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Abstract. We develop the theory of invariant random fields in vector bundles. The spectral decomposition of an invariant random
field in a homogeneous vector bundle generated by an induced representation of a compact connected Lie group G is obtained. We
discuss an application to the theory of relic radiation, where G = SO(3). A theorem about equivalence of two different groups of
assumptions in cosmological theories is proved.

Résumé. Nous développons la théorie des champs aléatoires invariants dans les fibrés vectoriels. Nous obtenons la décomposition
spectrale d’un champ aléatoire invariant dans un fibré vectoriel homogène engendré par une représentation induite par un groupe
de Lie compact et connexe. Nous discutons une application à la théorie du rayonnement fossile, où G = SO(3). Un théorème sur
l’équivalence de deux groupes d’hypothèses cosmologiques est aussi démontré.
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1. Introduction

This paper is inspired by Geller and Marinucci [11]. After reading the above paper and several physical books and
papers cited below, the author realised that cosmological applications require the theory of random fields in vector
bundles. A variant of such a theory is developed in Section 2, while an application to cosmology is described in
Section 3.

According to vast majority of modern cosmological theories, our Universe started in a “Big Bang.” This term refers
to the idea that the Universe has expanded from a hot and dense initial condition at some finite time in the past, and
continues to expand now.

As the Universe expanded, both the plasma and the radiation grew cooler. When the Universe cooled enough,
it became transparent. The photons that were around at that time are observable now as the relic radiation. Their
glow is strongest in the microwave region of the radio spectrum, hence another name cosmic microwave background
radiation, or just CMB.

In cosmological models, it is usually assumed that the CMB is a single realisation of a random field. A CMB
detector measures an electric field E perpendicular to the direction of observation (or line of sight) n. Mathematically,
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n is a point on the sphere S2. The vector E(n) lies in the tangent plane, TnS2. In other words, E(n) is a section of the
tangent bundle ξ = (T S2,π,S2) with

π(n,x) = n, n ∈ S2,x ∈ TnS2.

It follows that cosmology uses the theory of random fields in vector bundles. A short introduction to vector bundles
may be found in Geller et al. [10]. It is not difficult to give a formal definition of a random field in a vector bundle.
Indeed, let K be either the field of real numbers R or the field of complex numbers C. Let ξ = (E ,π,T ) be a finite-
dimensional K-vector bundle over a Hausdorff topological space T .

Definition 1. A vector random field on ξ is a collection of random vectors {X(t): t ∈ T } satisfying X(t) ∈ π−1(t),
t ∈ T .

In other words, a vector random field on the base T of the vector bundle ξ is a random section of ξ .
To define a second order vector random field, assume that every space π−1(t) carries an inner product and the

function Q : E → R, Q(x) = ‖x‖2
π−1(t)

, x ∈ π−1(t) is continuous.

Definition 2. A vector random field X(t) is second order if E‖X(t)‖2
π−1(t)

< ∞, t ∈ T .

Next, we try do define a mean square continuous random field. The naive approach

lim
s→t

E
∥∥X(s) − X(t)

∥∥2 = 0

does not work. If s, t ∈ T with s �= t , then X(s) and X(t) lie in different spaces. Therefore, the expression X(s)− X(t)

is not defined.
To overcome this difficulty, we extend an idea of Kolmogorov formulated by him for the case of a trivial vector

bundle and published by Rozanov [22] and Yaglom [26]. We start Section 2.1 by defining a scalar random field on
the total space E , which we call the field associated to the vector random field X(t). Then, we call X(t) mean square
continuous if the associated scalar random field is mean square continuous.

Let G be a topological group acting continuously from the left on the base T . We would like to call a vector random
field X(t) wide sense left G-invariant, if the associated scalar random field is wide sense left G-invariant with respect
to some left continuous action of G on the total space E . However, in general there exist no natural continuous left
action of G on E . In Definition 5, we define an action of G on E associated to its action on the base space T . Then,
we call a vector random field X(t) wide sense left G-invariant, if the associated scalar random field is wide sense left
G-invariant with respect to the associated action.

In Section 2.2, we consider an important example of an associated action: the so called homogeneous, or equivari-
ant vector bundles. They are important for us by several reasons.

On the one hand, they have a natural associated action of some topological group G. Moreover, the above action
identifies the vector space fibers over any two points of the base space. Therefore, all random vectors of a random
field X(t) in a homogeneous vector bundle lie in the same space. We prove that for homogeneous vector bundles, our
definitions of mean square continuous field and invariant field are equivalent to usual definitions (3) and (4).

On the other hand, the space of the square integrable sections of a homogeneous vector bundle carries the so called
induced representation of the group G. Therefore, we can use the well-developed theory of induced representations
to obtain spectral decompositions of invariant random fields in homogeneous vector bundles. For an introduction to
induced representations, see Barut and Rączka [2].

In Section 2.3 we consider mean square continuous random fields in homogeneous vector bundles over a homo-
geneous space T = G/K of a compact connected Lie group G. In Theorem 1, we prove the spectral decomposition
of a random field in a homogeneous vector bundle of the representation of the group G induced by an irreducible
representation of its subgroup K . Here, we first meet the system of functions W YV m(t) defined by (9), which form the
orthonormal basis in the space of the square integrable sections of a homogeneous vector bundle under consideration.
The spectral decomposition in Theorems 1–3 is given in terms of the above functions.
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In Theorem 2, we find the restrictions under which the spectral decomposition of Theorem 1 describes a wide sense
G-invariant random field. Finally, Theorem 3 is a generalisation of Theorem 2 to the case when the representation of
the group G is induced by a direct sum of finitely many irreducible representations of the subgroup K.

In Section 3, we apply theoretical considerations of Section 2 to cosmological models. Section 3.1 is a short
introduction to the deterministic model of the CMB for mathematicians. In particular, we discuss different choices
of local coordinates in the tangent bundle ξ = (T S2,π,S2), and fix our choice. We explain both the mathematical
and physical sense of the Stokes parameters I , Q, U and V . The material of this subsection is based on Cabella and
Kamionkowski [3], Challinor [5,6], Challinor and Peiris [7], Durrer [8] and Lin and Wandelt [15].

The probabilistic model of the CMB is introduced in Section 3.2. We define the set of vector bundles ξs =
(Es , π,S2), s ∈ Z, where the representation of the rotation group G = SO(3) induced by the representation W(gα) =
eisα of the subgroup K = SO(2) is realised. In particular, the absolute temperature of the CMB, T (n), is a single real-
isation of a mean square continuous strict sense isotropic (i.e., SO(3)-invariant) random field in ξ0, while the complex
polarisation, (Q ± iU)(n), is a single realisation of a mean square continuous strict sense isotropic random field in
ξ±2. Because any second order strict sense isotropic random field is automatically wide sense isotropic, Theorem 2
immediately gives the spectral decomposition of the above random fields. In the case of the absolute temperature, the
functions (9) become familiar spherical harmonics, Y�m, while in the case of the complex polarisation they become
spin-weighted spherical harmonics, ±2Y�m. This fact explains our notation, W YV m(t). The expansion coefficients are
uncorrelated random variables with finite variance, which does not depend on the index m. In physical terms, the
variance as a function of the parameter � is the power spectrum.

While studying physical literature, we have found that there exist various definitions of both ordinary and spin-
weighted spherical harmonics. The choice of a definition is called the phase convention. In terms of the representation
theory, the phase convention is the choice of a basis in the space of the group representation. We made an attempt to
describe different phase conventions in order to help the mathematicians to read physical literature. We also describe
different notations for power spectra.

Following Zaldarriaga and Seljak [27], we construct the random fields E(n) and B(n). The advantage of this fields
over the complex polarisation fields (Q ± iU)(n) is that the former fields are scalar (i.e., live in ξ0), real-valued and
isotropic. Moreover, only T (n) and E(n) may be correlated, while two remaining pairs are always uncorrelated.

Our new result is Theorem 4. It states that the standard assumption of cosmological theories (the random fields
T (n), E(n) and B(n) are jointly isotropic) is equivalent to the assumption that ((Q − iU)(n), T (n), (Q + iU)(n)) is
an isotropic random field in ξ−2 ⊕ ξ0 ⊕ ξ2.

We conclude by two short remarks concerning Gaussian cosmological theories and an alternative description of
the CMB in terms of the so called tensor spherical harmonics.

Yet another, more group-theoretic approach to studying tensor random fields on the two-dimensional sphere was
recently developed by Leonenko and Sakhno [14].

Note that we do not consider questions connected with statistical analysis of the observation data of the recent
and forthcoming experiments. For an introduction to this field of research, see Geller et al. [10], Jaffe [12] and the
references herein.

2. Random fields in vector bundles

2.1. Definitions

Let (Ω,F,P) be a probability space and let X(t) = X(t,ω) be a vector random field in a finite-dimensional K-vector
bundle ξ = (E ,π,T ).

Definition 3. Let X(t,x) be the scalar random field on the total space E , defined as

X(t,x) = (
x,X(t)

)
π−1(t)

, t ∈ T ,x ∈ π−1(t).

We call X(t,x) the scalar random field associated to the vector random field X(t).
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The field X(t,x) has the following property: its restriction onto π−1(t) is linear, i.e., for any x, y ∈ π−1(t), and for
any α, β ∈ K,

X(t,αx + βy) = αX(t,x) + βX(t,y) P-a.s. (1)

Definition 4. A vector random field X(t) is mean square continuous if the associated scalar random field X(t,x) is
mean square continuous, i.e., if the map

E → L2
K
(Ω,F,P), (t,x) �→ X(t,x)

is continuous.

Let H be a finite-dimensional K-vector space with an inner product (·, ·). For any x ∈ H , let x∗ be the unique
element of the conjugate space H ∗ satisfying

x∗(y) = (y,x), y ∈ H.

The mean value of the random field X(t) is

M(t) = E
[
X(t)

]
while its covariance operator is

R(s, t) = E
[
X(s) ⊗ X(t)∗

]
.

Because the scalar random field X(x) has property (1), it can be left invariant with respect to the associated action,
only if the restriction of the associated action onto any fiber π−1(t) is a linear invertible operator acting between the
fibers. Moreover, the associated action must map the fiber π−1(t) onto the fiber π−1(gt). We will also require the
above restriction to preserve inner products in the fibers.

Definition 5. Let ξ = (E ,π,T ) be a vector bundle, and let G × T → T be a continuous left action of a topological
group G on the base space T . A continuous left action G × E → E of G on the total space E is called associated with
the action G × T → T , if its restriction onto any fiber π−1(t) is a linear isometry between π−1(t) and π−1(gt).

We are ready to formulate the main definitions of Section 2.1.

Definition 6. Let ξ = (E ,π,T ) be a vector bundle, let G × T → T be a continuous left action of a topological group
G on the base space T , and let G × E → E be an associated action of G on the total space E . A vector random field
X(t) on ξ is called wide sense left G-invariant if the associated scalar random field X(t,x) is wide sense left invariant
with respect to the associated action G× E → E , i.e., for all g ∈ G, for all s, t ∈ T and for all x ∈ π−1(s), y ∈ π−1(t)

we have

E
[
X(gs, gx)

] = E
[
X(s,x)

]
,

E
[
X(gs, gx)X(gt, gy)

] = E
[
X(s,x)X(t,y)

]
.

Definition 7. Under conditions of Definition 6, a vector random field X(t) on ξ is called strict sense left G-invariant if
the associated scalar random field X(t,x) is strict sense left invariant with respect to the associated action G× E → E ,
i.e., all finite-dimensional distributions of the random field X(t,x) are invariant under the associated action.

It is easy to see that any mean square continuous strict sense invariant random field is wide sense invariant. On the
other hand, any Gaussian wide sense invariant random field is strict sense invariant.

Consider the following example. Let T = S1 be the unit circle, let E be the cylinder T × R, and let π : E → T

with π(t, x) = t . The bundle ξ = (E ,π,T ) is trivial. It is easy to see that the action of the group G = SO(2) on E by
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cylinder rotations is associated with the action of G on T by circle rotations. Let X0,X1, . . . , Y1, Y2, . . . be a set of
uncorrelated random variables with zero mean and unit variance. Let a0, a1, . . . , an, . . . be a sequence of real numbers
with

∞∑
n=0

a2
n < ∞.

The series

a0X0 +
∞∑

n=1

an

[
Xn cos(nt) + Yn sin(nt)

]

converges in mean square and its sum determines a centred mean square continuous wide-sense left G-invariant
random field on ξ .

On the other hand, define an action of the additive group Z of integers on R2 by

n · (x, y) = (
x + n, (−1)ny

)
.

Let E = R2/Z denote the quotient manifold. The projection on the first coordinate π1 : R2 → R descends to a map
π : E → S1. The triple ξ = (E ,π,S1) is a one-dimensional vector bundle over T = S1, which is called the Möbius
bundle. It is known that any continuous section of the Möbius bundle has at least one zero.

Consider an arbitrary action of the group G = SO(2) on E associated to the action of G on T by circle rotations.
Let X(t) be a centred wide sense mean square continuous left G-invariant random field on ξ . On the one hand, G acts
transitively on T , therefore the function f (t) = E[X2(t)] is a constant. On the other hand, f (t) must be a continuous
section if ξ . It follows that f (t) = 0. So, the only centred mean square continuous wide-sense left G-invariant random
field on ξ is 0.

2.2. An example of associated action

Let G be a topological group, and let K be its closed subgroup. Let T be the homogeneous space G/K of left cosets
g0K , g0 ∈ G. An element g ∈ G acts on T by left multiplication:

g0K �→ gg0K. (2)

Let W be a representation of K on a finite-dimensional complex Hilbert space H . Consider the following action
of K on the Cartesian product G × H :

k(g,x) = (
gk,W

(
k−1)x

)
.

Denote the quotient space of orbits of the above action by EW . The projection

π : EW → T , π(g,x) = gK

determines the homogeneous, or equivariant vector bundle ξ = (EW,π,T ).
Let t = g0K ∈ T . It is trivial to check that the action

g(g0K,x) = (gg0K,x)

is associated to the action (2).
Moreover, let X(t) be a random field in ξ . All random vectors X(t) lie in the same space H . By definition, the

associated scalar random field X(t,x) = (x,X(t)) is mean square continuous if and only if

lim
(s,y)→(t,x)

E
∣∣X(s,y) − X(t,x)

∣∣2 = 0.
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Let {e1, e2, . . . , edimH } be a basis in H . Put y = x = ej and Xj(s) = (X(s), ej ). Then we have

lim
s→t

E
∣∣Xj(s) − Xj(t)

∣∣2 = 0,

which is equivalent to

lim
s→t

E
∣∣Xj(s) − Xj(t)

∣∣2 = 0.

It follows that

lim
s→t

E
∥∥X(s) − X(t)

∥∥2 = lim
s→t

E
dimH∑
j=1

∣∣Xj(s) − Xj(t)
∣∣2

=
dimH∑
j=1

lim
s→t

E
∣∣Xj(s) − Xj(t)

∣∣2 = 0.

Conversely, let

lim
s→t

E
∥∥X(s) − X(t)

∥∥2 = 0. (3)

Then, for any j = 1, 2, . . . , dimH ,

0 ≤ lim sup
s→t

E
∣∣Xj(s) − Xj(t)

∣∣2

≤ lim sup
s→t

dimH∑
j=1

E
∣∣Xj(s) − Xj(t)

∣∣2 = 0,

thus, lims→t E|Xj(s) − Xj(t)|2 = 0. It follows that

lim
(s,y)→(t,x)

E
∣∣X(s,y) − X(t,x)

∣∣2 = lim
(s,y)→(t,x)

E

∣∣∣∣∣
dimH∑
j=1

(
yjXj (s) − xjXj (t)

)∣∣∣∣∣
2

≤ 2
dimH∑
j=1

lim
(s,y)→(t,x)

E
∣∣yjXj (s) − xjXj (t)

∣∣2 = 0.

We proved that in the particular case of a vector random field in a homogeneous vector bundle our definition of
mean square continuity is equivalent to the usual definition (3). In the same way one can easily prove that our definition
of a wide sense G-invariant field is equivalent to the following equalities: for all s, t ∈ T , and for all g ∈ G we have

E
[
X(gs)

] = E
[
X(s)

]
,

(4)
E
[
X(gs) ⊗ X∗(gt)

] = E
[
X(s) ⊗ X∗(t)

]
.

The first equation is equivalent to the following equality

E
[
X(s)

] = E
[
X(t)

]
, s, t ∈ T ,

because G acts transitively on T . Thus, the mean value of a wide sense G-invariant random field on T is constant.
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2.3. The spectral decomposition of a vector random field over a compact homogeneous space

Let G be a compact topological group, and let K be its closed subgroup. Let T be the homogeneous space G/K .
Let W be a representation of K on a finite-dimensional complex Hilbert space H , and let ξ = (EW,π,T ) be the
corresponding homogeneous vector bundle. Let Ĝ (resp. K̂) be the set of all equivalence classes of irreducible unitary
representations of G (resp. K). For simplicity, assume that K is massive in G (Vilenkin [24]). This means that for all
V ∈ Ĝ and for all W ∈ K̂ the multiplicity of W in the restriction of V onto K is either 0 or 1.

First, consider the case when W is an irreducible unitary representation of K . Let dg be the Haar measure on G

with
∫
G

dg = 1. Let L2(G,H) be the Hilbert space of all equivalence classes of measurable functions f :G → H such
that ∫

G

∥∥f(g)
∥∥2 dg < ∞

and

f(gk) = W
(
k−1)f(g), g ∈ G,k ∈ K, (5)

with the following inner product:

(f1, f2)L2(G,H) =
∫

G

(
f1(g), f2(g)

)
H

dg.

To each f ∈ L2(G,H), we associate the map u :T → EW : u(gK) = (g, f(g)). The above association is an isomorphism
between L2(G,H) and the space L2(EW) of the square integrable sections of the homogeneous vector bundle ξ . This
space can be considered as a space of “twisted” functions on the base space T . If W is the trivial representation of K

in H = C, then we return back to the standard space L2(G). The representation[
U (g)u

]
(t) = u

(
g−1t

)
is the representation of G induced from the representation W of the subgroup K .

We need the following facts about induced representations.

1. Frobenius reciprocity: the multiplicity of V ∈ Ĝ in U is equal to the multiplicity of W in V .
2. The representation induced from the direct sum W1 ⊕ W2 ⊕ · · · ⊕ WN is the direct sum of representations induced

from W1,W2, . . . ,WN .

Let ĜK(W) be the set of all V ∈ Ĝ whose restrictions onto K contain W (necessarily once, because K is massive
in G). For any V ∈ ĜK(W), let iV be the embedding of H into the space HV of the representation V . Let pV be the
orthogonal projection from HV onto H . By the result of Camporesi [4], any f ∈ L2(G,H) can be represented by the
following orthogonal series

f(g) = 1

dimW

∑
V ∈ĜK(W)

dimV

∫
G

pV V
(
g−1h

)
iV f(h)dh.

The above series converges in the strong topology of the Hilbert space L2(G,H), i.e., the following Parceval’s identity
holds:

‖f‖2
L2(G,H)

= 1

dimW

∑
V ∈ĜK(W)

dimV

∫
G

(∫
G

pV V
(
g−1h

)
iV f(h)dh, f(g)

)
dg.

Fix a basis {e1, e2, . . . , edimH } of the space H . Let {e(V )
1 , e(V )

2 , . . . , e(V )
dimHV

} be a basis in HV with

iV ej = e(V )
p+j , 1 ≤ j ≤ dimW, (6)
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for some p ≥ 0. Let fj (g) = (f(g), ej ) be the coordinates of f(g). Eq. (6) means that W acts in the linear span of the
dimW basis vectors of HV that are enumerated without lacunas. Then we have

iV f(h) = (
0, . . . ,0, f1(h), . . . , fdimW(h),0, . . . ,0

)
.

Let Vm,n(g) = (V (g)e(V )
m , e(V )

n ) be the matrix elements of the representation V . Then

(
V

(
g−1h

)
iV f(h)

)
p+j

=
dimV∑
m=1

Vm,p+j (g)

dimW∑
n=1

Vm,p+n(h)fn(h)

and

fj (g) = 1

dimW

∑
V ∈ĜK(W)

dimV

dimV∑
m=1

dimW∑
n=1

∫
G

fn(h)Vm,p+n(h)dhVm,p+j (g).

From now, let G be a connected compact Lie group, and let p :G → T denote a natural projection: p(g) = gK .
Let DG be an open dense subset in G, and let (DG,J(g)) with

J(g) = (
θ1(g), . . . , θdimG(g)

)
:DG → R

dimG

be a chart of the atlas of the manifold G with the following property: if k ∈ K and both g and kg lie in DG, then
θj (kg) = θj (g) for 1 ≤ j ≤ dimT . Then, (DT , I(t)) with

DT = pDG,
(7)

I(t) = (
θ1(t), . . . , θdimT (t)

)
:DT → R

dimT

is a chart of the atlas of the manifold T , and the domain DT of this chart is dense in T . Let t ∈ DT has local coordinates
(θ1, . . . , θdimT ) in the chart (7). Then, the series representation of the section u ∈ L2(EW) associated to f ∈ L2(G,H)

has the form

uj (t) = 1

dimW

∑
V ∈ĜK(W)

dimV

dimV∑
m=1

dimW∑
n=1

∫
T

un(s)Vm,p+n(s)ds Vm,p+j (t), (8)

where ds is the G-invariant measure on T with
∫
T

ds = 1, and

Vm,p+n(t) = Vm,p+n

(
θ1, . . . , θdimT , θ

(0)
dimT +1, . . . , θ

(0)
dimG

)
.

Introduce the following notation:

W YV m(t) =
√

dimV

dimW

(
Vm,p+1(t),Vm,p+2(t), . . . , Vm,p+dimW(t)

)
. (9)

Note that the correct notation must be W YIV m(t), because functions (9) depend on the choice of a chart. In what
follows, we use only chart (7) and suppress symbol I for notational simplicity.

Eq. (8) means that the functions {W YV m(t): V ∈ ĜK(W),1 ≤ m ≤ dimV } form a basis in L2(EW), i.e.,

uj (t) =
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

∫
T

un(s)(W YV m)n(s)ds (WYV m)j (t). (10)

Let X(t) be a mean square continuous random field in ξ . Consider the following random variables:

Z(V )
mn =

∫
T

Xn(t)(WYV m)n(t)dt, (11)
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where V ∈ ĜK(W), 1 ≤ m ≤ dimV , 1 ≤ n ≤ dimW and Xn(t) = (X(t), en). This integral has to be understood as
a Bochner integral of a function taking values in the space L2

C
(Ω,F,P). Let HX be the closed linear span of the set

{Xn(t): t ∈ T ,1 ≤ n ≤ dimW } in the above Hilbert space.

Theorem 1. Let G be a connected compact Lie group, let K be its massive subgroup, let W be an irreducible unitary
representation of the group K , and let ξ be the corresponding homogeneous vector bundle. In the chart (7), a mean
square continuous random field X(t) in ξ has the form

Xj(t) =
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

Z(V )
mn (WYV m)j (t), (12)

in the sense that both hand sides represent the same element of the space HX, where random variables Z
(V )
mn have the

form (11).

Proof. It is enough to show that both hand sides of (12) have the same covariance with every element in the total
subset {Xk(s): s ∈ T ,1 ≤ k ≤ dimW } of the space HX. In other words, we have to prove that

E

[ ∑
V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

Z(V )
mn (WYV m)j (t)Xk(s)

]
= E

[
Xj(t)Xk(s)

]
.

We have

E

[ ∑
V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

Z(V )
mn (WYV m)j (t)Xk(s)

]

=
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

E

[∫
T

Xn(u)(W YV m)n(u)du (WYV m)j (t)Xk(s)

]

=
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

∫
T

E
[
Xn(u)Xk(s)

]
(WYV m)n(u)du (WYV m)j (t)

= E
[
Xj(t)Xk(s)

]
by (10) with uj (t) = E[Xj(t)Xk(s)]. �

Denote by V0 the trivial irreducible representation of the group G.

Theorem 2. Under conditions of Theorem 1, the following statements are equivalent.

1. X(t) is a mean square continuous wide sense invariant random field in ξ .
2. X(t) has the form (12), where Z

(V )
mn , V ∈ ĜK(W), 1 ≤ m ≤ dimV , 1 ≤ n ≤ dimW , are random variables satisfying

the following conditions.

• If V �= V0, then E[Z(V )
mn ] = 0.

• E[Z(V )
mn Z

(V ′)
m′n′ ] = δV V ′δmm′R(V )

nn′ , with

∑
V ∈ĜK(W)

dimV tr
[
R(V )

]
< ∞. (13)
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Proof. Let X(t) be a mean square continuous wide sense invariant random field in ξ . By Theorem 1, X(t) has the
form (12). Calculating the mean value of both hand sides of (12), we obtain

E
[
Xj(t)

] =
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

E
[
Z(V )

mn

]
(WYV m)j (t).

Let g ∈ G. Substitute gt in place of t to the last display. We obtain

E
[
Xj(gt)

] =
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

E
[
Z(V )

mn

]
(WYV m)j (gt)

=
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

E
[
Z(V )

mn

] dimV∑
�=1

Vm�(g)(WYV �)j (t)

=
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

dimV∑
�=1

V�m(g)E
[
Z

(V )
�n

]
(WYV m)j (t).

The left-hand sides of the two last displays are equal. Therefore, the coefficients of the expansions must be equal.

dimV∑
�=1

V�m(g)E
[
Z

(V )
�n

] = E
[
Z(V )

mn

]
.

Denote M(V )
n = (E[Z(V )

1n ], . . . ,E[Z(V )
dimV n]). Then

V +(g)M(V )
n = M(V )

n , g ∈ G,

where V +(g) = V (g−1)� is the representation, dual to the representation V . It follows that either M(V )
n = 0 or the

one-dimensional subspace generated by M(V )
n is an invariant subspace of the irreducible representation V +. In the

latter case, V + must be one-dimensional. If V + is trivial, then V is also trivial, and M(V )
n is any complex number. If

V + is not trivial, so is V . Then, there exist g ∈ G with V (g) �= 1. It follows that M(V )
n = V (g)M(V )

n = 0.
Calculate the covariance operator of the random field (12). We obtain

Rjj ′(t1, t2) =
∑

V,V ′∈ĜK(W)

dimV∑
m=1

dimV ′∑
m′=1

dimW∑
n,n′=1

E
[
Z(V )

mn Z
(V ′)
m′n′

]
(WYV m)j (t1)(W YV ′m′)j ′(t2).

It follows that

Rjj ′(gt1, gt2) =
∑

V,V ′∈ĜK(W)

dimV∑
m=1

dimV ′∑
m′=1

dimW∑
n,n′=1

E
[
Z(V )

mn Z
(V ′)
m′n′

]
(WYV m)j (gt1)(WYV ′m′)j ′(gt2)

=
∑

V,V ′∈ĜK(W)

dimV∑
m=1

dimV ′∑
m′=1

dimW∑
n,n′=1

E
[
Z(V )

mn Z
(V ′)
m′n′

]

×
dimV∑
�=1

Vm�(g)(WYV �)j (t1)

dimV ′∑
�′=1

V ′
m′�′(g)(WYV ′�′)j ′(t2)
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=
∑

V,V ′∈ĜK(W)

dimV∑
m=1

dimV ′∑
m′=1

dimW∑
n,n′=1

dimV∑
�=1

dimV ′∑
�′=1

Vm�(g)V ′
m′�′(g)

× E
[
Z

(V )
�n Z

(V ′)
�′n′

]
(WYV m)j (t1)(WYV ′m′)j ′(t2).

By equating the coefficients of the two expansions, we obtain

dimV∑
�=1

dimV ′∑
�′=1

Vm�(g)V ′
m′�′(g)E

[
Z

(V )
�n Z

(V ′)
�′n′

] = E
[
Z(V )

mn Z
(V ′)
m′n′

]
.

Let P
(V,V ′)
nn′ be the matrix with elements

(
P

(V,V ′)
nn′

)
mm′ = E

[
Z(V )

mn Z
(V ′)
m′n′

]
.

Then,(
V + ⊗ V ′)(g)P

(V,V ′)
nn′ = P

(V,V ′)
nn′ , g ∈ G.

It follows that either P
(V,V ′)
nn′ is zero matrix or the one-dimensional subspace generated by the matrix P

(V,V ′)
nn′ is

an invariant subspace of the representation V + ⊗ V ′. In the latter case, the representation V + ⊗ V ′ contains an
one-dimensional irreducible component, say V . By a well-known result from representation theory (see, for ex-
ample, Naı̆mark and Štern [19], Section 2.6), the trivial representation of G is an irreducible component of the
representation V + ⊗ V ′ if and only if V = V ′. Therefore, if V is trivial, then V = V ′ and V acts in the one-

dimensional subspace generated by the identity matrix. It follows that the matrix P
(V,V ′)
nn′ is a multiple of the iden-

tity matrix, say (P
(V,V ′)
nn′ )mm′ = δmm′R(V )

nn′ . If V is not trivial, then there exist g ∈ G with V (g) �= 1. It follows that

P
(V,V ′)
nn′ = V (g)P

(V,V ′)
nn′ , so P

(V,V ′)
nn′ is zero matrix. We proved that

E
[
Z(V )

mn Z
(V ′)
m′n′

] = δV V ′δmm′R(V )

nn′ .

Let t0 ∈ T be the left coset of the unit element of G. We may assume t0 ∈ DT (otherwise use a chart (gDT , I(g−1t))

for a suitable g ∈ G). Then

(WYV m)j (t0) =
√

dimV

dimW
δm,p+j

and

Xj(t0) =
∑

V ∈ĜK(W)

dimV∑
m=1

dimW∑
n=1

Z(V )
mn (WYV m)j (t)

= 1√
dimW

∑
V ∈ĜK(W)

√
dimV

dimW∑
n=1

Z
(V )
jn .

It follows that

E
∣∣Xj(t0)

∣∣2 = 1

dimW

∑
V ∈ĜK(W)

dimV dimWE
∣∣Z(V )

j1

∣∣2

=
∑

V ∈ĜK(W)

dimV R
(V )
jj
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and

∑
V ∈ĜK(W)

dimV tr
[
R(V )

] =
dimW∑
j=1

E
∣∣Xj(t0)

∣∣2
< ∞.

Conversely, let Z
(V )
mn , V ∈ ĜK(W), 1 ≤ m ≤ dimV , 1 ≤ n ≤ dimW , be random variables satisfying conditions of

Theorem 2. Consider random field (12). Then, its mean value is

E
[
Xj(t)

] =
{

E
[
Z

(V0)
11

]
, V0 ∈ ĜK(W),

0, otherwise,

which is constant. Note that V0 ∈ ĜK(W) if and only if W is trivial (by Frobenius reciprocity).
The correlation operator of the random field (12) is

Rjj ′(t1, t2) =
∑

V,V ′∈ĜK(W)

dimV∑
m=1

dimV ′∑
m′=1

dimW∑
n,n′=1

E
[
Z(V )

mn Z
(V ′)
m′n′

]
(WYV m)j (t1)(W YV ′m′)j ′(t2)

=
∑

V ∈ĜK(W)

dimW∑
n,n′=1

R
(V )

nn′

dimV∑
m=1

(WYV m)j (t1)(WYV m)j ′(t2)

= 1

dimW

∑
V ∈ĜK(W)

dimV

dimW∑
n,n′=1

R
(V )

nn′ Vp+j,p+j ′
(
g−1

1 g2
)
,

where g1 (resp. g2) is an arbitrary element from the left coset corresponding to t1 (resp. t2). The terms of this functional
series are bounded by the terms of the convergent series (13), because |Vp+j,p+j ′(g−1

1 g2)| ≤ 1. Therefore, the series
converges uniformly, and its sum is continuous function. This means that X(t) is mean square continuous.

For any g ∈ G, we have

Rjj ′(gt1, gt2) = 1

dimW

∑
V ∈ĜK(W)

dimV

dimW∑
n,n′=1

R
(V )

nn′ Vp+j,p+j ′
(
(gg1)

−1gg2
)

= Rjj ′(t1, t2),

so X(t) is invariant. �

Assume that W is not necessarily irreducible representation of K in a finite-dimensional complex Hilbert space H .
Because K is compact, the representation W is equivalent to a direct sum W1 ⊕ W2 ⊕ · · ·⊕WN of irreducible unitary
representations of K . The representation induced by W is a direct sum of representations induced by Wk , 1 ≤ k ≤ N .
It is realised in a homogeneous vector bundle ξ = ξ1 ⊕ ξ2 ⊕· · ·⊕ ξN , where ξk is the homogeneous vector bundle that
carries the irreducible component Wk .

Let X(t) be an invariant random field in ξ . Denote the components of X(t) by X
(k)
j (t), 1 ≤ k ≤ N , 1 ≤ j ≤ dimWk .

Denote by Pk the orthogonal projection from H onto the space Hk where the irreducible component Wk acts.

Theorem 3. Under conditions of Theorem 1, the following statements are equivalent.

1. X(t) is a mean square continuous wide sense invariant random field in ξ .
2. X(t) has the form

X
(k)
j (t) =

∑
V ∈ĜK(Wk)

dimV∑
m=1

dimWk∑
n=1

Z(V k)
mn (Wk

YV m)j (t), (14)
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where Z
(V k)
mn , 1 ≤ k ≤ N , V ∈ ĜK(Wk), 1 ≤ m ≤ dimV , 1 ≤ n ≤ dimWk , are random variables satisfying the

following conditions.

• If V �= V0, then E[Z(V k)
mn ] = 0.

• E[Z(V k)
mn Z

(V ′k′)
m′n′ ] = δV V ′δmm′R(V )

kn,k′n′ , with

N∑
k=1

∑
V ∈ĜK(Wk)

dimV tr
[
PkR

(V )Pk

]
< ∞.

Proof. Use mathematical induction. The induction base, when N = 1, is Theorem 2. Assume the induction hypothe-
sis: Theorem 3 is proved up to N − 1.

Let X(t) be a mean square continuous wide sense invariant random field in ξ . Then the field

Y1(t) = (
X

(1)
1 (t), . . . ,X

(1)
dimW1

(t), . . . ,X
(N−1)
1 (t), . . . ,X

(N−1)
dimWN−1

(t)
)

is a mean square continuous wide sense invariant random field in ξ1 ⊕ · · · ⊕ ξN−1. By the induction hypothesis,

X
(k)
j (t) =

∑
V ∈ĜK(Wk)

dimV∑
m=1

dimWk∑
n=1

Z(V k)
mn (Wk

YV m)j (t), 1 ≤ k ≤ N − 1,

where E[Z(V k)
mn ] = 0 unless V �= V0 and E[Z(V k)

mn Z
(V ′k′)
m′n′ ] = δV V ′δmm′R(V,N−1)

kn,k′n′ , with

N−1∑
k=1

∑
V ∈ĜK(Wk)

dimV tr
[
PkR

(V,N−1)Pk

]
< ∞.

The field

Y2(t) = (
X

(N)
1 (t), . . . ,X

(N)
dimWN

(t)
)

is a mean square continuous wide sense invariant random field in ξN . By Theorem 2,

X
(N)
j (t) =

∑
V ∈ĜK(WN)

dimV∑
m=1

dimWN∑
n=1

Z(V N)
mn (WN

YV m)j (t),

where E[Z(V N)
mn ] = 0 unless V �= V0 and E[Z(V N)

mn Z
(V ′N)

m′n′ ] = δV V ′δmm′R(V N)

nn′ , with

∑
V ∈ĜK(WN)

dimV tr
[
R(V N)

]
< ∞.

The matrix R
(V )

kn,k′n′ with elements

R
(V )

kn,k′n′ = E
[
Z

(V k)
1n Z

(V k′)
1n′

]
obviously satisfies conditions of the second item of Theorem 3.



Invariant random fields 1081

Conversely, let Z
(V k)
mn , 1 ≤ k ≤ N , V ∈ ĜK(Wk), 1 ≤ m ≤ dimV , 1 ≤ n ≤ dimWk , be random variables satisfying

conditions of Theorem 3. Consider random field (14). Its mean value is obviously constant. Its correlation operator is

R
(kk′)
jj ′ (t1, t2) =

∑
V ∈ĜK(Wk)∩ĜK(Wk′ )

dimWk∑
n=1

dimWk′∑
n′=1

R
(V )

kn,k′n′

dimV∑
m=1

(Wk
YV m)j (t1)(Wk′ YV m)j ′(t2)

= 1√
dimWk dimWk′

∑
V ∈ĜK(Wk)∩ĜK(Wk′ )

dimV

dimWk∑
n=1

dimWk′∑
n′=1

R
(V )

kn,k′n′

× Vp+j,p+j ′
(
g−1

1 g2
)

with the same notation as in proof of Theorem 2. The uniform convergence of the above series and the invariance of
the field (14) is proved exactly in the same way as in proof of Theorem 2. �

3. Application to cosmology

3.1. The cosmic microwave background

Let E(n) ∈ TnS2 be the electric field of the cosmic microwave background. From the observations, we define the
intensity tensor. In physical terms, the intensity tensor is

P = C
〈
E(n) ⊗ E∗(n)

〉
,

where 〈·〉 denote time average over the historical accidents that produced a particular pattern of fluctuations. Assuming
ergodicity, time average is equal to the space average, i.e., average over the possible positions from which the radiation
could be observed. The constant C is chosen so that P is measured in brightness temperature units (in these units, the
intensity tensor is independent of radiation frequency). It will be ignored in what follows.

Introduce a basis in each tangent plane TnS2. Realise S2 as {(x, y, z) ∈ R3: x2 + y2 + z2 = 1} and define the chart
(UI ,hI ) as UI = S2 \ {(0,0,1), (0,0,−1)} and hI (n) = (θ(n), ϕ(n)) ∈ R2, the spherical coordinates. Let SO(3) be
the rotation group in R3. For any rotation g, define the chart (Ug,hg) as

Ug = gUI , hg(n) = hI

(
g−1n

)
.

The sphere S2, equipped with the atlas {(Ug,hg): g ∈ SO(3)}, becomes the real-analytic manifold. The local θ -axis
in each tangent plane is along the direction of decreasing the inclination θ :

eθ = − ∂

∂θ
.

The local ϕ-axis is along the direction of increasing the azimuth ϕ:

eϕ = (1/ sin θ)
∂

∂ϕ
.

With this convention, eθ , eϕ , and the direction of radiation propagation −n form a right-handed basis. This convention
is in accordance with the International Astronomic Union standard. The orthonormal basis (eθ , eϕ) turns S2 into
a Riemannian manifold and each tangent plane TnS2 can be identified with the space R2.

In the just introduced basis, the intensity tensor becomes the intensity matrix:

Pab = 〈
Ea(n) ⊗ E∗

b(n)
〉
, a, b ∈ {θ,ϕ}.
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The rotations about the line of sight together with parity transformation n → −n generate the group O(2) of orthog-
onal matrices in R2. The action of O(2) on the intensity matrix extends to the representation g �→ gAg−1 of O(2) in
the real 4-dimensional space of Hermitian 2 × 2 matrices A with inner product

(A, B) = tr(A B).

This representation is reducible and may be decomposed into the direct sum of three irreducible representations.
The standard choice of an orthonormal basis in the spaces of the irreducible components is as follows. The space

of the first irreducible component is generated by the matrix

1

2
σ0 = 1

2

(
1 0
0 1

)
.

The representation in this space is the trivial representation of the group O(2). Physicists call the elements of this
space scalars.

The space of the second irreducible component is generated by the matrices

1

2
σ1 = 1

2

(
0 1
1 0

)
,

1

2
σ3 = 1

2

(
1 0
0 −1

)
.

Let gα ∈ SO(2) with

gα =
(

cosα sinα

− sinα cosα

)
. (15)

It is easy to check that

gασ1g
−1
α = cos(2α)σ1 + sin(2α)σ3,

(16)
gασ3g

−1
α = − sin(2α)σ1 + cos(2α)σ3.

The elements of this space are symmetric trace-free tensors.
Finally, the space of the third irreducible component is generated by the matrix

1

2
σ2 = 1

2

(
0 −i
i 0

)
.

The representation in this space is the representation g �→ detg of the group O(2). Physicists call the elements of this
space pseudo-scalars (they do not change under rotation but change sign under reflection). The matrices σ1, σ2 and
σ3 are known as Pauli matrices.

The standard physical notation for the components of the intensity matrix in the above basis is as follows:

P = 1

2
(Iσ0 + Uσ1 + V σ2 + Qσ3)

or

P = 1

2

(
I + Q U − iV
U + iV I − Q

)
.

The real numbers I , Q, U and V are called Stokes parameters. Their physical sense is as follows. I is the total
intensity of the radiation (which is directly proportional to the fourth power of the absolute temperature T by the
Stefan–Boltzmann law). On the tangent plane TnS2, the tip of the electric vector E(n) traces out an ellipse as a
function of time. The parameters U and Q measure the orientation of the above ellipse relative to the local θ -axis, eθ .
The polarisation angle between the major axis of the ellipse and eθ is

χ = 1

2
tan−1 U

Q
,
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and the length of the major semi-axis is (Q2 + U2)1/2. The last parameter, V , measures circular polarisation.
According to modern cosmological theories, the polarisation of the CMB was introduced while scattering off the

photons by charged particles. This process cannot induce circular polarisation in the scattered light. Therefore, in what
follows we put V = 0.

The physics of the CMB polarisation is described in Cabella and Kamionkowski [3], Challinor [5,6], Challinor and
Peiris [7], Durrer [8], Lin and Wandelt [15], among others. Of these, Challinor and Peiris use the right-hand basis,
while the remaining authors use the left-hand basis, in which eθ = ∂/∂θ . In what follows, we use the left-hand basis
eθ , eϕ , −n with

eθ = ∂

∂θ
, eϕ = (1/ sin θ)

∂

∂ϕ
. (17)

3.2. The probabilistic model of the CMB

The absolute temperature, T (n), is a section of the homogeneous vector bundle ξ0 = (E0,π,S2), where the represen-
tation of the rotation group G = SO(3) induced by the representation W(gα) = 1 of the massive subgroup K = SO(2)

is realised.
The representations V of the group G are enumerated by nonnegative integers � = 0,1, . . . . The restriction of the

representation V� onto K is the direct sum of the representations eimα,m = −�,−� + 1, . . . , �. Therefore we have
dimV� = 2� + 1 and |m| ≤ �. By Frobenius reciprocity, ĜK(W) = {V0,V1, . . . , V�, . . .}.

The representations eimα of K act in one-dimensional complex spaces Hm. To define a basis in the space H(�)

of the representation V�, choose a unit vector em in each space Hm. Each vector em of a basis can be multiplied by
a phase eiαm . The choice of a phase is called the phase convention.

Any rotation g ∈ SO(3) is defined by the Euler angles g = (ϕ, θ,ψ) with ϕ, ψ ∈ [0,2π] and θ ∈ [0,π]. The order
in which the angles are given and the axes about which they are applied are not subject of a standard. We adopt the so
called zxz convention: the first rotation is about the z-axis by ψ , the second rotation is about the x-axis by θ , and the
third rotation is about z-axis by ϕ. Note that the chart defined by the Euler angles satisfies our condition: the first two
local coordinates (ϕ, θ) are spherical coordinates in S2 (up to order) with dense domain UI .

The matrix elements of the representation V� are traditionally denoted by

D(�)
mn(ϕ, θ,ψ) = (

V�(ϕ, θ,ψ)em, en

)
H(�)

and called Wigner D-functions. The explicit formula for the Wigner D-function depends on the phase convention.
Choose the basis {em: −� ≤ m ≤ �} in every space H(�) to obtain

D(�)
mn(ϕ, θ,ψ) = e−imϕd(�)

mn(θ)e−inψ,

where d
(�)
mn(θ) are Wigner d-functions:

d(�)
mn(θ) = (−1)m

√
(� + m)!(� − m)!
(� + n)!(� − n)! sin2�(θ/2)

×
min{�+m,�+n}∑
r=max{0,m+n}

(
� + n

r

)(
� − n

r − m − n

)
(−1)�−r+n cot2r−m−n(θ/2). (18)

The following symmetry relation follows.

d
(�)
−m,−n(θ) = (−1)n−md(�)

mn(θ). (19)

In this particular case, formula (9) takes the form

WY�m(θ,ϕ) = √
2� + 1D

(�)
m0(ϕ, θ,0).
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The functions in the left-hand side form an orthonormal basis in the space of the square integrable functions on S2 with
respect to the probabilistic SO(3)-invariant measure. It is conventional to form a basis with respect to the Lebesgue
measure induced by the embedding S2 ⊂ R3 which is 4π times the probabilistic invariant measure, and omit the first
subscript:

Y�m(θ,ϕ) =
√

2� + 1

4π
D

(�)
m0(ϕ, θ,0).

This is formula (A4.40) from Durrer [8] defining the spherical harmonics.
In cosmological models, one assumes that T (n) is a single realisation of the mean square continuous strict

sense SO(3)-invariant random field in the homogeneous vector bundle ξ = (E0,π,S2). It is custom to use the term
“isotropic” instead of “SO(3)-invariant.” By Theorem 2, we have

T (n) =
∞∑

�=0

�∑
m=−�

Z�mY�m(n),

where E[Z�m] = 0 unless � = 0 and E[Z�mZ�′m′ ] = δ��′δmm′R(�) with

∞∑
�=0

(2� + 1)R(�) < ∞.

This formula goes back to Obukhov [21]. See also more general results in Baldi et al. [1], Marinucci and Peccati
[16–18].

Physicists call Z�ms the expansion coefficients, and R(�) the power spectrum of the CMB. Different notations for
the expansion coefficients and power spectrum may be found in the literature. Some of them are shown in Table 1.

In what follows, we use notation of Lin and Wandelt [15]. In this notation, the expansion for the temperature has
the form

T (n) =
∞∑

�=0

�∑
m=−�

aT ,�mY�m(n). (20)

Since T (n) is real, the coefficients aT,�m must satisfy the reality condition which depends on the phase convention.
For our current convention, when the Wigner d-function is determined by (18), we have

Y�−m(θ,ϕ) =
√

2� + 1

4π
e−imϕd

(�)
−m,0(θ)

=
√

2� + 1

4π
e−imϕ(−1)md

(�)
m0(θ)

= (−1)mY�m(θ,ϕ).

Table 1
Examples of different notation for temperature expansion coefficients and power spectrum

Source Z�m R(�)

Cabella and Kamionkowski [3] aT
�m

CT T
�

Challinor [5], Challinor and Peiris [7] T�m CT
�

Durrer [8], Weinberg [25] a�m C�

Lin and Wandelt [15], Zaldarriaga and Seljak [27] aT ,�m CT �

Kamionkowski et al. [13] aT
�m

CT
�
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Here we used the symmetry relation (19). The reality condition is

aT,�−m = (−1)maT,�m. (21)

This form of the reality condition is used by Cabella and Kamionkowski [3], Challinor [5,6], Challinor and Peiris [7],
Durrer [8], Kamionkowski et al. [13], Lin and Wandelt [15], among others.

Introduce the following notation: m+ = max{m,0} = (|m| + m)/2, m− = max{−m,0} = (|m| − m)/2. We have
(−m)− = m+ and m+ −m = m−. If we choose another basis, {(−1)m

−
em: −� ≤ m ≤ �}, then the Wigner D-function,

D
(�)
mn(ϕ, θ,ψ), is multiplying by (−1)m

−+n−
, and we obtain

Y�−m(θ,ϕ) =
√

2� + 1

4π
(−1)(−m)−e−imϕd

(�)
−m,0(θ)

=
√

2� + 1

4π
(−1)m+m−

e−imϕ(−1)md
(�)
m0(θ)

= Y�m(θ,ϕ).

The modified reality condition is

aT,�−m = aT,�m. (22)

This form of reality condition is used by Geller and Marinucci [11], Weinberg [25], Zaldarriaga and Seljak [27],
among others.

Let T0 = E[T (n)]. The temperature fluctuation, �T (n) = T (n) − T0, expands as

�T (n) =
∞∑

�=1

�∑
m=−�

aT ,�mY�m(n).

The part of this sum corresponding to � = 1 is called a dipole. When analysing data, the dipole is usually removed
since it linearly depends on the velocity of the observer’s motion relative to the surface of last scattering.

The complex polarisation is defined as Q + iU . It follows easily from (16) that any rotation (15) maps Q + iU to
e2iα(Q+ iU). Then, by (5), (Q+ iU)(n) is a section of the homogeneous vector bundle ξ−2 = (E−2,π,S2), where the
representation of the rotation group G = SO(3) induced by the representation W(gα) = e−2iα of the massive subgroup
K = SO(2) is realised. By Frobenius reciprocity, ĜK(W) = {V2,V3, . . . , V�, . . .}.

In general, let s ∈ Z, and let ξ−s = (E−s , π,S2) be the homogeneous vector bundle where the representation of the
rotation group SO(3) induced by the representation W(gα) = e−isα of the massive subgroup SO(2) is realised. In the
physical literature, the sections of this bundle are called

• quantities of spin s by Challinor [6], Challinor and Peiris [7], Geller and Marinucci [11], Newman and Penrose
[20], Weinberg [25] among others;

• quantities of spin −s by Cabella and Kamionkowski [3], Lin and Wendelt [15], Zaldarriaga and Seljak [27]
among others;

• quantities of spin |s| and helicity s by Durrer [8] among others.

Let g = (θ,ϕ,ψ) be the Euler angles in SO(3). Put ψ = 0. Then, n = (θ,ϕ,0) are spherical coordinates in S2. By
(10) we obtain

(Q + iU)(n) =
∞∑

�=2

�∑
m=−�

a−2,�m−2Y�m(n),

where

a−2,�m =
∫

S2
(Q + iU)(n)−2Y�m(n)dn
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and, by (9),

−2Y�m(θ,ϕ) = √
2� + 1D

(�)
m,−2(ϕ, θ,0).

The functions in the left-hand side form an orthonormal basis in the space of the square integrable sections of the
homogeneous vector bundle ξ−2 with respect to the probabilistic SO(3)-invariant measure.

There exist different conventions. The first convention is used by Durrer [8] among others. In this convention,
a basis is formed with respect to the Lebesgue measure induced by the embedding S2 ⊂ R3 which is 4π times the
probabilistic invariant measure and the sign of the second index of the Wigner D-function is changed (because we
would like to expand Q + iU with respect to 2Y�m):

−2Y�m(θ,ϕ) =
√

2� + 1

4π
D

(�)
m,2(ϕ, θ,0).

In the general case, for any s ∈ Z, this convention reads (Durrer [8], formula (A4.51))

sY�m(θ,ϕ) =
√

2� + 1

4π
D

(�)
m,−s(ϕ, θ,0). (23)

These functions are called spherical harmonics of spin s or the spin-weighted spherical harmonics. They appeared in
Gel’fand and Šapiro [9] under the name generalised spherical harmonics. The current name goes back to Newman
and Penrose [20]. Note that the spin-weighted spherical harmonics are defined for � ≥ |s| and |m| ≤ �.

The second harmonic convention is used by Lin and Wandelt [15], Newman and Penrose [20], among others. It
reads as

sY�m(θ,ϕ) = (−1)m

√
2� + 1

4π
D

(�)
m,−s(ϕ, θ,0).

Both conventions are coherent with the following phase convention:

sY�m = (−1)m+s−sY�−m. (24)

In particular, for s = 0 we return back to the convention Y�m = (−1)mY�−m corresponding to reality condition (21).
To produce the harmonic convention coherent with the phase convention

sY�m = (−1)s−sY�−m

corresponding to reality condition (22), one must multiply the right-hand side of the convention equation by (−1)m
−

.
Thus, the modified first convention, used by Weinberg [25] among others, is

sY�m(θ,ϕ) = (−1)m
−
√

2� + 1

4π
D

(�)
m,−s(ϕ, θ,0),

while the modified second convention, used by Geller and Marinucci [11], among others, is

sY�m(θ,ϕ) = (−1)m
+
√

2� + 1

4π
D

(�)
m,−s(ϕ, θ,0).

In what follows, we use the convention (23). The explicit expression for the spherical harmonics of spin s in the
chart determined by spherical coordinates follows from (18) and (23):

sY�m(θ,ϕ) = (−1)m

√
(2� + 1)(� + m)!(� − m)!

4π(� + s)!(� − s)! sin2�(θ/2)eimϕ

×
min{�+m,�−s}∑
r=max{0,m−s}

(
� − s

r

)(
� + s

r − m + s

)
(−1)�−r−s cot2r−m+s(θ/2). (25)
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The decomposition of the complex polarisation takes the form

(Q + iU)(n) =
∞∑

�=2

�∑
m=−�

a2,�m2Y�m(n),

where

a2,�m =
∫

S2
(Q + iU)(n)2Y�m(n)dn,

while the decomposition of the conjugate complex polarisation is

(Q − iU)(n) =
∞∑

�=2

�∑
m=−�

a−2,�m−2Y�m(n),

where

a−2,�m =
∫

S2
(Q − iU)(n)−2Y�m(n)dn.

In cosmological models, one assumes that (Q + iU)(n) is a single realisation of the mean square continuous strict
sense isotropic random field in the homogeneous vector bundle ξ2. Isotropic random fields in vector bundles ξs , s ∈ Z,
were defined by Geller and Marinucci [11]. By Theorem 2, we have

(Q + iU)(n) =
∞∑

�=2

�∑
m=−�

a2,�m2Y�m(n), (26)

where E[a2,�m] = 0 and E[a2,�ma2,�′m′ ] = δ��′δmm′C2� with

∞∑
�=2

(2� + 1)C2� < ∞.

Different notations for the complex polarisation expansion coefficients a±2,�m may be found in the literature. Some
of them are shown in Table 2.

In what follows we use the notation by Lin and Wandelt [15]. The expansion for the conjugate complex polarisation
has the form

(Q − iU)(n) =
∞∑

�=2

�∑
m=−�

a−2,�m−2Y�m(n). (27)

Since Q(n) and U(n) are real, the coefficients a2,�m and a−2,�m must satisfy the reality condition which depends
on the phase convention. We agreed to use the first harmonic convention (23). Therefore, our phase convention is (24),
and the reality condition is

a−2,lm = (−1)ma2,l−m. (28)

Table 2
Examples of different notation for complex polarisation expansion coefficients

Source Expansion coefficients

Durrer [8] a
(±2)
�m

Lin and Wandelt [15], Zaldarriaga and Seljak [27] a±2,�m

Weinberg [25] aP,�m
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Along with the standard basis (17), it is useful to use the so called helicity basis. Again, there exist different names
and conventions. Durrer [8] defines the helicity basis as

e+ = 1√
2
(eθ − ieϕ), e− = 1√

2
(eθ + ieϕ),

while Weinberg [25] uses the opposite definition

e+ = 1√
2
(eθ + ieϕ), e− = 1√

2
(eθ − ieϕ).

Challinor [5] and Thorne [23] use notation

m = 1√
2
(eθ + ieϕ), m∗ = 1√

2
(eθ − ieϕ),

while Challinor and Peiris [7] use notation

m+ = 1√
2
(eθ + ieϕ), m− = 1√

2
(eθ − ieϕ)

and call these the null basis. We will use the definition and notation by Durrer [8].
The helicity basis is useful by the following reason. Let ð be a covariant derivative in direction −√

2e−:

ð = ∇−√
2e− .

Let C∞(ξs) be the space of infinitely differentiable sections of the vector bundle ξs . Durrer [8] proves that for any
sf ∈ C∞(ξs) we have

ðsf =
(

s cot θ − ∂

∂θ
− i

sin θ

∂

∂ϕ

)
sf.

In particular, put sf = sY�m. Using (25), we obtain

ðsY�m = √
(� − s)(� + s + 1)s+1Y�m.

For s ≥ 0 and � = s, the spherical harmonic s+1Y�m is not defined and we use convention
√

(� − �)(2� + 1) ×
�+1Y�m = 0. Then, ð :C∞(ξs) → C∞(ξs+1). Therefore, ð is called the spin raising operator. Moreover, the last
display shows that the restriction of ð onto the space H(�), � > s, is an intertwining operator between equivalent
representations V�.

The adjoint operator, ð∗, is a covariant derivative in direction −√
2e+:

ð
∗ = ∇−√

2e+ .

For any sf ∈ C∞(ξs) we have

ð
∗
sf =

(
s cot θ − ∂

∂θ
+ i

sin θ

∂

∂ϕ

)
sf.

In particular,

ð
∗
sY�m = −√

(� + s)(� − s + 1)s−1Y�m.

For s ≤ 0 and � = −s, the spherical harmonic s−1Y�m is not defined and we use convention
√

(� − �)(2� + 1) ×
−�−1Y�m = 0. Then, ð∗ :C∞(ξs) → C∞(ξs−1). Therefore, ð∗ is called the spin lowering operator. Moreover, the last
display shows that the restriction of ð∗ onto the space H(�), � > −s, is an intertwining operator between equivalent
representations V�.
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Zaldarriaga and Seljak [27] introduced the following idea. Assume for a moment that

∞∑
�=2

(2� + 1)(� + 2)!
(l − 2)! C2� < ∞. (29)

Then, it is possible to act twice with ð on both hand sides of (27) and to interchange differentiation and summation:

ð
2(Q − iU)(n) = ð

2
∞∑

�=2

�∑
m=−�

a−2,�m−2Y�m(n)

=
∞∑

�=2

�∑
m=−�

a−2,�mð
2−2Y�m(n)

=
∞∑

�=2

�∑
m=−�

√
(� + 2)!
(� − 2)!a−2,�mY�m(n).

By the same argumentation, we have

(
ð

∗)2
(Q + iU)(n) =

∞∑
�=2

�∑
m=−�

√
(� + 2)!
(� − 2)!a2,�mY�m(n).

Unlike complex polarisation, the new random fields are rotationally invariant and no ambiguities connected with
rotations (16) arise. However, they have complex behaviour under parity transformation, because Q(n) and U(n)

behave differently (Lin and Wandelt [15]): Q has even parity: Q(−n) = Q(n) while U has odd parity: U(−n) =
−U(n).

Therefore, it is custom to group together quantities of the same parity:

Ẽ(n) = −1

2

((
ð

∗)2
(Q + iU)(n) + ð

2(Q − iU)(n)
)
,

B̃(n) = − 1

2i

((
ð

∗)2
(Q + iU)(n) − ð

2(Q − iU)(n)
)
.

The random fields Ẽ(n) and B̃(n) are scalar (spin 0), real-valued, and isotropic. To find their behaviour under parity
transformation, follow Lin and Wandelt [15]. Notice that if n has spherical coordinates (θ,ϕ), then −n has spherical
coordinates θ ′ = π − θ and ϕ′ = ϕ + π. Therefore,

∂

∂θ ′ = − ∂

∂θ
,

∂

∂ϕ′ = ∂

∂ϕ
.

Because (Q + iU)(−n) = (Q − iU)(n), we obtain

(
ð

∗)′
(Q + iU)(−n) =

(
2 cot θ ′ − ∂

∂θ ′ + i

sin θ ′
∂

∂ϕ′

)
(Q + iU)(−n)

=
(

−2 cot θ + ∂

∂θ
− i

sin θ

∂

∂ϕ

)
(Q − iU)(n)

= −ð(Q − iU)(n)

and

((
ð

∗)′)2
(Q + iU)(−n) =

(
2 cot θ ′ − ∂

∂θ ′ + i

sin θ ′
∂

∂ϕ′

)(−ð(Q − iU)(n)
)

= ð
2(Q − iU)(n).
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Similarly, we have (ð′)2(Q + iU)(−n) = (ð∗)2(Q − iU)(n). Therefore,

Ẽ(−n) = −1

2

((
ð

∗)2
(Q + iU)(−n) + ð

2(Q − iU)(−n)
)

= −1

2

((
ð

∗)2
(Q − iU)(n) + ð

2(Q + iU)(n)
)

= Ẽ(n)

and

B̃(−n) = − 1

2i

((
ð

∗)2
(Q + iU)(−n) − ð

2(Q − iU)(−n)
)

= − 1

2i

((
ð

∗)2
(Q − iU)(n) − ð

2(Q + iU)(n)
)

= −B̃(n).

It means that Ẽ(n) has even parity like electric field, while B̃(n) has odd parity like magnetic field.
The spectral representation of the fields Ẽ(n) and B̃(n) has the form

Ẽ(n) =
∞∑

�=2

�∑
m=−�

a
Ẽ,�m

Y�m(n),

B̃(n) =
∞∑

�=2

�∑
m=−�

a
B̃,�m

Y�m(n),

where

aẼ,�m
= −1

2

√
(� + 2)!
(� − 2)! (a2,�m + a−2,�m),

a
B̃,�m

= − 1

2i

√
(� + 2)!
(� − 2)! (a2,�m − a−2,�m).

It is convenient to introduce the fields E(n) and B(n) as

E(n) =
∞∑

�=2

�∑
m=−�

aE,�mY�m(n),

(30)

B(n) =
∞∑

�=2

�∑
m=−�

aB,�mY�m(n)

with

aE,�m = −1

2
(a2,�m + a−2,�m),

(31)

aB,�m = − 1

2i
(a2,�m − a−2,�m).

The random fields E(n) and B(n) are scalar (spin 0), real-valued, and isotropic. Moreover, E(n) has even parity,
while B(n) has odd parity. The advantage of E(n) and B(n) is that their definition does not use assumption (29). The
expansion coefficients aE,�m are called electric multipoles, while the expansion coefficients aB,�m are called magnetic
multipoles.
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Table 3
Examples of different notation for the fields E(n) and B(n) and its expansion coefficients

Source Fields Multipoles

Challinor [5], Challinor and Peiris [7] — E�m, B�m

Durrer [8] E (n), B(n) e�m, b�m

Geller and Marinucci [11] fE, fM A�mE, A�mM
Lin and Wandelt [15] E(n), B(n) aE,�m, aB,�m

Weinberg [25], Zaldarriaga and Seljak [27] — aE,�m, aB,�m

Different notations for the fields E(n) and B(n) and electric and magnetic multipoles may be found in the literature.
Some of them are shown in Table 3. In what follows, we use notation by Lin and Wandelt [15].

We prove the following theorem.

Theorem 4. Let T (n) be a real-valued random field defined by (20). Let (Q ± iU)(n) be random fields defined by
(26) and (27). Let E(n) and B(n) be random fields (30) whose expansion coefficients are determined by (31). The
following statements are equivalent.

1. ((Q − iU)(n), T (n), (Q + iU)(n)) is an isotropic random field in ξ−2 ⊕ ξ0 ⊕ ξ2. The fields Q(n) and U(n) are
real-valued.

2. (T (n),E(n),B(n)) is an isotropic random field in ξ0 ⊕ ξ0 ⊕ ξ0 with real-valued components. The components
T (n) and B(n) are uncorrelated. The components E(n) and B(n) are uncorrelated.

Proof. Let ((Q − iU)(n), T (n), (Q + iU)(n)) be an isotropic random field in ξ−2 ⊕ ξ0 ⊕ ξ2, and let Q(n) and U(n)

be real-valued. By Theorem 3 and reality conditions (21) and (28), we have E[aT,�m] = 0 for � �= 0, E[a±2,�m] = 0
and

E[aT,�maT,�′m′ ] = δ��′δmm′CT,�,

E[a±2,�ma±2,�′m′ ] = δ��′δmm′C2,�,
(32)

E[aT,�ma±2,�′m′ ] = δ��′δmm′CT,±2,�,

E[a−2,�ma2,�′m′ ] = δ��′δmm′C−2,2,�

with

∞∑
�=0

(2� + 1)CT,� + 2
∞∑

�=2

(2� + 1)C2,� < ∞. (33)

It is enough to prove that E[aE,�m] = E[aB,�m] = 0 and

E[aX,�maY,�′m′ ] = δ��′δmm′CXY,� (34)

with

∑
�

(2� + 1)CX,� < ∞ (35)

for all X, Y ∈ {T ,E,B}. Then, the second statement of the theorem follows from Theorem 3.
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The first condition trivially follows from (31). Condition (34) with X = Y = T is obvious. We prove condition (34)
with X = Y = E. Indeed, by (31) and (28),

E[aE,�maE,�′m′ ] = 1

4

(
E
[
(a2,�m + a−2,�m)(a2,�′m′ + a−2,�′m′)

])
= 1

4

(
E[a2,�ma2,�′m′ ] + E[a2,�ma−2,�′m′ ]

+ E[a−2,�ma2,�′m′ ] + E[a−2,�ma−2,�′m′ ])
= 1

2
δ��′δmm′(C2,� + ReC−2,2,�).

Condition (34) with X = Y = B can be proved similarly.
Next, we prove condition (34) with X = T and Y = B . Indeed,

E[aT,�maB,�′m′ ] = 1

2i

(
E[aT,�ma2,�′m′ ] − E[aT,�ma−2,�′m′ ])

= −1

2
δ��′δmm′(CT,2,� − CT,−2,�)

= 0

by (28), which also proves that T (n) and B(n) are uncorrelated. Condition (34) for other cross-correlations can be
proved similarly.

Next, we prove (35) with X = E. Indeed,

∞∑
�=2

(2� + 1)CE,� = 1

2

∞∑
�=2

(2� + 1)(C2,� + ReC−2,2,�) < ∞.

Condition (35) for X = B can be proved similarly.
Next, we prove that E(n) is real-valued. It is enough to prove reality condition aE,�−m = (−1)maE,�m. We have

aE,�−m = −1

2
(a2,�−m + a−2,�−m)

= −1

2

[
(−1)ma−2,�m + (−1)−ma2,�m

]
= (−1)maE,�m.

B(n) is real-valued by similar reasons.
Finally, we prove that E(n) and B(n) are uncorrelated. Indeed, E[E(n1)B(n2)] = CEB(n1 · n2), because

(T (n),E(n),B(n)) is an isotropic random field in ξ0 ⊕ ξ0 ⊕ ξ0. So, CEB((−n1) · (−n2)) = CEB(n1 · n2). On the
other hand,

CEB

(
(−n1) · (−n2)

) = E
[
E(−n1)B(−n2)

]
= E

[
E(n1)

(−B(−n2)
)]

= −CEB(n1 · n2),

because E(−n1) = E(n1) and B(−n1) = −B(n1). Therefore, CEB(n1 · n2) = 0.
Conversely, let (T (n),E(n),B(n)) be an isotropic random field in ξ0 ⊕ ξ0 ⊕ ξ0 with real-valued components, let

the components T (n) and B(n) be uncorrelated, and let the components E(n) and B(n) be also uncorrelated. Solving
system of equations (31), we obtain

a2,�m = −aE,�m + aB,�mi,
(36)

a−2,�m = −aE,�m − aB,�mi.
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It is obvious that E[a±2,�m] = 0. We have to prove (32), (33) and (28). The first equation in (32) is obvious. The
second equation is proved as follows.

E[a2,�ma2,�′m′ ] = E
[
(−aE,�m + aB,�mi)(−aE,�′m′ − aB,�′m′ i)

]
= δ��′δmm′(CE,� + CB,�),

because E(n) and B(n) are uncorrelated. Proof for negative coefficients is similar.
The third equation in (32) is proved as follows.

E[aT,�ma2,�′m′ ] = E
[
aT,�m(−aE,�′m′ − aB,�′m′ i)

]
= −δ��′δmm′CT E,�,

because T (n) and B(n) are uncorrelated. Proof for negative coefficient is similar.
The fourth equation in (32) is proved as follows.

E[a−2,�ma2,�′m′ ] = E
[
(−aE,�m − aB,�mi)(−aE,�′m′ − aB,�mi)

]
= δ��′δmm′(CE,� − CB,�),

because E(n) and B(n) are uncorrelated.
Because C2,� = CE,� + CB,�, we have

∞∑
�=0

(2� + 1)CT,� + 2
∞∑

�=2

(2� + 1)C2,� =
∞∑

�=0

(2� + 1)CT,� + 2
∞∑

�=2

(2� + 1)(CE,� + CB,�)

< ∞

which proves (33). The reality condition (28) is proved as

a−2,�m = −aE,�m − aB,�mi

= −aE,�m + aB,�mi

= −(−1)maE,�−m + (−1)maB,�−mi

= (−1)ma2,�−m. �

In the so called Gaussian cosmological theories, the random field (T (n),E(n),B(n)) is supposed to be Gaussian
and isotropic with real-valued components. Let η�0j , � ≥ 0, 1 ≤ j ≤ 3, and η�mj , � ≥ 1, 1 ≤ m ≤ �, 1 ≤ j ≤ 6, be
independent standard normal random variables. Put

ζ�mj =
{

η�0j , m = 0,
1√
2
(η�m2j−1 + η�m2j i), m > 0,

where � ≥ 0, 0 ≤ m ≤ � and 1 ≤ j ≤ 3. Now put

aT,�m = (CT,�)
1/2ζ�m1,

aE,�m = CT E,�

(CT,�)1/2
ζ�m1 +

(
CE,� − (CT E,�)

2

CT,�

)1/2

ζ�m2,

aB,�m = (CB,�m)1/2ζ�m3
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for m ≥ 0 and aX,�−m = (−1)maX,�m for m < 0 and X ∈ {T ,E,B}. The random fields

T (n) =
∞∑

�=0

�∑
m=−�

aT ,�mY�m(n),

E(n) =
∞∑

�=2

�∑
m=−�

aE,�mY�m(n),

B(n) =
∞∑

�=2

�∑
m=−�

aB,�mY�m(n)

satisfy all conditions of the second statement of Theorem 4. The random fields (Q ± iU)(n) can be reconstructed
by (36), (26) and (27). By Theorem 4, ((Q − iU)(n), T (n), (Q + iU)(n)) is an isotropic Gaussian random field in
ξ−2 ⊕ ξ0 ⊕ ξ2. The fields Q(n) and U(n) are real-valued.

Finally, we note that Kamionkowski et al. [13] proposed a different formalism for computations of the polarisation
field on the whole sky. Instead of spin-weighted harmonics sY�m, they use tensor harmonics YE

�m and YB
�m which are

related to the spin-weighted harmonics as follows.

YE
�m = 1√

2
(−2Y�me− ⊗ e− + 2Y�me+ ⊗ e+),

YB
�m = 1

i
√

2
(−2Y�me− ⊗ e− − 2Y�me+ ⊗ e+).

This formalism is also used by Cabella and Kamionkowski [3], Challinor [5,6], Challinor and Peiris [7] among others.
An excellent survey of different types of spherical harmonics may be found in Thorne [23].
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