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Abstract. Consider Glauber dynamics for the Ising model on a graph of n vertices. Hayes and Sinclair showed that the mixing
time for this dynamics is at least n logn/f (Δ), where Δ is the maximum degree and f (Δ) = Θ(Δ log2 Δ). Their result applies
to more general spin systems, and in that generality, they showed that some dependence on Δ is necessary. In this paper, we
focus on the ferromagnetic Ising model and prove that the mixing time of Glauber dynamics on any n-vertex graph is at least
(1/4 + o(1))n logn.

Résumé. Dans cet article nous étudions la dynamique de Glauber du modèle d’Ising sur un graphe fini à n sommets. Hayes et
Sinclair ont montré que le temps de mélange de cette dynamique est au moins de n log(n)f (Δ), où Δ est le degré maximum d’un
sommet du graphe et f (Δ) = Θ(Δ log2(Δ)). Leur résultat s’applique également à des modèles de spins généraux où la dépendance
en Δ est nécessaire. Dans ce travail nous nous concentrons sur le modèle d’Ising ferromagnétique et montrons que le temps de
mélange de la dynamique de Glauber est au moins de (1/4 + o(1))n log(n) sur n’importe quel graphe à n sommets.
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1. Introduction

Consider a finite graph G = (V ,E) and a finite alphabet Q. A general spin system on G is a probability measure
μ on QV ; well studied examples in computer science and statistical physics include the uniform measure on proper
colorings and the Ising model. Glauber (heat-bath) dynamics are often used to sample from μ (see, e.g., [9,11,15]). In
discrete-time Glauber dynamics, at each step a vertex v is chosen uniformly at random and the label at v is replaced
by a new label chosen from the μ-conditional distribution given the labels on the other vertices. This Markov chain
has stationary distribution μ, and the key quantity to analyze is the mixing time tmix, at which the distribution of the
chain is close in total variation to μ (precise definitions are given below).

If |V | = n, it takes (1 + o(1))n logn steps to update all vertices (coupon collecting), and it is natural to guess that
this is a lower bound for the mixing time. However, for the Ising model at infinite temperature or equivalently, for the
2-colorings of the graph (V ,∅), the mixing time of Glauber dynamics is asymptotic to n logn/2, since these models
reduce to the lazy random walk on the hypercube, first analyzed in [1]. Thus mixing can occur before all sites are
updated, so the coupon collecting argument does not suffice to obtain a lower bound for the mixing time. The first
general bound of the right order was obtained by Hayes and Sinclair [6], who showed that the mixing time for Glauber
dynamics is at least n logn/f (Δ), where Δ is the maximum degree and f (Δ) = Θ(Δ log2 Δ). Their result applies
for quite general spin systems, and they gave examples of spin systems μ where some dependence on Δ is necessary.
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After the work of [6], it remained unclear whether a uniform lower bound of order n logn, that does not depend on Δ,
holds for the most extensively studied spin systems, such as proper colorings and the Ising model.

In this paper, we focus on the ferromagnetic Ising model, and obtain a lower bound of (1/4 + o(1))n logn on any
graph with general (non-negative) interaction strengths.

Definitions. The Ising model on a finite graph G = (V ,E) with interaction strengths J = {Juv ≥ 0 :uv ∈ E} is
a probability measure μG on the configuration space Ω = {±1}V , defined as follows. For each σ ∈ Ω ,

μG(σ) = 1

Z(J )
exp

( ∑
uv∈E

Juvσ (u)σ (v)

)
, (1.1)

where Z(J ) is a normalizing constant called the partition function. The measure μG is also called the Gibbs measure
corresponding to the interaction matrix J . When there is no ambiguity regarding the base graph, we sometimes write
μ for μG.

Recall the definition of the Glauber dynamics: At each step, a vertex is chosen uniformly at random, and its spin is
updated according to the conditional Gibbs measure given the spins of all the other vertices. It is easy to verify that
this chain is reversible with respect to μG.

Next we define the mixing time. Let (Xt ) denote an aperiodic irreducible Markov chain on a finite state space Ω

with transition kernel P and stationary measure π . For any two distributions μ,ν on Ω , their total-variation distance
is defined to be

‖μ − ν‖TV
�= sup

A⊂Ω

∣∣μ(A) − ν(A)
∣∣ = 1

2

∑
x∈Ω

∣∣μ(x) − ν(x)
∣∣.

For x ∈ Ω let Px denotes the probability given X0 = x and let

txmix = min

{
t :

∥∥Px(Xt ∈ ·) − π
∥∥

TV ≤ 1

4

}

be the mixing time with initial state x. (The choice of 1/4 here is by convention, and can be replaced by any constant
in (0,1/2), without affecting the (1/4 + o(1))n logn lower bound in the next theorem.) The mixing time tmix is then
defined to be maxx∈Ω txmix.

We now state our main result.

Theorem 1. Consider the Ising model (1.1) on the graph G with interaction matrix J , and let t+mix(G,J ) denote the
mixing time of the corresponding Glauber dynamics, started from the all-plus configuration. Then

inf
G,J

t+mix(G,J ) ≥ (
1/4 + o(1)

)
n logn,

where the infimum is over all n-vertex graphs G and all non-negative interaction matrices J .

Remark. Theorem 1 is sharp up to a factor of 2. We conjecture that (1/4 + o(1)) in the theorem could be replaced by
(1/2 + o(1)), i.e., the mixing time is minimized (at least asymptotically) by taking J ≡ 0.

Hayes and Sinclair [6] constructed spin systems where the mixing time of the Glauber dynamics has an upper
bound O(n logn/ logΔ). This, in turn, implies that in order to establish a lower bound of order n logn for the Ising
model on a general graph, we have to employ some specific properties of the model. In our proof of Theorem 1, given
in the next section, we use the GHS inequality [5] (see also [7] and [3]) and a recent censoring inequality [14] due to
Peter Winkler and the second author.
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2. Proof of Theorem 1

The intuition for the proof is the following: In the case of strong interactions, the spins are highly correlated and the
mixing should be quite slow; In the case of weak interaction strengths, the spins should be weakly dependent and close
to the case of the graph with no edges, therefore one may extend the arguments for the lazy walk on the hypercube.

We separate the two cases by considering the spectral gap. Recall that the spectral gap of a reversible discrete-
time Markov chain, denoted by gap, is 1 − λ, where λ is the second largest eigenvalue of the transition kernel. The
following simple lemma gives a lower bound on t+mix in terms of the spectral gap.

Lemma 2.1. The Glauber dynamics for the ferromagnetic Ising model (1.1) satisfies t+mix ≥ log 2 · (gap−1 − 1).

Proof. It is well known that tmix ≥ log 2 · (gap−1 − 1) (see, e.g., Theorem 12.4 in [9]). Actually, it is shown in the
proof of [9], Theorem 12.4, that txmix ≥ log 2 · (gap−1 − 1) for any state x satisfying f (x) = ‖f ‖∞, where f is an
eigenfunction corresponding to the second largest eigenvalue. Since the second eigenvalue of the Glauber dynamics
for the ferromagnetic Ising model has an increasing eigenfunction f (see [12], Lemma 3), we infer that either ‖f ‖∞ =
f (+) or ‖f ‖∞ = f (−). By symmetry of the all-plus and the all-minus configurations in the Ising model (1.1), we
have t+mix = t−mix, and this concludes the proof. �

Lemma 2.1 implies that Theorem 1 holds if gap−1 ≥ n logn. It remains to consider the case gap−1 ≤ n logn.

Lemma 2.2. Suppose that the Glauber dynamics for the Ising model on a graph G = (V ,E) with n vertices satisfies
gap−1 ≤ n logn. Then there exists a subset F ⊂ V of size 
√n/ logn� such that

∑
u,v∈F,u =v

Covμ

(
σ(u), σ (v)

) ≤ 2

logn
.

Proof. We first establish an upper bound on the variance of the sum of spins S = S(σ ) = ∑
v∈V σ (v). The variational

principle for the spectral gap of a reversible Markov chain with stationary measure π gives (see, e.g., [2], Chapter 3,
or [9], Lemma 13.12):

gap= inf
f

E (f )

Varπ (f )
,

where E (f ) is the Dirichlet form defined by

E (f ) = 〈
(I − P)f,f

〉
π

= 1

2

∑
x,y∈Ω

[
f (x) − f (y)

]2
π(x)P (x, y).

Applying the variational principle with the test function S, we deduce that

gap≤ E (S)

Varμ(S)
.

Since the Glauber dynamics updates a single spin at each step, E (S) ≤ 2, whence

Varμ(S) ≤ E (S)gap−1 ≤ 2n logn. (2.1)

The covariance of the spins for the ferromagnetic Ising model is non-negative by the FKG inequality (see, e.g., [4]).

Applying Claim 2.3 below with k = 

√

n
logn

� to the covariance matrix of σ concludes the proof of the lemma. �
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Claim 2.3. Let A be an n × n matrix with non-negative entries. Then for any k ≤ n there exists F ⊂ {1, . . . , n} such
that |F | = k and

∑
i,j∈F

Ai,j 1{i =j} ≤ k2

n2

∑
i =j

Ai,j .

Proof. Let R be a uniform random subset of {1, . . . , n} with |R| = k. Then,

E

[ ∑
i,j∈R

Ai,j 1{i =j}
]

=
∑

1≤i,j≤n

Ai,j 1{i =j}P(i, j ∈ R) = k(k − 1)

n(n − 1)

∑
1≤i,j≤n

Ai,j 1{i =j} ≤ k2

n2

∑
i =j

Ai,j .

Existence of the desired subset F follows immediately. �

We now consider a version of accelerated dynamics (Xt ) with respect to the subset F as in Lemma 2.2. The
accelerated dynamics selects a vertex v ∈ V uniformly at random at each time and updates in the following way:

• If v /∈ F , we update σ(v) as in the usual Glauber dynamics.
• If v ∈ F , we update the spins on {v} ∪ Fc all together as a block, according to the conditional Gibbs measure given

the spins on F \ {v}.
The next censoring inequality for monotone systems of [14] guarantees that, starting from the all-plus configuration,
the accelerated dynamics indeed mixes faster than the original one. A monotone system is a Markov chain on a partially
ordered set with the property that for any pair of states x ≤ y there exist random variables X1 ≤ Y1 such that for every
state z

P(X1 = z) = p(x, z), P(Y1 = z) = p(y, z).

In what follows, write μ � ν if ν stochastically dominates μ.

Theorem 2.4 ([14] and also see [13], Theorem 16.5). Let (Ω,S,V,π) be a monotone system and let μ be the dis-
tribution on Ω which results from successive updates at sites v1, . . . , vm, beginning at the top configuration. Define ν

similarly but with updates only at a subsequence vi1, . . . , vik . Then μ � ν, and ‖μ − π‖TV ≤ ‖ν − π‖TV. Moreover,
this also holds if the sequence v1, . . . , vm and the subsequence i1, . . . , ik are chosen at random according to any
prescribed distribution.

In order to see how the above theorem indeed implies that the accelerated dynamics (Xt ) mixes at least as fast as
the usual dynamics, first note that any vertex u /∈ F is updated according to the original rule of the Glauber dynamics.
Second, for u ∈ F , instead of updating the block {u} ∪ Fc , we can simulate this procedure by performing sufficiently
many single-site updates in {u} ∪ Fc. This approximates the accelerated dynamics arbitrarily well, and contains a
superset of the single-site updates of the usual Glauber dynamics. In other words, the single-site Glauber dynamics
can be considered as a “censored” version of our accelerated dynamics. Theorem 2.4 thus completes this argument.

Let (Yt ) be the projection of the chain (Xt ) onto the subgraph F . Recalling the definition of the accelerated
dynamics, we see that (Yt ) is also a Markov chain, and the stationary measure νF for (Yt ) is the projection of μG

to F . Furthermore, consider the subsequence (Zt ) of the chain (Yt ) obtained by skipping those times when updates
occurred outside of F in (Xt ). Namely, let Zt = YKt where Kt is the t th time that a block {v} ∪ Fc is updated in the
chain (Xt ). Clearly, (Zt ) is a Markov chain on the space {−1,1}F , where at each time a uniform vertex v from F

is selected and updated according to the conditional Gibbs measure μG given the spins on F \ {v}. The stationary
measure for (Zt ) is also νF .

Let St = ∑
v∈F Zt (v) be the sum of spins over F in the chain (Zt ). It turns out that St is a distinguishing statistic

and its analysis yields a lower bound on the mixing time for chain (Zt ). To this end, we need to estimate the first two
moments of St .
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Lemma 2.5. Started from all-plus configuration, the sum of spins satisfies that

E+(St ) ≥ |F |
(

1 − 1

|F |
)t

.

Proof. The proof follows essentially from a coupon collecting argument. Let (Z
(+)
t ) be an instance of the chain (Zt )

started at the all-plus configuration, and let (Z∗
t ) be another instance of the chain (Zt ) started from νF . It is obvious

that we can construct a monotone coupling between (Z
(+)
t ) and (Z∗

t ) (namely, Z
(+)
t ≥ Z∗

t for all t ∈ N) such that the
vertices selected for updating in both chains are always the same. Denote by U [t] this (random) sequence of vertices
updated up to time t . Note that Z∗

t has law νF , even if conditioned on the sequence U [t]. Recalling that Z
(+)
t ≥ Z∗

t

and Eμσ(v) = 0, we obtain that

E+
[
Z

(+)
t (v) | v ∈ U [t]] ≥ 0.

It is clear that Z
(+)
t (v) = 1 if v /∈ U [t]. Therefore,

E+
[
Z

(+)
t (v)

] ≥ P
(
v /∈ U [t]) =

(
1 − 1

|F |
)t

.

Summing over v ∈ F concludes the proof. �

We next establish a contraction result for the chain (Zt ). We need the GHS inequality of [5] (see also [7] and [3]). To
state this inequality, we recall the definition of the Ising model with an external field. Given a finite graph G = (V ,E)

with interaction strengths J = {Juv ≥ 0 :uv ∈ E} and external magnetic field H = {Hv :v ∈ V }, the probability for
a configuration σ ∈ Ω = {±1}V is given by

μH
G(σ) = 1

Z(J,H)
exp

( ∑
uv∈E

Juvσ (u)σ (v) +
∑
v∈V

H(v)σ (v)

)
, (2.2)

where Z(J,H) is a normalizing constant. Note that this specializes to (1.1) if H ≡ 0. When there is no ambiguity for
the base graph, we sometimes drop the subscript G. We can now state the following inequality.

GHS inequality [5]. For a graph G = (V ,E), let μH = μH
G as above, and denote by mv(H) = EμH [σ(v)] the local

magnetization at vertex v. If Hv ≥ 0 for all v ∈ V , then for any three vertices u,v,w ∈ V (not necessarily distinct),

∂2mv(H)

∂Hu ∂Hw

≤ 0.

The following is a consequence of the GHS inequality.

Corollary 2.6. For the Ising measure μ with no external field, we have

Eμ

[
σ(u) | vi = 1 for all 1 ≤ i ≤ k

] ≤
k∑

i=1

Eμ

[
σ(u)|vi = 1

]
.

Proof. The function f (H) = mu(H) satisfies f (0) = 0. By the GHS inequality and Claim 2.7 below, we obtain that
for all H,H ′ ∈ R

n+:

mu

(
H + H ′) ≤ mu(H) + mu

(
H ′). (2.3)

For 1 ≤ i ≤ k and h ≥ 0, let Hh
i be the external field taking value h on vi and vanishing on V \ {vi}. Applying the

inequality (2.3) inductively, we deduce that

mu

(∑
i

Hh
i

)
≤

∑
i

mu

(
Hh

i

)
.
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Finally, let h → ∞ and observe that mu(H
h
i ) → Eμ[σ(u)|σ(vi) = 1] and mu(

∑
i H

h
i ) → Eμ[σ(u)|σ(vi) =

1 for all 1 ≤ i ≤ k]. �

Claim 2.7. Write R+ = [0,∞) and let f : Rn+ �→ R be a C2-function such that ∂2f (x)
∂xi ∂xj

≤ 0 for all x ∈ R
n+ and 1 ≤

i, j ≤ n. Then for all x, y ∈ R
n+,

f (x + y) − f (x) ≤ f (y) − f (0).

Proof. Since all the second derivatives are non-positive, ∂f (x)
∂xi

is decreasing in every coordinate with x for all x ∈ R
n+

and i ≤ n. Hence, ∂f (x)
∂xi

is decreasing in R
n+. Let

gx(t) = df (x + ty)

dt
=

∑
i

yi

∂f (x)

∂xi

(x + ty).

It follows that gx(t) ≤ g0(t) for all x, y ∈ R
n+. Integrating over t ∈ [0,1] yields the claim. �

Lemma 2.8. Suppose that n ≥ e4. Let (Z̃t ) be another instance of the chain (Zt ). Then for all starting states z0
and z̃0, there exists a coupling such that

Ez0,z̃0

[∑
v∈F

∣∣Zt(v) − Z̃t (v)
∣∣] ≤

(
1 − 1

2|F |
)t ∑

v∈F

∣∣z0(v) − z̃0(v)
∣∣.

Proof. Fix η, η̃ ∈ {−1,1}F such that η and η̃ differ only at the vertex v and η(v) = 1. We consider two chains (Zt )

and (Z̃t ) under monotone coupling, started from η and η̃, respectively. Let ηA be the restriction of η to A for A ⊂ F

(namely, ηA ∈ {−1,1}A and ηA(v) = η(v) for all v ∈ A), and write

ψ(u,η, η̃) = Eμ

[
σ(u)|σF\{u} = ηF\{u}

] − Eμ

[
σ(u)|σF\{u} = η̃F\{u}

]
.

By the monotone property and symmetry of the Ising model,

ψ(u,η, η̃) ≤ Eμ

[
σ(u)|σF\{u} = +] − Eμ

[
σ(u)|σF\{u} = −] = 2Eμ

[
σ(u)|σF\{u} = +]

.

By symmetry, we see that E(σ (u)|σ(w) = 1) = −E(σ (u)|σ(w) = −1) and E(σ (u)) = 0. Thus, Cov(σ (u), σ (w)) =
E(σ (u)|σ(w) = 1). Combined with Corollary 2.6, it yields that

ψ(u,η, η̃) ≤ 2
∑

w∈F\{u}
Eμ

[
σ(u)|σ(w) = 1

] = 2
∑

w∈F\{u}
Cov

(
σ(u), σ (w)

)
.

Recalling the non-negative correlations between the spins, we deduce that under the monotone coupling

Eη,η̃

[
1

2

∑
v′∈F

∣∣Z1
(
v′) − Z̃1

(
v′)∣∣] = 1 − 1

|F | + 1

2|F |
∑

u∈F\{v}
ψ(u,η, η̃)

≤ 1 − 1

|F | + 1

|F |
∑

u∈F\{v}

∑
w∈F\{u}

Cov
(
σ(u), σ (w)

)
.

By Lemma 2.2, we get that for n ≥ e4,

Eη,η̃

[
1

2

∑
v′∈F

∣∣Z1
(
v′) − Z̃1

(
v′)∣∣] ≤ 1 − 1

|F | + 2

|F | logn
≤ 1 − 1

2|F | .

Using the triangle inequality and recursion, we conclude the proof. �
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From the contraction result, we can derive the uniform variance bound on St . This type of argument appeared in [8]
(see Lemma 2.4) when (Zt ) is a one-dimensional chain. The argument naturally extends to multi-dimensional case
and we include the proof for completeness.

Lemma 2.9. Let (Zt ) and (Z̃t ) be two instances of a Markov chain taking values in R
n. Assume that for some ρ < 1

and all initial states z0 and z̃0, there exists a coupling satisfying

Ez0,z̃0

[∑
i

∣∣Zt(i) − Z̃t (i)
∣∣] ≤ ρt

∑
i

∣∣z0(i) − z̃0(i)
∣∣,

where we used the convention that z(i) stands for the ith coordinate of z for z ∈ R
n. Furthermore, suppose that∑

i |Zt(i) − Zt−1(i)| ≤ R for all t . Then for any t ∈ N and starting state z ∈ R
n,

Varz

(∑
i

Zt (i)

)
≤ 2

1 − ρ2
R2.

Proof. Let Zt and Z′
t be two independent instances of the chain both started from z. Defining Qt = ∑

i Zt (i) and
Q′

t = ∑
i Z

′
t (i), we obtain that

∣∣Ez[Qt |Z1 = z1] − Ez

[
Q′

t |Z′
1 = z′

1

]∣∣ = ∣∣Ez1 [Qt−1] − Ez′
1

[
Q′

t−1

]∣∣
≤ ρt−1

∑
i

∣∣z1(i) − z′
1(i)

∣∣ ≤ 2ρt−1R

for all possible choices of z1 and z′
1. It follows that for any starting state z

Varz
(
Ez[Qt |Z1]

) = 1

2
Ez

[(
EZ1[Qt−1] − EZ′

1

[
Q′

t−1

])2] ≤ 2
(
ρt−1R

)2
.

Therefore, by the total variance formula, we obtain that for all z

Varz(Qt ) = Varz
(
Ez[Qt |Z1]

) + Ez

[
Varz(Qt |Z1)

] ≤ 2
(
ρt−1R

)2 + νt−1,

where νt
�= maxz Varz(Qt ). Thus νt ≤ 2(ρt−1R)2 + νt−1, whence

νt ≤
t∑

i=1

(νi − νi−1) ≤
t∑

i=1

2ρ2(t−1)R2 ≤ 2R2

1 − ρ2
,

completing the proof. �

Combining the above two lemmas gives the following variance bound (note that in our case R = 2 and ρ = 1− 1
2|F | ,

so 1 − ρ2 ≥ 1
2|F | ).

Lemma 2.10. For all t and starting position z, we have Varz(St ) ≤ 16|F |.

We can now derive a lower bound on the mixing time for the chain (Zt ).

Lemma 2.11. The chain (Zt ) has a mixing time t+mix ≥ 1
2 |F | log |F | − 20|F |.

Proof. Let (Z
(+)
t ) be an instance of the dynamics (Zt ) started from the all-plus configuration and let Z∗ ∈ {−1,1}F

be distributed as νF . Write

T0 = 1

2
|F | log |F | − 20|F |.
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It suffices to prove that

dTV
(

S (+)
T0

, S ∗) ≥ 1

4
, (2.4)

where S (+)
T0

= ∑
v∈F Z

(+)
T0

(v) as before and S ∗ = ∑
v∈F Z∗(v) be the sum of spins in stationary distribution. To this

end, notice that by Lemmas 2.5 and 2.10:

E+
(

S (+)
T0

) ≥ e20+o(1)
√|F | and Var+

(
S (+)

T0

) ≤ 16|F |.
An application of Chebyshev’s inequality gives that for large enough n

P+
(

S (+)
T0

≤ e10
√|F |) ≤ 16|F |

(e20+o(1) − e10)
√|F |)2

≤ 1

4
. (2.5)

On the other hand, it is clear by symmetry that EνF
S ∗ = 0. Moreover, since Lemma 2.10 holds for all t , taking t → ∞

gives that VarνF
S ∗ ≤ 16|F |. Applying Chebyshev’s inequality again, we deduce that

PνF

(
S ∗ ≥ e10

√|F |) ≤ 16|F |
(e10

√|F |)2
≤ 1

4
.

Combining the above inequality with (2.5) and the fact that

dTV
(

S (+)
T0

, S ∗) ≥ 1 − P+
(

S (+)
T0

≤ e10
√|F |) − Pμ

(
S ∗ ≥ e10

√|F |),
we conclude that (2.5) indeed holds (with room to spare), as required. �

We are now ready to derive Theorem 1. Observe that the dynamics (Yt ) is a lazy version of the dynamics (Zt ).
Consider an instance (Y+

t ) of the dynamics (Yt ) started from the all-plus configuration and let Y ∗ ∈ {−1,1}F be
distributed according to the stationary distribution νF . Let S (+)

t and S ∗ again be the sum of spins over F , but with
respect to the chain (Y

(+)
t ) and the variable Y ∗ respectively. Write

T = n

|F |
(

1

2
|F | log |F | − 40|F |

)
,

and let NT be the number of steps in [1, T ] where a block of the form {v}∪F is selected to update in the chain (Y
(+)
t ).

By Chebyshev’s inequality,

P

(
NT ≥ 1

2
|F | log |F | − 20|F |

)
≤ T |F |/n

(20|F |)2
= o(1).

Repeating the arguments in the proof of Lemma 2.11, we deduce that for all t ≤ T0 = 1
2 |F | log |F | − 20|F |, we have

P+
(

S (+)
t ≤ e10

√|F |) ≤ 1

4
.

Therefore
∥∥P+

(
Y

(+)
T ∈ ·) − νF

∥∥
TV ≥ 1 − P(NT ≥ T0) − PμY

(
S ∗ ≥ e10

√|F |)
− P+

(
S (+)

T ≤ e10
√|F | | NT ≤ T0

)
.

Altogether, we have that

∥∥P+
(
Y

(+)
T ∈ ·) − νF

∥∥
TV ≥ 1

2
+ o(1) ≥ 1

4
,
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and hence that

t
+,Y
mix ≥ T ≥ 1 + o(1)

4
n logn,

where t
+,Y
mix refers to the mixing time for chain (Y

(+)
t ). Since the chain (Yt ) is a projection of the chain (Xt ), it follows

that the mixing time for the chain (Xt ) satisfies t
+,X
mix ≥ (1/4 + o(1))n logn. Combining this bound with Theorem 2.4

(see the discussion following the statement of the theorem), we conclude that the Glauber dynamics started with the
all-plus configuration has mixing time t+mix ≥ (1/4 + o(1))n logn.

Remark. The analysis naturally extends to the continuous-time Glauber dynamics, where each site is associated with
an independent Poisson clock of unit rate determining the update times of this site as above (note that the continuous
dynamics is |V | times faster than the discrete dynamics). We can use similar arguments to these used above to handel
the laziness in the transition from the chain (Zt ) to the chain (Yt ). Namely, we could condition on the number of
updates up to time t and then repeat the above arguments to establish that t+mix ≥ (1/4 + o(1)) logn in the continuous-
time case.

Remark. We believe that Theorem 1 should have analogues (with tmix in place of t+mix) for the Ising model with
arbitrary magnetic field, as well as for the Potts model and proper colorings. The first of these may be accessible to
the methods of this paper, but the other two models need new ideas.

Remark. For the Ising model in a box of Z
d at high temperature, it is well known that the mixing time is Θ(n logn).

Recently, the sharp asymptotics (the so-called cutoff phenomenon) was established by Lubetzky and Sly [10].
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