convergence
in distribution.

Moreover, we extend in Theorem 7.3 the results of strict convexity of the surface tension from [14] and [19] to the
family of non-convex potentials satisfying (A0), (A1) and (A2).

Even though our results are obtained for the high temperature case, previously only our results in [8] were known
for the non-convex case. Also, the proofs of this paper require some crucial observations not made before. Moreover,
in our main result Theorem 1.8, we prove uniqueness of ergodic gradient Gibbs measures μ with a given arbitrary tilt
u ∈ R

d for the class of non-convex potentials satisfying (A0), (A1) and (A2). To the best of our knowledge, this is the
first result where uniqueness of ergodic gradient Gibbs measures μ is proved for a class of non-convex potentials U .
For potentials that are mixtures of Gaussians as considered in Biskup and Kotecký [2], they prove non-uniqueness of
ergodic gradient Gibbs measures for tilt u = 0 in the β = 1 regime. For the same example, we prove uniqueness of
ergodic gradient Gibbs measures for given arbitrary tilt u in the high temperature regime. Therefore, our result also
highlights the existence of phase transition for these models in different temperature regimes.

The basic idea relies on a one-step coarse graining procedure, in which we consider the marginal distribution of
the gradient field restricted to the even sites, which is also a gradient Gibbs field. The corresponding Hamiltonian,
although no longer a two-body Hamiltonian, is then obtained via integrating out the field at the odds sites. We can
integrate out the field φ at all odd sites, using the fact that they are independent conditional on the field φ at even sites,
which is a consequence of the bi-partiteness of the graph Z

d with nearest-neighbor bonds. The crucial step, which is
similar to the idea of our previous paper [8], is that strict convexity can be gained via integration at sufficiently high
temperature (see also Brascamp et al. [5] for previous use of the even/odd representation). The essential observation
is that we can formulate a condition for this multi-body potential, which we call the random walk representation
condition, which allows us to obtain a strictly convex Hamiltonian, and implies the random walk representation,
permitting us to apply the techniques of Helffer and Sjöstrand [23] or Deuschel [13]. The random walk representation
condition, and implicitly the strict convexity of the new Hamiltonian, can be verified under our assumptions as in
(A0), (A1) and (A2). Note that the method in [8] is more general and could be applied to non-bipartite graphs.
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A natural question to ask is whether we can iterate the coarse graining procedure in our current paper and find a
scheme which could possibly lower the temperature towards the critical βc, which marks the transition from a unique
gradient Gibbs measure μ (as proved in Theorem 1.8 in our paper for arbitrary tilt u) to multiple gradient Gibbs
measures μ (as proved in [2] for tilt u = 0). Note that iterating the coarse graining scheme is an interesting open
problem. One of the main difficulties is that, after iteration, the bond structure on the even sites of Z

d changes, and
we no longer have a bi-partite graph. Currently, we could use our method as detailed in Sections 2 and 3, to keep
integrating out lattice points so that the new Hamiltonian at each step, always of gradient type, can be separated into a
strictly convex part and a non-convex perturbation; however, at this point, our technique for estimation of covariances
as given in Section 3, is not robust enough to allow us to keep coarse graining the lattice points for more than a finite
number of steps, before we stop being able to improve the assumptions on our initial perturbation g.

The rest of the paper is organized as follows: In Section 2 we present the odd/even characterization of the gra-
dient field. In Section 3 we give the formulation of the random walk representation condition, which is verified in
Theorem 3.4 under conditions (A0), (A1) and (A2). Section 3 also presents a few examples, in particular we show
that our criteria gets close to the Biskup–Kotecký phase co-existence regime, both for the case of the zero and the
non-zero tilt u (see example (a) in Section 3.2). In Section 4 we prove Theorem 1.8, our main result on uniqueness of
ergodic gradient Gibbs measure with given tilt u, which is based on adaptations of [19], assuming the random walk
representation condition. Section 5 deals with the decay of covariances and the proof is based on the random walk
representation for the field at the even sites which allows us to use the result of [11]. Section 6 shows the central
limit theorem, here again we focus on the field at even sites and apply the random walk representation idea of [22].
Section 7 proves the strict convexity of the surface tension, or free energy, which follows from the convexity of the
Hamiltonian for the gradient field restricted to the even sites. Finally, the Appendix provides explicit computations
for our one-step coarse graining procedure in the special case of potentials considered by [2] (see also example (a) in
Section 3.2).

2. Even/odd representation

There are two key results in this section. The first one is Lemma 2.10, where we are restricting the height differences
to the even sites, which induces a ∇φ measure on the even lattice with a different bond structure. The second main
result of this section is Lemma 2.11, where we give a formula for the conditional of a ∇φ-Gibbs measure on the height
differences between even sites. These two results will be essential for the proof for one of our main results, that is for
the proof of the uniqueness of ergodic component of Theorem 1.8.

In Section 2.1 we introduce the notation for the bond variables on the even subset of Z
d , in Section 2.2 we define

the φ-Gibbs measure and the ∇φ-Gibbs measure corresponding to the even subset of Z
d and in Section 2.3 we present

the relationship between the ∇φ-Gibbs measures for the bonds on Z
d and the ∇φ for the bonds on even subset of Z

d ,
when their corresponding finite volume φ-Gibbs measures are related by restriction.

2.1. Notation for the bond variables on the even subset of Z
d

As Z
d is a bipartite graph, we will label the vertices of Z

d as even and odd vertices, such that every even vertex has
only odd nearest neighbor vertices and vice-versa.

Let

Z
d
ev :=

{
a = (a1, a2, . . . , ad) ∈ Z

d
∣∣∣ d∑

i=1

ai = 2p,p ∈ Z

}

and

Z
d
od :=

{
a = (a1, a2, . . . , ad) ∈ Z

d
∣∣∣ d∑

i=1

ai = 2p + 1,p ∈ Z

}
.

(See also Fig. 1.)
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Fig. 1. The bonds of 0 in Z2
ev.

Let Λev ⊂ Z
d
ev finite. We will next define the bonds in Z

d
ev in a similar fashion to the definitions for bonds on Z

d . Let(
Z

d
ev

)∗ := {
b = (xb, yb) | xb, yb ∈ Z

d
ev,‖xb − yb‖ = 2, b directed from xb to yb

}
,

(Λev)
∗ := (

Z
d
ev

)∗ ∩ (Λev × Λev), (Λev)∗ := {
b = (xb, yb) ∈ (

Z
d
ev

)∗ | xb ∈ Λev or yb ∈ Λev
}
,

∂(Λev)
∗ := {

b = (xb, yb) | xb ∈ Z
d
ev \ Λev, yb ∈ Λev,‖xb − yb‖ = 2

}
and

∂Λev := {
y ∈ Z

d
ev \ Λev|‖y − x‖ = 2 for some x ∈ Λev

}
.

Note that throughout the rest of the paper, we will refer to the bonds on (Zd
ev)

∗ as the even bonds.
An even plaquette is a closed loop Aev = {b(1), b(2), . . . , b(n)}, where b(i) ∈ (Zd

ev)
∗, n ∈ {3,4}, such that {xb(i) , i =

1, . . . , n} consists of n different points in Z
d
ev. The field η = {η(b)} ∈ R

(Zd
ev)

∗
is said to satisfy the even plaquette

condition if

η(b) = −η(−b) for all b ∈ (
Z

d
ev

)∗ and
∑

b∈Aev

η(b) = 0 for all even plaquettes in Z
d
ev. (14)

Let χev be the set of all η ∈ R
(Zd

ev)
∗

which satisfy the even plaquette condition. For each b = (xb, yb) ∈ (Zd
ev)

∗ we
define the even height differences ηev(b) := ∇evφ(b) = φ(yb) − φ(xb). The heights φηev,φ(0) can be constructed from
the height differences ηev and the height variable φ(0) at x = 0 as

φηev,φ(0)(x) :=
∑

b∈Cev
0,x

ηev(b) + φ(0), (15)

where x ∈ Z
d
ev and Cev

0,x is an arbitrary path in Z
d
ev connecting 0 and x. Note that φη,φ(0)(x) is well-defined if ηev =

{ηev(b)} ∈ χev. We also define χev,r similarly as we define χr . As on Z
d , let P(χev) be the set of all probability

measures on χev and let P2(χev) be those μ ∈ P(χev) satisfying Eμ[|ηev(b)|2] < ∞ for each b ∈ (Zd
ev)

∗. We denote
χev,r = χ ∩ L2

r equipped with the norm | · |r .

Remark 2.1. Let η ∈ χ . Using the plaquette condition property of η, we will define ηev, the induced bond variables
on the even lattice, from η thus: if b1 = (x, x + ei), b2 = (x + ej , x) and bev = (x + ej , x + ei), we define ηev(bev) =
η(b1) + η(b2). Note that ηev ∈ χev.

Remark 2.2. Throughout the rest of the paper, we will use the notation φev,ψev either for a stand alone configuration
on the even vertices, or in relation to the restriction of φ to the even vertices. ηev, ξev will denote configurations on the



828 C. Cotar and J.-D. Deuschel

even bonds. Similarly, Λev will either be a stand alone subset of Z
d
ev or will be used in relation to the restriction of a

set Λ ⊂ Z
d to Z

d
ev. For Λ ⊂ Z

d , we will denote Λod := Z
d
od ∩ Λ.

2.2. Definition of ∇φ-Gibbs measure on (Zd
ev)

∗

For every ξev ∈ χev and finite Λev ⊂ Z
d
ev, the space of all possible configurations of height differences on (Λev)∗ for

given boundary condition ξev is defined as

χ(Λev)∗,ξev
= {

ηev = (
ηev(b)

)
b∈(Λev)∗ , ηev ∨ ξev ∈ χev

}
,

where ηev ∨ ξev ∈ χev is determined by (ηev ∨ ξev)(b) = ηev(b) for b ∈ (Λev)∗ and = ξev(b) for b /∈ (Λev)∗.
The φ-Gibbs measure νev on Z

d
ev and the ∇φ-Gibbs measure μev on (Zd

ev)
∗ with given Hamiltonian H ev can be

defined similarly to the φ-Gibbs measure and the ∇φ-Gibbs measure in Sections 2.1 and 1.2.2. They are basically a
φ-Gibbs and ∇φ-Gibbs measure on a different graph, with vertex and edge sets (Zd

ev, (Z
d
ev)

∗). They are defined via
the corresponding Hamiltonian H ev

Λev,ξev
, assumed of even gradient type, via the finite volume Gibbs measure νev

Λev,ψev

on Z
d
ev and the finite volume ∇-Gibbs measure μev

Λev,ψev
on (Zd

ev)
∗.

Let

H ev := (
H ev

Λev,ξev

)
Λev⊂Zd

ev,ξev∈χev

and let

Gev
(
H ev) := {

μev ∈ P2(χev): μev is ∇φ-Gibbs measure on
(
Z

d
ev

)∗ with given Hamiltonian H ev}.
Remark 2.3. Similar to Remark 1.2, when Z

d
ev \ Λev is connected, χ(Λev)∗,ξev

is an affine space such that

dimχ(Λev)∗,ξev
= |Λev|. Fixing a point x0 /∈ Λev, we consider the map J

ev,ξ
Λev

:χev → R
Z

d
ev , such that ηev → {φev(x)},

with

φ(x) :=
∑

b∈Cev
x0,x

(ηev ∨ ξev)(b), x ∈ Λev,

for a chain Cev
x0,x

connecting x0 and x and for fixed φ(x0),

φ(x) := ψξev,φ(x0)(x) =
∑

b∈Cx0,x

ξev(b) + φ(x0), x /∈ Λev.

Remark 2.4. For every ξev ∈ χev and a ∈ R, let ψev = φξev,a be defined by (15) and consider the measure νΛev,ψev .
Then μΛev,ψev is the image measure of νΛev,ψev under the map {φ(x)}x∈Λev → {ηev(b) := ∇(φev ∨ ψev)(b)}b∈(Λev)∗ .
Note that the image measure is determined only by ξev and is independent of the choice of a.

2.3. Induced ∇φ-Gibbs measure on (Zd
ev)

∗

Throughout this section, we will make the following notation conventions. For φ,ψ ∈ R
Z

d
, we define φev :=

(φ(x))x∈Zd
ev
,ψev := (ψ(x))x∈Zd

ev
. For η, ξ ∈ χ , we define ηev and ξev according to Remark 2.1.

Definition 2.5. Let Λev be a finite set in Z
d
ev. We construct a finite set Λ ⊂ Z

d associated to Λev as follows: if x ∈ Λev,
then x ∈ Λ and x + ei ∈ Λ for all i ∈ I = {−n,−n + 1, . . . , n} \ {0}. Note that by definition, ∂Λ = ∂Λev, where the
boundary operations are performed in the graphs (Zd , (Zd)∗) and (Zd

ev, (Z
d
ev)

∗), respectively (see Figs 2 and 3).

Lemma 2.6 (Induced finite volume φ-Gibbs measure on Z
d
ev). Let Λev ⊂ Z

d
ev and let Λ be the associated set

in Z
d , as defined in Definition 2.5. Let νΛ,ψ be the finite volume Gibbs measure on Λ with boundary condition
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Fig. 2. The graph of Λev.

Fig. 3. The graph of Λ associated to Λev.

ψ and with Hamiltonian HΛ,ψ defined as in (3). We define the induced finite volume Gibbs measure on Z
d
ev as

νev
Λev,ψev

:= νΛ,ψ |F (Zd
ev)

. Then νev
Λev,ψev

has Hamiltonian H ev
Λev,ψev

, where

H ev
Λev,ψev

(φev) :=
∑

x∈Λod

Fx

((
φ(x + ei)

)
i∈I

)
with

(16)

Fx

((
φ(x + ei)

)
i∈I

) = − log
∫

R

e−2β
∑

i∈I U(∇iφ(x)) dφ(x).

Remark 2.7. Note that for any constant C ∈ R, by using the change of variables φ(x) → φ(x) + C in the integral
formula for Fx((φ(x + ei))i∈I ) in (16), we have

Fx

((
φ(x + ei)

)
i∈I

) = Fx

((
φ(x + ei) + C

)
i∈I

)
.

In particular, this means that for any fixed k ∈ I

Fx

((
φ(x + ei)

)
i∈I

) = Fx

((
φ(x + ei) − φ(x + ek)

)
i∈I

)
. (17)

Therefore we are still dealing with a gradient system. However, it is in general no longer a two-body gradient system.
Fx((φ(x + ei))i∈I ), and consequently H ev

Λev,ψev
, are functions of the even gradients by (16) and (17).
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Remark 2.8. We formulate next more explicitly the dependence of Fx and H ev
Λev,ψev

on the even gradients. Let k ∈ I

be arbitrarily fixed. For any x ∈ Z
d , let

B(x, k) = {
(x + ek, x + ei)

}
i∈I

.

For all Λev ⊂ Z
d
ev, take the set Λ associated to Λev, as defined in Definition 2.5. We define here H ev :=

(H ev
Λev,ξev

)Λev⊂Zd
ev,ξev∈χev

as follows

H ev
Λev,ξev

(η) =
∑

x∈Λod

Fx

((
ηev(b)

)
b∈B(x,k)

)
. (18)

Note that, via Remark 2.3, one can easily obtain the equivalence between the corresponding finite volume φ-Gibbs
and ∇φ-Gibbs measures.

Remark 2.9. By definition, Fx((φ(x + ei))i∈I ) only depend on sites within distance 2 of x. Note that the new Hamil-
tonian HΛev,ψev depends on β through the functions Fx((φ(x + ei))i∈I ).

Proof of Lemma 2.6. The idea of this proof is just integrating out the height variables on the odd sites, conditioned
on the even sites. The Gibbs property and specific graph structure imply that the odd height variables are independent
conditional on the even sites.

Set

Hx(φ) =
∑
i∈I

U
(∇iφ(x)

)
. (19)

Let Λev be a finite set in Z
d
ev and let Λ ∈ Z

d be the associated set as defined in Definition 2.5. Note now that due to
the symmetry of the potential U , to the specific boundary conditions on Λ and by (3), we have

HΛ,ψ(φ) =
∑
x∈Λ

Hx(φ) = 2
∑

x∈Λod

Hx(φ). (20)

Let A ∈ FZd
ev

⊂ FZd , dφΛev = ∏
x∈Λev

dφ(x) and dφΛod = ∏
x∈Λod

dφ(x). Recall that Λ = Λ ∪ ∂Λ and take Λev =
Λ∩Z

d
ev and Λod = Λ∩Z

d
od. Then, by integrating out the odd height variables conditional on the even height variables,

due to the Gibbs property of νΛ,ψ (see Definition 1.1) and to the fact that ∂Λ = ∂Λev, we have for every ψ ∈ R
Z

d

νΛ,ψ(A) = 1

ZΛ,ψ

∫
RΛ

1A(φ)e−βHΛ,ψ (φ) dφΛδψ(dφZd\Λ)

by (20)= 1

ZΛ,ψ

∫
RΛ

1A(φ)e−2β
∑

x∈Λod
Hx(φ) dφΛod dφΛevδψ(dφZd\Λ)

= 1

ZΛ,ψ

∫
RΛev

∫
R

Λod
1A(φ)e−2β

∑
x∈Λod

Hx(φ) dφΛod dφΛevδψ(dφZd\Λ)

as A∈F
Z

d
ev= 1

ZΛ,ψ

∫
RΛev

1A(φ)

(∫
R

Λod
e−2β

∑
x∈Λod

Hx(φ) dφΛod

)
dφΛevδψ(dφZd\Λ)

= 1

ZΛ,ψ

∫
RΛev

1A(φ)

(∫
R

Λod

∏
x∈Λod

e−2βHx(φ)
∏

x∈Λod

dφ(x)

)
dφΛevδψ(dφZd\Λ)

as ∂Λ=∂Λev= 1

ZΛ,ψ

∫
RΛev

1A(φ)
∏

x∈Λod

(∫
R

e−2βHx(φ) dφ(x)

)
dφΛevδψ(dφZd

ev\Λev
)

by (16)= 1

ZΛ,ψ

∫
A

e−∑
x∈Λod

Fx((φ(x+ei ))i∈I ) dφΛevδψ(dφZd
ev\Λev

) = νev
Λev,ψev

(A), (21)
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where for the last equality we used that ZΛ,ψ = ZΛev,ψev , which is due to the fact that ∂Λ = ∂Λev. �

Lemma 2.10 (Induced ∇φ-Gibbs measure on (Zd
ev)

∗). Let μ ∈ Gβ(H). We define the induced ∇φ-Gibbs measure
on (Zd

ev)
∗ as μev := μ|F(Zd

ev)
∗ . Then μev ∈ Gev(H

ev), where H ev
Λev,ξev

is defined as in Remark 2.8.

Proof. Let

F(Zd )∗ := σ
(
η(b), b ∈ (

Z
d
)∗)

and F(Zd
ev)

∗ := σ
(
ηev(b), b ∈ (

Z
d
ev

)∗)
.

To prove the statement of the theorem, we need to prove that for all A ∈ F(Zd
ev)

∗ , μev satisfies

μev(A|F(Zd
ev)

∗\(Λev)∗)(ξev) = μev
Λev,ξev

(A).

In order to prove the above equality, we will first show that for all A ∈ F(Zd
ev)

∗ and for any Λev finite set in Z
d
ev with

associated set Λ ⊂ Z
d as defined in Definition 2.5, we have

μΛ,ξ (A) = μev
Λev,ξev

(A). (22)

Then using F
(Zd

ev)
∗\(ΛE )∗ ⊂ F(Zd )∗\(Λ)∗ , the definition of the ∇φ-Gibbs measure and (22), we have

μ(A|F(Zd
ev)

∗\(Λev)∗)(ξ) = Eμ

(
Eμ(1A|F(Zd )∗\(Λ)∗)|F(Zd

ev)
∗\(Λev)∗

)
(ξ) = μev

Λev,ξev
(A).

The key point in the above equation is that when we condition further, we get μΛ,ξ ′ where ξ ′ is random and being
integrated over, and ξ ′ all have ξev as its restriction on the evens, and for all such ξ ′, by (22) μΛ,ξ ′ all equal μev

Λev,ξev
(A).

To prove (22), first we start with the finite volume ∇φ-Gibbs measure μΛ,ξ . Then we construct a finite volume φ-

Gibbs measure νΛ,ψ using the map K
ψ
Λ defined in Remark 1.4. Next we restrict νΛ,ψ to the even vertices by means

of Lemma 2.6, and then we pass to the finite volume ∇φ-Gibbs measure μev
Λev,ξev

by applying the map J
ev,ξ
Λev

defined
in Remark 2.3.

The details in the derivation of (22) follow below.
Let ξ ∈ χ . Fixing ψ(0) ∈ R, for all A ∈ F(Zd )∗ we have by Remark 1.4 that

μΛ,ξ (A) = EνΛ,ψ

(
1A ◦ K

ψ
Λ

)
, with ψ given as in (6) by ψ(x) :=

∑
b∈C0,x

ξ(b) + ψ(0), x ∈ Z
d . (23)

For all B ∈ FZd
ev

and Λev finite sets in Z
d
ev with Z

d
ev \ Λev connected, we have by Remark 2.3

νev
Λev,ψev

(B) = Eμev
Λev,ξev

(
1B ◦ J

ev,ξ
Λev

)
, with ξev(b) := ∇ψ(b), b ∈ (

Z
d
ev

)∗
. (24)

Let A ∈ F(Zd
ev)

∗ ⊂ F(Zd )∗ ; then by using Lemma 2.6, (23) and (24), we have for every ξ ∈ χ such that ξev ∈ χev (recall
Remark 2.1)

μΛ,ξ (A) = EνΛ,ψ

(
1A ◦ K

ψ
Λ

) = νev
Λev,ψev

((
K

ψ
Λ

)−1
(A)

) = Eμev
Λev,ξev

(
1
(K

ψ
Λ)−1(A)

◦ J
ev,ξ
Λev

) = μev
Λev,ξev

(A), (25)

where for the last equality we used the fact that 1
(K

ψ
Λ)−1(A)

◦ J
ev,ξ
Λev

= 1A. �

The following statement is a consequence of the Markov property of the Gibbs measures.

Lemma 2.11 (Conditional of ∇φ-Gibbs measure on (Zd
ev)

∗). Let G be a F(Zd )∗ -measurable and bounded function.
Then for all μ ∈ Gβ(H) and all ξ ∈ χ , we have

Eμ(G|F(Zd
ev)

∗)(ξ) =
∫

RZd
G(∇φ)

∏
x∈Z

d
od

νx,ψ

(
dφ(x)

)
δψ(dφZd

ev
), (26)
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where we use νx,ψ to denote νΛ,ψ with Λ = {x} and ψ is given by ψ(x) := ∑
b∈C ev

0,x
ξev(b)+ψ(0), x ∈ Z

d , for a fixed

ψ(0) ∈ R and with ξev given as in Remark 2.1.

Proof. It is enough to prove (26) for bounded functions G depending on finitely many coordinates. Fix such a G

arbitrarily. Note first that the right-hand side of (26) is F(Zd
ev)

∗ -measurable and depends only on the even gradients, as
proved in (30) in Corollary 2.12 below. Therefore, to show (26) we only need to prove that for any F(Zd

ev)
∗ -measurable

and bounded function F depending on finitely many coordinates in (Zd
ev)

∗, we have

∫
χ

F (∇φev)G(∇φ)μ(d∇φ) =
∫

χ

F (∇ψev)

[∫
RZd

G(∇φ)
∏

x∈Z
d
od

νx,ψ

(
dφ(x)

)
δψ(dφZd

ev
)

]
μ(d∇ψ).

Take now an arbitrarily fixed F(Zd
ev)

∗ -measurable and bounded F , depending on finitely many coordinates in (Zd
ev)

∗.

For n ∈ N let S d
n = {x ∈ Z

d : ‖x‖ ≤ n} such that F is F
(S d

n )∗ -measurable and let Λn := S d
n ∩ Z

d
od. Then from (8) we

have ∫
χ

F (ηev)G(η)μ(dη) =
∫

χ

μ(dξ)

∫
χ(Λn)∗,ξ

μΛn,ξ (dη)F (ηev)G(η). (27)

Using Remark 1.2, we switch now from the finite ∇φ-Gibbs measure μΛn,ξ to the corresponding finite φ-Gibbs
measure νΛn,ψ . Then

∫
χ(Λn)∗,ξ

μΛn,ξ (dη)F (ηev)G(η) =
∫

RZd
F (∇φev)G(∇φ)

∏
x∈Λn

νx,ψ

(
dφ(x)

)
δψ(dφZd\Λn

)

= F(∇ψev)

∫
RZd

G(∇φ)
∏

x∈Λn

νx,ψ

(
dφ(x)

)
δψ(dφZd\Λn

), (28)

as F only depends on the even gradients. Since by the Kolmogorov extension theorem we have∫
RZd

G(∇φ)
∏

x∈Z
d
od

νx,ψ

(
dφ(x)

)
δψ(dφZd

ev
) = lim

n→∞

∫
RZd

G(∇φ)
∏

x∈Λn

νx,ψ

(
dφ(x)

)
δψ(dφZd\Λn

),

the statement of the theorem follows now from (27), (28) and Lebesgue’s dominated convergence theorem. �

In the next corollary, we reformulate Lemma 2.11 to remove the dependence on the height field ψ , and to make it
more explicit that everything in the formula for Eμ(G|F(Zd

ev)
∗)(ξ) depends only on the even gradients.

Corollary 2.12. Let k ∈ I be an arbitrarily fixed element in I and let G be a F(Zd )∗ -measurable and bounded function.
Then for all μ ∈ Gβ(H) and all ξ ∈ χ , we have with the notations from Remarks 2.1 and 2.8

Eμ(G|F(Zd
ev)

∗)(ξ) =
∫

G
((

ξev(b) − φ(x)
)
b∈B(x,k),x∈Z

d
od

) ∏
x∈Z

d
od

μk
x,ξev

(
dφ(x)

)
, (29)

where

μk
x,ξev

(
dφ(x)

) = 1

Zk
x,ξev

exp

(
−β

∑
b∈B(x,k)

U
(
ξev(b) − φ(x)

))
dφ(x), (30)

and Zk
x,ξev

is the normalizing constant.
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Proof. Note first that for all i ∈ I and all x ∈ Z
d
od, ∇iφ(x) = φ(x + ei) − φ(x + ek) − φ(x) + φ(x + ek) = ξev(b) −

φ(x) + φ(x + ek), with b ∈ B(x, k). The statement of the corollary follows now immediately, by making in (26) the
change of variables φ(x) → φ(x) + φ(x + ek) for all x ∈ Z

d
od. �

3. Random walk representation condition

In this section, we prove that under suitable conditions on the perturbation g, the new Hamiltonian H ev =
(H ev

Λev,ψev
)Λev⊂Zd

ev,ψev∈Zd
ev

induced on Z
d
ev and defined in (16), is strictly convex. More precisely, we will prove that

H ev satisfies the so-called random walk representation condition (see Definition 3.1 below). This will allow us to
adapt results known for strictly convex potentials, such as uniqueness of ergodic component and decay of covariance,
to our non-convex setting.

Section 3.1 contains the main result of this section, Theorem 3.4, in which we prove that under assumption (A2)
on g, the Hamiltonian H ev satisfies the random walk representation condition. Note that, in contrast to the condition
in our previous paper [8], ‖g′′‖L∞(R) can be arbitrarily large as long as ‖g′′‖Lq(R) is small. In Section 3.2, we present
some examples of non-convex potentials which fulfill assumption (A2); our first example is the particular class of
potentials treated both in [2] and in [3].

3.1. Definition and main result

For i ∈ I , let

DiFx(y1, . . . , yd, y−1, . . . , y−d) := ∂

∂yi

Fx(y1, . . . , yd, y−1, . . . , y−d).

We will next formulate a condition on the multi-body potential, which we call the random walk representation con-
dition, such that Fx satisfies this condition, and we will adapt earlier results known for strictly convex two-body
potentials to this setting.

Definition 3.1. We say that H ev satisfies the random walk representation condition if there exist c, c > 0 such that for

all x ∈ Z
d
od, for all (φ(x + ek))x∈Z

d
od,k∈I ∈ R

Z
d
ev and all i, j ∈ I

Di,iFx

((
φ(x + ek)

)
k∈I

) = −
∑

j∈I,j �=i

Di,jFx

((
φ(x + ek)

)
k∈I

)
,

c ≤ −Di,jFx

((
φ(x + ek)

)
k∈I

) ≤ c for i �= j.

Remark 3.2. Note that for each x ∈ Z
d
od, if H ev satisfies Definition 3.1, then Fx is uniformly convex (with respect to

the even heights). More precisely, for all α = (α1, . . . , α2d) ∈ R
2d we have

c
∑

i,j∈I,i �=j

(αi − αj )
2 ≤

∑
i,j∈I

αiαjD
i,jFx

((
φ(x + ek)

)
k∈I

) ≤ c
∑

i,j∈I,i �=j

(αi − αj )
2.

Remark 3.3. Potentials satisfying the random walk representation condition fulfill the random walk representation
which is explained, for example, in [14] or [20]. For two-body gradient interactions which are uniformly convex with
respect to heights, the random walk representation gives an extremely useful representation of the covariance matrix,
with respect to the measure μΛ,ξ , in terms of the Green function of a specific random walk.

The main result of this section is:

Theorem 3.4 (Random walk representation condition). Let U ∈ C2(R) be such that it satisfies (A0). We also
assume that V,g ∈ C2(R) satisfy (A1). Then, if for some q ≥ 1, g′′ satisfies (A2), more precisely, if

β1/(2q)
∥∥g′′∥∥

Lq(R)
<

(C1)
3/2

2C
(q+1)/2q

2 (2d)1/(2q)
,
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then there exist c, c > 0 such that H ev satisfies the random walk representation condition.

Remark 3.5. The main idea behind the proof of Theorem 3.4 is that one can gain convexity by one-step integration,
which is possible if ‖g′′‖Lq(R) is sufficiently small compared to V ′′.

What is crucial as regards the bounds c, c, is that they are uniform in x ∈ Z
d
od and that they are independent of

the possible values of φev ∈ Z
d
ev. This is necessary for us to adapt the arguments known for uniformly strictly convex

potentials with two-body interaction to our setting of a generalized random walk representation condition for multi-
body potentials.

Note that we only need ‖g′′‖Lq(R) to be small for the lower bound c, as the upper bound c only requires the
perturbation to be finite, not small.

The first step in proving Theorem 3.4 is to prove the following lemma

Lemma 3.6. Suppose x ∈ Z
d
od. Then for all j ∈ I , we have

DjFx

((
φ(x + ek)

)
k∈I

) = −
∑

i∈I,i �=j

DiFx

((
φ(x + ek)

)
k∈I

)
,

(31)
Dj,jFx

((
φ(x + ek)

)
k∈I

) = −
∑

i∈I,i �=j

Di,jFx

((
φ(x + ek)

)
k∈I

)
,

and for all i ∈ I, i �= j

Di,jFx

((
φ(x + ek)

)
k∈I

) = −4β2 covνx,ψφ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

))
, (32)

where νx,ψφ is as defined in Lemma 2.11, with boundary condition ψφ(y) := φ(y) for y �= x, and Eνx,ψφ
and covνx,ψφ

are respectively the expectation and the covariance with respect to the measure νx,ψφ .

Proof. Let a = (a1, a2, . . . , a2d) ∈ R
2d . Since Fx(a1, . . . , a2d) = Fx(a1 + t, . . . , a2d + t) for all t > 0, differentiating

with respect to t in it, gives the first identity in (31). The second assertion in (31) follows from the first, by differ-
entiation. By differentiating now with respect to φ(x + ei) and φ(x + ej ) in the formula for Fx , we have for all
i, j ∈ I, i �= j

Di,jFx

((
φ(x + ek)

)
k∈I

) = −4β2 covνx,ψφ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

))
. (33)

�

The next lemma follows by Taylor expansion and will be needed for the proof of Theorem 3.4:

Lemma 3.7 (Representation of covariances). For all L2-functions F,G ∈ C1(R;R) with bounded derivatives and
for all measures ν ∈ P(R), we have

covν(F,G) = 1

2

∫ ∫ [
F(φ) − F(ψ)

][
G(φ) − G(ψ)

]
ν(dφ)ν(dψ)

= 1

2

∫ ∫ [
(φ − ψ) IF(φ,ψ)

][
(φ − ψ) IG(φ,ψ)

]
ν(dφ)ν(dψ),

where we denote by

IF(φ,ψ) :=
∫ 1

0
F ′(ψ + t (φ − ψ)

)
dt, IG(φ,ψ) :=

∫ 1

0
G′(ψ + s(φ − ψ)

)
ds.

Remark 3.8 (Scaling argument). A simple scaling argument shows that it suffices to prove Theorem 3.4 for

β = 1, C1 = 1. (34)
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Indeed, suppose that the result is true for β = 1 and C1 = 1. Given β , V and g which satisfy (A1) and (A2), we define

Ũ(s) = Ṽ (s) + g̃(s), where Ṽ (s) = βV

(
s√
βC1

)
, g̃(s) = βg

(
s√
βC1

)
.

Then

1 ≤ (Ṽ )′′ ≤ C2

C1
, −C0

C1
≤ (g̃)′′ ≤ 0,

∥∥(g̃)′′
∥∥

Lq(R)
= (βC1)

1/(2q) 1

C1

∥∥g′′∥∥
Lq(R)

,
∥∥(g̃)′

∥∥
L2(R)

= (
β3/C1

)1/4∥∥g′∥∥
L2(R)

.

Hence Ṽ , g̃ satisfy the assumptions of Theorem 3.4 with β = 1 and C1 = 1. On the other hand, the change of variables
φ̃(x) = √

βC1φ(x) yields Ũ(∇i φ̃(x)) = βU(∇iφ(x)) and thus

F̃x

((
φ̃(x + ei)

)
i∈I

) := − log
∫

R

e−2
∑

i∈I Ũ (∇i φ̃(x)) dφ̃(x)

= − logβC1

2
− log

∫
R

e−2β
∑

i∈I U(∇iφ(x)) dφ(x) = − logβC1

2
+ Fx

((
φ(x + ei)

)
i∈I

)
.

Proof of Theorem 3.4. From Definition 3.1 and Lemma 3.6 it follows that, in order to prove that the random walk
representation condition holds for H ev, all we need is to show that there exist cl, cu > 0 such that for all i, j ∈ I, i �= j ,
and uniformly in x and ψ

cl ≤ covνx,ψ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

)) ≤ cu. (35)

Recall that we have U = V + g, where 1 ≤ V ′′ ≤ C2 and therefore we can split the initial covariance term into four
resulting covariance terms. More precisely, we have

covνx,ψ

(
U ′

i ,U
′
j

) = covνx,ψ

(
V ′

i , V
′
j

) + covνx,ψ

(
V ′

i , g
′
j

) + covνx,ψ

(
V ′

j , g
′
i

) + covνx,ψ

(
g′

i , g
′
j

)
,

where for convenience of notation we denoted by

covνx,ψ

(
U ′

i ,U
′
j

) := covνx,ψ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

))
,

...

covνx,ψ

(
g′

i , g
′
j

) := covνx,ψ

(
g′(∇iφ(x)

)
, g′(∇jφ(x)

))
.

We will first show in (36), (37) and (38) below, by means of Lemma 3.7, that the resulting covνx,ψ (V ′
i , V

′
j ) and

covνx,ψ (g′
i , g

′
j ) terms are positive and that the resulting covνx,ψ (g′

i , V
′
j ) and covνx,ψ (g′

j ,V
′
i ) terms are negative. We

will then obtain lower and upper bound estimates for the covνx,ψ (V ′
i , V

′
j ) terms, and upper bound estimates for the

covνx,ψ (g′
i , g

′
j ) and the − covνx,ψ (g′

i , V
′
j ) and − covνx,ψ (g′

j ,V
′
i ) terms. These bounds will determine the conditions

on the perturbation g′′ such that (35) holds. To estimate an arbitrary covνx,ψ (V ′
i , V

′
j ) term, we will bound it in (36)

from above and below by bounds proportional to covνx,ψ (φ,V ′
j ). To estimate an arbitrary covνx,ψ (g′

i , g
′
j ) term, we

will bound the respective term in (37) from above by a bound proportional to covνx,ψ (φ,V ′
j ). To estimate an arbitrary

− covνx,ψ (V ′
j , g

′
i ) term, we will first express it in (40) in terms of covνx,ψ (φ,V ′

j ) and Varνx,ψ (g′
i ); the Varνx,ψ (g′

i ) term
will then also be bound in (41) from above by a bound proportional to covνx,ψ (φ,V ′

j ). We will then proceed to find
upper and lower bounds for the covνx,ψ (φ,V ′

j ) terms. The upper bound will be derived in (46) by means of (43), (44)
and (45), and the lower bound will be derived in (47) by means of (44). The explicit computations follow.
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Fix x ∈ Z
d and i, j ∈ I, i �= j, arbitrarily. We will next check which covariance terms are positive and which are

negative. Using Lemma 3.7 for V ′(∇iφ(x)) and V ′(∇jφ(x)), we see that

covνx,ψ

(
V ′(∇iφ(x)

)
,V ′(∇jφ(x)

)) = 1

2

∫ ∫ (
φ(x) − ψ(x)

)2
∫ 1

0
V ′′((1 − t)ψ(x) − φ(x + ei) + tφ(x)

)
dt

×
∫ 1

0
V ′′((1 − s)ψ(x) − φ(x + ej ) + sφ(x)

)
dsνx(dφ)νx(dψ).

By comparing the above equality with the similar one for covνx,ψ (φ(x),V ′(∇j φ(x))) and with the bound 1 ≤ V ′′ ≤
C2, we have for all i, j ∈ I

covνx,ψ

(
V ′(∇iφ(x)

)
,V ′(∇jφ(x)

)) ≥ covνx,ψ

(
φ(x),V ′(∇jφ(x)

)) ≥ Varνx,ψ

(
φ(x)

) ≥ 0,
(36)

covνx,ψ

(
V ′(∇iφ(x)

)
,V ′(∇jφ(x)

)) ≤ C2 covνx,ψ

(
φ(x),V ′(∇jφ(x)

))
.

Since −C0 ≤ g′′ ≤ 0, by similar reasoning

0 ≤ covνx,ψ

(
g′(∇iφ(x)

)
, g′(∇jφ(x)

)) ≤ C2
0 Varνx,ψ

(
φ(x)

) ≤ C2
0 covνx,ψ

(
φ(x),V ′(∇jφ(x)

))
(37)

and

−C0 covνx,ψ

(
φ(x),V ′(∇jφ(x)

)) ≤ covνx,ψ

(
V ′(∇jφ(x)

)
, g′(∇iφ(x)

))
< 0. (38)

Given (36), (37) and (38), we have the following upper and lower bounds for covνx,ψ (U ′,U ′)

covνx,ψ

(
φ(x),V ′(∇jφ(x)

)) + covνx,ψ

(
g′(∇jφ(x)

)
,V ′(∇iφ(x)

)) + covνx,ψ

(
g′(∇iφ(x)

)
,V ′(∇jφ(x)

))
≤ covνx,ψ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

)) ≤ (
C2 + C2

0

)
covνx,ψ

(
φ(x),V ′(∇jφ(x)

))
. (39)

Of more importance are the lower bound estimates, as they will determine the conditions on our perturbation g′′
which give us convexity after the one-step integration. We will next get a lower bound for the covνx,ψ (g′

i , V
′
j ) terms

in (39), which shows that the upper and lower bounds in (39) are all in terms of covνx,ψ (φ,V ′
j ). Using (38), the

Cauchy–Schwarz inequality and (36), we have

0 ≤ − covνx,ψ

(
V ′(∇jφ(x)

)
, g′(∇iφ(x)

)) ≤
√

Varνx,ψ

(
V ′(∇jφ(x)

))√
Varνx,ψ

(
g′(∇iφ(x)

))
≤

√
C2 covνx,ψ

(
φ(x),V ′(∇jφ(x)

))√
Varνx,ψ

(
g′(∇iφ(x)

))
. (40)

Let now q ≥ 1 be arbitrarily fixed. By Lemma 3.7 and Jensen’s inequality, we get

Varνx,ψ

(
g′(∇iφ(x)

))
= 1

2

∫ ∫ (
φ(x) − ψ(x)

)2
[∫ 1

0
g′′(ψ(x) − φ(x + ei) + t

(
φ(x) − ψ(x)

))
dt

]2

νx(dφ)νx(dψ)

≤ 1

2

∫ ∫ (
φ(x) − ψ(x)

)2
[∫ 1

0

∣∣g′′(ψ(x) − φ(x + ei) + t
(
φ(x) − ψ(x)

))∣∣q dt

]2/q

νx(dφ)νx(dψ)

= 1

2

∫ ∫ ∣∣φ(x) − ψ(x)
∣∣2−2/q

[∫ φ(x)−φ(x+ei )

ψ(x)−φ(x+ei )

∣∣g′′(s)
∣∣q ds

]2/q

νx(dφ)νx(dψ)

≤ 1

2

∥∥g′′∥∥2
Lq(R)

∫ ∫ ∣∣φ(x) − ψ(x)
∣∣2−2/q

νx(dφ)νx(dψ) ≤ 1

21/q

∥∥g′′∥∥2
Lq(R)

[
Varνx,ψ

(
φ(x)

)](q−1)/q

≤ 1

21/q

∥∥g′′∥∥2
Lq(R)

[
covνx,ψ

(
φ(x),V ′(∇jφ(x)

))](q−1)/q
, (41)



Uniqueness of ergodic component for ∇φ systems 837

where for the second equality we made the change of variable s = ψ(x) − φ(x + ei) + t (φ(x) − ψ(x)), in the
penultimate inequality we used Lemma 3.7 and for the last inequality we used (36). The lower bound in (39) becomes
by (41)

covνx,ψ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

))
≥ [

covνx,ψ

(
φ(x),V ′(∇jφ(x)

))](2q−1)/(2q)

× [[
covνx,ψ

(
φ(x),V ′(∇jφ(x)

))]1/(2q) − 2(2q−1)/(2q)
√

C2
∥∥g′′∥∥

Lq(R)

]
. (42)

We now proceed to find upper and lower bounds for covνx,ψ (φ(x),V ′(∇jφ(x))). From (36), we have by repeated
application

covνx,ψ

(
φ(x),V ′(∇jφ(x)

)) ≤ 1

2d
covνx,ψ

(
V ′(∇jφ(x)

)
,
∑
i∈I

V ′(∇iφ(x)
))

. (43)

Recall now that

covνx,ψ

(
V ′(∇jφ(x)

)
,
∑
i∈I

V ′(∇iφ(x)
))

= 1

Zx,ψ

∫
V ′(∇jφ(x)

)(∑
i∈I

V ′(∇iφ(x)
))

e−2Hx(φ) dφ(x)

−
[

1

Zx,ψ

∫
V ′(∇jφ(x)

)
e−2Hx(φ) dφ(x)

][
1

Zx,ψ

∫ (∑
i∈I

V ′(∇iφ(x)
))

e−2Hx(φ) dφ(x)

]
,

where Zx,ψ is the normalizing constant and Hx(φ) has been defined in (19). Using integration by parts in the above,
we have

covνx,ψ

(
V ′(∇jφ(x)

)
,
∑
i∈I

V ′(∇iφ(x)
)) = 1

2
Eνx,ψ

(
V ′′(∇jφ(x)

)) − covνx,ψ

(
V ′(∇jφ(x)

)
,
∑
i∈I

g′(∇iφ(x)
))

≤ C2

2
− covνx,ψ

(
V ′(∇jφ(x)

)
,
∑
i∈I

g′(∇iφ(x)
))

. (44)

From (41), (43) and (44), we now get the upper bound

covνx,ψ

(
φ(x),V ′(∇jφ(x)

)) ≤ C2

4d
+

√
C2

2(2q+1)/(2q)d

∥∥g′′∥∥
Lq(R)

[
covνx,ψ

(
φ(x),V ′(∇jφ(x)

))](2q−1)/(2q)
,

which is equivalent to

[
covνx,ψ

(
φ(x),V ′(∇jφ(x)

))](2q−1)/(2q)[[covνx,ψ

(
φ(x),V ′(∇jφ(x)

))]1/(2q) − b
] ≤ a, (45)

where a = C2
4d

and b =
√

C2
2(2q+1)/(2q)d

‖g′′‖Lq(R). Depending on if [covνx,ψ (φ(x),V ′(∇jφ(x)))]1/(2q) ≤ b or ≥b, (36)
combined with simple arithmetic in the above inequality gives

τ 2
x,ψ := Varνx,ψ

(
φ(x)

) ≤ covνx,ψ

(
φ(x),V ′(∇jφ(x)

))
≤ max

[
b2q,

(
a

b(2q−1)/(2q)
+ b

)2q]
=

(
a

b(2q−1)/(2q)
+ b

)2q

. (46)
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The upper bound on covνx,ψ (U ′(∇iφ(x)),U ′(∇j φ(x))) follows now from (39) and (46). To find a lower bound, note
now that from (36) we get

covνx,ψ

(
φ(x),V ′(∇jφ(x)

)) ≥ 1

2dC2
covνx,ψ

(
V ′(∇jφ(x)

)
,
∑
i∈I

V ′(∇iφ(x)
))

.

By using (38) and (44), we have

covνx,ψ

(
φ(x),V ′(∇jφ(x)

)) ≥ 1

4dC2
. (47)

From (42) and (47), the lower bound becomes

covνx,ψ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

)) ≥ 1

(4dC2)(2q−1)/(2q)

[
1

(4dC2)1/(2q)
− 2

√
C2‖g′′‖Lq(R)

21/(2q)

]
.

To summarize, we obtain the following upper and lower bounds, uniform with respect to x and ψ

cl = 1

(4dC2β)(2q−1)/(2q)
ε ≤ covνx,ψ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

))

≤ (
C2 + C2

0

)( a

b(2q−1)/(2q)
+ b

)2q

= cu (48)

for ε = 1
(4dC2)

1/(2q) − 2
√

C2‖g′′‖Lq (R)

21/(2q) > 0 by (A2). �

Remark 3.9. Another possible condition, (A3), is obtained if we use Lemma 3.10 below to replace (41) by

Varνx,ψ

(
g′(∇iφ(x)

)) ≤ Eνx,ψ

((
g′(∇iφ(x)

))2) ≤ 2
√

βdC2
∥∥g′∥∥2

L2(R)
.

Lemma 3.10. If h ∈ L1(R), then we have∣∣Eνx,ψ (h)
∣∣ ≤ 2

√
dβC2‖h‖L1(R).

Proof. Using integration by parts and Cauchy–Schwarz, we have

∣∣Eνx,ψ (h)
∣∣ =

∣∣∣∣Eνx,ψ

(
∂

∂y

(∫ y

−∞
h(z)dz

))∣∣∣∣ = 2β

∣∣∣∣Eνx,ψ

(
H ′

x(y)

(∫ y

−∞
h(z)dz

))∣∣∣∣
≤ 2β

[
Eνx,ψ

((
H ′

x

)2)]1/2
[

Eνx,ψ

((∫ y

−∞
h(z)dz

)2)]1/2

= √
2β

[
Eνx,ψ

(
H ′′

x

)]1/2
[

Eνx,ψ

(∫ y

−∞
h(z)dz

)2]1/2

≤ 2
√

dβC2‖h‖L1(R).

Note that we also used property (A1) in the above formula. �

Remark 3.11. Note that if we consider the case where U is strictly convex with C1 ≤ U ′′ ≤ C2 (that is U = V and
g = 0), in view of (36) and (45), the one step integration preserves the strict convexity of the induced Hamiltonian as

C2
1

4dβC2
≤ covνx,ψ

(
U ′(∇iφ(x)

)
,U ′(∇jφ(x)

)) ≤ C2
2

4dβC1
.
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Remark 3.12 (Perturbation with compact support). Note that we can extend the results from Theorem 3.4 to the
case where we have a perturbation g such that g′′ has compact support (see also example (b) in Section 3.2 below).
More precisely, assume that U = Y + h, where U satisfies (A0), D1 ≤ Y ′′ ≤ D2 and −D0 ≤ h′′ ≤ 0 on [a, b] and
0 < h′′ < D3 on R \ [a, b], with a, b ∈ R and h′′(a) = h′′(b) = 0. Then we just need to replace

C1 := D1, C2 := D1 + D2 and g′′ := h′′1{h′′≤0}.

A sketch of the argument follows next. Set

g(s) = h(s)1{s∈[a,b]} + [
h(b) + h′(b)(s − b)

]
1{s>b} + [

h(a) + h′(a)(s − a)
]
1{s<a}

and

V (s) = Y(s) + h(s)1{s /∈[a,b]} − [
h(b) + h′(b)(s − b)

]
1{s>b} − [

hi(a) + h′(a)(s − a)
]
1{s<a}.

Thus, we have V,g ∈ C2(R), with −D0 ≤ h′′(s) = g′′(s) ≤ 0 for s ∈ [a, b] and g′′(s) = 0 for s ∈ R \ [a, b] and
D1 ≤ V ′′(s) = Y ′′(s) + h′′(s)1{s /∈[a,b]} ≤ D2 + D3. Note that this procedure can also be extended to the case where
h′′ changes sign more than once.

3.2. Examples

(a) Let p ∈ (0,1) and 0 < k2 < k1. Let

U(s) = − log
(
pe−k1s

2/2 + (1 − p)e−k2s
2/2).

Take p
1−p

> k2
k1

in order that the potential U is non-convex. Let β = 1, d = 2 and k1 � k2. In this particular case,
as Christof Külske pointed out to us, we are dealing entirely with sums of Gaussian integrals, so we can compute
covνx,ψ (U ′(∇iφ(x)),U ′(∇jφ(x))) directly, which explicit computation is not possible in general; the random walk

representation condition holds then if p
1−p

< O(( k2
k1

)1/2) (see the Appendix for a sketch of the explicit computations).
This particular example is of independent interest and has been the focus of two other papers in the area (see [2]

and [3]). For the case d = 2 and β = 1, it was proved in [2] that at the critical point p := pc, such that pc

1−pc
= ( k2

k1
)1/4,

uniqueness of ergodic states is violated for this example of potential U and there are multiple ergodic, invariant ∇φ-
Gibbs measures with zero tilt; the same example is also treated in [3], where they prove CLT for the this particular
class of potentials in the case of ∇φ-Gibbs measures with zero tilt.

Note that we can use (A3) to show that the random walk representation condition holds if p < O((
k2
k1

)2/3). To show
this, take V and g even, with V (0) = 0, g(0) = 0, and such that

V ′′(s) = pk1e−k1s
2/2 + (1 − p)k2e−k2s

2/2

pe−k1s
2/2 + (1 − p)e−k2s

2/2
,

(49)

g′′(s) = − p(1 − p)(k1 − k2)
2s2

p2e−(k1−k2)s
2/2 + 2p(1 − p) + (1 − p)2e(k1−k2)s

2/2
.

Then

k2 ≤ V ′′(s) ≤ pk1 + (1 − p)k2,
∥∥g′(s)

∥∥
L2(R)

≤ O

(
p

1 − p
(k1 − k2)

1/4
)

,

p

1 − p
(k1 − k2)

1/4 ≤ O

(
(k2)

3/2

(pk1 + (1 − p)k2)5/4

)
= O

(
(k2)

3/2

(pk1)5/4

)
.

(b) U(s) = s2 + a − log(s2 + a), where 0 < a < 1. Let 0 < β < a

4
√

2d(2+2/(25a))2 . This example is interesting, as
it has two global minima.
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U(s)

0 s

Fig. 4. Example (a).

2

4

6

8

U(s)

−4 −2 0 2 4 s

Fig. 5. Example (b).

Then, using the notation from Remark 3.12, take Y(s) = s2 and h(s) = − log(s2 + a). We have Y ′′(s) = 2, so

D1 = D2 = 2; also h′′(s) = 2 s2−a

(s2+a)2 , with − 2
a

≤ h′′(s) ≤ 0 for s ∈ [−√
a,

√
a] and 0 < h′′(s) ≤ 2

25a
otherwise.

Then C0 = 2
a

, C1 = 2, C2 = 2 + 2
25a

and ‖g′′(s)‖L1(R) = 2√
a

. By using condition (A2) with q = 1, the random walk
representation condition holds. (See also Fig. 5.)

4. Uniqueness of ergodic component

In this section, we extend the uniqueness of ergodic component result, proved for strictly convex potentials in [19],
to the class of non-convex potentials U = V + g which satisfy (A0) such V and g satisfy (A1) and (A2). Note that
existence of an ergodic μu is guaranteed for our class of non-convex potentials by Theorem 4.6 below.

The proof of Theorem 1.8 will be done in two steps. First, in Section 4.1 we will prove the uniqueness of ergodic,
shift-invariant μev

u ∈ Gev(H
ev) with a given tilt u ∈ R

d , when the potentials Fx are of form as defined in (18) and
therefore H ev satisfies the random walk representation condition. For that, we will be adapting earlier results for
two-body potentials under uniformly strictly convex condition, to multi-body potentials satisfying the random walk
representation condition. Then we will use this result combined with Lemma 2.11 in Section 4.2, to extend the result
to μu ∈ Gβ(H).

4.1. Step 1: Uniqueness of ergodic component for (Zd
ev)

∗

For x ∈ Z
d
ev, we define the even shift operators: σx : RZ

d
ev → R

Z
d
ev and σx : R(Zd

ev)
∗ → R

(Zd
ev)

∗
similarly as for x ∈ Z

d .
Then shift-invariance and ergodicity for μev (with respect to σx for all x ∈ Z

d
ev) are defined similarly as for μ. The

main result in this section is:

Theorem 4.1. For every u ∈ R
d , there exists at most one μev

u ∈ Gev(H
ev), shift-invariant and ergodic with tilt u.
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We will prove Theorem 4.1 by coupling techniques. We will follow the same line of argument as in [19], by
introducing dynamics on the gradient field which keeps the measure in Gev(H

ev) invariant. Suppose the dynamics of
the even height variables φt = {φt (y)}y∈Zd

ev
are generated by the family of SDEs

dφt (y) = −
∑

x∈Z
d
od,‖x−y‖=1

∂

∂φ(y)
Fx

((
φt (x + ei)

)
i∈I

)
dt + √

2dWt(y), y ∈ Z
d
ev, (50)

where for all x ∈ Z
d
od, Fx are the functions defined in Lemma 2.6, satisfying the properties in Definition 3.1, and

{Wt(y), y ∈ Z
d
ev} is a family of independent Brownian motions. Using standard SDE methods and due to the fact that

V ′′ is bounded, one can show that equation (50) has a unique solution in L2
r for some r > 0.

We denote by Sev the class of all shift invariant μ ∈ P2(χev) which are stationary for the SDE (50) and by extSev

those μev ∈ Sev which are ergodic. For each u ∈ R
d , we denote by (ext Sev)u the family of all μev ∈ ext Sev such

that Eμev(ηev(b)) = 〈u,yb − xb〉 for all bonds b = (xb, yb) ∈ (Zd
ev)

∗. Note that all translation invariant measures in
Gev(H

ev) are stationary under the dynamics (see Proposition 3.1 in [19]).
The next theorem is a key result in the proof of Theorem 4.1.

Theorem 4.2. For every u ∈ R
d , there exists at most one μev

u ∈ (ext Sev)u.

Theorem 4.1 now follows from Theorem 4.2 and Proposition 3.1 in [19], which shows that if μev
u ∈ Gev(H

ev) is
shift-invariant and ergodic, then μev

u ∈ ext Sev.
The proof of Theorem 4.2 is based on a coupling lemma, Lemma 4.4 below; a key ingredient for the coupling

lemma is a bound on the distance between two measures evolving under the same dynamics. The main ingredients
needed to prove it are Lemma 4.3 below and a non-standard ergodic theorem (see (58) below). The deduction of
Theorem 4.2 from the coupling lemma follows the same arguments as the proof of Theorem 2.1 in [19] and will be
omitted.

Dynamics
We will first derive a differential inequality for the difference of two solutions evolving under the same dynamics,
which will be a key ingredient in the proof of the coupling Lemma 4.4 below.

Lemma 4.3. Let φt and φ̄t be two solutions for (50), coupled via the same Brownian motion in (50), and set φ̃t (y) :=
φt (y) − φ̄t (y), where y ∈ Z

d
ev. Then for every finite Λev ⊂ Z

d
ev, we have

∂

∂t

∑
y∈Λev

(
φ̃t (y)

)2 ≤ −c
∑

b∈(Λev)∗

[∇φ̃t (b)
]2 + 2c

∑
b∈∂(Λev)∗

∣∣φt (yb)
∣∣∣∣∇φ̃t (b)

∣∣. (51)

Proof. The proof of Lemma 4.3 is an adaptation of an earlier result by [19], where we replace the uniform strictly con-
vex condition on the two-body potential V with the random walk representation condition on a multi-body potential
of gradient type.

Let y ∈ Λev. Then from (50), we have

∂

∂t

(
φ̃t (y)

)2 = −2
∑

x∈Λod,‖x−y‖=1

[
∂

∂φ(y)
Fx

((
φt (x + ei)

)
i∈I

) − ∂

∂φ(y)
Fx

((
φ̄t (x + ei)

)
i∈I

)]
φ̃t (y). (52)

By summing now in (52) over all y ∈ Λev in (52), we get

∂

∂t

∑
y∈Λev

(
φ̃t (y)

)2 = −2
∑

x∈Λod

∑
{j∈I |

x+ej ∈Λev}

[
DjFx

((
φt (x + ei)

)
i∈I

) − DjFx

((
φ̄t (x + ei)

)
i∈I

)]
φ̃t (x + ej ), (53)
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where Λod = Λ ∩ Z
d
od and Λ is the associated set to Λev, as defined in Definition 2.5. To prove (51), we expand now

DjFx((φt (x + ei))i∈I ) around (φ̄t (x + ei))i∈I by the Mean Value Theorem to get

DjFx

((
φt (x + ei)

)
i∈I

) − DjFx

((
φ̄t (x + ei)

)
i∈I

)
=

∑
k∈I

φ̃t (x + ek)

∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds. (54)

Plugging (54) in (53), we have

∂

∂t

∑
y∈Λev

(
φ̃t (y)

)2

= −2
∑

x∈Λod

∑
{j∈I,

x+ej ∈Λev}

∑
k∈I

φ̃t (x + ek)φ̃t (x + ej )

×
∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds

= −2
∑

x∈Λod

∑
{j∈I,

x+ej ∈Λev}

[(
φ̃t (x + ej )

)2
∫ 1

0
Dj,jFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds

+
∑

k∈I,k �=j

φ̃t (x + ek)φ̃t (x + ej )

∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds

]
.

Using now (31) for each term Dj,jFx((sφt (x + ei) + (1 − s)φ̄t (x + ei))i∈I ) in the above, we get

∂

∂t

∑
y∈Λev

(
φ̃t (y)

)2

= 2
∑

x∈Λod

∑
{j∈I,

x+ej ∈Λev}

∑
k∈I,k �=j

[
φ̃2

t (x + ej ) − φ̃t (x + ek)φ̃t (x + ej )
]

×
∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds

= 2
∑

x∈Λod

∑
{j,k∈I,j �=k,

x+ej ,x+ek∈Λev}

[
φ̃2

t (x + ej ) − φ̃t (x + ek)φ̃t (x + ej )
]

×
∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds

+ 2
∑

x∈Λod

∑
{j∈I,

x+ej ∈Λev}

∑
{k∈I |

x+ek∈∂Λev}

[
φ̃2

t (x + ej ) − φ̃t (x + ek)φ̃t (x + ej )
]

×
∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds, (55)
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where for the second equality we differentiated between k ∈ I such that x + ek ∈ Λev and k ∈ I such that x + ek ∈
∂Λev. Taking account of the fact that Dj,kFx = Dk,jFx in the first sum in the last equality above, (55) becomes

∂

∂t

∑
y∈Λev

(
φ̃t (y)

)2

=
∑

x∈Λod

∑
{j,k∈I,j �=k|

x+ej ,x+ek∈Λev}

[
φ̃t (x + ej ) − φ̃t (x + ek)

]2
∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds

+ 2
∑

x∈Λod

∑
{j∈I,

x+ej ∈Λev}

∑
{k∈I |

x+ek∈∂Λev}

[
φ̃2

t (x + ej ) − φ̃t (x + ek)φ̃t (x + ej )
]

×
∫ 1

0
Dj,kFx

((
sφt (x + ei) + (1 − s)φ̄t (x + ei)

)
i∈I

)
ds

≤ −c
∑

b∈(Λev)∗

[∇φ̃t (b)
]2 + 2c

∑
b∈∂(Λev)∗

∣∣φt (yb)
∣∣∣∣∇φ̃t (b)

∣∣, (56)

where we used Theorem 3.4 and Definition (3.1) in the equality in (56) to estimate the terms Dj,kFx((sφt (x + ei) +
(1 − s)φ̄t (x + ei))i∈I ). �

Coupling argument
Suppose that there exist μev ∈ (ext Sev)u and μ̄ev ∈ (ext Sev)v for u,v ∈ R

d . For r > 0, recall the definition of χev,r

as given in Section 3.1. Let us construct two independent χev,r -valued random variables ηev = {ηev(b)}b∈(Zd
ev)

∗ and
η̄ev = {η̄ev(b)}b∈(Zd

ev)
∗ on a common probability space (Ω,F,P ) in such a manner that ηev and η̄ev are distributed

by μev and μ̄ev respectively. We define φ0 = φηev,0 and φ̄0 = φη̄ev,0 using the notation in (15). Let φt and φ̄t be two
solutions of the SDE (50) with common Brownian motions having initial data φ0 and φ̄0. Let ηev,t and η̄ev,t be defined
by ηev,t (b) := ∇φ(b) and η̄ev,t (b) := ∇φ̄(b), for all b ∈ (Zd

ev)
∗. Since μev, μ̄ev ∈ Sev, we conclude that ηev,t and η̄ev,t

are distributed by μev and μ̄ev respectively, for all t ≥ 0.

Change of basis
To adapt the coupling argument from Lemma 2.1 in [19] to the even bonds, we will use the generator set in Z

d
ev

outlined below:

eev,i = ei + ei+1, i = 1,2, . . . , d − 1, and eev,d =
{

ed − e1, d even,
ed + e1, d odd.

Once we have defined this generator set, we can proceed with our arguments. We claim that:

Lemma 4.4. There exists a constant C > 0 independent of u,v ∈ R
d such that

lim
T →∞

1

T

∫ T

0

d∑
i=1

EP
[(

ηev,t (eev,i ) − η̄ev,t (eev,i )
)2]dt ≤ C‖u − v‖2. (57)

Proof. To prove (57), we apply Lemma 4.3 to the differences {φ̃t (x) := φt (x) − φ̄t (x)} to bound, with the choice
ΛN = [−N,N ]d , the term

∫ T

0

∑
x∈ΛN

EP
[
φ̃t (x)

]2
dt.
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By using shift-invariance in the resulting inequality, we will obtain an upper bound for the term on the left of (57).
We will next use a special ergodic theorem for co-cycles (see for example Theorem 4 in [4]), which we can use in our
case because Z

d
ev is a sub-algebra; we apply it to μev ∈ (ext Sev)u to obtain

lim‖x‖→∞,

x∈Zd
ev

1

‖x‖
∥∥φηev,0(x) − x · u∥∥

L2(μev)
= 0. (58)

This ergodic theorem will allow us to further estimate the upper bound we have obtained for the term on the left of
(57), and to obtain the statement of the lemma. The details of the proof, following the same arguments as Lemma 2.1
from [19], will be omitted and are left to an interested reader. �

4.2. Step 2: Uniqueness of ergodic component for (Zd)∗

Proof of Theorem 1.8. Let u ∈ R
d . Suppose now that there exist μ, μ̄ ∈ Gβ(H) ergodic and shift-invariant such that

Eμ(η(b)) = Eμ̄(η(b)) = 〈u,yb −xb〉 for all bonds b = (xb, yb) ∈ (Zd)∗. Note now that Eμev(ηev(b)) = Eμ̄ev(ηev(b)) =
〈u,yb − xb〉 for all bonds b = (xb, yb) ∈ (Zd

ev)
∗.

From Lemma 2.10 and with the same notation as there, we get that μev, μ̄ev ∈ Gev(H
ev). As for all ηev ∈ χev,

with ηev(b) = φ(yb) − φ(xb), b = (xb, yb) ∈ (Zd
ev)

∗, we can write ηev(b) = η(b1) + η(b2), b1, b2 ∈ (Zd)∗, shift-
invariance and ergodicity under the even shifts for μev, μ̄ev follow immediately from the similar properties for μ, μ̄.
Therefore μev, μ̄ev ∈ (ext Sev)u, so we can apply Theorem 4.1 to get μev = μ̄ev. Then for any A ∈ F(Zd )∗ , we have
from Lemma 2.11 that Eμ(1A|F(Zd

ev)
∗) = Eμ̄(1A|F(Zd

ev)
∗) and we have

μ(A) = Eμ(1A) = Eμ

(
Eμ(1A|F(Zd

ev)
∗)

) = Eμ̄

(
Eμ(1A|F(Zd

ev)
∗)

) = Eμ̄

(
Eμ̄(1A|F(Zd

ev)
∗)

) = Eμ̄(A) = μ̄(A). �

4.3. Existence of ergodic component on (Zd)∗

Tightness of the family {μΛ,ξ }Λ⊂Zd ,ξ∈χ is known for strictly convex potentials with quadratic growth at ∞ (see for
example Section 4.4 in [20]). Therefore a limiting measure exists in this case by taking |Λ| → ∞ along a suitable sub-
sequence. For non-convex potentials satisfying (A0) and such that U ′′(s) ≤ C2 for all s ∈ R, tightness of the family
{μΛ,ξ }Λ⊂Zd ,ξ∈χ and existence of the limiting measure are shown in [9] in a more general situation (see Lemmas 3.6
and 3.7 and Proposition 3.8 from [9]).

To automatically ensure shift invariance, we will construct below shift-invariant Gibbs measures through the use
of periodic boundary conditions. For this reason, take N ∈ N and let T

d
N = (Z/NZ)d be the lattice torus in Z

d . As

before, (Td
N)∗ denotes the set of directed bonds in T

d
N and χ

T
d
N

denotes the set of all η ∈ R
(Td

N )∗ which satisfy the
plaquette condition.

Lemma 4.5. Let U be such that it satisfies (A0) and such that U ′′(s) ≤ C2 for all s ∈ R. Then for every u ∈ R
d there

exists at least one shift-invariant μu ∈ Gβ(H) with a given tilt u ∈ R
d .

Proof. For the proof of existence of shift-invariant ∇φ-Gibbs measures we proceed as in the proof of Theorem 3.2
from [19]. To avoid that only the state with tilt u = 0 could be constructed, we note that boundary conditions with
definite tilt u are identical to boundary conditions u = 0 but with the shifted potential U(· + ui) for a bond directed
along ei, i ∈ I .

Fix u ∈ R
d and let

μ̃N,u(dη̃) = 1

ZN,u

exp

(
−β

∑
b∈(Td

N )∗
U

(
η̃(b) + ub

))
dη̃N . (59)

Here dη̃N is the uniform measure on the affine space χ
T

d
N

, ZN,u is the normalization and ub := ±ui for b = (x ±
ei, x), x ∈ Z

d, i ∈ {1, . . . , d}. The law of {η(b) := η̃(b) + ub} under μ̃N,u is denoted by μN,u.
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Consider

lim sup
N↑∞

1

|Td
N | log μ̃N,u

(
exp

(
γ

∑
b∈(Td

N )∗

(
η̃(b)

)2
))

, (60)

where γ > 0 will be chosen later. We will find next an upper bound for this expression.

μ̃N,u

(
exp

(
γ

∑
b∈(Td

N )∗

(
η̃(b)

)2
))

=
∫

exp(−β
∑

b∈(Td
N )∗ U(η̃(b) + ub) + γ

∑
b∈(Td

N )∗(η̃(b))2)dη̃N∫
exp(−β

∑
b∈(Td

N )∗ U(η̃(b) + ub))dη̃N

.

Using the assumption on the potential, U(s) ≤ C2s
2 + U(0) and U(s) ≥ As2 − B , this expression is bounded from

above by

eβ(B−U(0))|Td
N |

∫
exp(−β

∑
b∈T

d
N

A(η̃(b) + ub)
2 + γ

∑
b∈T

d
N
(η̃(b))2)dη̃N∫

exp(−β
∑

b∈(Td
N )∗ C2(η̃(b) + ub)2)dη̃N

.

By Remark 1.4, we can express the uniform integration over gradient fields as an integration over the fields φ̃(x) =
φ(x) − u · x, and the above expression is equal to

e(βB−βU(0))|Td
N | 1∫

exp(−βC2
∑

x∈T
d
N ,i∈I (φ̃(x) − φ̃(x + ei) + ui)2)dφ̃

T
d
N \{0}δ0(dφ̃(0))

×
∫

exp

(
−Aβ

∑
x∈T

d
N ,i∈I

(
φ̃(x) − φ̃(x + ei) + ui

)2

+ γ
∑

x∈T
d
N ,i∈I

(
φ̃(x) − φ̃(x + ei)

)2
)

dφ̃
T

d
N \{0}δ0

(
dφ̃(0)

)
. (61)

But

−Aβ
∑

x∈T
d
N ,i∈I

((
φ̃(x) − φ̃(x + ei) + ui

)2 + γ
∑

x∈T
d
N ,i∈I

(
φ̃(x) − φ̃(x + ei)

)2
)

= −(Aβ − γ )
∑

x∈T
d
N ,i∈I

(
φ̃(x) − φ̃(x + ei)

)2 − Aβ
∣∣Td

N

∣∣∑
i∈I

u2
i . (62)

Let γ < Aβ be arbitrarily fixed. Plugging (61) and (62) in (60) and integrating out, we obtain for some
C(β,A,C2, u) > 0

lim sup
N↑∞

1

|Td
N | log μ̃N,u

(
exp

(
γ

∑
b∈(Td

N )∗

(
η̃(b)

)2
))

< C(β,A,C2, u) < ∞.

In particular, due to the shift-invariance of the family (μ̃N,u)N∈N on T
d
N , we get from the above for all bonds b

lim sup
N↑∞

μ̃N,u

((
η̃(b)

)2)
< C(β,A,C2, u) < ∞,

which implies tightness of the family (μ̃N,u)N∈N. �

Theorem 4.6 (Existence of ergodic component on (Zd)∗). Let U = V +g, where U satisfy (A0) and V and g satisfy
(A1) and (A2). Then for every u ∈ R

d , there exists at least one ergodic, shift-invariant μu ∈ Gβ(H) with a given tilt
u ∈ R

d .
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Proof. Existence of shift-invariant μ ∈ P2(χ) with given tilt u ∈ R
d is assured for our non-convex class of potentials

by Lemma 4.5; nevertheless, existence of an ergodic and shift-invariant μu ∈ P2(χ) with given tilt u ∈ R
d is not

assured for non-convex potentials. However, due to the strict convexity of the Fx potentials, we can use the Brascamp–
Lieb inequality and a similar reasoning to the one of Theorem 3.2 in [19], to easily show the existence, for every
u ∈ R

d , of at least one μu ∈ Gβ(H) ergodic and shift-invariant and with tilt u ∈ R
d . �

5. Decay of covariances

In this section, we extend the covariance estimates of [11] to the class of non-convex potentials U = V + g which
satisfy (A0) such V and g satisfy (A1) and (A2).

Recall that F ∈ C1
b(χr), where C1

b(χr) denotes the set of differentiable functions depending on finitely many
coordinates with bounded derivatives and where χr was defined in Section 1.2.2. Using now η,η′ ∈ χev in (12), we
define ∂bevF and ‖∂bevF‖∞ similarly for bev ∈ (Zd

ev)
∗ as we did for b ∈ (Zd)∗. Before proving Theorem 1.9, we make

a remark which we will use in our proof.

Remark 5.1. Take bev = (x + el, x + ej ) ∈ (Zd
ev)

∗. In view of the definition, we have

‖∂bevF‖∞ = sup
η∈χev

∣∣∂bevF(η)
∣∣ ≤

∑
b∈(Zd )∗: b∼bev

sup
η∈χ

∣∣∂bF (η)
∣∣ =

∑
b∈(Zd )∗: b∼bev

‖∂bF‖∞, (63)

where b ∼ bev are those b = (x, x + es) ∈ (Zd)∗, x ∈ Z
d
od, such that s ∈ {l, j}.

Proof of Theorem 1.9. We have

covμu

(
F(η),G(η)

) = Eμu

[
covμu

(
F(η),G(η)|F(Zd

ev)∗
)]

+ covμu

(
Eμu

[
F(η)|F(Zd

ev)
∗
]
,Eμu

[
G(η)|F(Zd

ev)
∗
])

, (64)

where by Corollary 2.12 and with the same notations, we have for a fixed k ∈ I

Eμu(F |F(Zd
ev)

∗)(η) =
∫

F
((

ηev(b) − φ(x)
)
b∈B(x,k),x∈Z

d
od

) ∏
x∈Z

d
od

μk
x,ηev

(
dφ(x)

);
a similar formula holds for G. Note that under μu(·|F(Zd

ev)
∗), the gradient vectors ((∇φi(x))i∈I )x∈Z

d
od

are independent

for all x ∈ Z
d
od. In view of this and of the above formula, under μu(·|F(Zd

ev)
∗) the gradients (∇φi(x), i ∈ I, x ∈ Z

d
od)

are pairwise positive quadrant dependent. That means that for all x, y ∈ Z
d
od, i, j ∈ I , with either x �= y or i �= j , we

have

Eμu(1(∇φi(x)>ai ,∇φj (y)>aj )|F(Zd
ev)

∗)(η)

≥ Eμu(1(∇φi(x)>ai )|F(Zd
ev)

∗)(η)Eμu(1(∇φj (y)>aj )|F(Zd
ev)

∗)(η), ∀η ∈ χ and ∀ai, aj ∈ R. (65)

To show this, note first that the inequality is true with equal sign for all x, y ∈ Z
d
od, i, j ∈ I, x �= y, due to the indepen-

dence of the gradient vectors. For the case with x = y ∈ Z
d
od, i, j ∈ I, the left-hand side of (65) becomes in view of

Lemma 2.12

Eμu(1(∇φi(x)>ai ,∇φj (y)>aj )|F(Zd
ev)

∗)(η)

=
∫

1(φ(x+ei )−φ(x+ek)−φ(x)>ai ,φ(x+ej )−φ(x+ek)−φ(x)>aj )

(
φ(x)

) ∏
x∈Z

d
od

μk
x,ηev

(
dφ(x)

)

=
∫

1(φ(x)<min{φ(x+ei )−φ(x+ek)−ai ,φ(x+ej )−φ(x+ek)−aj })
(
φ(x)

) ∏
x∈Z

d
od

μk
x,ηev

(
dφ(x)

)
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= min

(∫
1(φ(x)<φ(x+ei )−φ(x+ek)−ai )

(
φ(x)

) ∏
x∈Z

d
od

μk
x,ηev

(
dφ(x)

)
,

∫
1(φ(x)<φ(x+ej )−φ(x+ek)−aj )

(
φ(x)

) ∏
x∈Z

d
od

μk
x,ηev

(
dφ(x)

))

= min
(
Eμu(1(∇iφ(x)>ai)|F(Zd

ev)
∗)(η),Eμu(1(∇j φ(x)>aj )|F(Zd

ev)
∗)(η)

)
≥ Eμu(1(∇φi(x)>ai )|F(Zd

ev)
∗)(η)Eμu(1(∇φj (y)>aj )|F(Zd

ev)
∗)(η),

so the inequality holds. Note now that Lemma 3.1 from [12] can be adapted to the case with pairwise positive quadrant
dependent random variables. The reason for this is that the main ingredient used in Lemma 3.1, Rosenthal’s inequality,
holds for the case with pairwise positive quadrant dependent random variables (see, for example, Corollary 1 from
[24] for a statement of Rosenthal’s theorem in this case). Given (64), the rest of the argument from Lemma 3.1 can be
easily adapted to our case; therefore, there exists c > 0 such that

∣∣covμu

(
F(η),G(η)

∣∣F(Zd
ev)

∗
)| ≤ c

∑
b∈(Zd )∗

‖∂bF‖∞‖∂bG‖∞ Varμu

(∇φ(b)|F(Zd
ev)

∗
)

≤ c′τ 2
∑

b∈(Zd )∗
‖∂bF‖∞‖∂bG‖∞, (66)

where the first inequality is an application of the adaptation of Lemma 3.1 in [12], and for the second inequality we
used (46). Note that, due to the fact that the random walk representation holds, Theorem 6.2 from [11] can be adapted
to the case of the infinite even lattice with strictly convex potential; thus, a decay of covariance statement, similar to
the one in Theorem 1.9, holds for the even setting. In view of Lemma 2.10, there exists c′′ > 0 such that

∣∣covμu(F̂ , Ĝ)
∣∣ ≤ c′′ ∑

bev,b′
ev∈(Zd

ev)
∗

‖∂bev F̂‖∞‖∂b′
ev
Ĝ‖∞

1 + ‖xev − x′
ev‖d

, (67)

where F̂ = Eμu [F(η)|F(Zd
ev)

∗ ] and Ĝ = Eμu [G(η)|F(Zd
ev)∗ ]. We need to estimate now ∂bev F̂ and ∂bevĜ. But

∂bev F̂ = ∂bev Eμu

[
F(η)|F(Zd

ev)
∗
]

= Eμu

[
∂bevF(η)|F(Zd

ev)
∗
] − covμu

(
F(η), ∂bev

( ∑
x∈Z

d
od

∑
b∈B(x,k)

U
(
ηev(b) − φ(x)

))∣∣∣F(Zd
ev)

∗

)
, (68)

from which, by using also (63)

|∂bev F̂ | ≤
∑

b:b∼bev

‖∂bF‖∞ +
∣∣∣∣ covμu

(
F(η),

∑
x∈Z

d
od,

bev∈B(x,k)

U ′(ηev(bev) − φ(x)
)∣∣∣F(Zd

ev)
∗

)∣∣∣∣. (69)

Applying (66) to the covariance in (69) and using |U ′′| ≤ C0 + C2 and (46), we get for some c′′′ > 0∣∣∣∣covμu

(
F(∇φ), ∂bev

( ∑
x∈Z

d
od

∑
b∈B(x,k)

U
(
ηev(b) − φ(x)

))∣∣∣F(Zd
ev)

∗

)∣∣∣∣
≤ 2dc′′′(C0 + C2)‖∂bevF‖∞ Varμu

(
η(b)|F(Zd

ev)
∗
) ≤ c̃‖∂bevF‖∞. (70)

The statement of the theorem follows now from (63), (66), (67), (69) and (70). �
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6. Central limit theorem

We will extend next in Theorem 1.10 the scaling limit results from [22] to our class of potentials.

Proof of Theorem 1.10. It suffices to prove that for all i ∈ I

Sε,i(f ) = εd/2
∑
x∈Zd

f (xε)
(∇iφ(x) − ui

) ⇒ N
(
0, σ 2

u,i(f )
)

as ε → 0.

Note that

Sε,i(f ) = εd/2
∑
x∈Zd

f (xε)
[
φ(x + ei) − φ(x) − ui

] = εd/2
∑

x∈Zd
ev

f (xε)
[
φ(x + 2ei) − φ(x) − 2ui

]

− εd/2
∑

x∈Zd
ev

f (xε)
[
φ(x + 2ei) − φ(x + ei) − ui

] + εd/2
∑

x∈Z
d
od

f (xε)
[
φ(x + ei) − φ(x) − ui

]

= εd/2
∑

x∈Zd
ev

f (xε)
[
φ(x + 2ei) − φ(x) − 2ui

]

+ εd/2
∑

x∈Zd
ev

[
f

(
(x + ei)ε

) − f (xε)
][

φ(x + 2ei) − φ(x + ei) − ui

]

= Se
ε (f ) + Rε(f ).

We can show the CLT for Se
ε,i(f ) since the summation is concentrated on the even sites; the proof uses the same

arguments as in [22] and is based on the random walk representation, as explained in Remark 3.3. Also, since by
Theorem 1.9

∣∣covμu

(∇iφ(x),∇j φ(y)
)∣∣ ≤ C

(‖x − y‖ + 1)d
,

we have

Varμu

(
Rε,i(f )

) ≤ εd
∑

x,y∈Zd
ev

∣∣∇if (xε)
∣∣∣∣∇if (yε)

∣∣∣∣covμu

(
φ(x + ei) − φ(x),φ(y + ei) − φ(y)

)∣∣

≤ εd
∑

x,y∈Zd
ev

∣∣∇if (xε)
∣∣∣∣∇if (yε)

∣∣ C

(‖x − y‖ + 1)d
,

where ∇if (xε) = f ((x + ei)ε) − f (xε). Expanding f ((x + ei)ε) around xε by the Mean Value Theorem, we have
∇if (xε) = Dif (a)ε, for some a ∈ R

d . As f ∈ C∞
0 (Rd), there exist M,N > 0 such that for all x ∈ R

d with |εx| ≤ N

we have f (εx) ≤ M , |Dif (εx)| ≤ M and both functions equal to 0 for |εx| > N . Therefore

Varμu

(
Rε,i(f )

) ≤
∑

x,y∈Zd
ev,

|εx|≤N,|εy|≤N

εd+2M2C

(‖x − y‖ + 1)d
≤ εd+2M2C

∑
y∈Zd

ev,

|εy|≤N

∫ N/ε

−N/ε

· · ·
∫ N/ε

−N/ε

dx1 dx2 · · · dxd

(
∑d

i=1 |xi − yi | + 1)d

≤ ε2C(d,N,M) log(1 + 2dN/ε) ≤ 2dNC(d,N,M)ε,

where C(d,N,M) is a positive constant depending on d,M and N . It follows that Rε,i(f ) → 0 in probability as
ε → 0. �
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7. Surface tension

We will extend here the surface tension strict convexity results from [14] and [19] to the family of non-convex poten-
tials satisfying (A0), (A1) and (A2).

Take N ∈ N and let T
d
N = (Z/NZ)d be the lattice torus in Z

d and let u ∈ R
d . Then, we define the surface tension

on the torus T
d
N as

σ
β

T
d
N

(u) = − 1

|Td
N | log

Z
β

T
d
N

(u)

Z
β

T
d
N

(0)
with Z

β

T
d
N

(u) =
∫

R
T

d
N

exp
(−βH

T
d
N
(φ,u)

) ∏
x∈T

d
N\{0}

dφ(x)

and where H
T

d
N

is given by

H
T

d
N
(φ,u) =

∑
x∈T

d
N

d∑
i=1

U
(∇iφ(x) + ui

) =
∑

x∈T
d
N

d∑
i=1

[
V

(∇iφ(x) + ui

) + g
(∇iφ(x) + ui

)]
.

We define u−i = −ui for i = 1,2, . . . , d . Take now N to be even. Just as in the previous sections, let us label the
vertices of the torus as odd and even; let the set of odd vertices on the torus be T

d
N,od and the set of even vertices be

T
d
N,ev. Then we can of course first integrate all the odd coordinates and:

Z
β

T
d
N

(u) =
∫

R
Ed

N

(∫
R

T
d
N,od

exp
(−βH

T
d
N
(φ,u)

) ∏
x∈T

d
N,od

dφ(x)

) ∏
x∈T

d
N,ev\{0}

dφ(x)

=
∫

R
T

d
N,ev

exp
(−βH ev

T
d
N,ev

(φ,u)
) ∏

x∈T
d
N,ev\{0}

dφ(x),

where, similarly to (16)

H ev
T

d
N,ev

(φ,u) =
∑

x∈T
d
N,od

Fx

((
φ(x + ei)

)
i∈I

, u
)
, I = {−d, . . . , d} \ {0},

with

Fx

((
φ(x + ei)

)
i∈I

, u
) = − log

∫
R

e−β
∑

i∈I U(∇iφ(x)+ui) dφ(x).

Then, defining the even surface tension on T
d
N,ev as

σ
β

T
d
N,ev

(u) = − 1

|Td
N,ev|

log
Z

β

T
d
N,ev

(u)

Z
β

T
d
N,ev

(0)
with Z

β

T
d
N,ev

(u) =
∫

R
T

d
N,ev

exp
(−βH ev

T
d
N,ev

(φ,u)
) ∏

x∈T
d
N,ev\{0}

dφ(x),

we obtain the following result by integrating out the odds

Lemma 7.1.

σ
β

T
d
N,ev

(u) = 1

2
σ

β

T
d
N

(u).

We will next prove strict convexity for the even surface tension, uniformly in N even.
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Theorem 7.2 (Strict convexity of the even surface tension). Suppose that V,g ∈ C2(R) such that they satisfy (A0),
(A1) and (A2). Then, for all N = 2k, we have

D2σ
β

T
d
N

(u) = 2D2σ
β

T
d
N,ev

(u) ≥ 4dβ2clId ∀u ∈ R
d, (71)

where cl is given in (48). That is, the even surface tension is uniformly strictly convex in u ∈ R
d , uniformly in all N

even.

Proof. Since H ev fulfills the random walk representation condition by Theorem 3.4, Fx are uniformly convex and we
can apply Lemma 3.2 in [8] to σ

β

T
d
N,ev

(u), to get the statement of our theorem. �

Note now that by the same reasoning as in [19], we can prove the existence of

σβ(u) = lim
|Td

N |→∞
σ

β

T
d
N

(u).

Together with Theorem 7.2, this gives

Theorem 7.3 (Strict convexity of the surface tension). Suppose that V,g ∈ C2(R) such that they satisfy (A0), (A1)
and (A2). Then the surface tension σβ(u) is strictly convex in u ∈ R

d .

Appendix

Due to the fact that example (a) in Section 3.2 has been the subject of two other papers in the area (see [2] and [3]), we
will provide here a sketch of the explicit computations for this example, which provide us with the p

1−p
< O(( k2

k1
)1/2)

order. The explicit computations are worth separate consideration, as they don’t follow from Theorem 3.4. As before,
it is sufficient to estimate covνx,ψ (U ′(∇iφ(x)),U ′(∇j φ(x))), for all x ∈ Z

d
od and i, j ∈ I, i �= j .

Denote by θk := φ(x + ek), k = 1, . . . ,4. Let Ξ := {(α, ᾱ) | α = (α1, . . . , α4), ᾱ = (1 − α1, . . . ,1 − α4)}, with
αk ∈ {0,1}, k = 1, . . . ,4.

Since U ≥ ck2 outside of a domain [− c̃√
k1−k2

, c̃√
k1−k2

], for some c̃ > 0 and for some c > 0, we take V,g to be

defined as in (49) on [− c̃√
k1−k2

, c̃√
k1−k2

] and V := U,g := 0, on the complement set. By the same reasoning as in

(36), (37) and (38) from Theorem 3.4, we know that the terms covνx,ψ (V ′,V ′) and covνx,ψ (g′, g′) are positive terms,
while the terms covνx,ψ (V ′, g′) are negative terms. Using the same reasoning as in example (a) in Section 3.2, we get
that

covνx,ψ

(
V ′(∇iφ(x)

)
,V ′(∇jφ(x)

)) ≥ ck2. (72)

We will next try to bound from below the negative part of covνx,ψ (U ′(∇iφ(x)),U ′(∇j φ(x))). Note first that, by a
reasoning similar to (44), we get for the negative part

covνx,ψ

(
g′(∇jφ(x)

)
,V ′(∇iφ(x)

)) ≥ covνx,ψ

(
g′(∇jφ(x)

)
,
∑
k∈I

V ′(∇kφ(x)
))

= 1

2
Eνx,ψ

(
g′′(∇jφ(x)

)) − covνx,ψ

(
g′(∇jφ(x)

)
,
∑
k∈I

g′(∇kφ(x)
))

≥ 1

2
Eνx,ψ

(
g′′(∇jφ(x)

))
. (73)

We next bound Eνx,ψ (−g′′(∇jφ(x))) from above, where by (49)

g′′(s) = − p(1 − p)(k1 − k2)
2s2

p2e−(k1−k2)s
2/2 + 2p(1 − p) + (1 − p)2e(k1−k2)s

2/2
≥ − p(k1 − k2)

2s2

(1 − p)e(k1−k2)s
2/2
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on [− c̃√
k1−k2

, c̃√
k1−k2

] and 0 otherwise. Therefore

Eνx,ψ

(−g′′(∇jφ(x)
)) ≤ p

1 − p
(k1 − k2)

2

∫ c̃/
√

k1−k2

−c̃/
√

k1−k2
(s − θj )

2e−(k1−k2)s
2/2e−∑4

k=1 U(s−θk) ds∫
R

e−∑4
k=1 U(s−θk) ds

,

where U(s) = − log(pe−k1s
2/2 + (1 − p)e−k2s

2/2). Then

Eνx,ψ

(−g′′(∇jφ(x)
))

≤ p

1 − p
(k1 − k2)

2

∫ c̃/
√

k1−k2

−c̃/
√

k1−k2
(s − θj )

2e−(k1−k2)s
2/2 ∏4

k=1(pe−k1(s−θk)
2/2 + (1 − p)e−k2(s−θk)

2/2)ds∫ ∏4
k=1(pe−k1(s−θk)

2/2 + (1 − p)e−k2(s−θk)
2/2)ds

= p

1 − p
(k1 − k2)

2

∑
(α,ᾱ)∈Ξ

∫ c̃/
√

k1−k2

−c̃/
√

k1−k2
(s − θj )

2e−(k1−k2)s
2/2I (k1, k2, α, ᾱ)ds∑

(α,ᾱ)∈Ξ

∫
I (k1, k2, α, ᾱ)ds

, (74)

where I (k1, k2, α, ᾱ) := p
∑4

k=1 αk (1 − p)
∑4

k=1 ᾱk e−k1
∑4

k=1 αk(s−θk)
2/2−k2

∑4
k=1 ᾱk(s−θk)

2/2, and where (74) is a sum of
sixteen Gaussian integrals. Define for (α, ᾱ) ∈ Ξ arbitrary

Z(α, ᾱ) := p
∑4

k=1 αk (1 − p)
∑4

k=1 ᾱk

(k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk)1/2

× e−1/2[k1
∑4

k=1 αkθ
2
k +k2

∑4
k=1 ᾱkθ

2
k −(k1

∑4
k=1 αkθk+k2

∑4
k=1 ᾱkθk)

2/(k1
∑4

k=1 αk+k2
∑4

k=1 ᾱk)],

which is the denominator in (74). Next, by the change of variables

s = 1√
k1

∑4
k=1 αk + k2

∑4
k=1 ᾱk + k1 − k2

[
t + k1

∑4
k=1 αkθk + k2

∑4
k=1 ᾱkθk + (k1 − k2)θj√

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2

]
,

in each of the sixteen ensuing Gaussian integrals of Eνx,ψ (−g′′(∇j φ(x))), we obtain after integration

Eνx,ψ

(−g′′(∇jφ(x)
))

≤ p(1 − p)
√

2πk1k2 + c̃√
k1 − k2

∑
(α,ᾱ)∈Ξ

1

Z

p(1 − p)−1(k1 − k2)
2p

∑4
k=1 αk (1 − p)

∑4
k=1 ᾱk

(k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2)1/2

×
(

k1
∑4

k=1 αk(θk − θj ) + k2
∑4

k=1 ᾱk(θk − θj )

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2

)2

e−(k1−k2)θ
2
j −k1

∑4
k=1 αkθ

2
k −k2

∑4
k=1 ᾱkθ

2
k

× e(k1
∑4

k=1 αkθk+k2
∑4

k=1 ᾱkθk+(k1−k2)θj )2/(k1
∑4

k=1 αk+k2
∑4

k=1 ᾱk+k1−k2).

Using inside each of the sixteen (α, ᾱ) sums the lower bound Z ≥ Z(α, ᾱ), we get in the above

Eνx,ψ

(−g′′(∇jφ(x)
))

≤ p(1 − p)
√

2πk1k2 + c̃p(1 − p)−1(k1 − k2)
3/2

∑
(α,ᾱ)∈Ξ

(k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk)
1/2

(k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2)1/2

×
(

k1
∑4

k=1 αk(θk − θj ) + k2
∑4

k=1 ᾱk(θk − θj )

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2

)2

× e−(k1−k2)θ
2
j +(k1

∑4
k=1 αkθk+k2

∑4
k=1 ᾱkθk+(k1−k2)θj )2/(k1

∑4
k=1 αk+k2

∑4
k=1 ᾱk+k1−k2)

× e−(k1
∑4

k=1 αkθk+k2
∑4

k=1 ᾱkθk)
2/(k1

∑4
k=1 αk+k2

∑4
k=1 ᾱk). (75)
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Note now that(
k1

4∑
k=1

αkθk + k2

4∑
k=1

ᾱkθk + (k1 − k2)θj

)2

≤ (
1 + λ(α, ᾱ)

)(
k1

4∑
k=1

αkθk + k2

4∑
k=1

ᾱkθk

)2

+
(

1 + 1

λ(α, ᾱ)

)
(k1 − k2)

2θ2
j ,

where we choose λ(α, ᾱ) > 0 such that

1 + λ(α, ᾱ)

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2
<

1

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk

and

(k1 − k2)(1 + 1/λ(α, ᾱ))

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2
< 1.

Then

−(k1 − k2)θ
2
j + (k1

∑4
k=1 αkθk + k2

∑4
k=1 ᾱkθk + (k1 − k2)θj )

2

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2
− (k1

∑4
k=1 αkθk + k2

∑4
k=1 ᾱkθk)

2

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk

≤ −(k1 − k2)θ
2
j + (1 + 1/λ(α, ᾱ))(k1 − k2)

2θ2
j

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2

+ (1 + λ(α, ᾱ))(k1
∑4

k=1 αkθk + k2
∑4

k=1 ᾱkθk)
2

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2
− (k1

∑4
k=1 αkθk + k2

∑4
k=1 ᾱkθk)

2

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk

≤ −ε1(α, ᾱ, k1, k2)(k1 − k2)θ
2
j − ε2(α, ᾱ, k1, k2)

(k1
∑4

k=1 αkθk + k2
∑4

k=1 ᾱkθk)
2

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk

for some ε1(α, ᾱ, k1, k2), ε2(α, ᾱ, k1, k2) > 0. Then (75) becomes

Eνx,ψ

(−g′′(∇jφ(x)
))

≤ p(1 − p)
√

2πk1k2 + c̃p(1 − p)−1(k1 − k2)
3/2

∑
(α,ᾱ)∈Ξ

(k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk)
1/2

(k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2)1/2

×
[

2

(
k1

∑4
k=1 αkθk + k2

∑4
k=1 ᾱkθk

k1
∑4

k=1 αk + k2
∑4

k=1 ᾱk + k1 − k2

)2

+ 2

(
4(k1 + k2)

k1 − k2

)2

θ2
j

]
e−(k1−k2)ε1(α,ᾱ,k1,k2)θ

2
j

× e−ε2(α,ᾱ,k1,k2)(k1
∑4

k=1 αkθk+k2
∑4

k=1 ᾱkθk)
2/(k1

∑4
k=1 αk+k2

∑4
k=1 ᾱk)

≤ p(1 − p)
√

2πk1k2 + ε3p(1 − p)−1
√

k1 − k2 (76)

for some ε3 > 0 and where for the last inequality we have used xe−x < 1, with x > 0, to bound the exponential part.
Combining (72), (73) and (76), the conclusion follows.
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