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Abstract. General stochastic equations with jumps are studied. We provide criteria for the uniqueness and existence of strong
solutions under non-Lipschitz conditions of Yamada–Watanabe type. The results are applied to stochastic equations driven by
spectrally positive Lévy processes.

Résumé. Nous étudions des équations stochastiques générales avec sauts et proposons un critère qui garantit l’existence et l’unicité
de solutions fortes sous des conditions de régularité de type Yamada–Watanabe. Les résultats sont appliqués à des équations
stochastiques conduites par des processus de Lévy de sauts positifs.
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1. Introduction

The question of pathwise uniqueness for one-dimensional stochastic differential equations driven by one-dimensional
Brownian motions has been resolved a long time ago by Yamada and Watanabe [8]; see also Barlow [1]. The same
question can also be asked for stochastic differential equations driven by discontinuous Lévy noises. Let us consider
the equation

dx(t) = F
(
x(t−)

)
dLt , t ≥ 0. (1.1)

Bass [2] and Komatsu [6] showed that if {Lt } is a symmetric stable process with exponent α ∈ (1,2) and if x �→ F(x)

is a bounded function with modulus of continuity z �→ ρ(z) satisfying∫
0+

1

ρ(z)α
dz = ∞, (1.2)

then (1.1) admits a strong solution and the solution is pathwise unique. This condition is the analogue of the Yamada–
Watanabe criterion for the diffusion coefficient. In particular, if F is Hölder continuous with exponent 1/α, then the
pathwise uniqueness holds for (1.1). The required Hölder exponent tends to 1/2 as α → 2 and it tends to 1 (Lipschitz
condition) as α → 1. When the integral in (1.2) is finite, Bass [2] constructed a continuous function x �→ φ(x) having
continuity modulus x �→ ρ(x) for which the pathwise uniqueness for (1.1) fails; see also [3].
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The pathwise uniqueness and strong solutions for stochastic differential equations driven by spectrally positive
Lévy noises were studied in [4]. Those equations arise naturally in the study of branching processes. A typical special
continuous state branching process is the non-negative solution to the stochastic differential equation

dx(t) = α
√

x(t−)dLt , t ≥ 0, (1.3)

where {Lt } is a Brownian motion (for α = 2) or a spectrally positive α-table process (for 1 < α < 2). Note that the
coefficient x �→ α

√
x in (1.3) is non-decreasing, non-Lipschitz and degenerate at the origin. More general stochastic

equations with similar structures arise naturally in limit theorems of branching processes with interactions or/and
immigration.

In this paper we consider a class of stochastic differential equations with jumps, which generalizes Eq. (1.3). This
exploration can be regarded as a continuation of [4]. We extend the results of [4] in two directions. First of all, we
notice that the pathwise uniqueness results proved in [4] for non-negative càdlàg solutions can easily be extended to
any càdlàg solutions. This extended result is given in Proposition 3.1. Its proof, which is in fact the most involved
stochastic part behind the results in this paper, goes through along the same lines as in [4].

The second direction is to apply the above result to formulate some criteria for the pathwise uniqueness and ex-
istence of strong solutions to general stochastic differential equations with jumps. We consider this to be the main
part of this paper. The proofs in this part involve some analytical arguments that allow us to apply the general path-
wise uniqueness criterion of Proposition 3.1. From those results we derive sufficient conditions for the existence and
uniqueness of non-negative strong solutions under suitable additional assumptions.

We also give applications of our main results to stochastic equations driven by spectrally positive Lévy processes.
These extend and improve substantially the results of [4]. As a consequence of one of those results we get the following
counterpart of the theorem of Bass [2].

Theorem 1.1. Let {Lt } be a spectrally positive stable process with exponent α ∈ (1,2) that is, there exists cα such
that

E
[
e−uL(t)

] = e−cαuαt , t ≥ 0, u ≥ 0.

Let F be a non-decreasing function on R with modulus of continuity z �→ ρ(z) satisfying

∫
0+

1

ρ(z)α/(α−1)
dz = ∞. (1.4)

Also assume that there is a constant K ≥ 0 such that

∣∣F(x)
∣∣ ≤ K

(
1 + |x|), x ∈ R.

Then there is a pathwise unique strong solution to (1.1).

By the above theorem, if F is a non-decreasing function Hölder continuous with exponent 1 − 1/α, then the
pathwise uniqueness holds for (1.1). The required Hölder exponent tends to 0 as α → 1, which differs sharply from
the criterion of Bass [2] for a symmetric stable noise. Note that this result is also consistent with the Yamada–Watanabe
result in the sense that as α → 2 the critical Hölder exponent converges to 1/2.

The organization of the paper is as follows. The main theorem is stated in Section 2. Its proof is provided in
Section 3. In Section 4 a number of particular cases is considered, for example, SDEs with stable Lévy noises. Theo-
rem 1.1 is a consequence of one of the results obtained in that section. Throughout this paper, we make the conventions

∫ b

a

=
∫

(a,b]
and

∫ ∞

a

=
∫

(a,∞)

for b ≥ a ∈ R.
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2. Main strong uniqueness and existence results

Suppose that μ0(du) and μ1(du) are σ -finite measures on the complete separable metric spaces U0 and U1, re-
spectively. Let (Ω,G,Gt ,P) be a filtered probability space satisfying the usual hypotheses. Let {B(t)} be a standard
(Gt )-Brownian motion and let {p0(t)} and {p1(t)} be (Gt )-Poisson point processes on U0 and U1 with characteristic
measures μ0(du) and μ1(du), respectively. Suppose that {B(t)}, {p0(t)} and {p1(t)} are independent of each other.
Let N0(ds,du) and N1(ds,du) be the Poisson random measures associated with {p0(t)} and {p1(t)}, respectively.
Suppose in addition that:

• x �→ σ(x) is a continuous function on R;
• x �→ b(x) is a continuous function on R having the decomposition b = b1 − b2 with b2 being continuous and

non-decreasing;
• (x,u) �→ g0(x,u) is a Borel function on R × U0 such that x �→ g0(x,u) is non-decreasing for every u ∈ U0;
• (x,u) �→ g1(x,u) is a Borel function on R × U1.

Let Ñ0(ds,du) be the compensated measure of N0(ds,du). By a solution of the stochastic equation

x(t) = x(0) +
∫ t

0
σ
(
x(s−)

)
dB(s) +

∫ t

0

∫
U0

g0
(
x(s−), u

)
Ñ0(ds,du)

+
∫ t

0
b
(
x(s−)

)
ds +

∫ t

0

∫
U1

g1
(
x(s−), u

)
N1(ds,du) (2.1)

we mean a càdlàg and (Gt )-adapted real process {x(t)} that satisfies the equation almost surely for every t ≥ 0. Since
x(s−) 	= x(s) for at most countably many s ≥ 0, we can also use x(s) instead of x(s−) for the integrals with respect
to dB(s) and ds on the right-hand side of (2.1). We say pathwise uniqueness holds for (2.1) if for any two solutions
{x1(t)} and {x2(t)} of the equation satisfying x1(0) = x2(0) we have x1(t) = x2(t) almost surely for every t ≥ 0. Let
(Ft )t≥0 be the augmented natural filtration generated by {B(t)}, {p0(t)} and {p1(t)}. A solution {x(t)} of (2.1) is
called a strong solution if x(t) is measurable with respect to Ft for every t ≥ 0; see [5], p. 163, or [7], p. 76.

Lemma 2.1. Suppose that (z ∧ z2)ν(dz) is a finite measure on (0,∞) and define

αν = inf

{
β > 1: lim

x→0+xβ−1
∫ ∞

x

zν(dz) = 0

}
. (2.2)

Then 1 ≤ αν ≤ 2 and, for any α > αν ,

lim
x→0+xα−2

∫ x

0
z2ν(dz) = 0. (2.3)

Proof. By (2.2) it is clear that αν ≥ 1. For x > 0 let

G(x) =
∫ ∞

x

zν(dz) and H(x) =
∫ x

0
z2ν(dz).

Given ε > 0, choose a > 0 so that H(a) < ε. Then for a ≥ x > 0 we have

xG(x) = x

∫ a

x

zν(dz) + xG(a) ≤
∫ a

x

z2ν(dz) + xG(a) ≤ ε + xG(a).

It follows that lim supx→0+ xG(x) ≤ ε. That proves limx→0+ xG(x) = 0, and so αν ≤ 2. Clearly, (2.3) holds for any
α ≥ 2. By integration by parts,

H(x) = −
∫ x

0
z dG(z) = −xG(x) +

∫ x

0
G(z)dz. (2.4)
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Thus we have

lim
x→0+

∫ x

0
G(z)dz = lim

x→0+H(x) + lim
x→0+xG(x) = 0.

Now suppose that αν < α < 2. In view of (2.2), for any ε > 0 there exists b > 0 so that xα−1G(x) < ε for all 0 < x ≤ b.
Then (2.4) implies

xα−2H(x) ≤ xα−2
∫ x

0
G(z)dz ≤ xα−2

∫ x

0
εz1−α dz = ε(2 − α)−1,

and hence limx→0+ xα−2H(x) = 0. �

Let us consider a set U2 ⊂ U1 satisfying μ1(U1 \ U2) < ∞. As in the proof of Proposition 2.2 in [4] one can show
that the uniqueness/existence of strong solutions for (2.1) can be reduced to the same question for the equation with
U1 replaced by U2. Then in what follows all conditions for the ingredients of (2.1) only involve U2 instead of U1. As
usual, let us consider some growth conditions on the coefficients:

(2a) There is a constant K ≥ 0 such that

σ(x)2 +
∫

U0

g0(x,u)2μ0(du) +
∫

U2

g1(x,u)2μ1(du) + b(x)2 +
(∫

U2

∣∣g1(x,u)
∣∣μ1(du)

)2

≤ K
(
1 + x2), x ∈ R.

We next introduce our main conditions on the modulus of continuity that are particularly useful in applications to
stochastic equations driven by Lévy processes. The conditions are given as follows:

(2b) For each m ≥ 1 there is a non-decreasing and concave function z �→ rm(z) on R+ such that
∫

0+ rm(z)−1 dz = ∞
and

∣∣b1(x) − b1(y)
∣∣ +

∫
U2

∣∣l1(x, y,u)
∣∣μ1(du) ≤ rm

(|x − y|)
for |x|, |y| ≤ m, where l1(x, y,u) = g1(x,u) − g1(y,u).

(2c) For each m ≥ 1 there is a constant pm > 0, a non-decreasing function z �→ ρm(z) on R+ and a function
u �→ fm(u) on U0 such that∫

0+
ρm(z)−2 dz = ∞,

∫
U0

[
fm(u) ∧ fm(u)2]μ0(du) < ∞

and∣∣σ(x) − σ(y)
∣∣ ≤ ρm

(|x − y|), ∣∣g0(x,u) − g0(y,u)
∣∣ ≤ ρm

(|x − y|)2pmfm(u)

for all |x|, |y| ≤ m and u ∈ U0.

For each m ≥ 1 and the function fm defined in (2c) we define the constant

αm := inf

{
β > 1: lim

x→0+xβ−1
∫

U0

fm(u)1{fm(u)≥x}μ0(du) = 0

}
.

By Lemma 2.1 we have 1 ≤ αm ≤ 2. Our first main theorem of this paper is the following theorem.

Theorem 2.2. Suppose that conditions (2a–c) hold with

pm > 1 − 1/αm for αm < 2 or pm = 1/2 for αm = 2. (2.5)

Then for any given x(0) ∈ R, there exists a pathwise unique strong solution {x(t)} to (2.1).
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From the above theorem we may derive some results on non-negative solutions of (2.1). For that purpose let us
consider the following conditions:

(2d) σ(0) = 0, b(0) ≥ 0 and g0(0, u) = 0 for u ∈ U0, and g1(x,u) + x ≥ 0 for x ∈ R+ and u ∈ U1.
(2e) There is a constant K ≥ 0 such that

b(x) +
∫

U2

∣∣g1(x,u)
∣∣μ1(du) ≤ K(1 + x), x ≥ 0.

(2f) There is a non-decreasing function x �→ L(x) on R+ so that

σ(x)2 +
∫

U0

[∣∣g0(x,u)
∣∣ ∧ g0(x,u)2]μ0(du) ≤ L(x), x ≥ 0.

By Proposition 2.1 of [4], under condition (2d) any solution of (2.1) with non-negative initial value remains non-
negative forever.

Theorem 2.3. Suppose that conditions (2b–f) hold with (2.5). Then for any given x(0) ∈ R+, there exists a pathwise
unique non-negative strong solution {x(t)} to (2.1).

Remark 2.4. Under the conditions of Theorem 2.3 we can actually conclude that for any given x(0) ∈ R+ there is a
pathwise unique strong solution to (2.1) and the solution is non-negative. That follows from Proposition 2.1 of [4].

Remark 2.5. Note that when αm < 2 the assumptions of Theorems 2.2 and 2.3 are strictly weaker than Theorems 2.5
and 5.3 of [4]. In some particular cases the condition (2.5) can be weakened to pm ≥ 1 − 1/αm, as in the case of
stable driving noise. This is done in Theorem 4.2.

3. Proofs of Theorems 2.2 and 2.3

The crucial part of the proof of Theorem 2.2 is verifying the pathwise uniqueness for (2.1). As we have mentioned
already it is enough to consider the equation

x(t) = x(0) +
∫ t

0
σ
(
x(s−)

)
dB(s) +

∫ t

0

∫
U0

g0
(
x(s−), u

)
Ñ0(ds,du)

+
∫ t

0
b
(
x(s−)

)
ds +

∫ t

0

∫
U2

g1
(
x(s−), u

)
N1(ds,du). (3.1)

For a function f defined on the real line R, note


zf (x) = f (x + z) − f (x) and Dzf (x) = 
zf (x) − f ′(x)z.

We shall need the next result, which provides a criterion for the pathwise uniqueness. It extends the criterion of
Theorem 3.1 in [4], where it was formulated just for non-negative solutions.

Proposition 3.1. Suppose that conditions (2b, c) hold. Then the pathwise uniqueness of solution to (3.1) holds if
for each m ≥ 1 there exists a sequence of non-negative and twice continuously differentiable functions {φk} with the
following properties:

(i) φk(z) �→ |z| non-decreasingly as k → ∞;
(ii) 0 ≤ φ′

k(z) ≤ 1 for z ≥ 0 and −1 ≤ φ′
k(z) ≤ 0 for z ≤ 0;

(iii) φ′′
k (z) ≥ 0 for z ∈ R and as k → ∞,

φ′′
k (x − y)

[
σ(x) − σ(y)

]2 → 0

uniformly on |x|, |y| ≤ m;
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(iv) as k → ∞,∫
U0

Dl0(x,y,u)φk(x − y)μ0(du) → 0

uniformly on |x|, |y| ≤ m, where l0(x, y,u) = g0(x,u) − g0(y,u).

Proof. For non-negative solutions the result was given in Theorem 3.1 of [4]. In what follows we will show that the
proof in [4] goes through for any càdlàg solutions. Let {x1(t)} and {x2(t)} be any two solutions of (3.1) starting at
x1(0) = x2(0) = x0. For each m ≥ 1 define τm = inf{t ≥ 0: |x1(t)| ≥ m or |x2(t)| ≥ m}, and ζ(t) = x1(t) − x2(t).
Recall that li (x, y,u) = gi(x,u) − gi(y,u), i = 0,1. By (3.1) and the Itô formula one can show

φk

(
ζ(t ∧ τm)

) =
∫ t∧τm

0
φ′

k

(
ζ(s−)

)[
b
(
x1(s−)

) − b
(
x2(s−)

)]
ds

+ 1

2

∫ t∧τm

0
φ′′

k

(
ζ(s−)

)[
σ
(
x1(s−)

) − σ
(
x2(s−)

)]
ds

+
∫ t∧τm

0
ds

∫
U2


l1(x1(s−),x2(s−),u)φk

(
ζ(s−)

)
μ1(du)

+
∫ t∧τm

0
ds

∫
U0

Dl0(x1(s−),x2(s−),u)φk

(
ζ(s−)

)
μ0(du)

+ Mm(t),

where

Mm(t) =
∫ t∧τm

0
φ′

k

(
ζ(s−)

)[
σ
(
x1(s−)

) − σ
(
x2(s−)

)]
dB(s)

+
∫ t∧τm

0

∫
U2


l1(x1(s−),x2(s−),u)φk

(
ζ(s−)

)
Ñ1(ds,du)

+
∫ t∧τm

0

∫
U0


l0(x1(s−),x2(s−),u)φk

(
ζ(s−)

)
Ñ0(ds,du).

Under conditions (2b, c) it is easy to show that {Mm(t)} is a martingale. Therefore, we can follow the same argument
as in the proof of Theorem 3.1 of [4] to get that, as k → ∞,

E
[∣∣ζ(t ∧ τm)

∣∣] ≤
∫ t

0
rm

(
E

[∣∣ζ(s ∧ τm)
∣∣])ds.

From this by standard argument we have E[|ζ(t ∧ τm)|] = 0 for every t ≥ 0. Since {x1(t)} and {x2(t)} are càdlàg, we
have that τm → ∞ as m → ∞. Hence letting m → ∞ and using the right continuity of {ζ(t)} we get the result. �

To prove the pathwise uniqueness for (3.1) we need to introduce more notation and prove a lemma which will play
a crucial role in the proofs. For each integer m ≥ 1 we shall construct a sequence of functions {φk} that satisfies the
properties required in Proposition 3.1. Although main ideas are similar to those in the proof of Theorem 3.2 of [4], we
will go through the details for the sake of completeness. Let 1 = a0 > a1 > a2 > · · · > 0 be defined by∫ ak−1

ak

ρm(z)dz = k.

Let x �→ ψk(x) be a non-negative continuous function on R satisfying
∫ ak−1
ak

ψk(x)dx = 1 and

0 ≤ ψk(x) ≤ 2k−1ρm(x)−21(ak,ak−1)(x). (3.2)
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For each k ≥ 1 we define the non-negative and twice continuously differentiable function

φk(z) =
∫ |z|

0
dy

∫ y

0
ψk(x)dx, z ∈ R.

Note that although the sequences {ak}, {φk} and {ψk} also depend on m ≥ 1, we do not put this additional index to
simplify the notation.

Lemma 3.2. Suppose that condition (2c) holds. Fix m ≥ 1 and let ak , φk and ψk be defined as above. Then the
sequence {φk} satisfies properties (i)–(iii) in Proposition 3.1 and for any h > 0,∫

U0

Dl0(x,y,u)φk(x − y)μ0(du)

≤ k−1ρm

(|x − y|)4pm−21{|x−y|≤ak−1}
∫

U0

fm(u)21{fm(u)≤h}μ0(du)

+ ρm

(|x − y|)2pm1{|x−y|≤ak−1}
∫

U0

fm(u)1{fm(u)>h}μ0(du). (3.3)

Proof. By definition, the sequence {φk} satisfies properties (i) and (ii) in Proposition 3.1. Moreover, by (3.2) we get

φ′′
k (x) = ψk

(|x|) ≤ 2k−1ρm

(|x|)−21(ak,ak−1)

(|x|) (3.4)

for all x ∈ R. This together with condition (2c) implies

φ′′
k (x − y)

[
σ(x) − σ(y)

]2 ≤ ψk

(|x − y|)ρm

(|x − y|)2 ≤ 2/k

for |x|, |y| ≤ m. Thus {φk} also satisfies property (iii) in Proposition 3.1. Observe that

Dzφk(x − y) = 
zφk(x − y) − φ′
k(x − y)z ≤ |z|1{|x−y|≤ak−1} (3.5)

when (x − y)z ≥ 0. By Taylor’s expansion,

Dzφk(x − y) = z2
∫ 1

0
φ′′

k (x − y + tz)(1 − t)dt = z2
∫ 1

0
ψk

(|x − y + tz|)(1 − t)dt.

Then (3.4) and the monotonicity of ζ �→ ρm(ζ ) imply

Dzφk(x − y) ≤ 2k−1z2
∫ 1

0

(1 − t)1(ak,ak−1)(|(x − y) + tz|)
ρm(|(x − y) + tz|)2

dt

≤ k−1z2ρm

(|x − y|)−21{|x−y|≤ak−1} (3.6)

when (x − y)z ≥ 0 and |x|, |y| ≤ m. Recall that l0(x, y,u) = g0(x,u) − g0(y,u). Since x �→ g0(x,u) is non-
decreasing, for |x|, |y| ≤ m we get by (3.5) and (2c) that

Dl0(x,y,u)φk(x − y) ≤ ∣∣l0(x, y,u)
∣∣1{|x−y|≤ak−1} ≤ ρm

(|x − y|)2pmfm(u)1{|x−y|≤ak−1}.

Similarly, by (3.6) and (2c) we have

Dl0(x,y,u)φk(x − y) ≤ k−1ρm

(|x − y|)−2
l0(x, y,u)21{|x−y|≤ak−1}

≤ k−1ρm

(|x − y|)4pm−2
fm(u)21{|x−y|≤ak−1}.

Then (3.3) follows immediately. �
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Proposition 3.3. Under the conditions (2b, c) and (2.5), the pathwise uniqueness holds for Eq. (3.1).

Proof. For αm = 2 and pm = 2, the result was essentially proved in Theorem 3.3 of [4] for non-negative solutions. It
follows along the same lines for all solutions. So we here only consider the case of αm < 2 and pm > 1 − 1/αm. By
Lemma 3.2 we get that the sequence {φk} satisfies properties (i)–(iii) in Proposition 3.1. Moreover, for any β > 0 we
can take h = ρm(|x − y|)2β in (3.3) to get∫

U0

Dl0(x,y,u)φk(x − y)μ0(du)

≤ k−1ρm

(|x − y|)2(2pm−1)1{|x−y|≤ak−1}
∫

U0

fm(u)21{fm(u)≤ρm(|x−y|)2β }μ0(du)

+ ρm

(|x − y|)2pm1{|x−y|≤ak−1}
∫

U0

fm(u)1{fm(u)>ρm(|x−y|)2β }μ0(du).

Since limk→∞ ak = 0 and limz→0+ ρ(z) = 0, for αm < α < 2 we use Lemma 2.1 to see∫
U0

Dl0(x,y,u)φk(x − y)μ0(du) ≤ k−1ρm

(|x − y|)2(2pm−1)
ρm

(|x − y|)2β(2−α)1{|x−y|≤ak−1}

+ ρm

(|x − y|)2pmρm

(|x − y|)2β(1−α)1{|x−y|≤ak−1} (3.7)

when k ≥ 1 is sufficiently large. If we can choose β and α in the way that

2(2pm − 1) + 2β(2 − α) > 0 and 2pm + 2β(1 − α) > 0,

the value on the right-hand side of (3.7) will tend to zero as k → ∞. The requirement is equivalent to

1 − 2pm

2 − α
< β <

pm

α − 1
,

which can be done as long as

1 − 2pm

2 − α
<

pm

α − 1

or, equivalently, pm > 1 − 1/α. For that purpose it sufficient to have pm > 1 − 1/αm. This gives property (iv) in
Proposition 3.1 and hence the pathwise uniqueness for (3.1). �

Proposition 3.4. Suppose that condition (2a) holds. Let {x(t)} be a solution of (3.1) with E[x(0)2] < ∞. Then we
have

E
[
1 + sup

0≤s≤t

x(s)2
]

≤ (
1 + 6E

[
x(0)2]) exp

{
6K(4 + t)t

}
. (3.8)

Proof. Let τm = inf{t ≥ 0: |x(t)| ≥ m} for m ≥ 1. Since {x(t)} has càdlàg sample paths, we have τm → ∞ as
m → ∞. Let us rewrite (3.1) into

x(t) = x(0) +
∫ t

0
σ
(
x(s−)

)
dB(s) +

∫ t

0

∫
U0

g0
(
x(s−), u

)
Ñ0(ds,du)

+
∫ t

0
b
(
x(s−)

)
ds +

∫ t

0

∫
U2

g1
(
x(s−), u

)
Ñ1(ds,du)

+
∫ t

0
ds

∫
U2

g1
(
x(s−), u

)
μ1(du).
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By Doob’s martingale inequalities we have

E
[

sup
0≤s≤t

x(s ∧ τm)2
]

≤ 6E
[
x(0)2] + 24E

[∫ t∧τm

0
σ
(
x(s−)

)2 ds

]
+ 6E

[(∫ t∧τm

0

∣∣b(
x(s−)

)∣∣ds

)2]

+ 24E
[∫ t∧τm

0
ds

∫
U0

g0
(
x(s−), u

)2
μ0(du)

]
+ 24E

[∫ t∧τm

0
ds

∫
U2

g1
(
x(s−), u

)2
μ1(du)

]

+ 6E
[(∫ t∧τm

0
ds

∫
U2

∣∣g1
(
x(s−), u

)∣∣μ1(du)

)2]

≤ 6E
[
x(0)2] + 6K(4 + t)E

[∫ t∧τm

0

(
1 + x(s−)2)ds

]
.

Then it is easy to see that

t �→ Fm(t) := E
[

sup
0≤s≤t

x(s ∧ τm)2
]

is locally bounded on [0,∞). Since s �→ x(s) has at most a countable number of jumps, from the above inequality we
obtain

1 + Fm(t) ≤ 1 + 6E
[
x(0)2] + 6K(4 + t)E

[∫ t∧τm

0

(
1 + x(s)2)ds

]

≤ 1 + 6E
[
x(0)2] + 6K(4 + t)

∫ t

0

[
1 + Fm(s)

]
ds.

By Gronwall’s inequality,

E
[
1 + sup

0≤s≤t

x(s ∧ τm)2
]

≤ (
1 + 6E

[
x(0)2]) exp

{
6K(4 + t)t

}
.

Then (3.8) follows by Fatou’s lemma. �

Proof of Theorem 2.2. Step 1: Suppose that conditions (2b, c) and (2.5) hold. Instead of condition (2a), we here
assume there is a constant K ≥ 0 such that

σ(x)2 + b(x)2 + sup
u∈U0

∣∣g0(x,u)
∣∣ +

∫
U0

g0(x,u)2μ0(du)

+
∫

U2

g1(x,u)2μ1(du) +
(∫

U2

∣∣g1(x,u)
∣∣μ1(du)

)2

≤ K, x ∈ R. (3.9)

Let {Vn} be a non-decreasing sequence of Borel subsets of U0 so that
⋃∞

n=1 Vn = U0 and μ0(Vn) < ∞ for every
n ≥ 1. By the result on continuous-type stochastic equations, there is a weak solution to

x(t) = x(0) +
∫ t

0
σ
(
x(s)

)
dB(s) +

∫ t

0
b
(
x(s)

)
ds −

∫ t

0
ds

∫
Vn

g0
(
x(s), u

)
μ0(du); (3.10)

see, e.g., Ikeda and Watanabe [5], p. 169. By Proposition 3.3, the pathwise uniqueness holds for (3.10), thus the
equation has a pathwise unique strong solution. Let {Wn} be a non-decreasing sequence of Borel subsets of U1 so
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that
⋃∞

n=1 Wn = U2 and μ1(Wn) < ∞ for every n ≥ 1. Then for every integer n ≥ 1 there is a unique strong solution
{xn(t): t ≥ 0} to

x(t) = x(0) +
∫ t

0
σ
(
x(s−)

)
dB(s) +

∫ t

0

∫
Vn

g0
(
x(s−), u

)
Ñ0(ds,du)

+
∫ t

0
b
(
x(s−)

)
ds +

∫ t

0

∫
Wn

g1
(
x(s−), u

)
N1(ds,du).

As in the proof of Lemma 4.3 of [4] one can see the sequence {xn(t)} is tight in D([0,∞),R) – the space of càdlàg
functions with the Skorohod topology. Following the proof of Theorem 4.4 of [4] it is easy to show that any limit point
of the sequence is a weak solution to (3.1). This and Proposition 3.3 imply the existence and uniqueness of the strong
solution to (3.1); see, e.g., [7], p. 104.

Step 2: Suppose that the original conditions (2a–c) and (2.5) hold. For each m ≥ 1 let

χm(x) =
{

x if |x| ≤ m,
m if x > m,
−m if x < −m.

We consider the equation

x(t) = x(0) +
∫ t

0
σ
(
χm

(
x(s−)

))
dB(s) +

∫ t

0
bm

(
χm

(
x(s−)

))
ds

+
∫ t

0

∫
U0

χm ◦ g0
(
χm

(
x(s−)

)
, u

)
Ñ0(ds,du) +

∫ t

0

∫
U2

g1
(
χm

(
x(s−)

)
, u

)
N1(ds,du), (3.11)

where

bm(x) = b(x) −
∫

U0

[
g0(x,u) − χm ◦ g0(x,u)

]
μ0(du).

By the first step, there is a unique strong solution to (3.11). Then using Proposition 3.4 one can show as in the proof
of Proposition 2.4 of [4] that there is a pathwise unique strong solution to (3.1). Hence as we have mentioned above,
there is a pathwise unique strong solution to (2.1) (see Proposition 2.2 of [4] and its proof for analogous result). �

Proof of Theorem 2.3. By Proposition 2.1 of [4] and Theorem 2.2 there is a pathwise unique non-negative strong
solution {xm(t)} to the equation

x(t) = x(0) +
∫ t

0
σ
(
χm

(
x(s−) ∨ 0

))
dB(s) +

∫ t

0
b
(
χm

(
x(s−) ∨ 0

))
ds

+
∫ t

0

∫
U0

χm ◦ g0
(
χm

(
x(s−) ∨ 0

)
, u

)
Ñ0(ds,du) +

∫ t

0

∫
U2

χm ◦ g1
(
x(s−) ∨ 0, u

)
N1(ds,du). (3.12)

By Proposition 2.3 of [4] the first moment of {xm(t)} is dominated by a locally bounded function on [0,∞) indepen-
dent of m ≥ 1. Then one can follow the proof of Proposition 2.4 of [4] to show there is a pathwise unique non-negative
strong solution to

x(t) = x(0) +
∫ t

0
σ
(
x(s−) ∨ 0

)
dB(s) +

∫ t

0
b
(
x(s−) ∨ 0

)
ds

+
∫ t

0

∫
U0

g0
((

x(s−) ∨ 0
)
, u

)
Ñ0(ds,du)

+
∫ t

0

∫
U2

g1
(
x(s−) ∨ 0, u

)
N1(ds,du). (3.13)
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Now note that the non-negative solution to (3.13) is also the non-negative solution to (3.1). This and Proposition 3.3
imply that there is a pathwise unique non-negative strong solution to (3.1). This again as in the proof of Theorem 2.2
implies that there is a pathwise unique non-negative strong solution to (2.1). �

Remark 3.5. The above proofs show it is unnecessary to assume the existence of the sequence {Vn} in (4.b) of [4]. As
a consequence, condition (5.b) of [4] is also unnecessary for the results in Section 5 of that paper.

4. Stochastic equations with Lévy noises

In this section, we give some applications of our main results to stochastic equations driven by Lévy processes. Let
(σ, b) be given as in Section 2 and let ν0(dz) and ν1(dz) be σ -finite Borel measures on (0,∞) satisfying∫ ∞

0

(
z ∧ z2)ν0(dz) +

∫ ∞

0
(1 ∧ z)ν1(dz) < ∞.

Let α0 be the constant defined by (2.2) for the measure ν0(dz). In addition, we suppose that:

• x �→ h0(x) is a continuous and non-decreasing function on R;
• x �→ h1(x) is a continuous function on R.

Suppose we have a filtered probability space (Ω,G,Gt ,P) satisfying the usual hypotheses. Let {B(t)} be an (Gt )-
Brownian motion and let {L0(t)} and {L1(t)} be (Gt )-Lévy processes with exponents

u �→
∫ ∞

0

(
eiuz − 1 − iuz

)
ν0(dz) and u �→

∫ ∞

0

(
eiuz − 1

)
ν1(dz),

respectively. Suppose that {B(t)}, {L0(t)} and {L1(t)} are independent of each other. Note that {L0(t)} is centered
and {L1(t)} is non-decreasing. We introduce the conditions:

(4a) There is a constant K ≥ 0 such that∣∣σ(x)
∣∣ + ∣∣b(x)

∣∣ + ∣∣h0(x)
∣∣ + ∣∣h1(x)

∣∣ ≤ K
(
1 + |x|), x ∈ R.

(4b) There exists a non-decreasing and concave function z �→ r(z) on R+ such that
∫

0+ r(z)−1 dz = ∞ and

∣∣b(x) − b(y)
∣∣ + ∣∣h1(x) − h1(y)

∣∣ ≤ r
(|x − y|), x, y ∈ R.

(4c) There is a constant p > 0 and a non-decreasing function z �→ ρ(z) on R+ such that
∫

0+ ρ(z)−2 dz = ∞ and

∣∣σ(x) − σ(y)
∣∣ + ∣∣h0(x) − h0(y)

∣∣1/2p ≤ ρ
(|x − y|), x, y ∈ R.

(4d) σ(0) = h0(0) = 0, b(0) ≥ 0, and h1(x) ≥ 0 for x ∈ R+.
(4e) There is a constant K ≥ 0 such that

b(x) + h1(x) ≤ K(1 + x), x ≥ 0.

Theorem 4.1. (i) If conditions (4a–c) are satisfied with p > 1 − 1/α0, then for any given x(0) ∈ R there is a pathwise
unique strong solution to

dx(t) = σ
(
x(t)

)
dB(t) + h0

(
x(t−)

)
dL0(t) + b

(
x(t)

)
dt + h1

(
x(t−)

)
dL1(t). (4.1)

(ii) If conditions (4b–e) are satisfied with p > 1 − 1/α0, then for any given x(0) ∈ R+ there is a pathwise unique
non-negative strong solution to (4.1).
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Proof. By Lévy–Itô decompositions, the Lévy processes have the following representations

L0(t) =
∫ t

0

∫ 1

0
zÑ0(ds,dz) −

∫ t

0
ds

∫ ∞

1
zν0(dz) +

∫ t

0

∫ ∞

1
zN1

(
ds,dz, {0}),

L1(t) =
∫ t

0

∫ ∞

0
zN1

(
ds,dz, {1}),

where N0(ds,dz) and N1(ds,dz,du) are Poisson random measures with intensities

1{z≤1} ds ν0(dz) and ds
[
1{z>1}ν0(dz)δ0(du) + ν1(dz)δ1(du)

]
,

respectively, and Ñ0(ds,dz) is the compensated measure of N0(ds,dz). Here N0(ds,dz) and N1(ds,dz,du) are inde-
pendent and they are independent of {B(t)}. By applying Theorem 2.2 with

U0 = (0,1], U1 = [
(1,∞) × {0}] ∪ [

(0,∞) × {1}] and U2 = (0,1] × {1},

we see that there is a pathwise unique strong solution to

x(t) = x(0) +
∫ t

0
σ
(
x(s)

)
dB(s) +

∫ t

0

∫ 1

0
h0

(
x(s−)

)
zÑ0(ds,dz)

+
∫ t

0

(
b
(
x(s)

) − h0
(
x(s)

) ∫ ∞

1
zν0(dz)

)
ds

+
∫ t

0

∫
U1

g1
(
x(s−), z, u

)
N1(ds,dz,du),

where

g1(x, z,u) = h0(x)z1{z>1,u=0} + h1(x)z1{u=1}.

However, this is just another form of Eq. (4.1) and hence part (i) of the theorem follows. The proof of part (ii) is
similar. �

Theorem 4.2. Suppose that {B(t)}, {L0(t)} and {L1(t)} are given as the above with ν0(dz) = z−1−α dz for 1 < α < 2.
Then we have:

(i) If conditions (4a–c) are satisfied with p ≥ 1 − 1/α, then for any given x(0) ∈ R there is a pathwise unique
strong solution to (4.1).

(ii) If conditions (4b–e) are satisfied with p ≥ 1 − 1/α, then for any given x(0) ∈ R+ there is a pathwise unique
non-negative strong solution to (4.1).

Proof. Let {ak}, {φk} and {ψk} be defined as before Lemma 3.2 with ρm = ρ. Then we can easily apply Lemma 3.2
to get that {φk} satisfies properties (i)–(iii) in Proposition 3.1. Moreover, using again Lemma 3.2 with μ0(du) =
u−1−α du, pm = p = (α − 1)/α, ρm = ρ and fm(u) = u we can rewrite (3.3) as

∫ ∞

0
Dl0(x,y,u)φk(x − y)μ0(du)

≤ k−1ρ
(|x − y|)4p−2

∫ h

0
u1−α du + ρ

(|x − y|)2p
∫ ∞

h

u−α du

= k−1(2 − α)−1ρ
(|x − y|)4(α−1)/α−2

h2−α + (α − 1)−1ρ
(|x − y|)2(α−1)/α

h1−α.
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Take h = ρ(|x − y|)2/αvk , where vk is a sequence such that vk → ∞ and v2−α
k k−1 → 0. Then one can check that

∫ ∞

0
Dl0(x,y,u)φk(x − y)μ0(du) ≤ k−1(2 − α)−1v2−α

k + (α − 1)−1v1−α
k ,

which tends to zero as k → ∞. Now since all the properties in Proposition 3.1 are satisfied we get the pathwise
uniqueness for (4.1). The existence of the solution follows by a modification of the proof of Theorem 2.2. That gives
part (i) of the theorem. The proof of part (ii) can be given in a similar way. �

Corollary 4.3. Let a ≥ 0, b ≥ 0, c ≥ 0, 1 ≤ r ≤ 2, 1 < α < 2, q ≥ 1 and β be constants. Suppose that {B(t)}, {L0(t)}
and {L1(t)} are given as the above with ν0(dz) = z−1−α dz. If 1/q + 1/α ≥ 1, then for any given x(0) ∈ R+ there is a
pathwise unique strong solution to

dx(t) = r

√
a
∣∣x(t)

∣∣dB(t) + sign
(
x(t−)

)
q

√
c
∣∣x(t−)

∣∣dL0(t) + (
βx(t) + b

)
dt + dL1(t), (4.2)

and this solution is non-negative.

Proof. One can choose ρ(z) = r
√

z and p = 1/q in (4c) and hence by Theorem 4.2, there is a pathwise unique strong
solution to (4.2) which is non-negative. �

In the special case where r = 2 and q = α, the solution of (4.2) is a continuous state branching process with
immigration and the strong existence and uniqueness for (4.2) were obtained in [4].

Remark 4.4. Theorem 1.1 follows immediately from Theorem 4.2.
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