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Abstract. We give necessary and sufficient conditions guaranteeing that the coupling for Lévy processes (with non-degenerate
jump part) is successful. Our method relies on explicit formulae for the transition semigroup of a compound Poisson process and
earlier results by Mineka and Lindvall–Rogers on couplings of random walks. In particular, we obtain that a Lévy process admits
a successful coupling, if it is a strong Feller process or if the Lévy (jump) measure has an absolutely continuous component.

Résumé. Nous donnons les conditions nécessaires et suffisantes pour le succès du couplage entre des processus de Lévy (avec
partie de sauts non-dégénérée). Notre méthode est basée sur les formules explicites pour le semigroupe de transition d’un processus
de Poisson composé, et les résultats de Mineka et Lindvall–Rogers sur le couplage d’une marche aléatoire. En particulier, nous
montrons qu’un processus de Lévy admet un couplage, s’il est un processus fortement fellerien ou si la mesure de Lévy (mesure
de sauts) possède une composante absolument continue.
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1. Introduction and main results

The coupling method is a powerful tool in the study of Markov processes and interacting particle systems. There
are some comprehensive books on this topic now, see e.g. [2,7,13,15]. Let (Xt )t≥0 be a Markov process on R

d

with transition probability function {Pt (x, ·)}t≥0,x∈Rd . An R
2d -valued process (X′

t ,X
′′
t )t≥0 is called a coupling of the

Markov process (Xt )t≥0, if both (X′
t )t≥0 and (X′′

t )t≥0 are Markov processes which have the same transition functions
Pt (x, ·) but possibly different initial distributions. In this case, (X′

t )t≥0 and (X′′
t )t≥0 are called the marginal processes

of the coupling process; the coupling time is defined by T := inf{t ≥ 0: X′
t = X′′

t }. The coupling (X′
t ,X

′′
t )t≥0 is said

to be successful if T is a.s. finite. A Markov process (Xt )t≥0 admits a successful coupling (also: enjoys the coupling
property) if for any two initial distributions μ1 and μ2, there exists a successful coupling with marginal processes
possessing the same transition probability functions Pt(x, ·) and starting from μ1 and μ2, respectively. It is known,
see [7,12], that the coupling property is equivalent to the statement that

lim
t→∞‖μ1Pt − μ2Pt‖Var = 0 for μ1 and μ2 ∈ P

(
R

d
)
. (1.1)

As usual, μP(A) = ∫
P(x,A)μ(dx) is the left action of the semigroup and ‖ · ‖Var stands for the total variation norm.

If a Markov process admits a successful coupling, then it also has the Liouville property, i.e. every bounded harmonic
function is constant; in this context a function f is harmonic, if Lf = 0 where L is the generator of the Markov
process. See [3,4] and references therein for this result and more details on the coupling property.

The aim of this paper is to study the coupling property of Lévy processes by using explicit conditions on Lévy
measures. Our work is mainly motivated by the recent paper [14], which contains some interesting results on the
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coupling property of Ornstein–Uhlenbeck processes; the paper [14] uses mainly the conditional Girsanov theorem on
Poisson space and assumes that the corresponding Lévy measure has a non-trivial absolutely continuous part. Our
technique here is completely different from F.-Y. Wang’s paper [14]. We use an explicit expression of the compound
Poisson semigroup and combine this with the Mineka and Lindvall–Rogers couplings for random walks, see [8].

A Lévy process (Xt )t≥0 on R
d is a stochastic process with stationary and independent increments and càdlàg (right

continuous with finite left limits) paths. It is well known that Xt is a (strong) Markov process whose infinitesimal
generator is, for f ∈ Cb(R

d), of the form

Lf (x) = 1

2

d∑
i,j=1

qi,j

∂2f (x)

∂xi ∂xj

+
∫ [

f (x + z) − f (x) − z · ∇f (x)

1 + |z|2
]
ν(dz) + b · ∇f (x),

where Q = (qi,j )
d
i,j=1 is a positive semi-definite matrix, b ∈ R

d is the drift vector and ν is the Lévy or jump measure;
the Lévy measure ν is a σ -finite measure on (Rd ,B(Rd)) such that

∫
(1 ∧ |z|2)ν(dz) < ∞. Note that the Lévy triplet

(b,Q,ν) characterizes, up to indistinguishability, the process (Xt )t≥0 uniquely. Our standard reference for Lévy
processes is the monograph [11]. We write Pt(x,A) = Pt(A − x), A ∈ B(Rd), for the transition probability of Xt .

Let μ and ν be two bounded measures on (Rd,B(Rd)). We define μ ∧ ν := μ − (μ − ν)+, where (μ − ν)± is
the Jordan–Hahn decomposition of the signed measure μ − ν. In particular, μ ∧ ν = ν ∧ μ and it is easy to see that
μ ∧ ν(Rd) = 1

2 [μ(Rd) + ν(Rd) − ‖μ − ν‖Var], cf. [2]. We can now state our main result.

Theorem 1.1. Let (Xt )t≥0 be a d-dimensional Lévy process with Lévy triplet (b,Q,ν). For every ε > 0, define νε by

νε(B) =
{

ν(B), ν
(
R

d
)
< ∞;

ν
{
z ∈ B: |z| ≥ ε

}
, ν

(
R

d
) = ∞.

(1.2)

Assume that there exist ε, δ > 0 such that

inf
x∈Rd ,|x|≤δ

νε ∧ (δx ∗ νε)
(
R

d
)
> 0. (1.3)

Then, there exists a constant C = C(ε, δ, ν) > 0 such that for all x, y ∈ R
d and t > 0,

∥∥Pt (x, ·) − Pt (y, ·)∥∥Var ≤ C(1 + |x − y|)√
t

∧ 2.

In particular, the Lévy process Xt admits a successful coupling.

Remark 1.2. Condition (1.3) guarantees that∥∥Pt (x, ·) − Pt (y, ·)∥∥Var = O
(
t−1/2) as t → ∞

holds locally uniformly for all x, y ∈ R
d . This order of convergence is known to be optimal for compound Poisson

processes, see [14], Remark 3.1. In [14] it is pointed out that a pure jump Lévy process admits a successful coupling
only if the Lévy measure has a non-discrete support, in order to make the process more active. Condition (1.3) is one
possibility to guarantees sufficient jump activity; intuitively it will hold if for sufficiently small values of ε, δ > 0 and
all x ∈ R

d with |x| ≤ δ we have x + supp(νε) ∩ supp(νε) �= ∅; here supp(νε) is the support of the measure νε .
In order to see that (1.3) is sharp, we consider an one-dimensional compound Poisson process with Lévy measure

ν supported on Z. Then, for any δ ∈ (0,1) and x ∈ R
d with |x| ≤ δ, ν ∧ (δx ∗ ν)(Z) = 0. On the other hand, all

functions satisfying f (x + n) = f (x) for x ∈ R
d and n ∈ Z are harmonic. By [3,4], this process cannot have the

coupling property.

Theorem 3.1 of [14] establishes the coupling property for Lévy processes whose jump measure ν has a non-trivial
absolutely continuous part. It seems to us that this condition is not directly comparable with (1.3). In fact, based on the
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Lindvall–Rogers ‘zero–two law’ for random walks [8], Propsotion 1, we give in Section 4 a necessary and sufficient
condition guaranteeing that a Lévy process has the coupling property. In this section we will also find the connection
between (1.3) and the existence of a non-trivial absolutely continuous component of the Lévy measure. In particular,
we obtain some extensions of Theorem 1.1 and [14], Theorem 3.1.

Once we know that a Lévy process admits the coupling property, many interesting new questions arise which
are, however, beyond the scope of the present paper. For example, it would be interesting to construct explicitly the
corresponding successful Markov coupling process and to determine its infinitesimal operator. There are a number
of applications of optimal Markov processes and operators; we refer to [2,15] for background material and a more
detailed account on diffusions and q-processes. We will discuss those topics for Lévy processes in a forthcoming
paper [1].

2. The coupling property of compound Poisson processes

In this section, we consider the coupling property of compound Poisson processes. Let (Lt )t≥0 be a compound Poisson
process on R

d such that L0 = x and with Lévy measure ν. Then, Lt can be written as

Lt = x +
Nt∑
i=1

ξi, t ≥ 0,

where Nt is the Poisson process with rate λ := ν(Rd) and (ξi)i≥1 is a sequence of i.i.d. random variables on R
d with

distribution ν(·)/λ; moreover, we assume that the ξi ’s are independent of Nt . As usual we use the convention that∑0
i=1 ξi = 0.
The transition semigroup for a compound Poisson process is explicitly known. This allows us to reduce the coupling

problem for a compound Poisson processes to that of a random walk. Let Pt and L be the semigroup and the generator
for Lt , respectively. Then, it is well known that for any f ∈ Bb(R

d),

Lf (x) =
∫ (

f (x + z) − f (x)
)
ν(dz)

= λ

∫ (
f (x + z) − f (x)

)
ν0(dz)

and

Pt = etL =
∞∑

n=0

tnLn

n! = e−λt
∞∑

n=0

(tλ)nν∗
0
n

n! , t ≥ 0; (2.1)

here ν∗
0
n is the n-fold convolution of ν0 and ν∗

0
0 := δ0.

The following result explains the relationship of transition probabilities of compound Poisson processes and of
random walks.

Proposition 2.1. Let Pt (x, ·) be the transition probability of the compound Poisson process L = (Lt )t≥0 and let
S = (Sn)n≥1, Sn = ξ1 +· · ·+ ξn, be a random walk where (ξi)i≥1 are i.i.d. random variables with ξ1 ∼ ν0 := ν/ν(Rd).
Then, for all x, y ∈ R

d

∥∥Pt(x, ·) − Pt (y, ·)∥∥Var ≤ e−λt

∞∑
n=0

(λt)n‖P(x + Sn ∈ ·) − P(y + Sn ∈ ·)‖Var

n!

= e−λt

[
2(1 − δx,y) +

∞∑
n=1

(λt)n‖P(x + Sn ∈ ·) − P(y + Sn ∈ ·)‖Var

n!

]
,
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where δx,y is a Kronecker delta function, i.e. δx,y = 1 if x = y, and 0 otherwise.

Proof. Let Pt and P S
n be the semigroups of the compound Poisson process L and the random walk S, respectively.

Because of (2.1) we find∥∥Pt (x, ·) − Pt (y, ·)∥∥Var = sup
‖f ‖∞≤1

∣∣Ptf (x) − Ptf (y)
∣∣

= e−λt

∣∣∣∣∣ sup
‖f ‖∞≤1

∞∑
n=0

(λt)n(δx ∗ ν∗
0
n(f ) − δy ∗ ν∗

0
n(f ))

n!

∣∣∣∣∣
≤ e−λt

∣∣∣∣∣ sup
‖f ‖∞≤1

∞∑
n=0

(λt)n(P S
n f (x) − P S

n f (y))

n!

∣∣∣∣∣
≤ e−λt

∞∑
n=0

(λt)n sup‖f ‖∞≤1 |P S
n f (x) − P S

n f (y)|
n!

= e−λt

∞∑
n=0

(λt)n‖P(x + Sn ∈ ·) − P(y + Sn ∈ ·)‖Var

n! ,

which proves the first assertion.
For n = 0 we have S0 = 0; thus∥∥P(x + S0 ∈ ·) − P(y + S0 ∈ ·)∥∥Var = ‖δx − δy‖Var = 2(1 − δx,y)

and the second assertion follows. �

An immediate of Proposition 2.1 is the following estimate for ‖Pt(x, ·) − Pt (y, ·)‖Var which is based on a similar
inequality for ‖P(x + Sn ∈ ·) − P(y + Sn ∈ ·)‖Var.

Proposition 2.2. Assume that for all x, y ∈ R
d there is a constant C(x, y) > 0 such that

∥∥P(x + Sn ∈ ·) − P(y + Sn ∈ ·)∥∥Var ≤ C(x, y)√
n

for n ≥ 1. (2.2)

Then,

∥∥Pt (x, ·) − Pt (y, ·)∥∥Var ≤ 2e−λt (1 − δx,y) +
√

2C(x, y)(1 − e−λt )√
λt

.

Proof. A combination of Proposition 2.1 and (2.2) yields for all x, y ∈ R
d

∥∥Pt (x, ·) − Pt (y, ·)∥∥Var ≤ e−λt

[
2(1 − δx,y) + C(x, y)

∞∑
n=1

(λt)n√
nn!

]
.

Jensen’s inequality for the concave function x1/2 gives

∞∑
n=1

√
1

n

(λt)n

n! ≤ eλt − 1

(eλt − 1)1/2

( ∞∑
n=1

(λt)n

n · n!

)1/2

=
(

eλt − 1

λt

)1/2
( ∞∑

n=1

(λt)n+1

(n + 1)! · n + 1

n

)1/2
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≤
(

eλt − 1

λt

)1/2√
2
(
eλt − 1 − λt

)1/2

≤
√

2(eλt − 1)√
λt

.

The required assertion follows form the estimates above. �

We will now show that L has the coupling property whenever S has.

Proposition 2.3. Let (Lt )t≥0 be the compound Poisson process with Lévy measure ν, and let (Sn)n≥0, be a random
walk where Sn = S0 + ξ1 + · · · + ξn, and (ξi)i≥1 are i.i.d. random variables with ξ1 ∼ ν0 := ν/ν(Rd). If Sn admits a
successful coupling, so does Lt .

Proof. For x, y ∈ R
d , let Lt be a compound Poisson process starting from x ∈ R

d . Then Lt = ∑Nt

i=0 ξi , where ξ0 = x

and where (ξi)i≥1 are i.i.d. random variables with common distribution ν0 := ν/ν(Rd); (Nt )t≥0 is a Poisson process
with rate λ := ν(Rd). Moreover, (Nt )t≥0 and (ξi)i≥1 are independent.

Set S0 = x and Sn = ∑n
i=0 ξi for n ≥ 1. Since S has the coupling property, there exists another random walk

S′
n = ∑n

i=0 ξ ′
i such that S − S0 and S′ − S′

0 have the same law and such that for any starting point ξ ′
0 = y of S′ the

coupling time

T S
x,y := inf

{
k ≥ 1: Sk = S′

k

}
is a.s. finite.

Without loss of generality, we can assume that Sk = S′
k for k ≥ T S

x,y , and that (ξ ′
i )i≥1 is independent of (Nt )t≥0. Define

L′
t =

Nt∑
i=0

ξ ′
i , t ≥ 0.

Then L′ = (L′
t )t≥0 is also a compound Poisson process with Lévy measure ν and starting point L′

0 = y. In order to
show that L has the coupling property, it is enough to verify that

T L
x,y := inf

{
t > 0: Lt = L′

t

}
< ∞. (2.3)

We claim that

T L
x,y = Kx,y with Kx,y := inf

{
t > 0: Nt ≥ T S

x,y

}
. (2.4)

This implies (2.3). By assumption we know that for almost every ω, T S
x,y(ω) < ∞. Since the Poisson process Nt tends

to infinity as t → ∞, there exists τ0(ω) < ∞ such that Nt ≥ T S
x,y(ω) for all t ≥ τ0(ω). Therefore, (2.4) tells us that

T L
x,y ≤ τ0 < ∞.

Let us finally prove (2.4). For this argument we assume that ω is fixed. Let t > 0 be such that Nt ≥ T S
x,y , i.e.

t ≥ Kx,y . Since Sk = S′
k for k ≥ T S

x,y , SNt = S′
Nt

and, by construction, Lt = L′
t ; thus, T L

x,y ≤ t and since t ≥ Kx,y was

arbitrary, we have T L
x,y ≤ Kx,y . On the other hand, assume that Kx,y > 0. Then, by the very definition of Kx,y , for any

ε > 0, there exists tε > 0 such that tε > Kx,y − ε and Ntε ≤ T S
x,y − 1. Hence, SNtε

�= S′
Ntε

, i.e. Ltε �= L′
tε

. Therefore,

T L
x,y ≥ tε > Kx,y − ε. Letting ε → 0, we get T L

x,y ≥ Kx,y and the proof is complete. �

Note that the proof of Proposition 2.3 already gives an estimate for the rate at which coupling occurs: for all t > 0

P
(
T L

x,y > t
) = P

(
Nt < T S

x,y

) = e−λt

[
1 +

∞∑
k=1

P
(
T S

x,y > k
) (λt)k

k!

]
.
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What remains to be done is to get estimates for the coupling time of the random walk S, P(T S
x,y > k), k ≥ 1. This

requires concrete coupling constructions for S; the most interesting random walk couplings rely on a suitable coupling
of the steps ξj and ξ ′

j of S and S′, respectively. In the next section we will, therefore, consider the Mineka and
Lindvall–Rogers couplings.

We close this section with two comments on Proposition 2.3.

Remark 2.4. (1) Theorem 4.3 below will show, that the converse of Proposition 2.3 is also true: Let L = (Lt )t≥0 be a
compound Poisson process with Lévy measure ν, and S = (Sn)n≥0, Sn = S0 + ξ1 + · · · + ξn, be a random walk where
(ξi)i≥1 are i.i.d. random variables with ξ1 ∼ ν0 := ν/ν(Rd). If L has the coupling property so does S.

(2) Proposition 2.3 can be easily generalized to more general settings, see also [1]. More precisely, let (Xt )t≥0 be
a Markov process on R

d and let (St )t≥0 be a subordinator (i.e. an increasing Lévy process) which is independent of
Xt . If Xt has the coupling property and if St tends to infinity as t → ∞, then the subordinate process XSt also has the
coupling property.

3. The Mineka and Lindvall–Rogers couplings – A review

Let S = (Sn)n≥1, Sn = ξ1 + · · · + ξn, be a random walk on R
d with i.i.d. steps (ξi)i≥0 such that ξ1 ∼ ν0. The main

result of this section is

Theorem 3.1. Suppose that for some δ > 0,

η0 = η0(δ) := inf
x∈Rd ,|x|≤δ

ν0 ∧ (δx ∗ ν0)
(
R

d
)
> 0. (3.1)

Then there exists a constant C := C(δ,η0) > 0 such that for all x, y ∈ R
d and n ≥ 1,

∥∥P(x + Sn ∈ ·) − P(y + Sn ∈ ·)∥∥Var ≤ C(1 + |x − y|)√
n

. (3.2)

The proof of Theorem 3.1 is mainly based on Mineka’s coupling [9], see also [7], Chapter II, Section 14, pp. 44–
47, and the coupling argument of the zero–two law for random walks proved in [8], Proposition 1, by Lindvall and
Rogers. These papers do not contain an estimate as explicit as (3.2). Therefore we decided to include a detailed proof
on our own which again highlights the role of the sufficient condition (3.1).

We begin with an auxiliary result which describes the total variation norm of a signed measure under a non-
degenerate linear transformation.

Lemma 3.2. Let μ be a probability measure μ on R
d . Then we have for all x, y ∈ R

d

‖δx ∗ μ − δy ∗ μ‖Var = ‖δx−y ∗ μ − μ‖Var = ∥∥δ|x−y|e1 ∗ (
μ ◦ R−1

x−y

) − μ ◦ R−1
x−y

∥∥
Var,

where e1 = (1,0, . . . ,0) ∈ R
d and Ra is a non-degenerate rotation such that Raa = |a|e1. In particular, for any

a ∈ R
d ,

‖δa ∗ μ − μ‖Var = ‖δ−a ∗ μ − μ‖Var.

Proof. Using the definition of the total variation norm we get

‖δx ∗ μ − δy ∗ μ‖Var = 2 sup
A∈B(Rd )

∣∣δx ∗ μ(A) − δy ∗ μ(A)
∣∣

= 2 sup
A∈B(Rd )

∣∣μ(A − x) − μ(A − y)
∣∣

= 2 sup
B∈B(Rd )

∣∣μ(
B − (x − y)

) − μ(B)
∣∣

= ‖δx−y ∗ μ − μ‖Var.
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Now let a ∈ R
d and denote by Ra the rotation such that Raa = |a|e1. Clearly,

μ ◦ Ra(A) = μ
{
Rax ∈ R

d : x ∈ A
} = μ

{
y ∈ R

d : R−1
a (y) ∈ A

}
, A ∈ B

(
R

d
)
.

Then,

‖δa ∗ μ − μ‖Var = 2 sup
A∈B(Rd )

∣∣μ(A − a) − μ(A)
∣∣

= 2 sup
A∈B(Rd )

∣∣μ ◦ R−1
a

(
Ra(A − a)

) − μ ◦ R−1
a (RaA)

∣∣
= 2 sup

A∈B(Rd )

∣∣μ ◦ R−1
a

(
RaA − |a|e1

) − μ ◦ R−1
a (RaA)

∣∣
= 2 sup

B∈B(Rd )

∣∣μ ◦ R−1
a

(
B − |a|e1

) − μ ◦ R−1
a (B)

∣∣
= ∥∥δ|a|e1 ∗ (

μ ◦ R−1
a

) − μ ◦ R−1
a

∥∥
Var. �

Proposition 3.3. Under (3.1), there exists a constant C = C(η0) > 0 such that

sup
|x−y|≤δ

∥∥P(x + Sn ∈ ·) − P(y + Sn ∈ ·)∥∥Var ≤ C√
n
. (3.3)

Proof. Step 1. It is easy to see that for any a ∈ R
d and any probability measure μ,

μ∗n ◦ R−1
a = (

μ ◦ R−1
a

)∗n
.

Lemma 3.2 shows that (3.3) is equivalent to the following estimate

sup
|a|≤δ

∥∥P
(|a|e1 + Sa,n ∈ ·) − P(Sa,n ∈ ·)∥∥Var ≤ C√

n
. (3.4)

Here, Sa,n is a random walk in R
d with i.i.d. steps ξa,1, ξa,2, . . . and ξa,1 ∼ ν0 ◦ R−1

a .
On the other hand, Lemma 3.2 also shows that

(
ν0 ◦ R−1

a

) ∧ (
δ|a|e1 ∗ (

ν0 ◦ R−1
a

))(
R

d
)

= 1 − 1

2

∥∥ν0 ◦ R−1
a − (

δ|a|e1 ∗ (
ν0 ◦ R−1

a

))∥∥
Var

= 1 − 1

2

∥∥ν0 − (δa ∗ ν0)
∥∥

Var

= ν0 ∧ (δa ∗ ν0)
(
R

d
)
.

Therefore, (3.1) implies that for any a ∈ R
d

inf|a|≤δ

{(
ν0 ◦ R−1

a

) ∧ (
δ|a|e1 ∗ (

ν0 ◦ R−1
a

))(
R

d
)} = inf|a|≤δ

{
ν0 ∧ (δa ∗ ν0)

(
R

d
)}

> 0. (3.5)

In order to simplify the notation, we use ν := ν0 ◦ R−1
a and Sn := Sa,n. With this notation (3.4) becomes

sup
|a|≤δ

∥∥P
(|a|e1 + Sn ∈ ·) − P(Sn ∈ ·)∥∥Var ≤ C√

n
. (3.6)
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Step 2. Assume that |a| ∈ (0, δ] and set ν|a| = δ|a|e1 ∗ ν and ν−|a| = δ−|a|e1 ∗ ν. Let (ξ,�ξ) ∈ R
d × R

d be a pair of
random variables with the following distribution

P
(
(ξ,�ξ) ∈ A × D

) =

⎧⎪⎨
⎪⎩

1
2 (ν ∧ ν−|a|)(A), D = {|a|e1

};
1
2 (ν ∧ ν|a|)(A), D = {−|a|e1

};(
ν − 1

2 (ν ∧ ν−|a| + ν ∧ ν|a|)
)
(A), D = {0};

where A ∈ B(Rd) and D ∈ {{−|a|e1}, {0}, {|a|e1}}. We see from (3.5) that

P
(
�ξ = |a|e1

) = 1

2

(
ν ∧ (δ−|a|e1 ∗ ν)

)(
R

d
) ≥ 1

2
inf|a|≤δ

ν0 ∧ (δa ∗ ν0)
(
R

d
)
.

By Lemma 3.2,

P
(
�ξ = −|a|e1

) = 1

2

(
ν ∧ (δ|a|e1 ∗ ν)

)(
R

d
)

= 1

2

(
ν ∧ (δ−|a|e1 ∗ ν)

)(
R

d
)

= P
(
�ξ = |a|e1

)
.

It is clear that the distribution of ξ is ν. Let ξ ′ = ξ + �ξ . We claim that the distribution of ξ ′ is also ν. Indeed, for
any A ∈ B(Rd),

P
(
ξ ′ ∈ A

) = P
(
ξ − |a|e1 ∈ A,�ξ = −|a|e1

)
+ P

(
ξ + |a|e1 ∈ A,�ξ = |a|e1

) + P(ξ ∈ A,�ξ = 0)

= δ−|a|e1 ∗ (ν ∧ ν|a|)(A)

2
+ δ|a|e1 ∗ (ν ∧ ν−|a|)(A)

2
+

(
ν − ν ∧ ν−|a| + ν ∧ ν|a|

2

)
(A)

= μ(A),

where we have used that δ−|a|e1 ∗ (ν ∧ ν|a|) = ν ∧ ν−|a| and δ|a|e1 ∗ (ν ∧ ν−|a|) = ν ∧ ν|a|. Now we construct the
coupling (Sn, S

′
n) of Sn with the i.i.d. pairs (ξi, ξ

′
i ), i ≥ 1, where (ξ1, ξ

′
1) ∼ (ξ, ξ ′). Since ξ ′

i − ξi = �ξ , we know that
ξi − ξ ′

i is, for all i ≥ 1, symmetrically distributed, takes only the values −|a|e1, 0 and |a|e1. Because of (3.5), we have

P(a) := P
(
ξ1′
i − ξ1

i = 0
)

=
(

ν − 1

2
(ν ∧ ν−|a| + ν ∧ ν|a|)

)(
R

d
)

= 1 − ν ∧ ν−|a|
(
R

d
)

≤ 1 − inf|a|≤δ
ν0 ∧ (δa ∗ ν0)

(
R

d
)

=: γ (δ) < 1,

where ξi = (ξ1
i , ξ2

i , . . . , ξd
i ) and ξ ′

i = (ξ1′
i , ξ2′

i , . . . , ξd′
i ). Set S

j
n = ∑n

i=1 ξ
j
i and S

j ′
n = ∑n

i=1 ξ
j ′
i . We observe that

(S1 −S1′) is a random walk, whose step sizes are −|a|, 0 and |a| with probability 1
2 (1−P(a)), P(a) and 1

2 (1−P(a)),

respectively. Since S
j
n = S

j ′
n for 2 ≤ j ≤ d , we get∥∥P

(|a|e1 + Sn ∈ ·) − P(Sn ∈ ·)∥∥Var ≤ 2P
(
T S > n

)
, (3.7)

where

T S = inf
{
k ≥ 1: S1

k = S1′
k + |a|}.
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Step 3. We will now estimate P(T S > n). Let V1,V2, . . . be i.i.d. symmetric random variables, whose common
distribution is given by

P(Vi = x) =

⎧⎪⎨
⎪⎩

1
2

(
1 − P(a)

)
, x = −|a|;

1
2

(
1 − P(a)

)
, x = |a|;

P(a), x = 0.

Define Zn = ∑n
i=1 Vi . We have seen in Step 2 that T S = inf{n ≥ 1: Zn = |a|}. Then, by the reflection principle,

P
(
T S > n

) = P

(
max
k≤n

Zk < |a|
)

≤ 2P
(
0 ≤ Zn ≤ |a|).

Since Z is the sum of i.i.d. random variables with mean 0 and variance σ 2 = |a|2(1 − P(a)), we can use the central
limit theorem to deduce, for sufficiently large values of n,

P
(
T S > n

) = 2P

(
0 ≤ Zn

|a|√1 − P(a)
√

n
≤ 1√

1 − P(a)
√

n

)

≤ 2P

(
0 ≤ Zn

|a|√1 − P(a)
√

n
≤ 1√

1 − γ (δ)
√

n

)

≤ C√
2π

∫ 1/
√

1−γ (δ)
√

n

0
e−x2/2 dx

≤ C1,γ (δ)√
n

.

In the first inequality above we have used the fact that 1 − P(a) ≥ 1 − γ (δ) > 0. Therefore we find from (3.7) for all
large n ≥ 1

∥∥P
(|a|e1 + Sn ∈ ·) − P(Sn ∈ ·)∥∥Var ≤ 2C2,γ (δ)√

n
.

Since the right-hand side is bounded by 2, this estimate actually holds for all n ≥ 1.
We can now use Lemma 3.2 to get

∥∥P
(±|a|e1 + Sn ∈ ·) − P(Sn ∈ ·)∥∥Var ≤ 2C2,γ (δ)√

n

which immediately yields (3.6), since |a| ≤ δ was arbitrary. �

We close this section with the proofs of Theorems 3.1 and 1.1.

Proof of Theorem 3.1. For any x, y ∈ R
d , set k = [ |x−y|

δ
] + 1. Pick x0, x1, . . . , xk ∈ R

d such that x0 = x, xk = y and
|xi − xi−1| ≤ δ for 1 ≤ i ≤ k. By Proposition 3.3,

∥∥P(x + Sn ∈ ·) − P(y + Sn ∈ ·)∥∥Var ≤
k∑

i=1

∥∥P(xi + Sn ∈ ·) − P(xi−1 + Sn ∈ ·)∥∥Var

≤ C(δ,η0)(1 + |x − y|)√
n

,

which is what we claimed. �



1156 R. L. Schilling and J. Wang

Proof of Theorem 1.1. Step 1. Assume first that the Lévy triplet is of the form (0,0, ν) and that the Lévy measure
satisfies λ = ν(Rd) < ∞. This means that Xt is compound Poisson process. We use the notations from Section 2. For
all x ∈ R

d ,

ν ∧ (δx ∗ ν)
(
R

d
) = λ

[
ν0 ∧ (δx ∗ ν0)

(
R

d
)]

> 0.

Therefore, we can apply Proposition 2.2 and Theorem 3.1 to get Theorem 1.1 in this case.
Step 2. If (Xt )t≥0 is a general Lévy process with Lévy triplet (b,Q,ν), we split Xt into two independent parts

Xt = X′
t + X′′

t ,

where X′
t is the compound Poisson process with Lévy triplet (0,0, νε) – νε is defined in (1.2) – and X′′

t is the Lévy
process with triplet (b,Q,ν − νε). Denote by P ′

t , P
′′
t , P ′

t (x,dy),P ′′
t (x,dy) the transition semigroups and transition

functions of the processes X′
t and X′′

t , respectively. Then, Pt = P ′
t P

′′
t . Observe that P ′′

t is a contraction semigroup,
i.e. ‖P ′′

t f ‖∞ ≤ 1 whenever ‖f ‖∞ ≤ 1. Therefore,∥∥Pt (x, ·) − Pt (y, ·)∥∥Var = sup
‖f ‖∞≤1

∣∣Ptf (x) − Ptf (y)
∣∣

= sup
‖f ‖∞≤1

∣∣P ′
t P

′′
t f (x) − P ′

t P
′′
t f (y)

∣∣
≤ sup

‖h‖∞≤1

∣∣P ′
t h(x) − P ′

t h(y)
∣∣

= ∥∥P ′
t (x, ·) − P ′

t (y, ·)∥∥Var,

which reduces the general case to the compound Poisson setting considered in the first part. �

4. Extensions: The Lindvall–Rogers ‘zero–two’ law

Motivated by Lindvall–Rogers’s zero–two law for random walks [8], Propsotion 1, we present a necessary and suf-
ficient condition for the coupling property of a Lévy process. We will add a few simple sufficient criteria in terms
of the Lévy measure which are easy to verify. Throughout this section we assume that (Xt )t≥0 is a d-dimensional
Lévy process with Lévy measure ν �≡ 0; as usual, X0 = 0. By Pt(x, ·) and Pt we denote the transition probability and
transition semigroup, respectively.

Theorem 4.1 (Criterion for successful couplings). The following statements are equivalent:

(1) The Lévy process (Xt )t≥0 has the coupling property.
(2) There exists t0 > 0 such that for any t ≥ t0, the transition probability Pt(x, ·) has (with respect to Lebesgue

measure) an absolutely continuous component.

In either case, for every x, y ∈ R
d , there exists a constant C(x, y) > 0 such that

∥∥Pt (x, ·) − Pt (y, ·)∥∥Var ≤ C(x, y)√
t

, t > 0. (4.1)

If the Lévy process has the strong Feller property, i.e. the corresponding semigroup maps Bb(R
d) into Cb(R

d),
Theorem 4.1 becomes particularly simple.

Corollary 4.2. Suppose that there exists some t0 > 0 such that the semigroup Pt0 maps Bb(R
d) into Cb(R

d). Then, the
Lévy process Xt has the coupling property. In particular, every Lévy process which enjoys the strong Feller property
has the coupling property.
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Proof. By assumption Pt0 is a convolution operator which maps Bb(R
d) into Cb(R

d). Due to a result by Hawkes, cf.
[5] or [6], Lemma 4.8.20, Pt0 and all Pt with t ≥ t0 are of the form Pt (x) = pt ∗ f (x), where pt(x) is the transition
density of the process. Therefore condition (2) of Theorem 4.1 is satisfied. �

Now, we turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. As mentioned in Section 1, the coupling property is equivalent to (1.1). Observe that

‖μ1Pt − μ2Pt‖Var ≤ ‖μ1Pt − Pt‖Var + ‖μ2Pt − Pt‖Var

≤
∫

‖δx ∗ Pt − δ0 ∗ Pt‖Varμ1(dx) +
∫

‖δx ∗ Pt − δ0 ∗ Pt‖Varμ2(dx).

Thus, if

lim
t→∞‖δx ∗ Pt − δ0 ∗ Pt‖Var = 0 for x ∈ R

d, (4.2)

then we can use the dominated convergence theorem to see that (1.1) holds. Therefore, the assertions (1.1) and (4.2)
are equivalent.

Since ‖δx ∗ Pt − δ0 ∗ Pt‖Var is decreasing in t , we see that (4.2) is also equivalent to

lim
n→∞‖δx ∗ Pn − δ0 ∗ Pn‖Var = 0 for x ∈ R

d . (4.3)

Let ξ1, ξ2, . . . be i.i.d. random variables on R
d with ξ1 ∼ μ1 := P(X1 ∈ ·) and set Sn = ∑n

i=1 ξi for n ≥ 1 and S0 = 0.
Since the increments of a Lévy process are independent and stationary, (4.3) is the same as

lim
n→∞

∥∥P(x + Sn ∈ ·) − P(Sn ∈ ·)∥∥Var = 0 for x ∈ R
d . (4.4)

According to [8], Remark (ii), pp. 124–125, or [10], Chapter 3, Section 3, Theorem 3.9, (4.4) holds if, and only if,
μ1 is spread out, i.e. for some m ≥ 1, μ∗m

1 = Pm(0, ·) := P(Xm ∈ ·) has an absolutely continuous component. Since
the semigroup of a Lévy process is a convolution semigroup, it is easy to see that for every t ≥ m, the transition
probability Pt (x, ·) has an absolutely continuous part. Combining all the assertions above, we have proved that the
statements (1) and (2) are equivalent.

Moreover, the arguments used in the proof of Proposition 3.3 together with [8], Proposition 1, show that∥∥P(x + Sn ∈ ·) − P(Sn ∈ ·)∥∥Var = O
(
n−1/2) as n → ∞

whenever the random walk Sn has the coupling property. Therefore, (4.1) follows from the arguments used in the first
part of the proof, in particular since t �→ ‖δx ∗ Pt − δ0 ∗ Pt‖Var is decreasing and∥∥P(x + Sn ∈ ·) − P(Sn ∈ ·)∥∥Var = ‖δx ∗ Pn − δ0 ∗ Pn‖Var. �

Let us finally derive some sufficient conditions in terms of the Lévy measure, which extend Theorem 1.1 and [14],
Theorem 3.1.

Theorem 4.3 (Sufficient criteria for successful couplings). Let (Xt )t≥0 be a Lévy process on R
d with Lévy measure

ν �≡ 0 and define ε > 0 as in (1.2), i.e. for B ∈ B(Rd)

νε(B) =
{

ν(B), ν
(
R

d
)
< ∞;

ν
{
z ∈ B: |z| ≥ ε

}
, ν

(
R

d
) = ∞.

If there exists some ε > 0 such that one of the following conditions is satisfied

(1) For some l ≥ 1, ν∗
ε
l has an absolutely continuous component.
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(2) There exist δ > 0 and l ≥ 1 such that infx∈Rd ,|x|≤δ ν∗
ε
l ∧ (δx ∗ ν∗

ε
l)(Rd) > 0.

Then the process Xt has the coupling property.
Conversely, assume that ν(Rd) < ∞ and Xt is a compound Poisson process with Lévy measure ν. If Xt has the

coupling property, then there is some l ≥ 0 such that ν∗l has an absolutely continuous component.

Proof. Step 1. The argument used in the proof of Theorem 1.1 shows that we only have to consider the coupling
property for a compound Poisson process, whose Lévy measure is of the form νε . Let S = (Sn)n≥1, Sn = ξ1 +· · ·+ ξn,
be a random walk on R

d with i.i.d. steps ξ1, ξ2, . . . such that ξ1 ∼ νε/νε(R
d). Because of Proposition 2.3, it is sufficient

to show that, under the assumptions stated in the theorem, S has the coupling property.
As we have pointed out in the proof of Theorem 4.1, [8], Remark (ii), pp. 124–125, shows that S has the coupling

property if, and only if, condition (1) holds. Again by [8], Remark (ii), pp. 124–125, condition (1) is equivalent to
saying that for any x ∈ R

d , there exists l ≥ 0 such that ν∗
ε
l ∧ (δx ∗ ν∗

ε
l)(Rd) > 0. Clearly, such a condition is hard to

check in applications.
Let Z = (Zn)n≥1, Zn = ζ1 +· · ·+ζn, be a random walk on R

d with i.i.d. steps ζ1, ζ2, . . . such that ζ1 ∼ ν∗l
ε /νl

ε(R
d).

That is, ζi = ∑il
k=(i−1)l+1 ξk , where ξi is the step of the random walk S from the paragraph above. If (2) holds,

Theorem 3.1 shows that Z, hence S, has the coupling property.
Step 2. Let (Xt )t≥0 be a compound Poisson process with Lévy measure ν and suppose that Xt has the coupling

property. Moreover, assume that none of the measures ν∗l , l ≥ 1, has an absolutely continuous component. By the
Lebesgue decomposition, each measure ν∗l is mutually singular with respect to Lebesgue measure Leb. Thus, for
every l ≥ 1, there exists some set Al ∈ B(Rd) such that Leb(Al) = ν∗l (Ac

l ) = 0. For A := ⋃∞
i=1 Ai we have Leb(A) =

ν∗l (Ac) = 0 for each l ≥ 1. Therefore, by (2.1), for every x ∈ R
d and t > 0, the transition probability Pt (x, ·) of Xt

is singular with respect to Lebesgue measure Leb. This shows that condition (2) of Theorem 4.1 cannot hold, i.e. Xt

does not have the coupling property. Since this contradicts our assumption, the proof is finished. �

Theorem 4.3 immediately yields that

Corollary 4.4. Any Lévy process whose Lévy measure possesses an absolutely continuous component has the cou-
pling property.

The coupling property of a Lévy process is intimately connected with the choice of state space. According to
Theorem 4.3, a Poisson process on R does not have the coupling property, see also the discussion in Remark 1.2. If,
however, the process is considered on Z, the situation changes.

Proposition 4.5. A Poisson process Xt with state space Z has the coupling property.

Proof. We use the coupling and shift coupling properties proved in [4]. Shift coupling is a slightly weaker notion
than coupling. A Markov process (Xt )t≥0 is said to have the shift coupling property, if for any two initial distributions
μ,ν, there exists a coupling (Xt , Yt ) with marginal processes such that

• X0 ∼ μ and Y0 ∼ ν;
• there are finite stopping times T1, T2 such that XT1 = YT2 .

Let λ be the intensity of the Poisson process Xt . Then the generator is given by Lf (i) = λ(f (i + 1)−f (i)) for i ∈ Z.
Thus, all harmonic functions f : Z → R are constant and, by [3], Theorem 1 and its second remark, or [4], Theorem 2,
the process has the shift coupling property.

Similar to the proof of [14], Proposition 3.3, for any s, t > 0, i ∈ Z and f ∈ Bb(Z) with f ≥ 0,

Pt+s(i) = Ef (i + Xt+s) ≥ Ef
(
(i + Xt)1{Xt+s−Xt=0}

) = e−λs
Ef (i + Xt) = e−λsPtf (i),

which shows that Xt has the coupling property, cf. [4], Theorem 5. �
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