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Abstract. A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers
with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized
version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for
both deterministic and stochastic models.

Résumé. L’évolution d’un système aléatoire de particules est étudiée lorsque la taille des particules croît par coagulation binaire,
chaque réaction de coagulation impliquant nécessairement une particule de taille minimale. Nous montrons qu’une version re-
normalisée du processus stochastique associé converge vers une limite déterministe et étudions l’évolution temporelle de la taille
minimale pour les modèles stochastique et déterministe.
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1. Introduction

Coagulation models describe the evolution of a population of particles increasing their sizes by successive binary
mergers, the state of each particle being fully determined by its size. Well-known examples of such models are the
Smoluchowski coagulation equation [21,22] and its stochastic counterpart, the Marcus–Lushnikov process [16,17],
and both have been extensively studied in recent years (see [1,3,13,15,20,23] and the references therein). Another
class of coagulation models has also received some interest, the main feature of these models being that the particles
with the smallest size play a more important role than the others. A first example are the Becker–Döring equations:
in that case, the (normalized) sizes of the particles range in the set of positive integers and a particle can only modify
its size by gaining or shedding a particle with unit size [2]. Another example are min-driven coagulation equations:
given a positive integer k, at each step of the process, a particle with the smallest size � is chosen and broken into k

daughter particles with size �/k, which are then pasted to other particles chosen at random in the population with
equal probability [7]. Another model may be described as follows: at each step, an integer k ≥ 1 is chosen randomly
according to some probability pk and one particle with the smallest size � and k other particles are chosen at random
and merged into a single particle [4,9,18].

In this paper, we focus on the min-driven coagulation equation introduced in [7] with k = 1 (that is, there is no
break-up of the particle of minimal size) but relax the assumption of deposition with equal probability. More specifi-
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cally, the coalescence mechanism we are interested in is the following: consider an initial configuration X = (Xi)i≥1
of particles, Xi denoting the number of particles of size i ≥ 1, and define the minimal size �X of X as the smallest
integer i ≥ 1 for which Xi > 0 (that is, X�X

> 0 and Xi = 0 for i ∈ {1, . . . , �X − 1} if �X > 1). We pick a particle of
size �X , choose at random another particle of size j ≥ �X according to a certain law, and merge the two particles to
form a particle of size �X + j . The system of particles thus jumps from the state X to the state Y = (Yi)i≥1 given by
Yk = Xk if k /∈ {�X, j, �X + j} and

Y�X
= X�X

− 1, Yj = Xj − 1, Y�X+j = X�X+j + 1 if j > �X,

Y�X
= X�X

− 2, Y2�X
= X2�X

+ 1 if j = �X.

Observe that no matter is lost during this event. It remains to specify the probability for this jump to take place: instead
of assuming it to be uniform and independent of the sizes of the particles involved in the coalescence event as in [7],
we consider the more general case where the jump from the state X to the state Y occurs at a rate K(�X, j), the
coagulation kernel K(i, j) being a positive function defined for 1 ≤ i ≤ j .

A more precise description of the stochastic process is to be found in the next section, where a renormalized version
of this process is also introduced. We will show that, as the number of initial particles becomes large, the renormalized
process converges to a deterministic limit which solves a countably infinite system of ordinary differential equations
(Theorem 1.3). The convergence holds true provided the coagulation kernel K(i, j) does not increase too fast as
i, j → ∞, a typical example being

K(i, j) = φ(i), 1 ≤ i ≤ j, for some positive and non-decreasing function φ. (1.1)

Well-posedness of the system solved by the deterministic limit is also investigated (Theorem 1.1) and reveals an
interesting phenomenon, namely the possibility that the minimal size becomes infinite in finite time according to the
growth of K (Theorem 1.4). Such a property also shows up for the stochastic min-driven coagulation process in a
suitable sense (Theorem 1.5). It is worth pointing out that coagulation kernels K of the form (1.1) play a special role
here.

1.1. The stochastic min-driven coagulation process

We now describe more precisely the stochastic min-driven coagulation process to be studied in this paper. It is some-
how reminiscent of the Marcus–Lushnikov process [16,17] (which is related to the Smoluchowski coagulation equa-
tion). As in this process, two particles are chosen at random according to a certain law and merged but there is
here an additional constraint; namely, one of the particles involved in the coalescence event has to be of minimal
size among all particles in the system. To be more precise, we fix some positive integer N and an initial condition
XN

0 = (XN
i,0)i≥1 ∈ �1

N
such that

∞∑
i=1

iXN
i,0 = N, (1.2)

where XN
i,0 is the number of particles of size i ≥ 1 and �1

N
denotes the space of summable non-negative and integer-

valued sequences

�1
N

:= {
X0 = (Xi,0)i≥1 ∈ �1(

N \ {0}): Xi,0 ∈ N for all i ≥ 1
}
. (1.3)

We next consider a time-dependent random variable XN(t) = (XN
i (t))i≥1 which encodes the state of the process

at time t starting from the configuration XN
0 , its ith-component XN

i (t) standing for the number of particles of size
i ≥ 1 at time t ≥ 0. We assume that XN(0) = XN

0 , so that N is equal to the total mass initially present in the system.
The process (XN(t))t≥0 evolves then as a Markov process with the following transition rules: if, at a time t , the process
is in the state XN(t) = X = (Xi)i≥1 with minimal size �X ≥ 1 (that is, X�X

> 0 and Xi = 0 for 1 ≤ i ≤ �X − 1 if
�X > 1), then each particle present, of size j ≥ �X say, coagulates at rate K(�X, j) with another particle chosen
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(randomly) from the set of particles of minimal size �X . Mathematically, this means that the process jumps from the
state XN(t) = X to a state of the form

Y = (0, . . . ,0,X�X
− 1,X�X+1, . . . ,Xj − 1, . . . ,X�X+j + 1, . . .) with rate K(�X, j)Xj

for some j > �X or to the state

Z = (0, . . . ,0,X�X
− 2,X�X+1, . . . ,X2�X

+ 1, . . .) with rate K(�X, �X)(X�X
− 1).

Equivalently, this means that the process waits an exponential time of parameter

λX :=
( ∞∑

j=�X

K(�X, j)Xj

)
− K(�X, �X)

and then jumps to the state Y with probability K(�X, j)Xj/λX for j > �X and to the state Z with probability
K(�X, �X)(X�X

− 1)/λX . Observe that, as X�X
could be equal to 1 or 2, there might be no particle of size �X af-

ter this jump and the minimal size thus increases. In addition, we obviously have

∞∑
i=1

iYi =
∞∑
i=1

iZi =
∞∑
i=1

iXi,

so that the total mass contained in the system of particles does not change during the jumps. Consequently,

∞∑
i=1

iXN
i (t) =

∞∑
i=1

iXN
i,0 = N for all t ≥ 0. (1.4)

As already mentioned, one aim of this paper is to prove that, under some assumptions on the coagulation kernel K

and the initial data (XN
0 )N≥1, a suitably renormalized version of the stochastic process converges to a deterministic

limit as N tends to infinity. More precisely, we introduce X̃N := XN/N and, for further use, list some properties of
this process. By the above construction, the generator LN = (LN

k )k≥1 of this renormalized process has the form

(
LN

k f
)
(ξ) = N

( ∞∑
j=�ξ

K(�ξ , j)ξj

[
fk

(
ξ + e�ξ +j

N
− e�ξ

N
− ej

N

)
− fk(ξ)

])

− K(�ξ , �ξ )

[
fk

(
ξ + e2�ξ

N
− 2

e�ξ

N

)
− fk(ξ)

]
, (1.5)

where f = (fk)k≥1 :�1(N \ {0}) → �1(N \ {0}) and (ei )i≥1 denotes the canonical basis of �1(N \ {0}). Moreover, the
quadratic variation QN = (QN

k )k≥1 of the martingale

f
(
X̃N(t)

) −
∫ t

0

(
LNf

)(
X̃N(s)

)
ds

is

(
QN

k f
)
(ξ) = N

( ∞∑
j=�ξ

K(�ξ , j)ξj

[
fk

(
ξ + e�ξ +j

N
− e�ξ

N
− ej

N

)
− fk(ξ)

]2
)

− K(�ξ , �ξ )

[
fk

(
ξ + e2�ξ

N
− 2e�ξ

N

)
− fk(ξ)

]2

. (1.6)
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Let β̃(ξ) be the drift of the process X̃N when it is in state ξ , so that

β̃(ξ) :=
∑
ξ ′ �=ξ

q
(
ξ, ξ ′)(ξ ′ − ξ

)
,

where q(ξ, ξ ′) is the jump rate from ξ to ξ ′. Taking f = id in (1.5) leads to the following formula for the drift⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̃j (ξ) := 0 if 1 ≤ j ≤ �ξ − 1,

β̃�ξ (ξ) := −∑∞
j=�ξ +1 K(�ξ , j)ξj − 2K(�ξ , �ξ )ξ�ξ + 2

N
K(�ξ , �ξ ),

β̃j (ξ) := K(�ξ , j − �ξ )ξj−�ξ − K(�ξ , j)ξj if j ≥ �ξ + 1, j �= 2�ξ ,

β̃2�ξ (ξ) := K(�ξ , �ξ )
(
ξ�ξ − 1

N

) − K(�ξ ,2�ξ )ξ2�ξ .

(1.7)

Here and below, we set K(i, j) = 0 for i > j ≥ 1. We also define

α̃(ξ) :=
∑
ξ ′ �=ξ

q
(
ξ, ξ ′)∥∥ξ ′ − ξ

∥∥2
2 =

∞∑
j=1

∑
ξ ′ �=ξ

q(ξ, ξ ′)
∣∣ξ ′

j − ξj

∣∣2
. (1.8)

Then

α̃(ξ) =
∞∑

j=1

α̃j (ξ),

where α̃j is obtained by taking f (ξ) = ξj ej in (1.6), so that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α̃j (ξ) := 0 if 1 ≤ j ≤ �ξ − 1,

α̃�ξ (ξ) := 1
N

∑∞
j=�ξ +1 K(�ξ , j)ξj + 4

N
K(�ξ , �ξ )ξ�ξ − 4

N2 K(�ξ , �ξ ),

α̃j (ξ) := 1
N

K(�ξ , j − �ξ )ξj−�ξ + 1
N

K(�ξ , j)ξj if j ≥ �ξ + 1, j �= 2�ξ ,

α̃2�ξ (ξ) := 1
N

K(�ξ , �ξ )
(
ξ�ξ − 1

N

) + 1
N

K(�ξ ,2�ξ )ξ2�ξ .

(1.9)

1.2. Main results

For p ∈ [1,∞), let �p be the Banach space of p-summable real-valued sequences

�p :=
{

x = (xi)i≥1: ‖x‖p :=
( ∞∑

i=1

|xi |p
)1/p

< ∞
}

.

We next define the space X1,1 of real-valued sequences with finite first moment by

X1,1 :=
{

x = (xi)i≥1: ‖x‖1,1 :=
∞∑
i=1

i|xi | < ∞
}

, (1.10)

which is a Banach space for the norm ‖ · ‖1,1, and its positive cone

X +
1,1 := {

x = (xi)i≥1 ∈ X1,1: xi ≥ 0 for i ≥ 1
}
.

For m ≥ 2, let X1,m be the subspace of X1,1 of sequences having their m − 1 first components equal to zero, namely

X1,m := {
x = (xi)i≥1 ∈ X1,1: xi = 0 for i ∈ {1, . . . ,m − 1}}, (1.11)

and X +
1,m := X1,m ∩ X +

1,1.
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We assume that there is κ > 0 such that

0 ≤ K(i, j) ≤ κij, 1 ≤ i ≤ j, and δi := inf
j≥i

{
K(i, j)

}
> 0 for i ≥ 1. (1.12)

Next, for i ≥ 1, we define the function b(i) = (b
(i)
j )j≥1 on X1,1 by

⎧⎪⎪⎨
⎪⎪⎩

b
(i)
j (x) := 0 if 1 ≤ j ≤ i − 1,

b
(i)
i (x) := −2K(i, i)xi − ∑∞

j=i+1 K(i, j)xj ,

b
(i)
j (x) := K(i, j − i)xj−i − K(i, j)xj if j ≥ i + 1,

(1.13)

recalling that we have set K(i, j) = 0 for i > j ≥ 1. Let us point out here that b(i)(x) is closely related to the drift
β̃(x) defined by (1.7) for x ∈ X1,i .

Consider an initial condition x0 = (xi,0)i≥1 such that

x0 ∈ X +
1,1 with x1,0 > 0 and ‖x0‖1,1 = 1. (1.14)

Theorem 1.1. Assume that the coagulation kernel K and the initial condition x0 satisfy (1.12) and (1.14), respectively.
There is a unique pair of functions (�, x) having the following properties:

(i) There is an increasing sequence of times (ti)i≥0 with t0 = 0 such that

�(t) := i for t ∈ [ti−1, ti) and i ≥ 1.

We define

t∞ := sup
i≥0

ti = lim
i→∞ ti ∈ (0,∞]. (1.15)

(ii) x = (xi)i≥1 ∈ C([0, t∞); X1,1) satisfies x(0) = x0,

x(t) ∈ X +
1,�(t) \ X1,�(t)+1 for t ∈ [0, t∞), (1.16)

and solves

dx

dt
(t) = b(�(t))

(
x(t)

)
for t ∈ [0, t∞) \ {ti : i ≥ 0}. (1.17)

In addition,

xj (t) > 0 for t ∈ (ti−1, ti] and j ≥ i + 1 (1.18)

and ∥∥x(t)
∥∥

1,1 = ‖x0‖1,1 = 1 for t ∈ [0, t∞). (1.19)

In other words, for each i ≥ 1, x(t) ∈ X +
1,i and xi(t) > 0 for t ∈ [ti−1, ti) and dx(t)/dt = b(i)(x(t)) for t ∈ (ti−1, ti ).

Given t ∈ [0, t∞), Theorem 1.1 asserts that x(t) ∈ X +
1,�(t) with x�(t)(t) > 0, so that �(t) is the minimal size of the

particles at time t .

Remark 1.2. The assumption ‖x0‖1,1 = 1 is actually not restrictive: indeed, given x̄0 ∈ X +
1,1 such that x̄1,0 > 0, the

initial condition x0 = x̄0/‖x̄0‖1,1 satisfies (1.14). If x denotes the corresponding solution to (1.17) with minimal size �

and x̄ := ‖x̄0‖1,1x, it is straightforward to check that the pair (�, x̄) satisfies all the requirements of Theorem 1.1
except (1.19) which has to be replaced by ‖x̄(t)‖1,1 = ‖x̄0‖1,1 for t ∈ [0, t∞).
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We now turn to the connection between the deterministic and stochastic models and establish the following con-
vergence result.

Theorem 1.3. Let K and x0 be a coagulation kernel and a deterministic initial condition satisfying (1.12) and (1.14),
respectively. Consider a sequence (XN

0 )N≥1 of stochastic initial configurations in �1
N

satisfying (1.2) which are close
to x0 in the following sense:

P

(∥∥∥∥ 1

N
XN

0 − x0

∥∥∥∥
1
>

1

N1/4

)
≤ 1

N1/4
. (1.20)

Assume further that, for any i ≥ 0, there is κi > 0 such that

K(i, j) ≤ κi, j ≥ i, and κ∞ := sup

{
κi

i

}
< ∞. (1.21)

Let x be the corresponding solution to (1.17) with maximal existence time t∞ defined by (1.15) and, for N ≥ 1, let
XN be the Markov process starting from XN

0 defined in Section 1.1. Then for all t ∈ (0, t∞) there exist constants
C(t),D(t) > 0 such that for N large enough:

P

(
sup

0≤s≤t

∥∥∥∥ 1

N
XN(s) − x(s)

∥∥∥∥
1
≥ D(t)

N1/4

)
≤ C(t)

N1/4
.

We next turn to the lifespan of the deterministic and stochastic min-driven coagulation models and investigate the
possible values of t∞ as well as the behaviour of the time T X0 after which the stochastic min-driven coagulation
process X starting from X0 ∈ �1

N
(�1

N
being defined in (1.3)) no longer evolves, that is,

T X0 := inf
{
t ≥ 0:

∥∥X(t)
∥∥

1 = 1
}
. (1.22)

We first establish conditions on the growth of the coagulation kernel K which ensure that t∞ is finite or infinite. Note
that, in the former case, this means that the minimal size � blows up in finite time.

Theorem 1.4. Consider an initial condition x0 satisfying (1.14) and let x be the corresponding solution to the min-
driven coagulation equations given in Theorem 1.1 defined on [0, t∞), t∞ being defined in (1.15):

(i) If K(i, j) ≤ ln(i + 1)/(4A0) for 1 ≤ i ≤ j and some A0 > 0 then t∞ = ∞.
(ii) If K(i, j) ≥ a0(ln(i + 1))1+α for 1 ≤ i ≤ j and some a0 > 0 and α > 0, then t∞ < ∞.

A more precise result is available for the stochastic min-driven coagulation process under a stronger structural
assumption on the coagulation kernel.

Theorem 1.5. Assume that the coagulation kernel K is of the form

K(i, j) = φ(i), 1 ≤ i ≤ j, where φ is a positive increasing function. (1.23)

Then

sup
X0∈�1

N

E
(
T X0

)
< ∞ if and only if

∞∑
i=1

1

iφ(i)
< ∞,

the space �1
N

being defined in (1.3).
More precisely, when the series

∑
1/(iφ(i)) diverges, we have

T ne1 −→
n→∞∞ in probability,

where ne1 denotes the initial configuration with n particles of size 1.
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The above two results provide conditions on the coagulation kernel K which guarantee that, in a finite time, some
mass escapes to infinity, or forms a giant particle, of the order of the system. This is the behaviour known as gelation
for the Smoluchowski coagulation equation and the Marcus–Lushnikov process, and is known to occur when the
coagulation kernel K satisfies K(i, j) ≥ c(ij)λ/2 for some λ ∈ (1,2] [8,10]. We observe that the growth required on
the coagulation kernel is much weaker for the min-driven coagulation models. In fact the behaviour we have shown is
more extreme than gelation, in that all the mass goes to infinity or joins the giant particle. A similar phenomenon has
been called complete gelation in the context of the Marcus–Lushnikov process, and is known to occur instantaneously,
as N → ∞, whenever K(i, j) ≥ ij (log(i + 1) log(j + 1))α and α > 1 [11].

2. The deterministic min-driven coagulation equation

In this section, we investigate the well-posedness of the min-driven coagulation equation (1.17). It is clearly an infinite
system of ordinary differential equations which is linear on the time intervals where the minimal size � is constant. We
will thus first study the well-posedness for this reduced system, assuming initially that the coefficients are bounded,
in order to be able to apply the Cauchy–Lipschitz theorem and relaxing this assumption afterwards by a compactness
method. We also pay attention to the vanishing time of the first component which was initially positive. The proof of
Theorem 1.1 is then performed by an induction argument.

2.1. An auxiliary infinite system of differential equations

Consider i ≥ 1 and a sequence (aj )j≥1 of real numbers satisfying

aj = 0, j < i, and 0 < aj ≤ Aj, j ≥ i, (2.1)

for some A > 0. We define the function F = (Fj )j≥1 on X1,1 by⎧⎨
⎩

Fj (y) := 0 if 1 ≤ j ≤ i − 1,

Fi(y) := −aiyi − ∑∞
j=i aj yj ,

Fj (y) := aj−iyj−i − ajyj if j ≥ i + 1
(2.2)

for y ∈ X1,1. Note that (2.1) ensures that F(y) ∈ �1 for y ∈ X1,1 and that F(y) ∈ X1,i .

Proposition 2.1. Consider a sequence (aj )j≥1 satisfying (2.1) and an initial condition y0 = (yj,0)j≥1 ∈ X1,i . There
is a unique solution y ∈ C([0,∞); X1,i ) to the Cauchy problem

dy

dt
= F(y), y(0) = y0. (2.3)

Moreover, for each t > 0, y and dy/dt belong to L∞(0, t; X1,i ) and L∞(0, t;�1), respectively, and

∞∑
j=i

jyj (t) =
∞∑

j=i

jyj,0. (2.4)

We first consider the case of a bounded sequence (aj )j≥1.

Lemma 2.2. Consider a sequence (aj )j≥1 satisfying

aj = 0, j < i, and 0 < aj ≤ A0, j ≥ i, (2.5)

for some A0 > 0 and an initial condition y0 = (yj,0)j≥1 ∈ X1,i . Then there is a unique solution y ∈ C([0,∞); X1,i )

to the Cauchy problem (2.3) and

∞∑
j=i

jyj (t) =
∞∑

j=i

jyj,0, t ≥ 0. (2.6)
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Proof. It readily follows from (2.2) and (2.5) that, given y ∈ X1,i and ŷ ∈ X1,i , we have∥∥F(y) − F(ŷ)
∥∥

1,1 ≤ 4A0‖y − ŷ‖1,1, (2.7)

while the first i − 1 components of F(y) vanish. Therefore, F is a Lipschitz continuous map from X1,i to X1,i and
the Cauchy–Lipschitz theorem guarantees the existence and uniqueness of a solution y ∈ C([0,∞); X1,i ) to (2.3).

Next, let (gj )j≥1 be a sequence of real numbers satisfying 0 ≤ gj ≤ Gj for j ≥ 1 and some G > 0. We deduce
from (2.3), (2.5) and the summability properties of y that

d

dt

∞∑
j=i

gj yj (t) =
∞∑

j=i

(gi+j − gi − gj )aj yj (t), t ≥ 0. (2.8)

In particular, the choice gj = j , j ≥ 1, gives (2.6). �

Proof of Proposition 2.1. For m ≥ 1 and j ≥ 1, we put am
j := aj ∧ m. Since the sequence (am

j )j≥1 is bounded, it
follows from Lemma 2.2 that there is a unique solution ym = (ym

j )j≥1 ∈ C([0,∞); X1,i ) to the Cauchy problem

dym
i

dt
= −am

i ym
i −

∞∑
j=i

am
j ym

j , (2.9)

dym
j

dt
= am

j−iy
m
j−i − am

j ym
j , j ≥ i + 1, (2.10)

with initial condition ym(0) = y0. Introducing σm
j := sign(ym

j ), we infer from (2.1), (2.9) and (2.10) that

d

dt

∥∥ym
∥∥

1,1 =
∞∑

j=i

jσm
j

dym
j

dt

= −iam
i

∣∣ym
i

∣∣ −
∞∑

j=i

iam
j σm

i ym
j +

∞∑
j=2i

jam
j−iσ

m
j ym

j−i −
∞∑

j=i+1

jam
j

∣∣ym
j

∣∣

=
∞∑

j=i

(
(i + j)σm

i+j σ
m
j − iσm

i σm
j − j

)
am
j

∣∣ym
j

∣∣

≤ 2i

∞∑
j=i

am
j

∣∣ym
j

∣∣ ≤ 2Ai
∥∥ym

∥∥
1,1,

hence∥∥ym(t)
∥∥

1,1 ≤ ‖y0‖1,1e2Ait , t ≥ 0. (2.11)

It next readily follows from (2.1), (2.9) and (2.10) that∣∣∣∣dym
i

dt

∣∣∣∣ ≤ Ai
∣∣ym

i

∣∣ + A
∥∥ym

∥∥
1,1,∣∣∣∣dym

j

dt

∣∣∣∣ ≤ A(j − i)
∣∣ym

j−i

∣∣ + Aj
∣∣ym

j

∣∣, j ≥ i + 1,

and thus

∞∑
j=i

∣∣∣∣dym
j

dt
(t)

∣∣∣∣ ≤ 3A
∥∥ym(t)

∥∥
1,1 ≤ 3A‖y0‖1,1e2Ait , t ≥ 0, (2.12)
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by (2.11).
Now, for all j ≥ 1 and T > 0, the sequence of functions (ym

j )N≥1 is bounded in W 1,∞(0, T ) by (2.11) and (2.12)
and thus relatively compact in C([0, T ]) by the Arzelà–Ascoli theorem. Consequently, there is a subsequence (mk)k≥1,
mk → ∞, and there is a sequence of functions y = (yj )j≥1 such that

lim
k→∞ sup

t∈[0,T ]
∣∣ymk

j (t) − yj (t)
∣∣ = 0 for j ≥ 1 and T > 0. (2.13)

If j ≥ i + 1, it is straightforward to deduce from (2.10) and (2.13) that yj actually belongs to C 1([0,∞)) and solves

dyj

dt
= aj−iyj−i − ajyj , yj (0) = yj,0. (2.14)

In addition, (2.11) and (2.13) imply that y(t) ∈ X1,i for all t ≥ 0 and satisfies∥∥y(t)
∥∥

1,1 ≤ ‖y0‖1,1e2Ait , t ≥ 0. (2.15)

Passing to the limit in (2.9) is more difficult because of the infinite series on the right. For that purpose, we need an
additional estimate to control the tail of the series which we derive now: we first recall that, since y0 ∈ X1,1, a refined
version of de la Vallée–Poussin’s theorem ensures that there is a non-negative and non-decreasing convex function
ζ ∈ C∞([0,∞)) such that ζ(0) = 0, ζ ′ is a concave function,

lim
r→∞

ζ(r)

r
= ∞ and

∞∑
j=i

ζ(j)|yj,0| < ∞, (2.16)

see [6,14]. We infer from (2.1), (2.9), (2.10) and the properties of ζ that

d

dt

∞∑
j=i

ζ(j)
∣∣ym

j

∣∣ =
∞∑
j=i

(
ζ(i + j) sign

(
ym
i+j

)
sign

(
ym
j

) − ζ(i) sign
(
ym
i

)
sign

(
ym
j

) − ζ(j)
)
am
j

∣∣ym
j

∣∣

≤
∞∑
j=i

(
ζ(i + j) + ζ(i) − ζ(j)

)
am
j

∣∣ym
j

∣∣

≤
∞∑
j=i

(∫ j

0

∫ i

0
ζ ′′(r + s)ds dr + 2ζ(i)

)
am
j

∣∣ym
j

∣∣

≤
∞∑
j=i

(∫ j

0
iζ ′′(r)dr + 2ζ(i)

)
am
j

∣∣ym
j

∣∣

≤
∞∑
j=i

(
iζ ′(j) + 2ζ(i)

)
am
j

∣∣ym
j

∣∣

≤ 2Aζ(i)
∥∥ym

∥∥
1,1 + Ai

∞∑
j=i

jζ ′(j)
∣∣ym

j

∣∣.
By the concavity of ζ ′, we have jζ ′(j) ≤ 2ζ(j) for j ≥ 1, see Lemma A.1 in [12]. Inserting this estimate in the
previous inequality and using (2.11), we end up with

d

dt

∞∑
j=i

ζ(j)
∣∣ym

j (t)
∣∣ ≤ 2Ai

∞∑
j=i

ζ(j)
∣∣ym

j (t)
∣∣ + 2Aζ(i)‖y0‖1,1e2Ait , t ≥ 0,
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and thus

∞∑
j=i

ζ(j)
∣∣ym

j (t)
∣∣ ≤

( ∞∑
j=i

ζ(j)|yj,0| + 2Aζ(i)‖y0‖1,1t

)
e2Ait , t ≥ 0, (2.17)

the right-hand side of (2.17) being finite by (2.16). It first follows from (2.13) and (2.17) by Fatou’s lemma that

∞∑
j=i

ζ(j)
∣∣yj (t)

∣∣ ≤
( ∞∑

j=i

ζ(j)|yj,0| + 2Aζ(i)‖y0‖1,1t

)
e2Ait , t ≥ 0. (2.18)

Notice next that, thanks to the superlinearity (2.16) of ζ , the estimates (2.17) and (2.18) provide us with a control of
the tail of the series

∑
jym

j and
∑

jyj which does not depend on m. More precisely, we infer from (2.17), (2.18) and
the convexity of ζ that, for T > 0, t ∈ [0, T ], and J ≥ 2i,

∥∥(
ymk − y

)
(t)

∥∥
1,1 ≤

J−1∑
j=i

j
∣∣(ymk

j − yj

)
(t)

∣∣ +
∞∑

j=J

j
(∣∣ymk

j (t)
∣∣ + ∣∣yj (t)

∣∣)

≤
J−1∑
j=i

j
∣∣(ymk

j − yj

)
(t)

∣∣ + J

ζ(J )

∞∑
j=J

ζ(j)
(∣∣ymk

j (t)
∣∣ + ∣∣yj (t)

∣∣)

≤
J−1∑
j=i

j
∣∣(ymk

j − yj

)
(t)

∣∣ + 2J

ζ(J )

( ∞∑
j=i

ζ(j)|yj,0| + 2Aζ(i)‖y0‖1,1T

)
e2AiT .

By (2.13), we may pass to the limit as k → ∞ in the preceding inequality to deduce that

lim sup
k→∞

sup
t∈[0,T ]

∥∥(
ymk − y

)
(t)

∥∥
1,1 ≤ 2J

ζ(J )

( ∞∑
j=i

ζ(j)|yj,0| + 2Aζ(i)‖y0‖1,1T

)
e2AiT .

We next use (2.16) to let J → ∞ and conclude that

lim
k→∞ sup

t∈[0,T ]

∥∥(
ymk − y

)
(t)

∥∥
1,1 = 0. (2.19)

Recalling (2.1), it is straightforward to deduce from (2.19) that

lim
k→∞ sup

t∈[0,T ]

∣∣∣∣∣
∞∑

j=i

a
mk

j y
mk

j (t) −
∞∑
j=i

aj yj (t)

∣∣∣∣∣ = 0

for all T > 0, from which we conclude that yi belongs to C 1([0,∞)) and solves

dyi

dt
= −aiyi −

∞∑
j=i

aj yj , yi(0) = yi,0. (2.20)

Another consequence of (2.19) is that y ∈ C([0,∞); X1,i ) and is thus locally bounded in X1,1. This property in turn
provides the boundedness of dy/dt in �1, the proof being similar to that of (2.12). We finally use once more (2.19) to
deduce from (2.6) (satisfied by ymk thanks to Lemma 2.2) that (2.4) holds true. We have thus established the existence
part of Proposition 2.1.

As for uniqueness, if y and ŷ are two solutions to the Cauchy problem (2.3), a computation similar to that leading
to (2.11) gives ‖y(t) − ŷ(t)‖1,1 ≤ ‖y(0) − ŷ(0)‖1,1e2Ait = 0 for t ≥ 0. Consequently, y = ŷ and the uniqueness
assertion of Proposition 2.1 is proved. �
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Remark 2.3. In fact, the derivation of (2.17) is formal as the series
∑

ζ(j)ym
j is not known to converge a priori

(recall that ζ(j) is superlinear by (2.16)). It can be justified rigorously by using classical truncation arguments. More
specifically, for R ≥ 1, define ζR(r) = ζ(r) for r ∈ [0,R] and ζR(r) = ζ(R) + ζ ′(R)(r − R) for r ≥ R. Then ζR

enjoys the same properties as ζ and the sequence (ζR(j))j≥1 grows linearly with respect to j . We can then use (2.8)
to perform a similar computation to the one above leading to (2.17) and obtain a bound on

∑
ζR(j)ym

j which depends
neither on R nor on m. The desired result then follows by letting R → ∞ with the help of Fatou’s lemma.

We now turn to specific properties of solutions to (2.3) when y0 ∈ X +
1,i .

Proposition 2.4. Consider a sequence (aj )j≥1 satisfying (2.1), an initial condition y0 = (yj,0)j≥1 ∈ X1,i such that

y0 ∈ X +
1,i and yi,0 > 0, (2.21)

and let y be the corresponding solution to the Cauchy problem (2.3). There exist t∗ ∈ (0,∞] and t∗,1 ∈ [t∗,∞] such
that

yi(t) > 0 for t ∈ [0, t∗) and yi(t∗) = 0, (2.22)

yki(t) > 0 for t ∈ (0, t∗) and k ≥ 2, (2.23)

yj (t) ≥ 0 for t ∈ [0, t∗) and j ≥ i + 1, (2.24)

yj (t) > 0 for t ∈ [0, t∗) if j ≥ i + 1 and yj,0 > 0, (2.25)

dyi

dt
(t) < 0 for t ∈ [0, t∗,1) (2.26)

and ∥∥y(t)
∥∥

1,1 = ‖y0‖1,1 for t ∈ [0, t∗). (2.27)

If t∗ < ∞, then t∗,1 > t∗ and the properties (2.23)–(2.25) and (2.27) hold true also for t = t∗.

Proof. We define

t∗ := sup
{
t > 0: yi(s) > 0 for s ∈ [0, t)

}
,

and first notice that t∗ > 0 due to the continuity of yi and the positivity (2.21) of yi,0. Clearly, yi satisfies (2.22).
Consider next j ∈ {i+1, . . . ,2i−1} (if this set is non-empty). Since y(t) ∈ X1,i for t ≥ 0, it follows from (2.3) that,

for t ∈ [0, t∗), dyj (t)/dt = −ajyj (t) and thus yj (t) = yj,0e−aj t ≥ 0. We next deduce from (2.3) that, for t ∈ [0, t∗),
dy2i (t)/dt = aiyi(t) − a2iy2i (t) ≥ −a2iy2i (t), whence y2i (t) ≥ y2i,0e−a2i t ≥ 0. We next argue in a similar way to
prove by induction that yj (t) ≥ 0 for t ∈ [0, t∗) so that y satisfies (2.24).

We now improve the positivity properties of y and prove (2.23) and (2.25). Consider first j ≥ i + 1 for which
yj,0 > 0. By (2.3) and (2.24), we have dyj (t)/dt = aj−iyj−i (t) − ajyj (t) ≥ −ajyj (t) for t ∈ [0, t∗), whence yj (t) ≥
yj,0e−aj t > 0 and (2.25). To prove (2.23), we argue by contradiction and assume that there are k ≥ 2 and t0 ∈ (0, t∗)
(or t0 ∈ (0, t∗] if t∗ < ∞) such that yki(t0) = 0. We infer from (2.3) and the variation of constants formula that

0 = yki(t0) = e−aki t0yki,0 + a(k−1)i

∫ t0

0
e−aki (t0−s)y(k−1)i (s)ds.

The non-negativity of yki,0 and y(k−1)i and the continuity of y(k−1)i then imply that yki,0 = 0 and y(k−1)i (t) = 0 for
t ∈ [0, t0]. At this point, either k = 2 and we have a contradiction with (2.22), or k > 2 and we proceed by induction
to show that yli(t) = 0 for t ∈ [0, t0] and l ∈ {1, . . . , k}, again leading us to a contradiction with (2.22).

The property (2.26) now follows from (2.1) and (2.23): indeed, by (2.3) we have

dyi

dt
(t) = −aiyi(t) −

∞∑
j=i

aj yj (t) ≤ −a2iy2i (t) < 0
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for t ∈ [0, t∗) (and also for t = t∗ if t∗ < ∞) so that

t∗,1 := sup

{
t > 0:

dyi

dt
(s) < 0 for s ∈ [0, t)

}
≥ t∗,

and t∗,1 > t∗ if t∗ < ∞.
Finally, since y(t) belongs to X +

1,i for t ∈ [0, t∗), (2.27) readily follows from (2.4). �

We next study of the finiteness of the time t∗ defined in Proposition 2.4.

Proposition 2.5. Consider a sequence (aj )j≥1 satisfying (2.1), an initial condition y0 = (yj,0)j≥1 ∈ X1,i satisfying
(2.21) and let y be the corresponding solution to the Cauchy problem (2.3). Assume further that there is δ0 > 0 such
that

0 < δ0 ≤ aj , j ≥ i. (2.28)

If t∗ ∈ (0,∞] denotes the time introduced in Proposition 2.4, then t∗ ∈ (0,∞).

Proof. For t ≥ 0, we put

M0(t) :=
∞∑
j=i

yj (t) and M−1(t) :=
∞∑

j=i

yj (t)

j
.

By (2.22), M0(t) > 0 for t ∈ [0, t∗) and it follows from (2.8) that

d

dt

(
M−1

M0

)
= 1

M0

∞∑
j=i

(
1

i + j
− 1

i
− 1

j

)
ajyj + M−1

M2
0

∞∑
j=i

aj yj

= 1

M0

∞∑
j=i

(
1

i + j
− 1

j
+ M−1

M0
− 1

i

)
ajyj .

Observing that

1

i + j
≤ 1

j
and

M−1

M0
≤ 1

i
,

we infer from (2.28) that

d

dt

(
M−1

M0

)
≤ δ0

M0

∞∑
j=i

(
1

i + j
− 1

j
+ M−1

M0
− 1

i

)
yj

≤ δ0

M0

( ∞∑
j=i

(
1

i + j
− 1

i

)
yj − M−1 + M−1

M0
M0

)

≤ − δ0

M0

∞∑
j=i

j

i(i + j)
yj ≤ − δ0

2iM0

∞∑
j=i

yj ≤ −δ0

2i
.

Consequently, we have

0 ≤ M−1

M0
(t) ≤ M−1

M0
(0) − δ0

2i
t

for t ∈ [0, t∗) which implies that t∗ ≤ (2iM−1(0))/(δ0M0(0)) ≤ 2/δ0 and is thus finite. �
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2.2. Proof of Theorem 1.1

The construction of the functions (�, x) is performed by induction on the minimal size, noticing that x solves an
infinite system of ordinary differential equations similar to (2.3) on each time interval where � is constant.

Proof of Theorem 1.1.
Step 1: By (1.12), the sequence (K(1, j))j≥1 satisfies the assumptions (2.1) (with A = κ) and (2.28) (with δ0 = δ1)

while x0 satisfies (2.21) with i = 1. According to Propositions 2.1, 2.4 and 2.5, there is a unique solution x(1) ∈
C([0,∞); X1,1) to the Cauchy problem

dx(1)

dt
= b(1)

(
x(1)

)
, x(1)(0) = x0,

and there is t1 ∈ (0,∞) such that

x
(1)
1 (t) > 0 for t ∈ [0, t1) and x

(1)
1 (t1) = 0,

x
(1)
j (t) > 0 for t ∈ (0, t1] and j ≥ 2,∥∥x(1)(t)

∥∥
1,1 = ‖x0‖1,1 for t ∈ [0, t1].

We then put

�(t) := 1 and x(t) := x(1)(t) for t ∈ [0, t1).

Clearly, x satisfies (1.16), (1.17) and (1.19) for i = 1.
Step 2: Assume now that we have constructed (�, x) up to some time ti for some i ≥ 1. On the one hand, by (1.12),

the sequence (K(i + 1, j))j≥i+1 satisfies the assumptions (2.1) (with A = κ(i + 1)) and (2.28) (with δ0 = δi+1). On
the other hand, the sequence x(ti) belongs to X +

1,i+1 with xj (ti) > 0 for j ≥ i + 1 by (1.18). We are then in a position

to apply Propositions 2.1, 2.4 and 2.5 and conclude that there is a unique solution x(i+1) ∈ C([ti ,∞); X1,i+1) to the
Cauchy problem

dx(i+1)

dt
= b(i+1)

(
x(i+1)

)
, x(i+1)(ti) = x(ti),

and there is ti+1 ∈ (0,∞) such that

x
(i+1)
i+1 (t) > 0 for t ∈ [ti , ti+1) and x

(i+1)
i+1 (ti+1) = 0,

x
(i+1)
j (t) > 0 for t ∈ (ti , ti+1] and j ≥ i + 2,∥∥x(i+1)(t)

∥∥
1,1 = ∥∥x(ti)

∥∥
1,1 for t ∈ [ti , ti+1].

We then put

�(t) := i + 1 and x(t) := x(i+1)(t) for t ∈ [ti , ti+1).

It is then easy to check that x ∈ C([0, ti+1; X1,1) and satisfies (1.16)–(1.19) for j ∈ {1, . . . , i + 1}. This completes the
inductive step and the proof of the existence part of Theorem 1.1.

Step 3: If (�, x) and (�̂, x̂) both satisfy the properties listed in Theorem 1.1, we deduce from Proposition 2.1 that
x(t) = x̂(t) for t ∈ [0, t1 ∧ t̂1]. In particular, x1 and x̂1 vanish at the same time t1 ∧ t̂1 which implies that t1 = t̂1. We
next argue by induction to conclude that � = �̂ and x = x̂. �
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3. Convergence of the stochastic process

In this section, we study the stochastic process introduced in Section 1.1 and prove Theorem 1.3. The proof is per-
formed along the lines of the general scheme developed in [5] with the following main differences: the deterministic
system of ordinary differential equations (1.17) considered herein has its solutions in an infinite-dimensional vector
space and changes when the minimal size � jumps.

Let K be a coagulation kernel satisfying (1.21). We fix an initial condition x0 satisfying (1.14) and let x be the
corresponding solution to (1.17). By (1.19) and (1.21), we may argue as in the proof of Proposition 2.1 to show that,
for i ≥ 1,∥∥∥∥dx

dt
(t)

∥∥∥∥
1
≤ 3κi, t ∈ [ti−1, ti]. (3.1)

Consider a sequence of random initial data (XN
0 )N≥1 in �1

N
satisfying (1.2) and (1.20). For each N ≥ 1, XN denotes

the Markov process described in Section 1.1 starting from XN
0 and X̃N := XN/N its renormalized version. To prove

Theorem 1.3, we need to introduce some specific times relative to the extinction of some sizes of particle. Let T N
0 = 0

and define

T N
i := inf

{
t > T N

i−1: XN
i (t) = 0

}
, σN

i := T N
i − T N

i−1, i ≥ 1. (3.2)

We also put si := ti − ti−1 for i ≥ 1, the times (ti)i≥0 being defined in Theorem 1.1.
We begin by proving the following proposition.

Proposition 3.1. For all I ≥ 0, there exist positive constants C0(I ), C0(I )′, and an integer N0(I ) such that

P

(
sup

0≤t≤T N
I

∥∥X̃N(t) − x(t)
∥∥

1 >
C0(I )

N1/4

)
≤ C0(I )′

N1/4
for N ≥ N0(I ).

Two steps are needed to prove Proposition 3.1: we first consider i ≥ 1 and work on the interval [T N
i−1, T

N
i ], showing

that the behaviour at any time t ∈ (T N
i−1, T

N
i ] depends only on the behaviour at the “initial” time T N

i−1 (Proposition 3.2).
We then argue by induction on i to prove a “global” convergence result (Proposition 3.3).

Proposition 3.2. For all i ≥ 1 and γ > 0, there exist positive constants C1(γ, i), C1(i)
′, s̄i ∈ (si , si + 1), ηi , and an

integer N1(γ, i) such that

x
(i)
i (ti−1 + s̄i ) < 0,

dx
(i)
i

dt
(ti−1 + s) ≤ −ηi < 0 for s ∈ [0, s̄i], (3.3)

P

(
sup

0≤s≤σN
i

∥∥X̃N
(
T N

i−1 + s
) − x(i)(ti−1 + s)

∥∥
1 >

C1(γ, i)

N1/4

)
≤ C1(i)

′

N1/4
+ P

(
Ωc

i,γ

)
,

P
(
σN

i > s̄i
) ≤ C1(i)

′

N1/4
+ P

(
Ωc

i,γ

)
for N ≥ N1(γ, i), where

Ωi,γ :=
{∥∥X̃N

(
T N

i−1

) − x(ti−1)
∥∥

1 ≤ γ

N1/4

}
,

and x(i) : [ti−1,∞) → X1,1 denotes the solution to the differential equation

dx(i)

dt
(t) = b(i)

(
x(i)(t)

)
for t ≥ ti−1, x

(i)(ti−1) = x(ti−1). (3.4)
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Proof. Fix i ≥ 1 and set x̃ := x(i) to simplify the notation. Recall that x(t) = x(i)(t) for t ∈ [ti−1, ti]. By Section 1.1,
we have for 0 ≤ s ≤ σN

i ,

x̃(ti−1 + s) = x(ti−1) +
∫ s

0
b(i)

(
x̃(ti−1 + t)

)
dt,

X̃N
(
T N

i−1 + s
) = X̃N(Ti−1) +

∫ s

0
β̃
(
X̃N

(
T N

i−1 + t
))

dt + MN
s ,

where (MN
s )s≥0 is a F

(i)
s -martingale, F

(i)
s := σ(XT N

i−1+t : t ∈ [0, s]), and β̃ is the drift of the process X̃N defined

in (1.7). Subtracting the above two identities, we obtain

X̃N
(
T N

i−1 + s
) − x̃(ti−1 + s)

= X̃N
(
T N

i−1

) − x(ti−1) +
∫ s

0

[
β̃
(
X̃N

(
T N

i−1 + t
)) − b(i)

(
X̃N

(
T N

i−1 + t
))]

dt

+
∫ s

0

[
b(i)

(
X̃N

(
T N

i−1 + t
)) − b(i)

(
x̃(ti−1 + t)

)]
dt + MN

s . (3.5)

We now aim to use the representation formula (3.5) to estimate ‖X̃N(T N
i−1 + s) − x̃(ti−1 + s)‖1 for s ∈ [0, σN

i ]. This
requires in particular to estimate the martingale term MN

s in �1. However, a classical way to estimate MN
s is to use

Doob’s inequality which gives an L2-bound not suitable for our purposes. To remedy this difficulty, we only use (3.5)
for the first d components of X̃N(T N

i−1 + s) − x̃(ti−1 + s), the integer d being suitably chosen, and control the tail of
the series by the first moment. More precisely, given d ≥ 1, we introduce the projections pd and qd defined in �1 by
pd(y) := (y1, . . . , yd,0, . . .) and qd(y) = y − pd(y), y ∈ �1. Clearly,

∥∥pd(y)
∥∥

1 ≤ √
d
∥∥pd(y)

∥∥
2, y ∈ �1, (3.6)

and

∥∥qd(y)
∥∥

1 ≤ ‖y‖1,1

d
, y ∈ X1,1. (3.7)

By (3.7) and the boundedness of the first moment of X̃N and x̃ (see (1.4), (1.19) and Lemma 2.2), we have for
s ∈ [0, σN

i ]
∥∥X̃N

(
T N

i−1 + s
) − x̃(ti−1 + s)

∥∥
1

≤ ∥∥pd

(
X̃N

(
T N

i−1 + s
) − x̃(ti−1 + s)

)∥∥
1 + ∥∥qd

(
X̃N

(
T N

i−1 + s
))∥∥

1 + ∥∥qd

(
x̃(ti−1 + s)

)∥∥
1

≤ ∥∥pd

(
X̃N

(
T N

i−1 + s
) − x̃(ti−1 + s)

)∥∥
1 + ‖X̃N(T N

i−1 + s)‖1,1

d
+ ‖x̃(ti−1 + s)‖1,1

d

≤ ∥∥pd

(
X̃N

(
T N

i−1 + s
) − x̃(ti−1 + s)

)∥∥
1 + (1 + ‖x(ti−1)‖1,1e4κis)

d

≤ ∥∥pd

(
X̃N

(
T N

i−1 + s
) − x̃(ti−1 + s)

)∥∥
1 + (1 + ‖x0‖1,1e4κis)

d
. (3.8)

Since β̃j −b
(i)
j = 0 for all j ≥ 1 except for j ∈ {i,2i} for which β̃i −b

(i)
i = 2K(i, i)/N and β̃2i −b

(i)
2i = −K(i, i)/N

we have

∥∥β̃(y) − b(i)(y)
∥∥

1 ≤ 3K(i, i)

N
≤ 3κi

N
, y ∈ X1,1, (3.9)
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by (1.21). Observing next that b(i) is Lipschitz continuous in �1 with Lipschitz constant 3κi , we infer from (3.5), (3.6)
and (3.9) that∥∥pd

(
X̃N

(
T N

i−1 + s
) − x̃(ti−1 + s)

)∥∥
1

≤ ∥∥pd

(
X̃N(Ti−1) − x̃(ti−1)

)∥∥
1 + 3κis

N
+ 3κi

∫ s

0

∥∥X̃N
(
T N

i−1 + t
) − x̃(ti−1 + t)

∥∥
1 dt + √

d
∥∥pd

(
MN

s

)∥∥
2.

Combining the above inequality with (3.8) gives

∥∥X̃N
(
T N

i−1 + s
) − x̃(ti−1 + s)

∥∥
1 ≤ ∥∥X̃N(Ti−1) − x̃(ti−1)

∥∥
1 + 3κis

N
+ (1 + ‖x0‖1,1e4κis)

d

+ 3κi

∫ s

0

∥∥X̃N
(
T N

i−1 + t
) − x̃(ti−1 + t)

∥∥
1 dt + √

d
∥∥MN

s

∥∥
2. (3.10)

At this point, we fix s̄i ∈ (si , si +1) and ηi > 0 such that x̃i (ti−1 + s̄i ) < 0 and dx̃i/dt (ti−1 + s) < −ηi for s ∈ [0, s̄i]
(such a pair (s̄i , ηi) exists as x̃i (ti ) = xi(ti−1 + si) = 0 and dx̃i/dt < 0 in [ti−1, ti] by (2.26)). Let γ > 0 and introduce

Ω ′
i :=

{
sup

s∈[0,s̄i∧σN
i ]

∥∥MN
s

∥∥
2 ≤ 1

N3/8

}
.

Choosing an integer d ∈ (N1/4,2N1/4), we deduce from (3.10) that, in Ωi,γ ∩ Ω ′
i , we have for s ∈ [0, s̄i ∧ σN

i ]
∥∥X̃N

(
T N

i−1 + s
) − x̃(ti−1 + s)

∥∥
1

≤ γ

N1/4
+ 3κis

N
+ (1 + ‖x0‖1,1e4κis)

N1/4
+ 3κi

∫ s

0

∥∥X̃N
(
T N

i−1 + t
) − x̃(ti−1 + t)

∥∥
1 dt +

√
2

N1/4

≤ γ + C2

N1/4
e4κis + 3κi

∫ s

0

∥∥X̃N
(
T N

i−1 + t
) − x̃(ti−1 + t)

∥∥
1 dt

for some positive constant C2. After integration, we end up with

sup
s∈[0,s̄i∧σN

i ]

∥∥X̃N
(
T N

i−1 + s
) − x̃(ti−1 + s)

∥∥
1 ≤ 5

γ + C2

N1/4
e4κi s̄i ≤ 5

γ + C2

N1/4
e4κi (1+si ). (3.11)

In particular, in {σN
i > s̄i} ∩ Ωi,γ ∩ Ω ′

i , we have

0 ≤ X̃N
i

(
T N

i−1 + s̄i
) ≤ x̃i (ti−1 + s̄i ) + 5

γ + C2

N1/4
e4κi (1+si ) < 0

for N large enough. Consequently, there exists N1(γ, i) such that

Ωi,γ ∩ Ω ′
i ⊂ {

σN
i ≤ s̄i

}
for N ≥ N1(γ, i).

Recalling (3.11), we have thus established that, for N ≥ N1(γ, i),

P

(
sup

s∈[0,s̄i∧σN
i ]

∥∥X̃N
(
T N

i−1 + s
) − x̃(ti−1 + s)

∥∥
1 ≥ C1(γ, i)

N1/4

)
≤ P

((
Ωi,γ ∩ Ω ′

i

)c)

≤ P
(
Ωc

i,γ

) + P
(
Ω ′c

i

)
(3.12)

and

P
(
σN

i > s̄i
) ≤ P

((
Ωi,γ ∩ Ω ′

i

)c) ≤ P
(
Ωc

i,γ

) + P
(
Ω ′c

i

)
, (3.13)
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with C1(γ, i) := 5(γ + C2)e4κi (1+si ).
To complete the proof, it remains to bound P(Ω ′c

i ). By Doob’s inequality, we have:

E

(
sup

s∈[0,s̄i∧σN
i ]

∥∥MN
s

∥∥2
2

)
≤ 4E

(∥∥MN

s̄i∧σN
i

∥∥2
2

) ≤ 4E

(∫ s̄i∧σN
i

0
α̃
(
X̃N

(
T N

i−1 + t
))

dt

)
,

where α̃ is defined by (1.8). According to Section 1.1 and (1.21), it is easy to show that, if y ∈ X1,i , we have α̃(y) ≤
5κi‖y‖1/N . Since XN(s) ∈ X1,i for s ∈ [T N

i−1, T
N
i ] and s̄i < si + 1, we conclude that

E

(
sup

s∈[0,s̄i∧σN
i ]

∥∥MN
s

∥∥2
2

)
≤ C3(i)

N
.

Therefore, observing that

P
(
Ω ′c

i

) = P

(
sup

s∈[0,s̄i∧σN
i ]

∥∥MN
s

∥∥2
2 >

1

N3/4

)
,

Markov’s inequality yields

P
(
Ω ′c

i

) ≤ N3/4
E

(
sup

s∈[0,s̄i∧σN
i ]

∥∥MN
s

∥∥2
2

)
≤ C3(i)

N1/4
.

Proposition 3.2 then readily follows from (3.12), (3.13) and the above bound with C1(i)
′ := C3(i). �

Proposition 3.3. For all i ≥ 1, there exist positive constants ai , bi and an integer N2(i) such that

P

(∥∥X̃N
(
T N

i−1

) − x(ti−1)
∥∥

1 >
bi

N1/4

)
≤ ai

N1/4
for all N ≥ N2(i). (3.14)

Proof. We argue by induction on i ≥ 1 and first note that (3.14) holds true for i = 1 with a1 = b1 = 1 by (1.20).
Assume next that (3.14) holds true for some i ≥ 1. Setting x̃ := x(i), the function x(i) being defined in Proposi-

tion 3.2, we have∥∥X̃N
(
T N

i

) − x(ti)
∥∥

1 ≤ ∥∥X̃N
(
T N

i

) − x̃
(
ti−1 + σN

i

)∥∥
1 + ∥∥x̃

(
ti−1 + σN

i

) − x̃(ti)
∥∥

1. (3.15)

On the one hand, it follows from (3.14) for i and Proposition 3.2 with γ = bi that we have

P

(∥∥X̃N
(
T N

i

) − x̃
(
ti−1 + σN

i

)∥∥
1 >

C1(bi, i)

N1/4

)
≤ C1(i)

′

N1/4
+ P

(∥∥X̃N
(
T N

i−1

) − x̃(ti−1)
∥∥

1 >
bi

N1/4

)

≤ C1(i)
′ + ai

N1/4
(3.16)

and

P
(
σN

i > s̄i
) ≤ C1(i)

′ + ai

N1/4
(3.17)

for N ≥ N1(bi, i) + N2(i), the constant s̄i being defined in (3.3).
On the other hand, if |σN

i − si | > C1(bi, i)/(ηiN
1/4), we have either σN

i > s̄i or σN
i ≤ s̄i and we deduce from (3.3)

that

∣∣x̃i

(
ti−1 + σN

i

)∣∣ = ∣∣x̃i

(
ti−1 + σN

i

) − x̃i (ti−1 + si)
∣∣ =

∣∣∣∣
∫ si

σN
i

dx̃i

dt
(t)dt

∣∣∣∣ ≥ ηi

∣∣σN
i − si

∣∣ >
C1(bi, i)

N1/4
,
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so that{∣∣σN
i − si

∣∣ >
C1(bi, i)

ηiN1/4

}
⊂ {

σN
i > s̄i

} ∪
{∣∣X̃N

i

(
T N

i

) − x̃i

(
ti−1 + σN

i

)∣∣ >
C1(bi, i)

N1/4

}

since X̃N
i (T N

i ) = 0. We then infer from (3.16), (3.17) and the above inclusion that, for N ≥ N1(bi, i) + N2(i),

P

(∣∣σN
i − si

∣∣ >
C1(bi, i)

ηiN1/4

)
≤ 2

(C1(i)
′ + ai)

N1/4
. (3.18)

This estimate now allows us to handle the second term in the right-hand side of (3.15). Indeed, by Proposition 2.1, if
σN

i ≤ s̄i ,

∥∥x̃
(
ti−1 + σN

i

) − x̃(ti )
∥∥

1 ≤ ∣∣σN
i − si

∣∣ sup
t∈[ti−1,ti−1+s̄i ]

∥∥∥∥dx̃

dt
(t)

∥∥∥∥
1
≤ C4(i)

∣∣σN
i − si

∣∣,
and it follows from (3.17) and (3.18) that, for N ≥ N1(bi, i) + N2(i),

P

(∥∥x̃
(
ti−1 + σN

i

) − x̃(ti )
∥∥

1 >
C1(bi, i)C4(i)

ηiN1/4

)
≤ P

(
σN

i > s̄i
) + P

(∣∣σN
i − si

∣∣ >
C1(bi, i)

ηiN1/4

)

≤ 3
(C1(i)

′ + ai)

N1/4
. (3.19)

Setting

ai+1 := 4
(
ai + C′

1(i)
)
, bi+1 := 2

(1 + C4(i))C1(bi, i)

ηi

, N2(i + 1) := N1(bi, i) + N2(i), (3.20)

we infer from (3.15), (3.16) and (3.19) that, for N ≥ N2(i + 1),

P

(∥∥X̃N
(
T N

i

) − x(ti)
∥∥

1 >
bi+1

N1/4

)
≤ P

(∥∥X̃N
(
T N

i

) − x̃
(
ti−1 + σN

i

)∥∥
1 >

C1(bi, i)

N1/4

)

+ P

(∥∥x̃
(
ti−1 + σN

i

) − x̃(ti)
∥∥

1 >
C1(bi, i)C4(i)

ηiN1/4

)

≤ ai+1

N1/4
,

which completes the proof. �

Corollary 3.4. For all i ≥ 1, there are positive constants Ai , Bi and an integer N3(i) such that

P

(∣∣T N
i − ti

∣∣ >
Bi

N1/4

)
≤ Ai

N1/4
for N ≥ N3(i).

Proof. Recalling (3.18) and (3.20), we have

P

(∣∣σN
i − si

∣∣ >
bi+1

N1/4

)
≤ ai+1

N1/4
for N ≥ N2(i + 1)

and i ≥ 1. Fix i ≥ 1 and put

N3(i) := max
1≤j≤i

N2(j + 1), Ai :=
i∑

j=1

aj+1, Bi :=
i∑

j=1

bj+1.
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As

T N
i − ti =

i∑
j=1

(
σN

j − sj
)
,

we have

P

(∣∣T N
i − ti

∣∣ >
Bi

N1/4

)
≤

i∑
j=1

P

(∣∣σN
j − sj

∣∣ >
bj+1

N1/4

)
≤

i∑
j=1

aj+1

N1/4
= Ai

N1/4

as claimed. �

We are now able to prove Proposition 3.1.

Proof of Proposition 3.1. For I ≥ 1, consider

ΛI :=
I⋂

i=1

{
sup

0≤s≤σN
i

∥∥X̃N
(
T N

i−1 + s
) − x(i)(ti−1 + s)

∥∥
1 ≤ C1(bi, i)

N1/4
and

∣∣T N
i − ti

∣∣ ≤ Bi

N1/4

}
,

and

N4(i) := max
1≤i≤I

max
{
N1(bi, i),N2(i),N3(i)

}
.

According to Propositions 3.2, 3.3 and Corollary 3.4, we have for N ≥ N4(i)

P
(
Λc

I

) ≤
I∑

i=1

P

(
sup

s∈[0,σN
i ]

∥∥X̃N
(
T N

i−1 + s
) − x(i)(ti−1 + s)

∥∥
1 >

C1(bi, i)

N1/4

)
+

I∑
i=1

P

(∣∣T N
i − ti

∣∣ >
Bi

N1/4

)

≤
I∑

i=1

(
P

(∥∥X̃N
(
T N

i−1

) − x(i)(ti−1)
∥∥

1 >
bi

N1/4

)
+ C1(i)

′

N1/4

)
+

I∑
i=1

Ai

N1/4

≤
I∑

i=1

ai + C1(i)
′ + Ai

N1/4
,

P
(
Λc

I

) ≤ C5(I )

N1/4
. (3.21)

Consider now t ≥ 0. In ΛI ∩ {T N
I ≥ t}, there are i ∈ {1, . . . , I − 1}, and s ∈ [0, σN

i ) such that t = T N
i−1 + s and

T N
i−1 + s ≤ T N

i−1 + σN
i = T N

i − ti + ti ≤ t − I + Bi

N1/4
≤ ϑI := min

{
1 + tI ,

tI + t∞
2

}
, (3.22)

ti−1 + s ≤ ti−1 + σN
i = ti−1 − T N

i−1 + T N
i − ti + ti ≤ tI + 2Bi

N1/4
≤ ϑI (3.23)

for N ≥ N5(I ) large enough. Consequently, recalling that x(i) is defined in Proposition 3.2, it follows from (3.1) that,
in ΛI ∩ {T N

I ≥ t}
∥∥X̃N(t) − x(t)

∥∥
1 ≤ ∥∥X̃N

(
T N

i−1 + s
) − x(i)(ti−1 + s)

∥∥
1 + ∥∥x(i)(ti−1 + s) − x(ti−1 + s)

∥∥
1

+ ∥∥x(ti−1 + s) − x
(
T N

i−1 + s
)∥∥

1
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≤ C1(bi, i)

N1/4
+ ∥∥x(i)(ti−1 + s) − x(ti−1 + s)

∥∥
1 + ∣∣T N

i−1 − ti−1
∣∣ sup
t∈[0,ϑI ]

∥∥∥∥dx

dt
(t)

∥∥∥∥
1

≤ C6(I )

N1/4
+ ∥∥x(i)(ti−1 + s) − x(ti−1 + s)

∥∥
1 (3.24)

for N ≥ N5(I ).
Now, since 0 ≤ s < σN

i in ΛI ∩ {T N
I ≥ t}, we have the following dichotomy:

(a) either s ≤ si and x(i)(ti−1 + s) = x(ti−1 + s),
(b) or si < s < σN

i and, for N ≥ N5(I ), we infer from Proposition 2.1, (3.1), (3.23) and the identity x(i)(ti ) = x(ti)

that ∥∥x(i)(ti−1 + s) − x(ti−1 + s)
∥∥

1 ≤ ∥∥x(i)(ti−1 + s) − x(i)(ti )
∥∥

1 + ∥∥x(ti) − x(ti−1 + s)
∥∥

1

≤ |s − si |
(

sup
t∈[0,ϑI ]

∥∥∥∥dx(i)

dt
(t)

∥∥∥∥
1
+ sup

t∈[0,ϑI ]

∥∥∥∥dx

dt
(t)

∥∥∥∥
1

)

≤ C7(I )
∣∣σN

i − si
∣∣

≤ C7(I )
(∣∣T N

i − ti
∣∣ + ∣∣T N

i−1 − ti−1
∣∣)

≤ C8(I )

N1/4
.

Combining (3.24) and the above analysis, we conclude that, in ΛI ∩ {T N
I ≥ t},

∥∥X̃N(t) − x(t)
∥∥

1 ≤ C9(I )

N1/4

for N ≥ N5(I ) and thus

ΛI ⊂
{

sup
0≤t≤T N

I

∥∥X̃N(t) − x(t)
∥∥

1 ≤ C9(I )

N1/4

}
.

Proposition 3.1 then follows from (3.21) and the above set inclusion. �

Proof of Theorem 1.3. Let t ∈ (0, t∞). There exists I ≥ 1 such that t < tI . Clearly,{
sup

0≤s≤t

∥∥X̃N(s) − x(s)
∥∥

1 >
C0(I )

N1/4

}
⊂

{
sup

0≤s≤T N
I

∥∥X̃N(s) − x(s)
∥∥

1 >
C0(I )

N1/4

}
∪ {

tI > T N
I

}
,

the constant C0(I ) being defined in Proposition 3.1. Theorem 1.3 then follows from Proposition 3.1 and Corol-
lary 3.4. �

4. Deterministic maximal existence time

4.1. Global existence

Proof of Theorem 1.4(i). Recall that we assume that there exists A0 > 0 such that for all 1 ≤ i ≤ j ,

K(i, j) ≤ ln(i + 1)

4A0
.
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For t ∈ [0, t∞) and i ≥ 1, we define

φi := ln(i + 1)

4A0
and M0(t) :=

∞∑
j=1

xj (t).

For i ≥ 1 and t ∈ (ti−1, ti), we infer from the upper bound on K and (2.8) that

0 = dM0

dt
(t) +

∞∑
j=i

K(i, j)xj (t) ≤ dM0

dt
(t) + φiM0(t).

Integrating with respect to time and using the time continuity of x in X1,1 gives

M0(ti)e
φi ti ≥ M0(ti−1)e

φi ti−1 = M0(ti−1)e
φi−1ti−1 e(φi−φi−1)ti−1 .

Arguing by induction, we conclude that

M0(ti)e
φi ti ≥ M0(0)

i−1∏
j=1

e(φj+1−φj )tj , i ≥ 2.

By (1.19) we have

M0(ti) ≤ 1

i

∞∑
j=i

jxj (ti) = 1

i
, i ≥ 2.

Combining the above two estimates gives

1

i
eφi ti ≥ M0(0)

i−1∏
j=1

e(φj+1−φj )tj ,

φi ti ≥ ln i +
i−1∑
j=1

(φj+1 − φj )tj + ln
(
M0(0)

)
, i ≥ 2,

ti ≥ 4A0
ln i

ln(i + 1)
+ 1

ln(i + 1)

i−1∑
j=1

ln

(
j + 2

j + 1

)
tj + 4A0

ln(i + 1)
ln

(
M0(0)

)
. (4.1)

In particular, for I ≥ 2 and i > I , we infer from (4.1) and the monotonicity of (tj )j≥1 that

ti ≥ 4A0
ln i

ln(i + 1)
+ 1

ln(i + 1)

i−1∑
j=I

ln

(
j + 2

j + 1

)
tI + 1

ln(i + 1)

I−1∑
j=1

ln

(
j + 2

j + 1

)
t1 + 4A0

ln(i + 1)
ln

(
M0(0)

)

≥ 4A0
ln i

ln(i + 1)
+ ln(i + 1) − ln(I + 1)

ln(i + 1)
tI + ln(I + 1) − ln 2

ln(i + 1)
t1 + 4A0

ln(i + 1)
ln

(
M0(0)

)
.

Assume now for contradiction that t∞ < ∞. We may let i → ∞ in the previous inequality to conclude that
t∞ ≥ 4A0 + tI for all I ≥ 2. Letting I → ∞ then implies that t∞ ≥ 4A0 + t∞ and a contradiction. Therefore,
t∞ = ∞. �

4.2. Finite time blow-up of the minimal size

We actually establish a stronger version of the second assertion of Theorem 1.4.
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Proposition 4.1. Consider a coagulation kernel K and an initial condition x0 satisfying (1.12) and (1.14), respec-
tively. Let x be the corresponding solution to the min-driven coagulation equations given in Theorem 1.1 defined on
[0, t∞), t∞ being defined in (1.15). Assume further that there exist a non-decreasing sequence (φj )j≥1 of non-negative
real numbers, a non-increasing sequence (ψj )j≥1 of non-negative real numbers, and ε > 0 such that

K(i, j) ≥ φi and φi(ψi − ψi+j ) ≥ ε for j ≥ i ≥ 1. (4.2)

Then t∞ < ∞.

Proof. For t ∈ [0, t∞), define

M0(t) :=
∞∑

j=1

xj (t) and Mψ(t) :=
∞∑

j=1

ψjxj (t).

Given i ≥ 1 and t ∈ (ti−1, ti), it follows from (1.17) and (2.8) that

d

dt

(
Mψ

M0

)
= 1

M0

∞∑
j=i

(ψi+j − ψi − ψj )K(i, j)xj + Mψ

M2
0

∞∑
j=i

K(i, j)xj

= 1

M0

∞∑
j=i

(
ψi+j − ψj + Mψ

M0
− ψi

)
K(i, j)xj .

By the monotonicity of (ψj )j≥1, we have

ψi+j ≤ ψj and
Mψ

M0
≤ ψi, j ≥ i,

so that (4.2) entails that(
ψi+j − ψj + Mψ

M0
− ψi

)
K(i, j) ≤

(
ψi+j − ψj + Mψ

M0
− ψi

)
φi, j ≥ i.

Then,

d

dt

(
Mψ

M0

)
≤ φi

M0

∞∑
j=i

(
ψi+j − ψj + Mψ

M0
− ψi

)
xj

≤ φi

M0

( ∞∑
j=i

ψi+j xj − Mψ + Mψ

M0
M0 − ψiM0

)

≤ 1

M0

∞∑
j=i

φi(ψi+j − ψi)xj

≤ −ε,

and so,(
Mψ

M0

)
(ti) + ε(ti − ti−1) ≤

(
Mψ

M0

)
(ti−1).

Summing the above inequality with respect to i gives

εt∞ ≤ lim
i→∞

(
Mψ

M0

)
(ti) + εt∞ ≤ Mψ(0)/M0(0) < ∞
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and completes the proof. �

Let us now give some examples of sequences (φj )j≥1 which satisfy (4.2):

• if φj = jα for j ≥ 1 and some α > 0, then (4.2) is satisfied with ψj = j−α , j ≥ 1, and ε = (1 − 2−α).
• if φj = (ln (j + 1))1+α for j ≥ 1 and some α > 0, then (4.2) is satisfied with ψj = (ln (j + 1))−α , j ≥ 1, and

ε = α2−1−α ln (3/2).

In particular, Theorem 1.4(ii) follows by combining the second example above with Proposition 4.1.

5. Finite or infinite stochastic time of the last coalescence event

In this section, we study the boundedness or unboundedness of the expectation of the last coalescence time T X0

defined in (1.22) with respect to the initial condition X0 ∈ �1
N

, the space �1
N

being defined in (1.3). We focus on the
class of coagulation kernels K having the special structure (1.23), namely,

K(i, j) = φ(i), 1 ≤ i ≤ j for some positive increasing function φ.

To this end, we prove some specific properties of the stochastic min-driven coagulation process for this type of kernel.
In fact, a crucial argument in the analysis is that this structure allows us to compare the evolution of the process from
an arbitrary initial configuration with that starting from monodisperse initial data (that is, initial data of the form nei

for n ≥ 1 and i ≥ 1, (ei )i≥1 being the canonical basis of �1 defined in Section 1.1).
Before going on, we introduce some notation. If Z ∈ �1

N
with ‖Z‖1 = n, the vector (S1(Z), . . . , Sn(Z)) ∈ N

n

denotes the collection of the sizes of the particles encoded by Z sorted in increasing order, that is,

Sm(Z) := 1 if 1 ≤ m ≤ Z1, Sm(Z) := s if 1 +
s−1∑
j=1

Zj ≤ m ≤
s∑

j=1

Zj and 2 ≤ s ≤ n. (5.1)

Next, given an initial condition X0 ∈ �1
N

with n := ‖X0‖1, let X be the stochastic min-driven coagulation process
starting from X0 in Section 1.1 and recall that T X0 is defined by

T X0 = inf
{
t ≥ 0:

∥∥X(t)
∥∥

1 = 1
}
.

For i ≥ 1, we also introduce the time

T
X0
i := inf

{
t > 0: X1(t) = · · · = Xi(t) = 0

}
, (5.2)

when particles of size smaller or equal than i have disappeared (note that the time T N
i defined in (3.2) in Section 3

corresponds to T
XN

0
i with the notation introduced in (5.2)). In addition, since X0 contains n particles, the stochastic

process X undergoes n − 1 coalescence events between t = 0 and T X0 and we define L(m) to be the minimal size
of X after the (m − 1)th coalescence event and before the mth coalescence event, 1 ≤ m ≤ n − 1. Before the latter
event, the rate of coagulation is (n − m)φ(L(m)) since K satisfies K(i, j) = φ(i) ∧ φ(j). Consequently,

T X0 =
n−1∑
m=1

εm

(n − m)φ(L(m))
, (5.3)

where (εm)1≤m≤n−1 is a sequence of i.i.d. random variables with law exp(1).
The first step towards the proof of Theorem 1.5 is a monotonicity property.

Lemma 5.1. Let X0 and Y0 be two initial conditions in �1
N

such that ‖X0‖1 = ‖Y0‖1 and

Sm(Y0) ≤ Sm(X0) for all 1 ≤ m ≤ ‖X0‖1. (5.4)
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Then, we can construct the stochastic min-driven coagulation processes starting from X0 and Y0 on the same proba-
bility space such that T

X0
i ≤ T

Y0
i for all i ≥ 1 and T X0 ≤ T Y0 . In particular, for all initial data X0 ∈ �1

N
,

T
X0

1 ≤ T
‖X0‖1e1
1 and T X0 ≤ T ‖X0‖1e1 .

Proof. Let X and Y denote the stochastic min-driven coagulation processes starting from X0 and Y0, respectively, and
define n := ‖X0‖1 = ‖Y0‖1. Between t = 0 and T X0 , the process X reaches n different states {X̂(j): 0 ≤ j ≤ n − 1}
with X̂(0) = X0 and ‖X̂(j)‖1 = n − j . In other words, X̂(j) is the state of X after the j th coalescence event and
actually equals X(θj ), θj being the time at which the j th coalescence event occurs. Analogously, between t = 0
and T Y0 , the process Y reaches n different states {Ŷ (j): 0 ≤ j ≤ n − 1} with Ŷ (0) = Y0 and ‖Ŷ (j)‖1 = n − j .

We first prove by induction that we can construct the processes X and Y on the same probability space such that

Sm

(
Ŷ (j)

) ≤ Sm

(
X̂(j)

)
, 1 ≤ m ≤ n − j,0 ≤ j ≤ n − 1. (5.5)

By (5.4), this inequality is clearly satisfied for j = 0. Assume now that (5.5) holds true for some j ∈ {0, . . . , n − 2}
and set

S
X,j
m := Sm

(
X̂(j)

)
and S

Y,j
m := Sm

(
Ŷ (j)

)
, 1 ≤ m ≤ n − j.

Since the coagulation kernel K is of the form (1.23), we may couple the two processes X and Y in such a way that
X̂(j + 1) is obtained by coalescing the particles of sizes S

X,j

1 and S
X,j
k and Ŷ (j + 1) by coalescing the particles of

sizes S
Y,j

1 and S
Y,j
k with the same index k chosen in {2, . . . , n − i} with uniform law. Thus,

{
Sm

(
X̂(j + 1)

)
: 1 ≤ m ≤ n − j − 1

} = {
S

X,j

2 , . . . , S
X,j

k−1, S
X,j

k+1, . . . , S
X,j
n−j

} ∪ {
S

X,j

1 + S
X,j
k

}
,{

Sm

(
Ŷ (j + 1)

)
: 1 ≤ m ≤ n − j − 1

} = {
S

Y,j

2 , . . . , S
Y,j

k−1, S
Y,j

k+1, . . . , S
Y,j
n−j

} ∪ {
S

Y,j

1 + S
Y,j
k

}
.

At this stage, the inequality (5.5) is not obvious as the reordering of the sizes can be different in X̂(j +1) and Ŷ (j +1).
The situation can be represented as follows:

S
Y,j

1 ≤ · · · ≤ S
Y,j

k−1 ≤ · · · ≤ S
Y,j

1 + S
Y,j
k ≤ · · · ≤ · · · ≤ · · · ≤ S

Y,j
n−i ,

S
X,j

1 ≤ · · · ≤ S
X,j

k−1 ≤ · · · ≤ · · · ≤ · · · ≤ S
X,j

1 + S
X,j
k ≤ · · · ≤ S

X,j
n−i .

Nevertheless, we observe that

Sm

(
Ŷ (j + 1)

) =
{

S
Y,j

m+1 for 1 ≤ m ≤ k − 2,

max
{
min

{
S

Y,j

m+2, S
Y,j

1 + S
Y,j
k

}
, S

Y,j

m+1

}
for m ≥ k − 1,

and

Sm

(
X̂(j + 1)

) =
{

S
X,j

m+1 for 1 ≤ m ≤ k − 2,

max
{
min

{
S

X,j

m+2, S
X,j

1 + S
X,j
k

}
, S

X,j

m+1

}
for m ≥ k − 1,

from which (5.5) for j + 1 readily follows thanks to (5.5) for j .
We next claim that the random number of coalescence events needed to exhaust the particles of size i ≥ 1 is smaller

for X than for Y , that is,

n
X0
i ≤ n

Y0
i , i ≥ 1, (5.6)

where

n
X0
i := inf

{
j ∈ {0, . . . , n − 1}: S1

(
X̂(j)

) ≥ i + 1
}
,

n
Y0
i := inf

{
j ∈ {0, . . . , n − 1}: S1

(
Ŷ (j)

) ≥ i + 1
}
.
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Indeed, we have S1(Ŷ (j)) ≤ S1(X̂(j)) ≤ i for 1 ≤ j ≤ n
X0
i − 1 by (5.5).

We can now prove the lemma. For i ≥ 1, we have

T
X0
i =

n
X0
i∑

j=1

εj

(n − j)φ(S1(X̂(j − 1)))
and T

Y0
i =

n
Y0
i∑

j=1

εj

(n − j)φ(S1(Ŷ (j − 1)))
,

where (εk)k≥1 is a sequence of i.i.d. random variables with law exp(1). Concerning T X0 and T Y0 , we have

T X0 =
n−1∑
j=1

εj

(n − j)φ(S1(X̂(j − 1)))
and T Y0 =

n−1∑
j=1

εj

(n − j)φ(S1(Ŷ (j − 1)))
.

The desired result then follows by (5.5), (5.6) and the monotonicity of φ. �

We next prove that the expectation of the time T
X0
1 after which all particles of size 1 have disappeared is bounded

independently of the initial condition X0 (as soon as X0 �= e1). According to Lemma 5.1, it will be sufficient to prove
such a bound for monodisperse initial data of the form ne1, n ≥ 2.

Lemma 5.2. There exists C > 0 such that, for any initial condition X0 ∈ �1
N

with X0 �= e1,

E
(
T

X0
1

) ≤ C,

the time T
X0
1 being defined in (5.2).

Proof. Let n := ‖X0‖1 be the initial number of particles. If n = 1 and X0 �= e1, then T
X0
1 = 0. So, we assume that

n ≥ 2. By Lemma 5.1, we have the stochastic domination T
X0
1 ≤ T

ne1
1 , so that

E
(
T

X0
1

) ≤ E
(
T

ne1
1

)
, (5.7)

and it suffices to obtain an upper bound on (T
ne1

1 ) which does not depend on n ≥ 2.
We consider the solution x to the deterministic min-driven coagulation equation (1.17) with monodisperse initial

condition x0 = (xi,0)i≥1 given by x1,0 = 1 and xi,0 = 0 for i ≥ 2. It follows from Corollary 3.4 that

P

(∣∣T ne1
1 − t1

∣∣ >
B1

n1/4

)
≤ A1

n1/4
, n ≥ N3(1),

from which we deduce that there is C > 0 such that

P
(
T

ne1
1 > B1 + t1

) ≤ C

n1/4
, n ≥ 2. (5.8)

Introducing the (random) number of coalescence events n1 performed between t = 0 and T
ne1
1 , we have

T
ne1
1 =

n1∑
m=1

εm

(n − m)φ(1)
,

where (εm)1≤m≤n−1 is a sequence of i.i.d. random variables with law exp(1). Obviously, n1 ≤ n − 1 which gives the
bound

T
ne1
1 ≤ 1

φ(1)

n−1∑
m=1

εm

m
.
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Since E(εm) = 1 and E(ε2
m) = 2 for 1 ≤ m ≤ n, we deduce from (5.8), the Hölder inequality, and the above estimate

that

E
(
T

ne1
1

) = E
(
T

ne1
1 1[0,B1+t1]

(
T

ne1
1

)) + E
(
T

ne1
1 1(B1+t1,∞)

(
T

ne1
1

))
≤ B1 + t1 + 1

φ(1)

n−1∑
m=1

1

m
E

(
εm1(B1+t1,∞)

(
T

ne1
1

))

≤ B1 + t1 + 1

φ(1)

n−1∑
m=1

1

m
E

(
ε2
m

)1/2
P
(
T

ne1
1 > B1 + t1

)1/2

≤ B1 + t1 + C

φ(1)n1/8

n−1∑
m=1

1

m

≤ B1 + t1 + C
lnn

n1/8
.

Since B1 and t1 do not depend on n (actually one has t1 = 1/φ(1)), we have established the upper bound from which
Lemma 5.2 follows by (5.7). �

The next step is to establish a connection between the early stages of the dynamics of the processes starting from
monodisperse initial data.

Lemma 5.3. For n ≥ 2 and i ≥ 1 we have

T
nei

i

law= φ(1)

φ(i)
T

ne1
1 .

Proof. As in the proof of Lemma 5.1, a coupling can be done between the processes starting from ne1 and nei so that

T
ne1

1 =
n1∑

m=1

εm

(n − m)φ(1)
and T

nei

i =
n1∑

m=1

εm

(n − m)φ(i)

with the same random number of coalescence events n1 and sequence (εm)1≤m≤n−1 of i.i.d. random variables with
law exp(1) for both processes. �

Proof of Theorem 1.5. Assume first that

∞∑
i=1

1

iφ(i)
< ∞.

By Lemma 5.1, we just have to show that E(T ne1) is bounded independently of n ≥ 1.
To this end, we fix n ≥ 1. Let us first notice that, if n = 1, then T ne1 = 0. Assume now that n ≥ 2 and for i ≥ 1,

let X be the stochastic min-driven coagulation process starting from nei . Clearly, T
nei

j = 0 for 1 ≤ j ≤ i − 1 and we

define the (random) number n∗ := ‖X(T
nei

i )‖1 of particles in the system at time T
nei

i and Y := X(T
nei

i ). Notice that
Yj = Xj(T

nei

i ) = 0 for 1 ≤ j ≤ 2i − 1 and the conservation of mass warrants that n∗ ≤ n/2 as

2in∗ = 2i
∥∥X

(
T

nei

i

)∥∥
1 ≤ ∥∥X

(
T

nei

i

)∥∥
1,1 = ‖nei‖1,1 = ni.

Moreover, the properties of Y and Lemma 5.1 yield the stochastic domination T Y ≤ T n∗e2i . Since

T nei
law= T

nei

i + T Y ,
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where, conditionally on Y , T
nei

i and T Y are independent, it follows from Lemma 5.3 that

T nei ≤ φ(1)

φ(i)
T

ne1
1 + T n∗e2i . (5.9)

Let us now prove by induction on n that the property

P (n): E
(
T me2i

) ≤ C

∞∑
j=i

φ(1)

φ(2j )
for all i ≥ 0 and 0 ≤ m ≤ n,

holds true for all n ≥ 0, where C is the constant appearing in Lemma 5.2.
It is clear for n = 0. Consider n ≥ 1 and assume P (n − 1). For i ≥ 0, it follows from (5.9) and P (n − 1) that there

is n∗ ≤ n/2 such that

E
(
T ne2i

) ≤ φ(1)

φ(2i )
E

(
T

ne1
1

) + E
(
T n∗e2i+1

)

≤ φ(1)

φ(2i )
E

(
T

ne1
1

) +
n/2∑
m=1

P
(
n∗ = m

)
E

(
T me2i+1

)

≤ φ(1)

φ(2i )
E

(
T

ne1
1

) + sup
1≤m≤n/2

E
(
T me2i+1

)

≤ φ(1)

φ(2i )
E

(
T

ne1
1

) + C

∞∑
j=i+1

φ(1)

φ(2j )
(by induction hypothesis)

≤ C

∞∑
j=i

φ(1)

φ(2j )
,

which proves P (n).
We then infer from property P (n) for i = 0 that

E
(
T ne1

) ≤ Cφ(1)

∞∑
i=0

1

φ(2i )
< ∞,

the convergence of the series
∑

1/φ(2i ) being ensured by that of
∑

1/(iφ(i)) and the monotonicity of φ.
To prove the converse part of Theorem 1.5, we assume that

∞∑
i=1

1

iφ(i)
= ∞,

and show that, for each constant R > 0, there exists a configuration X0 such that E(T X0) ≥ R. More precisely, we
will prove that

lim
n→∞ P

(
T ne1 ≤ R

) = 0 for all R > 0, (5.10)

which clearly implies that

lim
n→∞ E

(
T ne1

) = ∞. (5.11)
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Indeed, let n ≥ 2. By (5.3), we have

T ne1 =
n−1∑
m=1

εm

(n − m)φ(L(m))
,

where (εm)1≤m≤n−1 is a sequence of i.i.d. random variables with law exp(1). The sequence (L(m))1≤m≤n−1 is random
but let us notice the bound

L(m) ≤ n

n − m + 1
≤ n

n − m
, 1 ≤ m ≤ n − 1,

which follows from the conservation of mass since there remain n − m + 1 particles in the system before the mth
coalescence event. Therefore, by the monotonicity of φ, we have the stochastic domination

T ne1 ≥ Λn :=
n−1∑
m=1

εn−m

mφ(n/m)
.

In particular,

P
(
T ne1 ≤ R

) ≤ P(Λn ≤ R) for R > 0. (5.12)

We next infer from the divergence of the series
∑

1/(iφ(i)) that

P

(
lim

n→∞Λn = ∞
)

= 1,

see Theorem 2.3.2 in [19], for instance. Combining the above property with (5.12) implies that P(T ne1 ≤ R) −→ 0 as
n −→ ∞ for all R > 0. In other words, T ne1 −→ ∞ in probability. �
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