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Abstract. By using a wavelet method we prove that the harmonisable-type N -parameter multifractional Brownian motion (mfBm)
is a locally nondeterministic Gaussian random field. This nice property then allows us to establish joint continuity of the local times
of an (N,d)-mfBm and to obtain some new results concerning its sample path behavior.

Résumé. Au moyen d’une méthode d’ondelettes nous montrons que le mouvement Brownien multifractionnaire de type harmo-
nisable à N indices (mfBm) est un champ Gaussien localement non-déterministe. Grâce à cette propriété nous établissons ensuite
la bicontinuité des temps locaux d’un (N,d)-mfBm et cela nous permet d’obtenir de nouveaux résultats concernant son comporte-
ment trajectoriel.
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1. Introduction

Multifractional Brownian motions (mfBm) were introduced independently by Lévy-Véhel and Peltier [23] and Be-
nassi, Jaffard and Roux [9] by using respectively a moving average representation and a harmonisable representation;
see (2.3) and (1.1) below. A multifractional Brownian motion is governed by a Hurst function H(t) with certain regu-
larity in place of the constant Hurst parameter H ∈ (0,1) in ordinary fractional Brownian motion. The most important
feature of a mfBm is that its local regularities (e.g., pointwise Hölder exponent) change as time evolves. As such,
multifractional Brownian motions are useful as stochastic models for phenomena that exhibit nonstationarity (e.g.,
traffic in modern telecommunication networks or signal processing).

Several authors have investigated sample path and statistical properties of multifractional Brownian motions. For
example, Benassi, Jaffard and Roux [9] obtained classical Kolmogorov’s laws of the iterated logarithm for mfBm.
Lévy-Véhel and Peltier [23] determined its pointwise Hölder exponent as well as the Hausdorff and other fractal
dimensions of its graph. Ayache, Cohen and Lévy-Véhel [3] and Herbin [19] studied the covariance structure of
mfBm with harmonisable representations. Recently, Boufoussi, Dozzi and Guerbaz [12,13] studied the existence, joint
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continuity and the Hölder regularity of the local times of one parameter moving-average-type mfBm and established
a Chung’s law of the iterated logarithm for the latter process. We refer to [14,29] for further information.

There are several ways to define N -parameter multifractional Brownian motions. First, Benassi, Jaffard and
Roux [9] defined a harmonisable-type isotropic multiparameter mfBm (see (1.1) for its definition). Later, Ayache
and Léger [5], and Herbin [19] introduced so-called multifractional Brownian sheets (mfBs) in terms of their moving
average representations and harmonisable representations, where the constant Hurst vector of a fractional Brown-
ian sheet is substituted by a vector valued function. Furthermore, they showed that both moving-average-type and
harmonisable-type multifractional Brownian sheets have continuous modifications and determined the pointwise and
local Hölder exponent of mfBs. Meerschaert, Wu and Xiao [25] considered a slightly more general class of moving-
average-type multifractional Brownian sheets and proved, among other things, the joint continuity of their local times.

The methods in [12,13,25] depend crucially on the nonanticipating structure of the moving-average-type mul-
tifractional Brownian motions, which shows that the latter have the property of one-sided local nondeterminism
(see Section 2 for its definition and a proof of the last statement). However, their arguments can not be applied
to harmonisable-type multifractional Brownian motions. It had been an open problem to prove that harmonisable-
type multifractional Brownian motions satisfy the property of local nondeterminism. There was an attempt in [14],
Theorem 7.1, to solve this problem for a one-parameter multifractional Brownian motion of harmonisable-type by
exploiting the local self-similarity, yet there seems to be a gap in their proof.

The main objective of this paper is to provide a method for establishing the property of local nondeterminism
for multifractional Brownian motions of harmonisable-type. Our method is originated from wavelet analysis and is
different from the existing methods in the literature (cf. [11,28,31]). Before we present the main heuristic ideas behind
it let us recall the definition of a harmonisable-type isotropic multiparameter mfBm with values in R and its random
wavelet-type series representation due to Benassi, Jaffard and Roux [9]. Such a Gaussian field X = {X(t): t ∈ R

N } is
defined by

X(t) :=
∫

RN

eit ·ξ − 1

|ξ |H(t)+N/2
dŴ (ξ) for every t ∈ R

N, (1.1)

where t · ξ denotes the usual inner product of t and ξ , |ξ | denotes the Euclidian norm of ξ , and

• H(·) is a functional parameter with values in a fixed interval [a, b] ⊂ (0,1); we will always assume that it satisfies
a uniform Hölder condition of order β = β(I) ∈ (b,1] on any compact cube I ⊂ R

N , i.e. there is a constant
c1 = c1(I ) > 0, only depending on I , such that for all t ′, t ′′ ∈ I ,∣∣H (

t ′
) − H

(
t ′′

)∣∣ ≤ c1
∣∣t ′ − t ′′

∣∣β. (1.2)

• dŴ is “the Fourier transform” of the real valued white noise dW which means that for each function f ∈ L2(RN),∫
RN

f (s)dW(s) =
∫

RN

f̂ (ξ)dŴ (ξ),

where f̂ denotes the Fourier transform of f . Recall that the Fourier transform of a function f ∈ L2(RN) is the limit
of the Fourier transforms of functions of the Schwartz class S(RN) converging to f ; throughout this article the
Fourier transform over S(RN) is defined as (F g)(ξ) = ĝ(ξ) = (2π)−N/2

∫
RN e−is·ξ g(s)ds and the inverse map as

(F −1h)(s) = (2π)−N/2
∫

RN eis·ξ h(ξ)dξ , thus the Fourier transform is a bijective isometry from L2(RN) to itself.

The Gaussian field X = {X(t): t ∈ R
N } can be represented as the following random wavelet-type series

X(t) =
2N−1∑
l=1

∑
j∈Z

∑
k∈ZN

2−jH(t)εl,j,k

(
Ψl

(
2j t − k,H(t)

) − Ψl

(−k,H(t)
))

, (1.3)

where the Ψl’s are the deterministic wavelet-type functions defined in (2.8) and the εl,j,k’s are the independent
N (0,1), Gaussian random variables defined in (2.20). For every fixed t ∈ R

N , the series in (1.3) is convergent in
L2(Ω), Ω being the underlying probability space (see [9]). Moreover the series in (1.3) is, with probability 1, uni-
formly convergent in t on each compact subset of R

N (see [6]).
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As we will see in the next section, for proving that X = {X(t): t ∈ R
N } is locally nondeterministic on a closed

(bounded) rectangle I ⊂ R
N+ , it is sufficient to show that for any integer m ≥ 1, there exists a constant c(m) > 0 such

that for all t0, t1, . . . , tm ∈ I and all real numbers α1, . . . , αm, one has

E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2

≥ c(m) min
{∣∣tn − t0

∣∣2H(t0): 1 ≤ n ≤ m
}
. (1.4)

For the sake of simplicity, we will assume throughout this paper that I = [ε,1]N , where ε is a positive real number. In
order to explain the main intuition behind our proof of (1.4), we suppose heuristically that, for all (t, θ) ∈ R

N ×[a, b],
Ψl(t, θ) = 1[0,1)N (t), where 1A denotes the indicator function of A ⊂ R

N , and consequently that

Ψl

(
2j t − k, θ

) = 1∏N
i=1[ki/2j ,(ki+1)/2j )

(t); (1.5)

of course, this is not the correct choice of wavelet functions, however it gives the main intuition behind the crucial
relations (2.10) and (2.47). Let j0 be the unique integer such that

2−j0−1 < 2−1εN−1/2 min
{∣∣tn − t0

∣∣: 1 ≤ n ≤ m
} ≤ 2−j0 . (1.6)

[Note in passing that j0 will be defined in a slightly different way in the next section (see (2.23)).] It follows from
(1.5) and (1.6) that there is a unique k0 ∈ Z

N which satisfies

Ψl

(
2j0 t0 − k0,H

(
t0)) = 1, (1.7)

Ψl

(−k0,H
(
tn

)) = 0 for every n = 0,1, . . . ,m (1.8)

and

Ψl

(
2j0 tn − k0,H

(
tn

)) = 0 for every n = 1, . . . ,m. (1.9)

Then putting together (1.3), (1.6), (1.7), (1.8) and (1.9) we obtain that

E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2

=
2N−1∑
l=1

∑
j∈Z

∑
k∈ZN

∣∣∣∣∣2−jH(t0)
(
Ψl

(
2j t0 − k,H

(
t0)) − Ψl

(−k,H
(
t0)))

−
m∑

n=1

2−jH(tn)αn

(
Ψl

(
2j tn − k,H

(
tn

)) − Ψl

(−k,H
(
tn

)))∣∣∣∣∣
2

≥
∣∣∣∣∣2−j0H(t0)

(
Ψ1

(
2j0 t0 − k0,H

(
t0)) − Ψ1

(−k0,H
(
t0)))

−
m∑

n=1

2−j0H(tn)αn

(
Ψ1

(
2j0 tn − k0,H

(
tn

)) − Ψ1
(−k0,H

(
tn

)))∣∣∣∣∣
2

= 2−2j0H(t0)

≥ 2−2bε2bN−b min
{∣∣tn − t0

∣∣2H(t0): 1 ≤ n ≤ m
}
,

which shows that (1.4) holds.
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The property of local nondeterminism as proved in Theorem 2.1 allows us to study fine properties of the sample
paths of harmonisable-type mfBm. In particular, it can be applied to establish the joint continuity of the local times of
harmonisable-type mfBm (see Theorem 3.1).

The rest of the paper is organized as follows. In Section 2 we study the local nondeterminism of mfBm X. Our main
result is Theorem 2.1, which is proved by using the wavelet method. In Section 3 we apply Theorem 2.1 to prove the
joint continuity of the local times of an (N,d)-mfBm X (Theorem 3.1), as well as local and uniform Hölder conditions
for the maximum local time of a X (Theorem 3.5). These results can be applied in turn to study the asymptotic and
fractal properties of mfBm X. We give two such applications – one is to determine the modulus of nondifferentiability
for a real-valued mfBm (Theorem 3.6) and the other is to prove a uniform Hausdorff dimension result for the level
sets of an (N,d)-mfBm (Theorem 3.8).

We end the introduction with some notation. For any integer p ≥ 1, a parameter t ∈ R
p is written as (t1, . . . , tp),

or as 〈c〉, if t1 = · · · = tp = c. For any s, t ∈ R
p such that sj < tj (j = 1, . . . , p), we define the closed interval (or

rectangle) [s, t] = ∏p

j=1[sj , tj ]. We will use A to denote the class of all closed intervals T ⊂ R
p . The Lebesgue

measure in R
p is denoted by λp .

2. Local nondeterminism

The concept of (one-sided) local nondeterminism (LND, in short) of a Gaussian process was first introduced by
Berman [11] to unify and extend his methods for studying the existence and joint continuity of local times of Gaussian
processes.

Let Z = {Z(t), t ≥ 0} be a separable Gaussian process with mean 0 and let J ⊂ R+ be an open interval. Assume
that E[Z(t)2] > 0 for all t ∈ J and there exists δ0 > 0 such that

σ 2(s, t) = E
[(

Z(s) − Z(t)
)2]

> 0 for s, t ∈ J with 0 < |s − t | < δ0.

Recall from Berman [11] that Z is called locally nondeterministic on J if for every integer m ≥ 2,

lim
δ→0

inf
tm−t1≤δ

Vm > 0, (2.1)

where Vm is the relative prediction error

Vm = Var(Z(tm) − Z(tm−1)|Z(t1), . . . ,Z(tm−1))

Var(Z(tm) − Z(tm−1))

and the infimum is taken over all ordered points t1 < t2 < · · · < tm in J with tm − t1 ≤ δ. Because of this last
restriction, Berman’s LND is also referred to as the one-sided LND.

The above definition was extended by Cuzick [15] who defined local φ-nondeterminism by replacing the variance
σ 2(tm, tm−1) by φ(tm − tm−1), where φ is a positive function such that limr→0+ φ(r) = 0. Pitt [28] further extended
Berman’s definition (2.1) of LND to the case of random fields {Z(t), t ∈ R

N } by introducing a way to order the points
t1, t2, . . . , tm ∈ R

N (however, this ordering causes nonnegligible loss of precision in estimating moments of local
times). Roughly speaking, (2.1) suggests that the increments of Z are asymptotically independent so that many of the
results on the local times of Brownian motion can be extended to general Gaussian processes and fields. See Geman
and Horowitz [18] for an excellent survey. We should also mention that, in recent years, the properties of strong local
nondeterminism (SLND) for Gaussian random fields have found important applications in investigating small ball
probabilities, exact Hausdorff measure of functions for the trajectories and laws of the iterated logarithm for their
local times. Such results can not be established based on the property of local nondeterminism defined in (2.1). We
refer to Xiao [30,31] for further information on properties of SLND and their applications.

The goal of this section is to show the following theorem. For simplicity, we take I = [ε,1]N , where ε ∈ (0,1) is a
fixed real number.
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Theorem 2.1. Let X = {X(t), t ∈ R
N } be a harmonisable-type multifractional Brownian motion with values in R

defined by (1.1). For any integer m ≥ 1, there exists a constant c(m) > 0, depending on a, b, c1, β , N , m and I only,
such that for all t0, t1, . . . , tm ∈ I , the following inequality for the conditional variance holds:√

Var
(
X

(
t0

)|X(
tn

)
: 1 ≤ n ≤ m

) ≥ c(m) min
{∣∣tn − t0

∣∣H(t0): 1 ≤ n ≤ m
}
. (2.2)

Remark 2.2. Now we verify that when N = 1 (2.2) implies that mfBm X satisfies (2.1). Indeed, if (2.2) holds, then for
all ε ≤ t1 < t2 < · · · < tm ≤ 1, we have

Var
(
X

(
tm

) − X
(
tm−1)|X(

tn
)
: 1 ≤ n ≤ m − 1

) ≥ (
c(m−1)

)2∣∣tm − tm−1
∣∣2H(tm)

.

By using Lemma 2.12 below, we see that (2.1) holds. The same argument applies to the case N > 1 and it shows that
(2.2) implies that X satisfies the local nondeterminsim in the sense of Pitt [28].

We point out that when N = 1, (2.2) is stronger than (2.1) because the points t0, t1, . . . , tm do not have to be
ordered and, in particular, t1, . . . , tm can be taken from both left and right side of t0. For this reason, (2.2) is referred
to as the two-sided local nondeterminism. When N > 1, the property (2.2) is more natural than Pitt’s definition of
local nondeterminism in [28], again because the points t0, t1, . . . , tm do not have to be ordered. Hence, in this paper,
we will refer to (2.2) as the property of local nondeterminism of the mfBm X.

Let us also compare Theorem 2.1 with the one-sided LND of the multifractional Brownian motion {BH(t)(t), t ≥ 0}
defined by using a moving average representation. Recall from Lévy-Véhel and Peltier [23] that

BH(t)(t) = 1

�(H(t) + 1/2)

{∫ 0

−∞
[
(t − u)H(t)−1/2 − (−u)H(t)−1/2]B(du)

+
∫ t

0
(t − u)H(t)−1/2B(du)

}
∀t ∈ R+, (2.3)

where B = {B(s), s ∈ R} is a two-sided real-valued Brownian motion. Then for any 0 < s < t , the independence of
increments of Brownian motion implies

Var
(
BH(t)(t)|BH(u)(u): u ≤ s

) ≥ Var
(
BH(t)(t)|B(u): u ≤ s

)
= 1

(�(H(t) + 1/2))2

∫ t

s

(t − u)2H(t)−1 du

≥ c(t − s)2H(t),

see, e.g., [13]. Hence, the argument in Remark 2.2 shows that {BH(t)(t), t ≥ 0} satisfies Berman’s one-sided local
nondeterminism. However, the above method does not seem to be sufficient for determining whether {BH(t)(t), t ≥ 0}
satisfies a two-sided local nondeterminism.

The proof of Theorem 2.1 mainly relies on the following proposition.

Proposition 2.3. There is a constant c
(m)
0 > 0, depending on a, b, c1, β , N , m and I only, such that for all

t0, t1, . . . , tm ∈ I and all real numbers α1, . . . , αm verifying

max
{|αn|: 1 ≤ n ≤ m

} ≤ 2, (2.4)

one has(
E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

≥ c
(m)
0 min

{∣∣tn − t0
∣∣H(t0): 1 ≤ n ≤ m

}
. (2.5)
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In order to show Proposition 2.3, we first introduce some notations and establish some preliminary results. We
denote by Y = {Y(t, θ): (t, θ) ∈ R

N × [a, b]} the real valued centered Gaussian field defined for each (t, θ) ∈ R
N ×

[a, b] as

Y(t, θ) :=
∫

RN

eit ·ξ − 1

|ξ |θ+N/2
dŴ (ξ). (2.6)

Observe that (1.1) and (2.6) imply that for each t ∈ R
N ,

X(t) = Y
(
t,H(t)

)
. (2.7)

We denote by{
2jN/2ψl

(
2j s − k

)
: 1 ≤ l ≤ 2N − 1, j ∈ Z, k ∈ Z

N
}
,

a Lemarié–Meyer wavelet basis of L2(RN) [16,22,26]. For each l = 1, . . . ,2N − 1 and (t, θ) ∈ R
N × R, we set

Ψl(t, θ) :=
∫

RN

eit ·ξ ψ̂l(ξ)

|ξ |θ+N/2
dξ ; (2.8)

the last integral exists since ψ̂l is a compactly supported C∞-function vanishing in a neighbourhood of the origin,
more precisely one has

supp ψ̂l ⊆ D :=
[
−8π

3
,

8π
3

]N∖(
−2π

3
,

2π
3

)N

. (2.9)

The following lemma means that the function t → Ψl(t, θ) decreases at infinity, uniformly in θ ∈ [a, b], faster than
any polynomial. It will play an important role in the sequel.

Lemma 2.4. Ψl is a continuous function (and even a C∞-function) on R
N × R and satisfies the following property:

For each θ ∈ R, Ψl(·, θ) belongs to S(RN). Moreover, for all real numbers λ > 0 and a < b,3 there exists a constant
c2 > 0, only depending on a, b, N and λ, such that the inequality

sup
θ∈[a,b]

∣∣Ψl(t, θ)
∣∣ ≤ c2

N∏
u=1

(
3 + |tu|

)−λ (2.10)

holds for every t = (t1, . . . , tN ) ∈ R
N .

The proof of Lemma 2.4 is similar to that of part (b) of Proposition 3.1 in [4]. Let us give it for the sake of
completeness.

Proof of Lemma 2.4. First, it is convenient to introduce some notation. For any t ∈ R
N , let δ ∈ N

N be such that for
every u, δu = 3 if tu ≥ 0 and δu = −3 otherwise. This implies that δu + tu = 3 + |tu| if tu ≥ 0 and δu + tu = −3 − |tu|
otherwise. For all θ ∈ R and ξ ∈ R

N \ {0} we set

fθ (ξ) := |ξ |−θ−N/2 =
(

N∑
l=1

ξ2
l

)−θ/2−N/4

, (2.11)

gl,δ(ξ) := e−iδ·ξ ψ̂l(ξ) (2.12)

3Note that only in Lemma 2.4 we do not need to assume that a, b ∈ (0,1).
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and

hl,δ,θ (ξ) := gl,δ(ξ)fθ (ξ). (2.13)

Observe that hl,δ,θ is a C∞-compactly supported function which has the same support as ψ̂l . We denote by L a fixed
integer greater than λ and for all γ = (γ1, . . . , γN) ∈ Z

N+ we denote by ∂γ the differential operator

∂γ = ∂γ1+···+γN

(∂ξ1)γ1 · · · (∂ξN)γN

with the usual convention that ∂0 is the identity. By using integration by parts LN times we obtain∣∣Ψl(t, θ)
∣∣ =

∣∣∣∣∫D
ei(δ+t)·ξhl,δ,θ (ξ)dξ

∣∣∣∣
=

N∏
u=1

(
3 + |tu|

)−L

∣∣∣∣∫D
ei(δ+t)·ξ (∂〈L〉hl,δ,θ

)
(ξ)dξ

∣∣∣∣,
where 〈L〉 denotes the multi-index of N

N whose components are all equal to L. It remains to show that

sup
{∣∣(∂〈L〉hl,δ,θ

)
(ξ)

∣∣: (ξ, θ) ∈ D × [a, b] and δ ∈ {−3,3}N}
< ∞. (2.14)

It follows from (2.13) and from the Leibniz formula that(
∂〈L〉hl,δ,θ

)
(ξ) =

∑
(γ,τ )∈Z

N+×Z
N+ ,γ+τ=〈L〉

Cγ

〈L〉
(
∂γ fθ

)
(ξ)

(
∂τ gl,δ

)
(ξ), (2.15)

where

Cγ

〈L〉 :=
N∏

u=1

L!
(γu)! × (τu)! .

Let us now show by induction on |γ | = γ1 + · · · + γN that for all θ ∈ R and ξ ∈ R
N \ {0},

(
∂γ fθ

)
(ξ) =

|γ |∑
p=0

Qγ,p(ξ, θ)|ξ |−θ−N/2−2p, (2.16)

where the Qγ,p’s are polynomials on R
N+1 only depending on γ . It is clear that (2.16) is satisfied when |γ | = 0, we

just have to take Q0,0(ξ, θ) = 1. Next, we assume that (2.16) holds for all γ ∈ Z
N+ satisfying |γ | ≤ n, where n is an

arbitrary fixed nonnegative integer. Let us then show that this equality also holds for all γ̃ ∈ Z
N+ satisfying |γ̃ | = n+1.

There is u0 ∈ {1, . . . ,N} such that γ̃ = γ + νu0 where |γ | ≤ n and where νu0 ∈ Z
N+ is such that ν

u0
u0 = 1 and ν

u0
u = 0

for all u �= u0. It follows from the induction hypothesis (i.e. (2.16)) and from (2.11) that

(
∂γ̃ fθ

)
(ξ) = (

∂νu0
∂γ fθ

)
(ξ) =

|γ̃ |∑
p=0

Qγ̃ ,p(ξ, θ)|ξ |−θ−N/2−2p,

where Qγ̃ ,0(ξ, θ) = (∂νu0
Qγ,0)(ξ, θ), for all 1 ≤ p ≤ |γ̃ | − 1, Qγ̃ ,p(ξ, θ) = (∂νu0

Qγ,p)(ξ, θ) − (θ + N/2 + 2p −
2)ξu0Qγ,p−1(ξ, θ) and Qγ̃ ,|γ̃ |(ξ, θ) = −(θ + N/2 + 2|γ̃ | − 2)ξu0Qγ,|γ̃ |−1(ξ, θ). This proves (2.16).

It follows from (2.16) and (2.9) that

sup
{∣∣(∂γ fθ

)
(ξ)

∣∣: (ξ, θ) ∈ D × [a, b]}
≤ c

|γ |∑
p=0

sup
{∣∣Qγ,p(ξ, θ)

∣∣: (ξ, θ) ∈ D × [a, b]} < ∞, (2.17)
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where c > 0 is a finite constant only depending on a, b, N and γ . Let us now show that

sup
{∣∣(∂τ gl,δ

)
(ξ)

∣∣: ξ ∈ D and δ ∈ {−3,3}N}
< ∞. (2.18)

It follows from (2.12) and the Leibniz formula that(
∂τ gl,δ

)
(ξ) =

∑
(τ ′,τ ′′)∈Z

N+×Z
N+ ,τ ′+τ ′′=τ

Cτ ′
τ (−iδ)τ

′
e−iδ·ξ (∂τ ′′

ψ̂l

)
(ξ),

where (−iδ)τ
′ := ∏N

u=1(−iδu)
τ ′
u . Thus

sup
{∣∣(∂τ gl,δ

)
(ξ)

∣∣: ξ ∈ D and δ ∈ {−3,3}N}
≤

∑
(τ ′,τ ′′)∈NN×NN ,τ ′+τ ′′=τ

Cτ ′
τ 3|τ ′| sup

{∣∣(∂τ ′′
ψ̂l

)
(ξ)

∣∣: ξ ∈ D
}

< ∞.

Finally putting together (2.15), (2.17) and (2.18) we get (2.14). �

Let us now give a random wavelet-type series representation for the field Y .

Proposition 2.5. The field {Y(t, θ): (t, θ) ∈ R
N × [a, b]} defined in (2.6) can be represented as

Y(t, θ) =
2N−1∑
l=1

∑
j∈Z

∑
k∈ZN

2−jθ εl,j,k

(
Ψl

(
2j t − k, θ

) − Ψl(−k, θ)
)
, (2.19)

where the Ψl’s are the deterministic functions introduced in (2.8) and where {εl,j,k: 1 ≤ l ≤ 2N − 1, j ∈ Z, k ∈ Z
N }

is the sequence of independent N (0,1) Gaussian random variables defined as

εl,j,k := 2−Nj/2
∫

RN

ei2−j k·ξ ψ̂l

(
2−j ξ

)
dŴ (ξ). (2.20)

Moreover, for every fixed (t, θ) ∈ R
N × [a, b], the series in (2.19) is convergent in L2(Ω), where Ω denotes the

underlying probability space.

Remark 2.6. It can be verified that, with probability 1, the series is uniformly convergent in (t, θ) on every compact
subset of R

N × [a, b] (see [6] for a proof when N = 1).

Proof of Proposition 2.5. The proof is standard. For every fixed (t, θ) ∈ R
N × [a, b], we expand the function ξ →

eit ·ξ −1
|ξ |θ+N/2 in the orthonormal basis of L2(RN),

{
2−Nj/2ei2−j k·ξ ψ̂l

(
2−j ξ

)
: 1 ≤ l ≤ 2N − 1, j ∈ Z, k ∈ Z

N
}

and then we use the isometry property of the stochastic integral in (2.6). The proposition follows. �

From now on, we denote Ψ1 by Ψ and we assume that the corresponding multivariate Lemarié–Meyer mother
wavelet ψ1 is, for each x ∈ R

N , of the form

ψ1(x) = ψ̃(x1)ϕ̃(x2) · · · ϕ̃(xN), (2.21)

where ψ̃ is a univariate Lemarié–Meyer mother wavelet and ϕ̃ is a univariate Lemarié–Meyer scaling function. We
set

ρ = 2−1εN−1/2 min
{∣∣tn − t0

∣∣: 1 ≤ n ≤ m
}
. (2.22)
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Observe that the fact that tn ∈ [ε,1]N for all n = 0, . . . ,m, implies that |tn − t0| ≤ N1/2 and consequently that
ρ ∈ [0, ε/2]. It is clear that Theorem 2.1 holds when ρ = 0, so in all the sequel we assume that ρ > 0. We denote
by δ ≥ 1 a constant whose value will be chosen more precisely later and we denote by j0(ρ) = j0(ρ, δ) the unique
(nonnegative) integer satisfying

2−j0(ρ)−1 < δ−1ρ ≤ 2−j0(ρ). (2.23)

Observe that for every n = 0,1, . . . ,m one has

2−j0(ρ)H(tn) ≥ δ−bρH(tn) and 2−j0(ρ)H(tn) ≤ 2bδ−aρH(tn). (2.24)

We set

I(ρ) = {
n ∈ {1, . . . ,m}: ∣∣tn − t0

∣∣ ≤ ρ1/2} (2.25)

and

I c(ρ) = {
n ∈ {1, . . . ,m}: ∣∣tn − t0

∣∣ > ρ1/2}. (2.26)

Lemma 2.7. For any n ∈ I(ρ) one has

2−j0(ρ)H(tn) ≤ c32bδ−aρH(t0), (2.27)

where the constant c3 = sup{r−c1r
β/2

: r ∈ (0,1]} < ∞ (recall that β and c1 are as in (1.2)).

Proof. Using (2.24), the fact that ρ ∈ (0,1], (1.2) and (2.25) one derives that

2−j0(ρ)H(tn) ≤ 2bδ−aρ−|H(tn)−H(t0)|ρH(t0)

≤ 2bδ−aρ−c1|tn−t0|β ρH(t0) ≤ 2bδ−aρ−c1ρ
β/2

ρH(t0).

This proves (2.27). �

Lemma 2.8. For any real T > 0, s ∈ R
N , j ∈ N0 := Z+, θ ∈ [a, b] and l ∈ {1, . . . ,N}, let

Rj(s, θ;T , l) =
∑

k∈Kj (sl ,T )

∣∣Ψ (
2j s − k, θ

)∣∣2
, (2.28)

where

Kj (sl, T ) = {
k ∈ Z

N :
∣∣2j sl − kl

∣∣ ≥ T
}
. (2.29)

Then for all λ > 1/2 there is a constant c4 > 0, only depending on λ, a, b and N , such that for any real T > 0,
s ∈ R

N , j ∈ N0, θ ∈ [a, b] and l ∈ {1, . . . ,N},
Rj(s, θ;T , l) ≤ c4T

1−2λ. (2.30)

Proof. First observe that (2.10), (2.28), (2.29) and the fact that the function y → (3 + y)−2λ is decreasing on R+,
imply that

Rj(s, θ;T , l) ≤ c5R(T ), (2.31)

where

c5 := 2c2

(
sup
x∈R

∑
q∈Z

(
3 + |x − q|)−2λ

)N−1

< ∞
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and

R(T ) =
+∞∑
v=0

(3 + v + T )−2λ. (2.32)

Moreover, using the fact that for every fixed T ∈ R+, the function x → (3 + x + T )−2λ is decreasing on [−1,+∞)

one obtains that

+∞∑
v=0

(3 + v + T )−2λ ≤
∫ +∞

0
(2 + x + T )−2λ dx = 1

2λ − 1
(2 + T )−2λ+1. (2.33)

Finally, putting together (2.31), (2.32) and (2.33) proves the lemma. �

Lemma 2.9. For any s ∈ R
N and θ ∈ [a, b], we set

Bj0(ρ)

(
t0, s, θ

) =
∑

k∈Aj0(ρ)(t
0,ρ)

∣∣Ψ (
2j0(ρ)s − k, θ

)∣∣2
, (2.34)

where

Aj0(ρ)

(
t0, ρ

) :=
{
k ∈ Z

N :
∣∣t0 − 2−j0(ρ)k

∣∣ ≤ ρ

2
√

N

}
. (2.35)

Then for each real λ > 1/2 there is a constant c6 > 0 only depending on λ, a, b and N , such that for all θ ∈ [a, b]
one has:

(i) For every n ∈ {1, . . . ,m},
Bj0(ρ)

(
t0, tn, θ

) ≤ c6δ
1−2λ. (2.36)

(ii) For every n ∈ I c(ρ) (cf. (2.26)),

Bj0(ρ)

(
t0, tn, θ

) ≤ c6δ
1−2λρλ−1/2. (2.37)

(iii)

Bj0(ρ)

(
t0,0, θ

) ≤ c6ε
1−2λδ1−2λρ2λ−1. (2.38)

Proof. Let us first show that part (i) holds. Fix n ∈ {1, . . . ,m}, it follows from (2.22) there exists l0 ∈ {1, . . . ,N} such
that ∣∣tnl0 − t0

l0

∣∣ ≥ 2ρ

ε
≥ ρ√

N
. (2.39)

Next observe that (2.23), (2.35) and (2.39) entail that for each k ∈ Aj0(ρ)(t
0, ρ) one has,

∣∣2j0(ρ)tnl0 − kl0

∣∣ ≥ 2j0(ρ)
(∣∣tnl0 − t0

l0

∣∣ − ∣∣t0
l0

− 2−j0(ρ)kl0

∣∣) ≥ δ

4
√

N
. (2.40)

Then (2.40), (2.34), (2.28) and Lemma 2.8 imply that

Bj0(ρ)

(
t0, tn, θ

) ≤ Rj0(ρ)

(
tn, θ; (16N)−1/2δ, l0

) ≤ c4(16N)λ−1/2δ1−2λ, (2.41)

which proves (2.36).
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Let us now show that part (ii) holds. For any fixed n′ ∈ I c(ρ), it follows from (2.26) that there exists l′0 ∈ {1, . . . ,N}
such that∣∣tn′

l′0
− t0

l′0

∣∣ ≥ ρ1/2

√
N

. (2.42)

Next observe that (2.23), (2.35) and (2.42) entail that for each k ∈ Aj0(ρ)(t
0, ρ) one has,

∣∣2j0(ρ)tn
′

l′0
− kl′0

∣∣ ≥ 2j0(ρ)
(∣∣tn′

l′0
− t0

l′0

∣∣ − ∣∣t0
l′0

− 2−j0(ρ)kl′0
∣∣) ≥ δρ−1/2

4
√

N
. (2.43)

Then (2.43), (2.34), (2.28) and Lemma 2.8 imply that

Bj0(ρ)

(
t0, tn

′
, θ

) ≤ Rj0(ρ)

(
tn

′
, θ; (16N)−1/2δρ−1/2, l′0

) ≤ c4(16N)λ−1/2δ1−2λρλ−1/2 (2.44)

and (2.37) follows.
Finally, let us prove part (iii). By using (2.23), the fact that t0 ∈ [ε,1]N , (2.22) and (2.35) one has for each k ∈

Aj0(ρ)(t
0, ρ) and each l = 1, . . . ,N ,

|kl | ≥ 2j0(ρ)
(∣∣t0

l

∣∣ − ∣∣t0
l − 2−j (ρ)kl

∣∣) ≥ εδρ−1

4
. (2.45)

Then (2.45), (2.34), (2.28) and Lemma 2.8 imply that

Bj0(ρ)

(
t0,0, θ

) ≤ Rj0(ρ)

(
0, θ;4−1εδρ−1, l

) ≤ c442λ−1ε1−2λδ1−2λρ2λ−1.

Hence (2.38) holds. This finishes the proof of Lemma 2.9. �

Lemma 2.10. For every (x, θ) ∈ R
N × [a, b] one sets

f (x, θ) :=
∑

k∈ZN

∣∣Ψ (x − k, θ)
∣∣2

. (2.46)

(i) The series in (2.46) is convergent for each (x, θ) ∈ R
N × [a, b]. Moreover f is a continuous function on

R
N × [a, b].
(ii) One has

c7 := inf
{
f (x, θ): (x, θ) ∈ R

N × [a, b]} > 0. (2.47)

Proof. Let us first prove part (i). Since Ψ is a continuous function on R
N × [a, b], it is sufficient to show that the

series in (2.46) is uniformly convergent on [−d, d]N × [a, b] for each real d > 0. It follows from (2.10) that for any
λ > 1/2 there is a constant c8 > 0 only depending on λ, d , a and b, such that for any (x, θ) ∈ R

N × [a, b] one has

∣∣Ψ (x, θ)
∣∣ ≤ c8

N∏
u=1

(
2 + d + |xu|

)−λ

and the latter equality implies that for any k ∈ Z
N one has

sup
(x,θ)∈[−d,d]N×[a,b]

∣∣Ψ (x − k, θ)
∣∣2 ≤ c2

8

N∏
u=1

sup
xu∈[−d,d]N

(
2 + d + |xu − ku|

)−2λ

≤ c2
8

N∏
u=1

(
2 + |ku|

)−2λ
.
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Therefore one obtains that∑
k∈ZN

sup
(x,θ)∈[−d,d]N×[a,b]

∣∣Ψ (x − k, θ)
∣∣2

< ∞,

which entails that the series in (2.46) is uniformly convergent on [−d, d]N × [a, b].
Next we prove part (ii). Our proof is more or less inspired by that of Remark 3.6 in [2]. First observe that for every

(x, θ) ∈ R
N × [a, b] and for every k′ ∈ Z

N ,

f (x, θ) = f
(
x + k′, θ

)
and thus

c7 = inf
{
f (x, θ): (x, θ) ∈ [0,1]N × [a, b]}. (2.48)

Since f is continuous and [0,1]N × [a, b] is a compact subset of R
N × [a, b], we derive from (2.48) that there exists

(x̃, θ̃ ) ∈ [0,1]N × [a, b] such that c7 = f (x̃, θ̃ ). Suppose ad absurdum that c7 = 0. Then (2.46) implies that for every
k ∈ Z

N , Ψ (x̃ − k, θ̃) = 0. In view of (2.8) and of the (2πZ)N -periodicity of the function ξ → e−ik·ξ , the latter equality
is equivalent to∫

RN

ei(x̃−k)·ξ ψ̂1(ξ)

|ξ |θ̃+N/2
dξ =

∫
[0,2π]N

e−ik·ξ
( ∑

n∈ZN

eix̃·(ξ+2πn)ψ̂1(ξ + 2πn)

|ξ + 2πn|θ̃+N/2

)
dξ = 0. (2.49)

Relation (2.49) means that all the Fourier coefficients of the continuous (2πZ)N -periodic function

ξ →
∑

n∈ZN

eix̃·(ξ+2πn)ψ̂1(ξ + 2πn)

|ξ + 2πn|θ̃+N/2

vanish. Therefore for all ξ ∈ R
N ,

∑
n∈ZN

eix̃·(ξ+2πn)ψ̂1(ξ + 2πn)

|ξ + 2πn|θ̃+N/2
= 0.

By taking in the latter equality ξ = ( 4π
3 ,0, . . . ,0) and by using (2.21) as well as the fact that

supp̂̃ϕ ⊆
[
−4π

3
,

4π
3

]
and supp ̂̃

ψ ⊆
[
−8π

3
,−2π

3

]
∪

[
2π
3

,
8π
3

]
,

one obtains that

eix̃14π/3̂̃ψ(4π/3)(̂ϕ̃(0))N−1

|4π/3|θ̃+N/2
= 0,

which leads to a contradiction. Indeed one has (see [16] or [26]) ̂̃ϕ(0) = 1 and |̂̃ψ( 4π
3 )|2 = ∑

l∈Z
|̂̃ψ( 4π

3 + 2πl)|2 = 1.
�

Lemma 2.11. Set

Dj0(ρ)

(
t0, θ

) =
∑

k∈Ac
j0(ρ)

(t0,ρ)

∣∣Ψ (
2j0(ρ)t0 − k, θ

)∣∣2
, (2.50)
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where

Ac
j0(ρ)

(
t0, ρ

) =
{
k ∈ Z

N :
∣∣t0 − 2−j0(ρ)k

∣∣ >
ρ

2
√

N

}
. (2.51)

Then for each real λ > 1/2 there is a constant c9 > 0 only depending on λ, a, b and N , such that for all θ ∈ [a, b]
one has,

Dj0(ρ)

(
t0, θ

) ≤ c9δ
1−2λ. (2.52)

Proof. For any l = 1, . . . ,N let

Ac
l,j0(ρ)

(
t0
l , ρ

) =
{
k ∈ Z

N :
∣∣t0

l − 2−j0(ρ)kl

∣∣ >
ρ

2N

}
. (2.53)

Clearly,

Ac
j0(ρ)

(
t0, ρ

) ⊆
N⋃

l=1

Ac
l,j0(ρ)

(
t0
l , ρ

)
and, as a consequence, we have

Dj0(ρ)

(
t0, θ

) ≤
N∑

l=1

∑
k∈Ac

l,j0(ρ)
(t0

l ,ρ)

∣∣Ψ (
2j0(ρ)t0 − k, θ

)∣∣2
.

Therefore, it is sufficient to prove that for any real λ > 1/2, there exists a constant c10 > 0, depending only on λ, a, b

and N , such that for every θ ∈ [a, b] and l = 1, . . . ,N , one has∑
k∈Ac

l,j0(ρ)
(t0

l ,ρ)

∣∣Ψ (
2j0(ρ)t0 − k, θ

)∣∣2 ≤ c10δ
1−2λ. (2.54)

It follows from (2.23) and (2.53) that any k ∈ Ac
l,j0(ρ)(t

0
l , ρ) satisfies

∣∣2j0(ρ)t0
l − kl

∣∣ >
δ

4N
. (2.55)

Then (2.55), (2.28), (2.29) and Lemma 2.8 imply that∑
k∈Ac

l,j0(ρ)
(t0

l ,ρ)

∣∣Ψ (
2j0(ρ)t0 − k, θ

)∣∣2 ≤ Rj0(ρ)

(
t0, θ; (4N)−1δ, l

) ≤ c4(4N)2λ−1δ1−2λ.

This proves (2.54) and the lemma. �

We are now in position to prove Proposition 2.3.

Proof of Proposition 2.3. Let us set

σ =
(

E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

.
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Using (2.7), (2.19) and the fact that the εl,j,k’s are independent N (0,1) Gaussian random variables, one obtains that

σ ≥
[ ∑

k∈Aj0(ρ)(t
0,ρ)

∣∣∣∣∣2−j0(ρ)H(t0)
(
Ψ

(
2j0(ρ)t0 − k,H

(
t0)) − Ψ

(−k,H
(
t0)))

−
m∑

n=1

αn2−j0(ρ)H(tn)
(
Ψ

(
2j0

(
ρ)tn − k,H

(
tn

)) − Ψ
(−k,H

(
tn

)))∣∣∣∣∣
2]1/2

. (2.56)

Now, let us denote by l2(ZN) the Hilbert space of the complex-valued sequences s = (sk)k∈ZN which satisfy

‖s‖l2(ZN ) =
( ∑

k∈ZN

|sk|2
)1/2

< ∞;

recall that ‖ · ‖l2(ZN ) is the canonical norm associated with the usual inner product on l2(ZN). Then, observe that the
right-hand side of (2.56) can be expressed as∥∥∥∥∥2−j0(ρ)H(t0)x − 2−j0(ρ)H(t0)y −

m∑
n=1

αn2−j0(ρ)H(tn)un +
m∑

n=0

αn2−j0(ρ)H(tn)vn

∥∥∥∥∥
l2(ZN )

,

where α0 = −1 and where x, y, un (1 ≤ n ≤ m) and vn (0 ≤ n ≤ m) are the sequences of l2(ZN) defined in the
following way:

• for all k ∈ Z
N , xk = Ψ (2j0(ρ)t0 − k,H(t0));

• for all k ∈ Ac
j0(ρ)(t

0, ρ), yk = Ψ (2j0(ρ)t0 − k,H(t0)), else yk = 0;

• for all n ∈ {1, . . . ,m} and k ∈ Aj0(ρ)(t
0, ρ), un

k = Ψ (2j0(ρ)tn − k,H(tn)), else un
k = 0;

• for all n ∈ {0, . . . ,m} and k ∈ Aj0(ρ)(t
0, ρ), vn

k = Ψ (−k,H(tn)), else vn
k = 0.

Thus using (2.56), the triangle inequality and the homogeneity property of ‖ · ‖l2(ZN), one obtains that

σ ≥ 2−j0(ρ)H(t0)‖x‖l2(Z) −
∥∥∥∥∥2−j0(ρ)H(t0)y +

m∑
n=1

αn2−j0(ρ)H(tn)un −
m∑

n=0

αn2−j0(ρ)H(tn)vn

∥∥∥∥∥
l2(ZN)

≥ 2−j0(ρ)H(t0)‖x‖l2(ZN ) − 2−j0(ρ)H(t0)‖y‖l2(ZN )

−
m∑

n=1

|αn|2−j0(ρ)H(tn)
∥∥un

∥∥
l2(ZN )

−
m∑

n=0

|αn|2−j0(ρ)H(tn)
∥∥vn

∥∥
l2(ZN)

. (2.57)

Let us now conveniently bound each term in the right-hand side of the latter inequality. One has,

2−j0(ρ)H(t0)‖x‖l2(ZN) = 2−j0(ρ)H(t0)

( ∑
k∈ZN

∣∣Ψ (
2j0(ρ)t0 − k,H

(
t0))∣∣2

)1/2

.

Therefore, it follows from (2.24), (2.46) and (2.47) that

2−j0(ρ)H(t0)‖x‖l2(Z) ≥ δ−bρH(t0)
√

f
(
2j0(ρ)t0,H

(
t0

)) ≥ √
c7δ

−bρH(t0). (2.58)

One has,

2−j0(ρ)H(t0)‖y‖l2(ZN) = 2−j0(ρ)H(t0)

( ∑
k∈Ac

j0(ρ)
(t0,ρ)

∣∣Ψ (
2j0(ρ)t0 − k,H

(
t0))∣∣2

)1/2

.
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Therefore, it follows from (2.24), (2.50) and (2.52) that

2−j0(ρ)H(t0)‖y‖l2(ZN) ≤ 2bδ−aρH(t0)
√

Dj0(ρ)

(
t0,H

(
t0

)) ≤ 2bρH(t0)√c9δ
−(λ+a−1/2). (2.59)

One has for all n ∈ {1, . . . ,m},

2−j0(ρ)H(tn)
∥∥un

∥∥
l2(ZN )

= 2−j0(ρ)H(tn)

( ∑
k∈Aj0(ρ)(t

0,ρ)

∣∣Ψ (
2j0(ρ)tn − k,H

(
tn

))∣∣2
)1/2

.

Therefore, it follows from (2.34) that

2−j0(ρ)H(tn)
∥∥un

∥∥
l2(ZN )

= 2−j0(ρ)H(tn)
√

Bj0(ρ)

(
t0, tn,H

(
tn

))
.

Next, using (2.27) as well as (2.36), one gets that for all n ∈ I(ρ),

2−j0(ρ)H(tn)
∥∥un

∥∥
l2(ZN )

≤ c3
√

c62bρH(t0)δ−(λ+a−1/2). (2.60)

On the other hand, combining (2.24) with the inequality ρH(tn) ≤ ρa and (2.37), one obtains that for all n ∈ I c(ρ),

2−j0(ρ)H(tn)
∥∥un

∥∥
l2(ZN )

≤ √
c62bδ−(λ+a−1/2)ρa+λ/2−1/4. (2.61)

One has for all n ∈ {0, . . . ,m},

2−j0(ρ)H(tn)
∥∥vn

∥∥
l2(ZN )

= 2−j0(ρ)H(tn)

( ∑
k∈Aj0(ρ)(t

0,ρ)

∣∣Ψ (−k,H
(
tn

))∣∣2
)1/2

.

Therefore, it follows from (2.24), the inequality ρH(tn) ≤ ρa and (2.38), that for all n ∈ {0, . . . ,m},

2−j0(ρ)H(tn)
∥∥vn

∥∥
l2(ZN )

≤ 2bδ−aρa
√

Bj0(ρ)

(
t0,0,H

(
tn

)) ≤ √
c62bε−(λ−1/2)δ−(λ+a−1/2)ρa+λ−1/2. (2.62)

Then, combining the inequalities (2.57) to (2.62), with (2.4) as well as the inequalities card(I(ρ)) ≤ m and
card(I c(ρ)) ≤ m, one derives,

σ ≥ √
c7δ

−bρH(t0) − 2bρH(t0)√c9δ
−(λ+a−1/2)

− c3
√

c6m21+bρH(t0)δ−(λ+a−1/2)

− √
c6m21+bδ−(λ+a−1/2)ρa+λ/2−1/4

− √
c6(m + 1)21+bε−(λ−1/2)δ−(λ+a−1/2)ρa+λ−1/2

and, consequently,

σ ≥ δ−bρH(t0)
(√

c7 − 2b√c9δ
−(λ+a−b−1/2) − c3

√
c6m21+bδ−(λ+a−b−1/2)

− √
c6m21+bδ−(λ+a−b−1/2)ρa+λ/2−b−1/4

− √
c6(m + 1)21+bε−(λ−1/2)δ−(λ+a−b−1/2)ρa+λ−b−1/2). (2.63)

Finally, by taking λ satisfies λ > 2(b − a) + 1/2, we derive from (2.63) that there exists a constant δ0 > 1, only
depending on λ, a, b, ε, m, c3, c6 and c9, such that

σ ≥ 2−1√c7δ
−b
0 ρH(t0).

This proves (2.5). �
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The following lemma is not only useful for proving Theorems 2.1 and 3.1 below, but also for deriving other sample
path properties of mfBm.

Lemma 2.12. Let X = {X(t), t ∈ R
N } be the mfBm as defined in (1.1). Then:

(i) There is a constant c11 > 0, only depending on a, b, c1 and N , and another constant c′
11 > 0, such that for all

s, t ∈ [0,1]N ,

c′
11|s − t |max{H(s),H(t)} ≤ (

E
(∣∣X(s) − X(t)

∣∣2))1/2 ≤ c11|s − t |max{H(s),H(t)}. (2.64)

(ii) There is a constant c12 ≥ 1, only depending on a, b and N , such that

c−1
12 |t |H(t) ≤ (

E
(∣∣X(t)

∣∣2))1/2 ≤ c12|t |H(t) ∀t ∈ [0,1]N. (2.65)

Proof. In order to prove (i), there is no loss of generality to assume H(s) ≥ H(t). It follows from (2.7) and the
triangle inequality that(

E
∣∣X(s) − X(t)

∣∣2)1/2 ≤ (
E

∣∣Y (
s,H(s)

) − Y
(
t,H(s)

)∣∣2)1/2

+ (
E

∣∣Y (
t,H(s)

) − Y
(
t,H(t)

)∣∣2)1/2
. (2.66)

By using (2.6) and making the change of variable η = |s − t |ξ , one obtains that

E
∣∣Y (

s,H(s)
) − Y

(
t,H(s)

)∣∣2 =
∫

RN

|ei(s−t)·ξ − 1|2
|ξ |2H(s)+N

dξ

= |s − t |2H(s)

∫
RN

|ei(|s−t |−1(s−t))·η − 1|2
|η|2H(s)+N

dη

= |s − t |2H(s)

∫
RN

|eiη1 − 1|2
|η|2H(s)+N

dη,

where η1 is the first coordinate of η and the last equality is obtained by a rotation. Since H(s) ∈ [a, b], the above
implies that there exist positive and finite constants c13 and c14 such that

c13|s − t |2H(s) ≤ E
∣∣Y (

s,H(s)
) − Y

(
t,H(s)

)∣∣2 ≤ c14|s − t |2H(s). (2.67)

To be concrete, we can take

c13 =
∫

|η1|>1

|eiη1 − 1|2
|η|2b+N

dη

and

c14 =
∫

|η|≤1
|η|2−2b−N dη + 4

∫
|η|>1

|η|−2a−N dη.

On the other hand, (2.6), the Mean Value Theorem and (1.2) imply that

E
∣∣Y (

t,H(s)
) − Y

(
t,H(t)

)∣∣2 ≤
∫

RN

|eit ·ξ − 1|2
|ξ |N

(
1

|ξ |H(s)
− 1

|ξ |H(t)

)2

dξ

≤ c15|s − t |2β, (2.68)

where the constant

c15 = Nc2
1

∫
|ξ |≤1

|ξ |2−2b−N
(
log |ξ |)2 dξ + 4c2

1

∫
|ξ |>1

|ξ |−2a−N
(
log |ξ |)2 dξ < ∞.
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Putting together (2.66), (2.67), (2.68) and the fact that β > b ≥ H(s) one obtains the upper bound in (2.64).
Next we show the lower bound in (2.64). It follows from (2.7) and the triangle inequality,(

E
∣∣X(s) − X(t)

∣∣2)1/2 ≥ (
E

∣∣Y (
s,H(s)

) − Y
(
t,H(s)

)∣∣2)1/2

− (
E

∣∣Y (
t,H(s)

) − Y
(
t,H(t)

)∣∣2)1/2
. (2.69)

Let us assume that |s − t | < τ0 := min{1, (2−1c−1
15 c13)

2−1(β−b)−1}, then putting together (2.67), (2.68), (2.69) and the
fact that β > b ≥ H(s) one obtains the lower bound in (2.64). In order to show that the lower bound in (2.64) also
holds when |s − t | ≥ τ0 we are going to prove that

inf

{
E|X(s) − X(t)|2

|s − t |max{H(s),H(t)} : (s, t) ∈ [0,1]N × [0,1]N and |s − t | ≥ τ0

}
> 0. (2.70)

Suppose ad absurdum that (2.70) is not true, then by using the fact that the function (s, t) → E|X(s)−X(t)|2
|s−t |max{H(s),H(t)} is a

continuous function over the compact set {(s, t) ∈ [0,1]N × [0,1]N : |s − t | ≥ τ0}, it follows that there exists (s̃, t̃ ) ∈
[0,1]N × [0,1]N satisfying |s̃ − t̃ | ≥ τ0 and E|X(s̃) − X(t̃)|2 = 0. Then combining the latter equality with (1.1) it
follows that for all ξ ∈ R

N \ {0} one has

eis̃·ξ − 1

|ξ |H(s̃)+N/2
= eit̃ ·ξ − 1

|ξ |H(t̃)+N/2
,

which leads to a contradiction.
Finally we prove (ii). Using (1.1) and setting η = |t |ξ it follows that

E
∣∣X(t)

∣∣2 =
∫

RN

|eit ·ξ − 1|2
|ξ |2H(t)+N

dξ = |t |2H(t)

∫
RN

|ei(|t |−1t)·η − 1|2
|η|2H(t)+N

dη. (2.71)

Since the last integral lies between the constants c13 and c14, we see that (2.65) holds. �

Now we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. In fact it is sufficient to show that for any integer m ≥ 1, there is constant a constant c(m) > 0,
only depending on a, b, c1, β , N , m and I , such that for all t0, t1, . . . , tm ∈ I and all real numbers α1, . . . , αm, one
has (

E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

≥ c(m) min
{∣∣tn − t0

∣∣H(t0)
: 1 ≤ n ≤ m

}
. (2.72)

We have already proved (see Proposition 2.3) that (2.72) is valid when max{|αn|: 1 ≤ n ≤ m} ≤ 2, thus it remains to
show that it is also valid when max{|αn|: 1 ≤ n ≤ m} > 2. We will proceed by induction on m and the method we will
use is inspired by [8].

Let us first assume that m = 1 and we distinguish two cases: Either

|α1|
∣∣t1 − t0

∣∣H(t1) ≤ 2−1(c11c12)
−1N(a−b)/2εb

∣∣t1 − t0
∣∣H(t0)

or

|α1|
∣∣t1 − t0

∣∣H(t1)
> 2−1(c11c12)

−1N(a−b)/2εb
∣∣t1 − t0

∣∣H(t0)
.

In the above c11 and c12 are the constants in Lemma 2.12.
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In the first case, we apply the triangle inequality, the inequality |1 − α1| > 1 and Lemma 2.12 to derive(
E

∣∣X(
t0) − α1X

(
t1)∣∣2)1/2 = (

E
∣∣(1 − α1)X

(
t0) − α1

(
X

(
t1) − X

(
t0))∣∣2)1/2

≥ |1 − α1|
(
E

∣∣X(
t0)∣∣2)1/2 − |α1|

(
E

∣∣X(
t1) − X

(
t0)∣∣2)1/2

≥ c−1
12

∣∣t0
∣∣H(t0) − c11|α1|

∣∣t1 − t0
∣∣max{H(t1),H(t0)}

≥ c−1
12 εb

∣∣t1 − t0
∣∣H(t0) − c11N

(b−a)/2|α1|
∣∣t1 − t0

∣∣H(t1)

≥ 2−1c−1
12 εb

∣∣t1 − t0
∣∣H(t0)

. (2.73)

In the second case, we apply Proposition 2.3 to obtain(
E

∣∣X(
t0) − α1X

(
t1)∣∣2)1/2 = |α1|

(
E

∣∣X(
t1) − α−1

1 X
(
t0)∣∣2)1/2

≥ c
(1)
0 |α1|

∣∣t1 − t0
∣∣H(t1)

≥ 2−1c
(1)
0 (c11c12)

−1N(a−b)/2εb
∣∣t1 − t0

∣∣H(t0)
. (2.74)

Set c(1) = min{c(1)
0 ,2−1c−1

12 εb,2−1c
(1)
0 (c11c12)

−1N(a−b)/2εb}. It follows from Proposition 2.3, (2.73) and (2.74) that
(2.72) is verified when m = 1.

Let us now show that a sufficient condition for (2.72) holds for any m ≥ 2, is that this inequality is satisfied when
m is replaced by m − 1. Let n0 ∈ {1, . . . ,m} be such that

|αn0 | = max
{|αn|: 1 ≤ n ≤ m

}
(2.75)

and let c16 be the constant defined as

c16 = 2−1N(a−b)/2c(m−1)c−1
11 . (2.76)

We will again argue by cases. First assume that

|αn0 |min
{|tn − tn0 |H(tn0 ): 0 ≤ n ≤ m and n �= n0

} ≥ c16 min
{∣∣tn − t0

∣∣H(t0): 1 ≤ n ≤ m
}
. (2.77)

Set α0 = −1, it follows from Proposition 2.3 and (2.77) that(
E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

= |αn0 |
(

E

∣∣∣∣∣X(
tn0

) −
m∑

n=0,n�=n0

(−α−1
n0

)
αnX

(
tn

)∣∣∣∣∣
2)1/2

≥ c
(m)
0 |αn0 ||min

{∣∣tn − tn0
∣∣H(tn0 ): 0 ≤ n ≤ m and n �= n0

}
≥ c17 min

{∣∣tn − t0
∣∣H(t0): 1 ≤ n ≤ m

}
, (2.78)

where c17 = c
(m)
0 c16.

Next we assume that

|αn0 |min
{∣∣tn − tn0

∣∣H(tn0 ): 0 ≤ n ≤ m and n �= n0
}

< c16 min
{∣∣tn − t0

∣∣H(t0): 1 ≤ n ≤ m
}

(2.79)

and let n1 ∈ {0, . . . ,m} \ {n0} be such that∣∣tn1 − tn0
∣∣ = min

{∣∣tn − tn0
∣∣: 0 ≤ n ≤ m and n �= n0

}
. (2.80)
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We will show that(
E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

≥ c(m−1) min
{∣∣tn − t0

∣∣H(t0): 1 ≤ n ≤ m
}

− |αn0 |
(
E

∣∣X(
tn0

) − X
(
tn1

)∣∣2)1/2
. (2.81)

We will again argue by cases. First, assume that it is possible to choose n1 such that n1 �= 0. Thus it follows from the
triangle inequality that,(

E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

≥
(

E

∣∣∣∣∣X(
t0) −

m∑
n=1,n�=n0,n1

αnX
(
tn

) − (αn1 + αn0)X
(
tn1

)∣∣∣∣∣
2)1/2

− |αn0 |
(
E

∣∣X(
tn0

) − X
(
tn1

)∣∣2)1/2

with the convention that
∑m

n=1,n�=n0,n1
αnX(tn) = 0 when m = 2. Then, using the induction hypothesis we can show

that (2.81) holds. Next, we assume that n1 = 0. It follows from the triangle inequality, that,(
E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

≥
(

E

∣∣∣∣∣(1 − αn0)X
(
t0) −

m∑
n=1,n�=n0

αnX
(
tn

)∣∣∣∣∣
2)1/2

− |αn0 |
(
E

∣∣X(
tn0

) − X
(
t0)∣∣2)1/2

= |1 − αn0 |
(

E

∣∣∣∣∣X(
t0) −

m∑
n=1,n�=n0

αn

1 − αn0

X
(
tn

)∣∣∣∣∣
2)1/2

− |αn0 |
(
E

∣∣X(
tn0

) − X
(
t0)∣∣2)1/2

.

Then, using the induction hypothesis and the inequality |1 − αn0 | > 1, we can show that (2.81) holds. Next, it follows
from (2.81), part (i) of Lemma 2.12, (2.80), (2.79) and (2.76), that(

E

∣∣∣∣∣X(
t0) −

m∑
n=1

αnX
(
tn

)∣∣∣∣∣
2)1/2

≥ c(m−1) min
{∣∣tn − t0

∣∣H(t0): 1 ≤ n ≤ m
}

− c11|αn0 |
∣∣tn0 − tn1

∣∣max{H(tn0 ),H(tn1 )}

≥ c(m−1) min
{∣∣tn − t0

∣∣H(t0): 1 ≤ n ≤ m
}

− c11|αn0 |N(b−a)/2
∣∣tn0 − tn1

∣∣H(tn0 )

≥ 2−1c(m−1) min
{∣∣tn − t0

∣∣H(t0): 1 ≤ n ≤ m
}
. (2.82)
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Finally we take c(m) = min{c(m)
0 , c17,2−1c(m−1)}, then we derive from Proposition 2.3, (2.78) and (2.82) that (2.72)

holds. �

3. Joint continuity of the local times

In this section, we let X = {X(t), t ∈ R
N } be a Gaussian random field with values in R

d defined by

X(t) = (
X1(t), . . . ,Xd(t)

)
, (3.1)

where X1, . . . ,Xd are independent copies of the real-valued mfBm with index function H(t) as defined in (1.1). We
call X a harmonisable-type (N,d)-multifractional Brownian motion. The main purpose of this section is to study joint
continuity of the local times and other sample path properties of X.

For any Borel set I ⊆ R
N , the occupation measure of X on I is defined as the following measure on R

d :

μ
I
(·) = λN

{
t ∈ I : X(t) ∈ ·}.

If μ
I

is almost surely absolutely continuous with respect to λd , then X is said to have local times on I and its local
time L(·, I ) is defined as the Radon–Nikodým derivative of μ

I
with respect to λd , i.e.,

L(x, I ) = dμ
I

dλd

(x) ∀x ∈ R
d .

In the above, x is the so-called space variable, and I is the time variable. Sometimes, we write L(x, t) in place of
L(x, [0, t]). Note that if X has local times on I then for every Borel set J ⊆ I , L(x,J ) also exists.

It can be proved (see [18], Theorem 6.4) that the local times have a measurable modification that satisfies the
following occupation density formula: For every Borel function f (t, x) ≥ 0 on I × R

d ,∫
I

f
(
t,X(t)

)
dt =

∫
Rd

∫
I

f (t, x)L(x,dt)dx. (3.2)

Suppose we fix a rectangle I = ∏N
i=1[ai, ai + hi]. If there is a version of the local time, still denoted by

L(x,
∏N

i=1[ai, ai + ti]), such that it is a continuous function of (x, t1, . . . , tN ) ∈ R
d × ∏N

i=1[0, hi], X is said to
have a jointly continuous local time on I . When a local time is jointly continuous, L(x, ·) can be extended to be a
finite Borel measure supported on the level set

X−1(x) ∩ I = {
t ∈ I : X(t) = x

};
see Adler [1] for details. Hence local times are useful in studying various fractal properties of level sets and inverse
images of the vector field X. We refer to Berman [10], Ehm [17], Xiao [30,31] and the references therein for further
information.

The main result of this section is the following theorem.

Theorem 3.1. Let X = {X(t), t ∈ R
N+} be a harmonisable-type (N,d)-multifractional Brownian motion defined

by (3.1). Let I = [ε,1]N and H = maxt∈I H(t). If N > Hd , then

(i) X admits an L2(Rd)-integrable local time L(·, I ) almost surely.
(ii) X has a jointly continuous local time on I .

Proof of Theorem 3.1, part (i). By Theorem 21.9 of Geman and Horowitz [18], it suffices to prove that∫
I

∫
I

(
E

[
X1(t) − X1(s)

]2)−d/2 ds dt < ∞. (3.3)
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It follows from part (i) of Lemma 2.12 that∫
I

∫
I

(
E

[
X1(t) − X1(s)

]2)−d/2
ds dt ≤ c18

∫
I

∫
I

ds dt

|t − s|Hd
< ∞

since Hd < N . This proves (3.3) and hence part (i) of Theorem 3.1. �

In order to prove part (ii) of Theorem 3.1, we first derive some moment estimates for the local times of X, and
then apply a multiparameter version of Kolmogorov’s continuity theorem. As it will be seen, the property of local
nondeterminism proved in Theorem 2.1 plays an important role in proving Lemmas 3.2 and 3.3 below.

We will make use of the following identities (cf. (25.5) and (25.7) in Geman and Horowitz [18]): For all x, y ∈ R
d ,

T ∈ A (the class of all closed intervals of R
N ) and all integers n ≥ 1,

E
[
L(x,T )n

] = (2π)−nd

∫
T n

∫
Rnd

exp

(
−i

n∑
j=1

uj · x
)

× E exp

(
i

n∑
j=1

uj · X(
tj

))
dūdt̄ (3.4)

and for all even integers n ≥ 2,

E
[(

L(x,T ) − L(y,T )
)n] = (2π)−nd

∫
T n

∫
Rnd

n∏
j=1

[
e−iuj ·x − e−iuj ·y]

× E exp

(
i

n∑
j=1

uj · X(
tj

))
dūdt̄ , (3.5)

where ū = (u1, . . . , un), t̄ = (t1, . . . , tn) and each uj ∈ R
d, tj ∈ T . In the coordinate notation we then write uj =

(u
j

1, . . . , u
j
d).

Lemma 3.2. Assume the conditions of Theorem 3.1 hold. Then, for every integer n ≥ 1, there exists a positive constant
c19 = c19(n), only depending on n, N , d , H and I , such that for all x ∈ R

d , all subintervals T = [τ, τ +〈h〉] ⊆ I with
h > 0 small one has

E
[
L(x,T )n

] ≤ c19h
n(N−Hd). (3.6)

Proof. The main idea for proving (3.6) is similar to that of Lemma 2.5 in Xiao [30]. For completeness we provide a
sketch of it.

Since the coordinate processes X1, . . . ,Xd are independent and identically distributed, we derive from (3.4) that
for all integers n ≥ 1,

E
[
L(x,T )n

] ≤ (2π)−nd

∫
T n

d∏
k=1

{∫
Rn

exp

[
−1

2
Var

(
n∑

j=1

u
j
kX1

(
tj

))]
dūk

}
dt̄

= (2π)−nd/2
∫

T n

[
detCov

(
X1

(
t1), . . . ,X1

(
tn

))]−d/2 dt̄ , (3.7)

where ūk = (u1
k, . . . , u

n
k) ∈ R

n, t̄ = (t1, . . . , tn) and the equality follows from the fact that for any positive definite
n × n matrix Γ ,∫

Rn

[def(Γ )]1/2

(2π)n/2
exp

(
−1

2
x′Γ x

)
dx = 1.
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By applying the fact that for any Gaussian random vector (Z1, . . . ,Zn),

detCov(Z1, . . . ,Zn) = Var(Z1)

n∏
k=2

Var(Zk|Z1, . . . ,Zk−1)

we derive from Theorem 2.1 and part (ii) of Lemma 2.12 that there exists a positive constant c(n) such that

detCov
(
X1

(
t1), . . . ,X1

(
tn

)) ≥ c(n)
∣∣t1

∣∣2H
n∏

j=2

min
{∣∣t j − t i

∣∣2H : 1 ≤ i ≤ j − 1
}
. (3.8)

It follows from (3.7) and (3.8) that

E
[
L(x,T )n

] ≤ c(n)

∫
T n

1

|t1|Hd

n∏
j=2

1

min{|tj − t i |Hd : 1 ≤ i ≤ j − 1} dt̄

≤ c19(n)hn(N−Hd),

where the last inequality follows from the assumption N > Hd and repeated use of the following inequality
(Lemma 2.3 in Xiao [30]): There exists a positive and finite constant c20 such that for all integers m ≥ 1 and all
distinct s1, . . . , sm ∈ T = [τ, τ + 〈h〉], we have∫

T

dt

min{|t − sj |Hd, j = 1, . . . ,m} ≤ c20m
Hd/NhN−Hd.

This finishes the proof of (3.6). �

Lemma 3.3. Assume the conditions of Theorem 3.1 hold. Then, for every even integer n ≥ 2 and γ ∈ (0,1) small
enough, there exists a positive and finite constant c21 = c21(n), only depending on n, γ , N,d , H and I , such that for
all subintervals T = [τ, τ + 〈h〉] ⊆ I and all x, y ∈ R

d with |x − y| ≤ 1,

E
[(

L(x,T ) − L(y,T )
)n] ≤ c21|x − y|nγ hn(N−(H+γ )d). (3.9)

Proof. The proof, using (3.5) and Theorem 2.1, is similar to that of Lemma 2.5 in Xiao [30]. We omit the details.
�

Now we are ready to prove part (ii) of Theorem 3.1.

Proof of Theorem 3.1, part (ii). Note that, by Lemmas 3.2 and 3.3 we can choose the integers n large so that the
powers of h = diamT/

√
N and |x − y| in (3.6) and (3.9) are bigger than N + d (or as large as we wish, which

is the case for the proof of Theorem 3.5 below). Hence the joint continuity of the local time of X follows from a
multiparameter version of Kolmogorov’s continuity theorem (cf. Khoshnevisan [21]). See e.g., Xiao [31] for more
details. �

Remark 3.4. Examining the proof of Lemma 3.2 we see that the following local version of (3.6) holds: If τ ∈ I and
N > H(τ)d , then for all δ > 0 and h > 0 small enough

E
[
L

(
x,B(τ,h)

)n] ≤ c22h
n(N−(H(τ)+δ)d),

where B(τ, r) = {t ∈ I : |t − τ | ≤ r}. Similarly, for all even integers n ≥ 2, all h, δ, γ ∈ (0,1) small enough and all
x, y ∈ R

d with |x − y| ≤ 1,

E
[(

L
(
x,B(τ,h)

) − L
(
y,B(τ,h)

))n] ≤ c23|x − y|nγ hn(N−(H(τ)+δ+γ )d).

These two inequalities will be needed for proving Theorem 3.5 below.
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By applying Lemmas 3.2, 3.3, Remark 3.4 and a chaining argument as in Ehm [17] and Xiao [30], one can prove
the following local and uniform Hölder conditions for the maximum local time L∗(T ) = supx∈Rd L(x,T ) of X.

Theorem 3.5. Let X = {X(t), t ∈ R
N } be an (N,d)-mfBm as in Theorem 3.1.

(i) If τ ∈ I and N > H(τ)d , then for any δ > 0, there exists a positive finite constant c24 such that

lim sup
r→0

L∗(B(τ, r))

rN−(H(τ)+δ)d
≤ c24 a.s. (3.10)

(ii) If N > Hd , then for any δ > 0, there exists a positive finite constant c25 such that

lim sup
r→0

sup
τ∈I

L∗(B(τ, r))

rN−(H+δ)d
≤ c25 a.s. (3.11)

We end this section with two applications of Theorem 3.5. The first is on the “modulus of nondifferentiability” of
mfBm.

Theorem 3.6. Let X = {X(t), t ∈ R
N+} be a mfBm with values in R defined by (1.1). Let I = [ε,1]N and H =

maxt∈I H(t).

(i) For any δ > 0, there exists a constant c26 > 0 such that for every τ ∈ I ,

lim inf
r→0

sup
t∈B(τ,r)

|X(t) − X(τ)|
rH(τ)+δ

≥ c26 a.s. (3.12)

(ii) For any δ > 0, there exists a constant c27 > 0 such that

lim inf
r→0

inf
τ∈I

sup
t∈B(τ,r)

|X(t) − X(τ)|
rH+δ

≥ c27 a.s. (3.13)

In particular, the sample function X(t) is almost surely nowhere differentiable in I .

Proof. We apply Theorem 3.5 with d = 1. Similarly to Berman [10], we have that for any τ ∈ I , there is a constant
CN = CN(τ) such that

CNrN =
∫

X(B(τ,r))

L
(
x,B(τ, r)

)
dx

≤ L∗(B(τ, r)
)

sup
s,t∈B(τ,r)

∣∣X(s) − X(t)
∣∣.

If τ is in the interior of I , CN(τ) is the volume of the unit ball in R
N ; if τ lies on the boundary of I , then CN(τ) is a

deterministic portion (at least 2−N ) of the volume of the unit ball in R
N . Hence (3.12) follows from (3.10) and (3.13)

follows from (3.11). �

Our second application of Theorem 3.5 is to determine the Hausdorff dimension of the level sets of an (N,d)-
mfBm. The fractal properties of the level sets of Gaussian random fields with stationary increments have been studied
by many authors, see [1,7,20,21,31]. Similar questions for one-parameter multifractional Brownian motion of moving
average-type and multifractional Brownian sheets have been considered in [12,25], respectively. By using standard
covering and capacity arguments one can prove that, for every x ∈ R

d

dimH
(
X−1(x) ∩ I

) ≤ N − Hd a.s. (3.14)

and for any δ > 0,

dimH
(
X−1(x) ∩ I

) ≥ N − (H + δ)d (3.15)
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with positive probability, which may depend on x and δ. In the above, H = mint∈I H(t) and “dimH(X−1(x)∩ I ) < 0”
means “X−1(x) ∩ I = ∅” a.s. We can write (3.14) and (3.15) as∥∥dimH

(
X−1(x) ∩ I

)∥∥
L∞(P)

= N − Hd, (3.16)

where ‖Z‖L∞(P) denotes the essential supremum of a nonnegative random variable Z:

‖Z‖L∞(P) := inf
{
λ > 0: P{Z > λ} = 0

}
(inf ∅ := ∞).

Moreover, for every τ ∈ I such that N > H(τ)d , we can apply the same arguments to B(τ, r) = {t ∈ I : |t − τ | ≤ r}
for r > 0 small enough to derive

D(x, τ) = lim
r→0

∥∥dimH
(
X−1(x) ∩ B(τ, r)

)∥∥
L∞(P)

= N − H(τ)d.

We call D(x, τ) the local Hausdorff dimension of the level set X−1(x) at τ ∈ I . Similar to the singularity spectrum
of a multifractal function or the local dimension of a multifractal measure, D(x, τ) gives a way to characterize the
multifractal nature of X−1(x).

In the following, we prove a “uniform” version of (3.16). Since dimH(X−1(x) ∩ I ) is determined by H =
mint∈I H(t), it is natural to work with the following random set

U = {
x ∈ R

d : L
(
x,B

(
t0, r

))
> 0 for all r > 0

}
, (3.17)

where t0 ∈ I satisfies H(t0) = mint∈I H(t) and B(t0, r) = {t ∈ I : |t − t0| ≤ r}. Since the local time L(x,B(t0, r)) is
continuous in x and nondecreasing in r , U is a Gδ set. The following result relates the random set U to the image set
X(I).

Lemma 3.7. Assume the conditions of Theorem 3.8 hold. Then almost surely, U ⊆ X(I) and X(t) ∈ U for a.e. t ∈ I .

Proof. Recall that we have taken I = [ε,1]N , so X(I) is a compact set. For any y /∈ X(I) there is a δ > 0 such that
U(y, δ)∩X(I) = ∅, where U(y, δ) denotes the open ball in R

d centered at y with radius δ. Take f (t, x) = 1U(y,δ)(x)

in (3.2) we obtain L(x, I ) = 0 for a.e. x ∈ U(y, δ). It follows from the a.s. continuity of x → L(x, I ) that L(x, I ) = 0
for every x ∈ U(y, δ) and, in particular, L(y, I ) = 0. This proves U ⊆ X(I).

On the other hand, by using the occupation density formula (3.2) one can prove that almost surely

L
(
X(t),B(t, δ)

)
> 0 for all δ > 0 and a.e. t ∈ I.

See (6.7) in Geman and Horowitz [18]. Therefore almost surely X(t) ∈ U for a.e. t ∈ I . �

Theorem 3.8. Let X = {X(t), t ∈ R
N } be an (N,d)-multifractional Brownian motion defined by (3.1). Let I = [ε,1]N

and H = maxt∈I H(t). If N > Hd , then almost surely

dimH
(
X−1(x) ∩ I

) = N − Hd (3.18)

for every x ∈ U defined in (3.17).

Proof. Eq. (2.64) of Lemma 2.12 implies that, for every δ > 0, X(t)(t ∈ I ) satisfies almost surely a uniform Hölder
condition of order H − δ. By Theorem 3.1, the local time L(x, I ) is almost surely a bounded function of x. Hence we
can apply Lemma 3.1 of Monrad and Pitt [27] to deduce that almost surely

dimH
(
X−1(x) ∩ I

) ≤ N − Hd ∀x ∈ R
d . (3.19)

To prove the lower bound, it is sufficient to show that for every δ ∈ (0, N
d

− H),

P
{
dimH

(
X−1(x) ∩ I

) ≥ N − (H + δ)d,∀x ∈ U
} = 1. (3.20)
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Since H(t0) = mint∈I H(t), there exists r0 > 0 such that maxt∈B(t0,r0)
H(t) ≤ H +δ/2. Since, for every x ∈ U , L(x, ·)

is a finite and positive Borel measure on X−1(x) ∩ B(t0, r0). [Recall B(t0, r0) = {t ∈ I : |t − t0| ≤ r}.] Moreover,
part (ii) of Theorem 3.5 implies that almost surely for all t ∈ B(t0, r0) we have

L
(
x,B(t, r)

) ≤ crN−(H+δ)d

for all r ∈ (0, r0) small enough. Hence we can apply Frostman’s lemma [20,21] to derive that almost surely

dimH
(
X−1(x) ∩ I

) ≥ dimH
(
X−1(x) ∩ B

(
t0, r0

))
≥ N − (H + δ)d ∀x ∈ U .

This proves (3.20) and hence (3.18). �

Remark 3.9. We believe that if N > maxt∈RN H(t)d , then

P
{
dimH X−1(x) = N − Hd for all x ∈ R

d
} = 1.

Because of (3.19), it amounts to prove O = R
d , where O is the random open set defined by

O =
⋃
n

{
x: L(x, In) > 0

}
,

where In is a sequence of intervals increasing to the parameter space R
N . In the special case of H(t) ≡ H ∈ (0,1)

(i.e., X is an (N,d) fractional Brownian motion), Monrad and Pitt [27] applied the scaling property of fBm and
proved that O = R

d almost surely.
On the other hand, there are examples of stationary Gaussian random fields with jointly continuous local time L

such that the open set O is a proper subset of R
d . The following example of such a stationary Gaussian process is

given in Monrad and Pitt [27]:

Z(t) =
√

8

π

∞∑
n=1

1

2n − 1

[
ξn cos

(
(2n − 1)t

) + ηn sin
(
(2n − 1)t

)] ∀t ∈ R,

where {ξn} and {ηn} are independent sequences of i.i.d. standard normal random variables. The Gaussian process Z

has a jointly continuous local time. However, because Z(t) has period 2π, we see that O = Z([0,2π]) is almost surely
bounded. More general examples of Gaussian random fields can be found in Luan and Xiao [24].

It is an interesting open question to determine for which Gaussian random fields X we have O = R
d . Monrad

and Pitt [27], Theorem 2, proved a sufficient condition for a stationary Gaussian random field to have this property.
However, their method is not applicable to multiparameter multifractional Brownian motion.
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