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Abstract. In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking
a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on Zd with d ≥ 1, and gives a variational formula for
the corresponding rate function Ia . Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on
a non-empty open set A, and that the true velocity of the particle is an element (resp. in the boundary) of A when the walk is
non-nestling (resp. nestling). We then identify the unique minimizer of Varadhan’s variational formula at any velocity in A.

Résumé. Dans son article de 2003, Varadhan démontre un principe de grandes déviations pour la loi moyennée de la vitesse d’une
particule suivant une marche aléatoire au plus proche voisin dans un environnement i.i.d. elliptique sur Zd avec d ≥ 1, et donne une
formule variationnelle pour la fonction de taux correspondante Ia . Sous la condition (T) de transience de Sznitman, nous montrons
que Ia est strictement convexe et analytique dans un ouvert non vide A, et que la vraie vitesse de la particule est un élément de A
(resp. un élément de la frontière de A) quand la marche est “non-nichée” (resp. nichée). Nous identifions alors l’unique minimisant
de la formule variationnelle de Varadhan pour toute velocité de A.
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1. Introduction

1.1. The model

The random motion of a particle on Zd can be modeled by a discrete time Markov chain. Write π(x, x + z) for the
transition probability from x to x + z for each x, z ∈ Zd , and refer to ωx := (π(x, x + z))z∈Zd as the “environment”
at x. If the environment ω := (ωx)x∈Zd is sampled from a probability space (Ω, B,P), then the particle is said to take
a “random walk in a random environment” (RWRE). Here, B is the Borel σ -algebra corresponding to the product
topology.

Let U := {(z1, . . . , zd) ∈ Zd : |z1| + · · · + |zd | = 1}. For each z ∈ U , define the shift Tz on Ω by (Tzω)x = ωx+z.
Assume that P is stationary and ergodic under (Tz)z∈U ,

P
{
π(0, z) = 0

}= 1 unless z ∈ U (i.e., the walk is nearest-neighbor), and (1.1)

∃κ > 0 such that P
{
π(0, z) ≥ κ

}= 1 for every z ∈ U. (This is called uniform ellipticity.) (1.2)
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For any x ∈ Zd and ω ∈ Ω , the Markov chain with transition probabilities given by ω induces a probability measure
P ω

x on the space of paths starting at x. Statements about P ω
x that hold for P-a.e. ω are referred to as “quenched.” State-

ments about the semi-direct product Px := P × P ω
x are referred to as “averaged.” Expectations under P,P ω

x and Px

are denoted by E,Eω
x and Ex , respectively.

Because of the extra layer of randomness in the model, the standard questions of recurrence vs. transience, the law
of large numbers (LLN), the central limit theorem (CLT) and the large deviation principle (LDP) – which have well-
known answers for classical random walk – become hard. However, it is possible by taking the “point of view of the
particle” to treat the two layers of randomness as one: If we denote the random path of the particle by X := (Xn)n≥0,
then (TXnω)n≥0 is a Markov chain (referred to as “the environment Markov chain”) on Ω with transition kernel π

given by

π
(
ω,ω′) :=

∑
z:Tzω=ω′

π(0, z).

This is a standard approach in the study of random media. See for example [3,7,8,10] or [11].
See [19] or [24] for a general survey of results on RWRE.

1.2. Survey of results on quenched large deviations

Recall that a sequence (Qn)n≥1 of probability measures on a topological space X satisfies the LDP with rate function
I : X → R+ ∪ {0} ∪ {∞} if I is lower semicontinuous, and for any measurable set G,

− inf
x∈Go

I (x) ≤ lim inf
n→∞

1

n
logQn(G) ≤ lim sup

n→∞
1

n
logQn(G) ≤ − inf

x∈Ḡ
I (x).

Here, Go denotes the interior of G, and Ḡ its closure. See [4] for general background and definitions regarding large
deviations.

In the case of nearest-neighbor RWRE on Z, Greven and den Hollander [6] assume that P is a product measure,
and prove the following theorem.

Theorem 1 (Quenched LDP). For P-a.e. ω, (P ω
o (Xn

n
∈ ·))n≥1 satisfies the LDP with a deterministic and convex rate

function Iq .

They provide a formula for Iq and show that its graph typically has flat pieces. Their proof makes use of an auxiliary
branching process formed by the excursions of the walk. By a completely different technique, Comets, Gantert and
Zeitouni [2] extend the results in [6] to stationary and ergodic environments. Their argument involves first proving a
quenched LDP for the passage times of the walk by an application of the Gärtner–Ellis theorem, and then inverting
this to get the desired LDP for the mean velocity.

For d ≥ 1, the first result on quenched large deviations is given by Zerner [25]. He uses a subadditivity argument
for certain passage times to prove Theorem 1 in the case of “nestling” walks in product environments.

Definition 2. RWRE is said to be non-nestling relative to a unit vector û ∈ S d−1 if

ess inf
P

∑
z∈U

π(0, z)〈z, û〉 > 0. (1.3)

It is said to be nestling if it is not non-nestling relative to any unit vector. In the latter case, the convex hull of the
support of the law of

∑
z π(0, z)z contains the origin.

By a more direct use of the subadditive ergodic theorem, Varadhan [20] drops the nestling assumption and gener-
alizes Zerner’s result to stationary and ergodic environments. The drawback of these approaches is that they do not
lead to any formula for the rate function.
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Rosenbluth [15] takes the point of view of the particle and gives an alternative proof of Varadhan’s result. Moreover,
he provides a variational formula for the rate function Iq . Using the same techniques, we prove in [22] a quenched LDP
for the pair empirical measure of the environment Markov chain. This implies Rosenbluth’s result by an appropriate
contraction. In the same work, we also propose an Ansatz for the minimizer of the variational formula for Iq . We then
verify this Ansatz for walks on Z with bounded steps.

1.3. Previous results on averaged large deviations

In their aforementioned paper concerning RWRE on Z, Comets et al. [2] prove also

Theorem 3 (Averaged LDP). (Po(
Xn

n
∈ ·))n≥1 satisfies the LDP with a convex rate function Ia .

They establish this result for a class of environments including the i.i.d. case, and obtain the following variational
formula for Ia :

Ia(ξ) = inf
Q

{
IQ
q (ξ) + |ξ |h(Q|P)

}
.

Here, the infimum is over all stationary and ergodic probability measures on Ω , I
Q
q (·) denotes the rate function for

the quenched LDP when the environment measure is Q, and h(·|·) is specific relative entropy. Similar to the quenched
picture, the graph of Ia is shown to typically have flat pieces. Note that the regularity properties of Ia are not studied
in [2].

Varadhan [20] considers RWRE on Zd , assumes that P is a product measure, and proves Theorem 3 for any d ≥ 1.
He gives yet another variational formula for Ia . Below, we introduce some notation in order to write down this formula.

An infinite path (xi)i≤0 with nearest-neighbor steps xi+1 −xi is said to be in W tr∞ if xo = 0 and limi→−∞ |xi | = ∞.
For any w ∈ W tr∞, let no be the number of times w visits the origin, excluding the last visit. By the transience assump-
tion, no is finite. For any z ∈ U , let no,z be the number of times w jumps to z after a visit to the origin. Clearly,∑

z∈U no,z = no. If the averaged walk starts from time −∞ and its path (Xi)i≤0 up to the present is conditioned to be
equal to w, then the probability of the next step being equal to z is

q(w, z) := E[π(0, z)
∏

z′∈U π(0, z′)no,z′ ]
E[∏z′∈U π(0, z′)no,z′ ] (1.4)

by Bayes’ rule. The probability measure that the averaged walk induces on (Xn)n≥0 conditioned on {(Xi)i≤0 = w} is
denoted by Qw . As usual, Ew stands for expectation under Qw .

Consider the map T ∗ :W tr∞ → W tr∞ that takes (xi)i≤0 to (xi − x−1)i≤−1. Let I be the set of probability measures
on W tr∞ that are invariant under T ∗, and E be the set of extremal points of I . Each μ ∈ I (resp. μ ∈ E ) corresponds
to a transient process with stationary (resp. stationary and ergodic) increments, and induces a probability measure Qμ

on particle paths (Xi)i∈Z. The associated “mean drift” is m(μ) := ∫
(xo − x−1)dμ = Qμ(X1 − Xo). Define

Qw
μ(·) := Qμ

(·|σ(Xi : i ≤ 0)
)
(w) and qμ(w, z) := Qw

μ(X1 = z) (1.5)

for μ-a.e. w and z ∈ U . Denote expectations under Qμ and Qw
μ by Eμ and Ew

μ , respectively.
With this notation,

Ia(ξ) = inf
μ∈E :

m(μ)=ξ

Ia(μ) (1.6)

for every ξ = 0, where

Ia(μ) :=
∫

W tr∞

[∑
z∈U

qμ(w, z) log
qμ(w, z)

q(w, z)

]
dμ(w). (1.7)
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Aside from showing that Ia is convex, Varadhan analyzes the set

N := {
ξ ∈ Rd : Ia(ξ) = 0

}
,

where the rate function Ia vanishes. For non-nestling walks, N consists of a single point ξo which is the LLN velocity.
In the case of nestling walks, N is a line segment through the origin that can extend in one or both directions. Berger [1]
shows that N cannot extend in both directions when d ≥ 5.

Rassoul-Agha [14] generalizes Varadhan’s result to a class of mixing environments, and also to some other models
of random walk on Zd .

1.4. Regeneration times

Take a unit vector û ∈ S d−1. Let

β = β(û) := inf
{
k ≥ 0: 〈Xk, û〉 < 〈Xo, û〉}.

Recursively define a sequence (τm)m≥1 = (τm(û))m≥1 of random times, which are referred to as “regeneration times”
(relative to û), by

τ1 := inf
{
j > 0: 〈Xi, û〉 < 〈Xj , û〉 ≤ 〈Xk, û〉 for all i, k with i < j < k

}
and

τm := inf
{
j > τm−1: 〈Xi, û〉 < 〈Xj , û〉 ≤ 〈Xk, û〉 for all i, k with i < j < k

}
for every m ≥ 2. If the walk is directionally transient relative to û, i.e., if

Po

(
lim

n→∞〈Xn, û〉 = ∞
)

= 1, (1.8)

then Po(β = ∞) > 0 and Po(τm < ∞) = 1 for every m ≥ 1. As shown in [16], the significance of (τm)m≥1 is due to
the fact that

(Xτm+1 − Xτm,Xτm+2 − Xτm, . . . ,Xτm+1 − Xτm)m≥1

is an i.i.d. sequence under Po when

ω = (ωx)x∈Zd is an i.i.d. collection. (1.9)

Definition 4. RWRE is said to satisfy Sznitman’s transience condition (T) relative to a unit vector û ∈ S d−1 if (1.8)
holds and

Eo

[
sup

1≤i≤τ1

exp
{
c1|Xi |

}]
< ∞ for some c1 > 0. (1.10)

The following theorem lists some of the important facts regarding condition (T).

Theorem 5. Consider RWRE on Zd . Assume (1.1), (1.2) and (1.9). Take a unit vector û ∈ S d−1.

(a) For d = 1, (1.8) implies (1.10). Hence, (T) is equivalent to (1.8). (See [18], Proposition 2.6.) The LLN holds with
limiting velocity

ξo = Eo[Xτ1 |β = ∞]
Eo[τ1|β = ∞] (1.11)

which can be zero.
(b) For d ≥ 1, if the walk is non-nestling relative to û, then

Eo

[
exp{c2τ1}

]
< ∞ (1.12)

for some c2 > 0. In particular, (T) is satisfied. (See [17], Theorem 2.1.)
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(c) For d ≥ 2, if (T) holds relative to û, then all the Po-moments of τ1 are finite. This implies a LLN and an averaged
central limit theorem. The LLN velocity ξo is given by the formula in (1.11), and it satisfies 〈ξo, û〉 > 0. (See [18],
Theorems 3.4 and 3.6.)

1.5. Our results

It follows from Theorem 3 and Varadhan’s lemma (see [4]) that

Λa(θ) := lim
n→∞

1

n
logEo

[
exp

{〈θ,Xn〉
}]= sup

ξ∈Rd

{〈θ, ξ 〉 − Ia(ξ)
}

(1.13)

for every θ ∈ Rd . Hence, Λa = I ∗
a , the convex conjugate of Ia .

With c1 and c2 as in (1.10) and (1.12), define

C :=
{{

θ ∈ Rd : |θ | < c2/2
}

if the walk is non-nestling,{
θ ∈ Rd : |θ | < c1,Λa(θ) > 0

}
if the walk is nestling and condition (T) holds.

(1.14)

In the latter case, as we will see, Λa is a non-negative convex function, and C is nothing but an open ball minus a
convex set.

We start Section 2 by obtaining a series of intermediate results including the following lemma.

Lemma 6. Consider RWRE on Zd . Assume (1.1), (1.2) and (1.9). If (T) holds relative to some û ∈ S d−1, then Λa is
analytic on C . Moreover, the Hessian Ha of Λa is positive definite on C .

We then use (1.13) and convex duality to establish the following theorem.

Theorem 7. Under the assumptions of Lemma 6, the averaged rate function Ia is strictly convex and analytic on the
non-empty open set

A := {∇Λa(θ): θ ∈ C
}
. (1.15)

(a) If the walk is non-nestling, then A contains ξo, the LLN velocity.
(b) If the walk is nestling and d = 1, then ξo ∈ ∂A.
(c) If the walk is nestling and d ≥ 2, then:

(i) there exists a (d − 1)-dimensional smooth surface patch Ab such that ξo ∈ Ab ⊂ ∂A, and
(ii) the unit vector ηo normal to Ab (and pointing inside A) at ξo satisfies 〈ηo, ξo〉 > 0. (Roughly speaking, A is

facing away from the origin.)

Remark 8. After making this work available online as part of [21], we learned that Peterson [12] independently proved
Theorem 7 for non-nestling walks. His technique is somewhat different from ours since it involves first considering
large deviations for the joint process of regeneration times and positions. Later, using that technique, Peterson and
Zeitouni [13] reproduced Theorem 7 in its full generality. Plus, in the nestling case, they showed that

Ia(tξ) = tIa(ξ) for every ξ ∈ Ab and t ∈ [0,1]. (1.16)

Under the assumptions of Theorem 7, when d ≥ 4, we recently proved in [23] that Ia = Iq on a closed set whose
interior contains {ξ = 0: Ia(ξ) = 0}. Also, we gave an alternative proof of (1.16).

In Section 3, we identify the unique minimizer in (1.6) for every ξ ∈ A. The natural interpretation is that this
minimizer gives the distribution of the RWRE path under Po when the particle is conditioned to escape to infinity
with mean velocity ξ .



858 A. Yilmaz

Definition 9. Denote the random steps of the particle by (Zn)n≥1 := (Xn − Xn−1)n≥1. Assume (1.1), (1.2), (1.9)
and (T). The Hessian Ha of Λa is positive definite on C by Lemma 6. Hence, for every ξ ∈ A, there exists a unique
θ ∈ C satisfying ξ = ∇Λa(θ). For every K ∈ N, take any bounded function f :UN → R such that f ((zi)i≥1) is
independent of (zi)i>K . Define a probability measure μ̄∞

ξ on UN by setting

∫
f dμ̄∞

ξ := Eo[∑τ1−1
j=0 f ((Zj+i )i≥1) exp{〈θ,XτK

〉 − Λa(θ)τK }|β = ∞]
Eo[τ1 exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞] . (1.17)

Theorem 10. Assume (1.1), (1.2), (1.9) and (T). Recall (1.15) and Definition 9. For every ξ ∈ A, μ̄∞
ξ induces a

transient process with stationary and ergodic increments via the map

(z1, z2, z3, . . .) �→ (z1, z1 + z2, z1 + z2 + z3, . . .).

Extend this process to a probability measure on doubly infinite paths (xi)i∈Z, and refer to its restriction to W tr∞ as μ∞
ξ .

With this notation, μ∞
ξ is the unique minimizer of (1.6).

2. Strict convexity and analyticity

Assume (1.1), (1.2) and (1.9). If the walk is non-nestling, then (1.3) is satisfied for some û ∈ S d−1. If the walk is
nestling, assume that (T) holds relative to some û ∈ S d−1.

2.1. Logarithmic moment generating function

Recall (1.13). By Jensen’s inequality,

〈θ, ξo〉 = lim
n→∞

1

n
Eo

[〈θ,Xn〉
]≤ lim

n→∞
1

n
logEo

[
exp

{〈θ,Xn〉
}]= Λa(θ) ≤ lim

n→∞
1

n
logEo

[
e|θ |n]= |θ |.

Lemma 11. Eo[exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞] ≤ 1 for every θ ∈ Rd .

Proof. For every n ≥ 1, θ ∈ Rd and ε > 0,

Eo

[
exp

{〈θ,Xτn〉 − (
Λa(θ) + ε

)
τn

}] =
∞∑

i=n

Eo

[
exp

{〈θ,Xτn〉 − (
Λa(θ) + ε

)
τn

}
, τn = i

]

≤
∞∑

i=n

Eo

[
exp

{〈θ,Xi〉 − (
Λa(θ) + ε

)
i
}]

=
∞∑

i=n

eo(i)−εi ≤
∞∑

i=n

e−εi/2 = e−εn/2(1 − e−ε/2)−1

when n is sufficiently large. On the other hand,

Eo

[
exp

{〈θ,Xτn〉 − (
Λa(θ) + ε

)
τn

}]
= Eo

[
exp

{〈θ,Xτ1〉 − (
Λa(θ) + ε

)
τ1
}]

Eo

[
exp

{〈θ,Xτ1〉 − (
Λa(θ) + ε

)
τ1
}|β = ∞]n−1

by the renewal structure. Hence, Eo[exp{〈θ,Xτ1〉 − (Λa(θ) + ε)τ1}|β = ∞] ≤ e−ε/2. The desired result is obtained
by taking ε → 0 and applying the monotone convergence theorem. �

Recall (1.14). For every ε > 0, it is clear that Eo[exp{〈εû,Xτ1〉}|β = ∞] > 1. This, in combination with Lemma 11,
implies that Λa(εû) > 0. Therefore, C is non-empty.
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In the nestling case, Ia(0) = 0, cf. [20]. It follows from (1.13) and convex duality that

0 = Ia(0) = sup
θ∈Rd

{〈θ,0〉 − Λa(θ)
}= − inf

θ∈Rd
Λa(θ). (2.1)

In other words, Λa(θ) ≥ 0 for every θ ∈ Rd . The zero-level set {θ ∈ Rd : Λa(θ) = 0} of the convex function Λa is
convex, and C is an open ball minus this convex set.

Lemma 12. Eo[exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞] = 1 for every θ ∈ C .

Proof. Adopt the convention that τo = 0. For every n ≥ 1, θ ∈ C and r ∈ R,

Eo

[
exp

{〈θ,Xn〉 − rn
}]

=
n∑

m=0

n∑
i=0

Eo

[
exp

{〈θ,Xn〉 − rn
}
, τm ≤ n < τm+1, n − τm = i

]

=
n∑

m=0

n∑
i=0

Eo

[
exp

{〈θ,Xτm〉 − rτm

}
, τm = n − i

]
Eo

[
exp

{〈θ,Xi〉 − ri
}
, i < τ1|β = ∞]

≤
∞∑

m=0

Eo

[
exp

{〈θ,Xτm〉 − rτm

}]
Eo

[
sup

0≤i<τ1

exp
{〈θ,Xi〉 − ri

}∣∣β = ∞
]

= Eo

[
sup

0≤i<τ1

exp
{〈θ,Xi〉 − ri

}∣∣β = ∞
]

×
(

1 + Eo

[
exp

{〈θ,Xτ1〉 − rτ1
}] ∞∑

m=0

Eo

[
exp

{〈θ,Xτ1〉 − rτ1
}|β = ∞]m)

< ∞
whenever

Eo

[
sup

0≤i<τ1

exp
{〈θ,Xi〉 − ri

}]
< ∞, Eo

[
exp

{〈θ,Xτ1〉 − rτ1
}]

< ∞ and (2.2)

Eo

[
exp

{〈θ,Xτ1〉 − rτ1
}|β = ∞]

< 1. (2.3)

Therefore, (2.2) and (2.3) imply that

Λa(θ) − r = lim
n→∞

1

n
logEo

[
exp

{〈θ,Xn〉 − rn
}]≤ 0. (2.4)

If the walk is non-nestling, then there exists an ε > 0 such that |θ | + |Λa(θ)| + ε ≤ 2|θ | + ε < c2. Take r =
Λa(θ) − ε. Then, (2.2) follows from Theorem 5. Since (2.4) is false, (2.3) is false as well. In other words,

1 ≤ Eo

[
exp

{〈θ,Xτ1〉 − (
Λa(θ) − ε

)
τ1
}|β = ∞]

< ∞. (2.5)

If the walk is nestling, then Λa(θ) > 0 and there exists an ε > 0 such that Λa(θ) − ε > 0. Take r = Λa(θ) − ε.
Then, (2.2) follows from (1.10). Since (2.4) is false, (2.5) is true.

Clearly, (2.5) and the monotone convergence theorem imply that Eo[exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞] ≥ 1. Com-
bined with Lemma 11, this gives the desired result. �

Lemma 13. Assume that the walk is nestling. With c1 as in (1.10), define

Cb := {
θ ∈ ∂C: |θ | < c1

}
. (2.6)



860 A. Yilmaz

(a) If |θ | < c1, then θ /∈ C if and only if Eo[exp{〈θ,Xτ1〉}|β = ∞] ≤ 1.
(b) If |θ | < c1, then θ ∈ Cb if and only if Eo[exp{〈θ,Xτ1〉}|β = ∞] = 1.

Proof. Recall that Λa(θ) ≥ 0 for every θ ∈ Rd by (2.1). If |θ | < c1 and θ /∈ C , then Λa(θ) = 0 and Eo[exp{〈θ,

Xτ1〉}|β = ∞] ≤ 1 by Lemma 11. Conversely, if |θ | < c1 and Eo[exp{〈θ,Xτ1〉}|β = ∞] ≤ 1, then Λa(θ) > 0 cannot
be true because it would imply that

1 = Eo

[
exp

{〈θ,Xτ1〉 − Λa(θ)τ1
}|β = ∞]

< Eo

[
exp

{〈θ,Xτ1〉
}|β = ∞]≤ 1

by Lemma 12. Hence, Λa(θ) = 0. This proves part (a).
If θ ∈ Cb , then Λa(θ) = 0. Take θn ∈ C such that θn → θ . It follows from Lemma 12 that

Eo

[
exp

{〈θn,Xτ1〉 − Λa(θn)τ1
}|β = ∞]= 1.

Since Λa is continuous at θ , Eo[exp{〈θ,Xτ1〉}|β = ∞] = 1 by (1.10) and the dominated convergence theorem.
Λa is a convex function and {θ ∈ Rd : Λa(θ) = 0} is convex. If θ is an interior point of this set, then θ = tθ1 +

(1 − t)θ2 for some t ∈ (0,1) and θ1, θ2 ∈ Rd such that θ1 = θ2 and Eo[exp{〈θi,Xτ1〉}|β = ∞] ≤ 1 for i = 1,2.
By Jensen’s inequality, Eo[exp{〈θ,Xτ1〉}|β = ∞] < 1. The contraposition of this argument concludes the proof of
part (b). �

Proof of Lemma 6. Consider the function ψ : Rd × R → R defined as

ψ(θ, r) := Eo

[
exp

{〈θ,Xτ1〉 − rτ1
}|β = ∞]

. (2.7)

When θ ∈ C and |r −Λa(θ)| is small enough, it follows from (1.10), Theorem 5 and Lemma 12 that ψ(θ, r) < ∞ and
ψ(θ,Λa(θ)) = 1. Clearly, (θ, r) �→ ψ(θ, r) is analytic at such (θ, r).

If the walk is non-nestling or if it is nestling but d ≥ 2, then all the Po-moments of τ1 are finite and
Eo[τ1 exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞] < ∞ by Hölder’s inequality and Theorem 5.

If the walk is nestling and d ≥ 1, then Λa(θ) > 0, and (1.10) implies that

Eo

[
τ1 exp

{〈θ,Xτ1〉 − Λa(θ)τ1
}|β = ∞]

≤
(

sup
t≥0

te−Λa(θ)t
)
Eo

[
exp

{〈θ,Xτ1〉
}|β = ∞]

= (
eΛa(θ)

)−1
Eo

[
exp

{〈θ,Xτ1〉
}|β = ∞]

< ∞.

In both cases, Lemma 12 implies that

Eo

[
τ1 exp

{〈θ,Xτ1〉 − Λa(θ)τ1
}|β = ∞]≥ Eo

[
exp

{〈θ,Xτ1〉 − Λa(θ)τ1
}|β = ∞]= 1.

Therefore,

∂rψ(θ, r)|r=Λa(θ) = −Eo

[
τ1 exp

{〈θ,Xτ1〉 − Λa(θ)τ1
}|β = ∞] ∈ (−∞,−1],

and Λa is analytic on C by the analytic implicit function theorem. (See [9], Theorem 6.1.2.)
Differentiating both sides of ψ(θ,Λa(θ)) = 1 with respect to θ gives

Eo

[(
Xτ1 − ∇Λa(θ)τ1

)
exp

{〈θ,Xτ1〉 − Λa(θ)τ1
}|β = ∞]= 0 (2.8)

and

∇Λa(θ) = Eo[Xτ1 exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞]
Eo[τ1 exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞] . (2.9)
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Differentiating both sides of (2.8), we see that the Hessian Ha of Λa satisfies〈
v1, Ha(θ)v2

〉
= Eo[〈Xτ1 − ∇Λa(θ)τ1, v1〉〈Xτ1 − ∇Λa(θ)τ1, v2〉 exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞]

Eo[τ1 exp{〈θ,Xτ1〉 − Λa(θ)τ1}|β = ∞] (2.10)

for any two vectors v1 ∈ Rd and v2 ∈ Rd .
We already saw that the denominator of the RHS of (2.10) is finite. A similar argument shows that the numerator

is finite as well. Assumption (1.2) ensures that the numerator is positive when v1 = v2. Thus, Ha is positive definite
on C . �

2.2. Rate function

Proof of Theorem 7. Λa is analytic on C , and the Hessian Ha of Λa is positive definite on C , cf. Lemma 6. Therefore,
for every ξ ∈ A, there exists a unique θ = θ(ξ) ∈ C such that ξ = ∇Λa(θ). A is open since it is the pre-image of C
under the map ξ �→ θ(ξ) which is analytic by the inverse function theorem. Since

Ia(ξ) = sup
θ ′∈Rd

{〈
θ ′, ξ

〉− Λa

(
θ ′)}= 〈

θ(ξ), ξ
〉− Λa

(
θ(ξ)

)
, (2.11)

we conclude that Ia is analytic at ξ . Differentiating (2.11) twice with respect to ξ shows that the Hessian of Ia at ξ is
equal to Ha(θ(ξ))−1, a positive definite matrix. Therefore, Ia is strictly convex on A.

If the walk is non-nestling, then 0 ∈ C and

ξo = Eo[Xτ1 |β = ∞]
Eo[τ1|β = ∞] = ∇Λa(0) ∈ A

by (1.11) and (2.9). This proves part (a).
The rest of this proof focuses on the nestling case. When d = 1, Lemma 13 implies that 0 ∈ ∂C . Take any (θn)n≥1

with θn ∈ C such that θn → 0. Then, any limit point of (∇Λa(θn))n≥1 belongs to ∂A. (1.11) and (2.9) imply that

lim sup
n→∞

∇Λa(θn) = lim sup
n→∞

Eo[Xτ1 exp{〈θn,Xτ1〉 − Λa(θn)τ1}|β = ∞]
Eo[τ1 exp{〈θn,Xτ1〉 − Λa(θn)τ1}|β = ∞] (2.12)

≤ Eo[Xτ1 |β = ∞]
Eo[τ1|β = ∞] = ξo, (2.13)

where we assume WLOG that û = 1. The numerator in (2.12) converges to the numerator in (2.13) by (1.10) and the
dominated convergence theorem. The denominator in (2.13) bounds the liminf of the denominator in (2.12) by Fatou’s
lemma. [0, ξo] ∩ A is empty since Ia is linear on [0, ξo]. (This only makes sense if ξo > 0. However, when ξo = 0, it
is clear from (2.9) that 0 /∈ A.) Therefore, lim infn→∞ ∇Λa(θn) ≥ ξo. Hence, ξo = limn→∞ ∇Λa(θn) ∈ ∂A.

When d ≥ 2, (2.9), Hölder’s inequality and Theorem 5 imply that ∇Λa extends smoothly to C ∪ Cb . Re-
fer to the extension by ∇Λa . Define Ab := {∇Λa(θ): θ ∈ Cb}. Note that 0 ∈ Cb ⊂ ∂C by Lemma 13, and
ξo = ∇Λa(0) ∈ Ab ⊂ ∂A.

The map θ �→ ψ(θ,0) = Eo[exp{〈θ,Xτ1〉}|β = ∞] is analytic on {θ ∈ Rd : |θ | < c1}. For every θ ∈ Cb ,〈∇θψ(θ,0), û
〉= Eo

[〈Xτ1, û〉 exp
{〈θ,Xτ1〉

}|β = ∞]
> 0.

Lemma 13 and the implicit function theorem imply that Cb is the graph of an analytic function. Therefore, Ab is a
(d − 1)-dimensional smooth surface patch. Note that

∇θψ(θ,0)|θ=0 = Eo[Xτ1 |β = ∞] = Eo[τ1|β = ∞]ξo

is normal to Cb at 0. Refer to the extension of Ha to C ∪ Cb as Ha . The unit vector ηo normal to Ab (and pointing
inside A) at ξo is cHa(0)−1ξo for some c > 0 by the chain rule. It is clear from (1.2) and (2.10) that

〈ηo, ξo〉 = c
〈
ξo, Ha(0)−1ξo

〉
> 0. �
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3. Minimizer of Varadhan’s variational formula

3.1. Existence of the minimizer

Varadhan’s variational formula for the rate function Ia at any ξ = 0 is

Ia(ξ) = inf
μ∈E :

m(μ)=ξ

Ia(μ). (3.1)

Recall (1.5). There exists a measurable function q̂ :W tr∞ × U → [0,1] such that q̂(·, z) = qμ(·, z) holds μ-a.s. for
every μ ∈ I and z ∈ U . (See [5], Lemma 3.4.) The formula (1.7) for Ia can be written as

Ia(μ) =
∫

W tr∞

[∑
z∈U

q̂(w, z) log
q̂(w, z)

q(w, z)

]
dμ(w). (3.2)

Therefore, Ia is affine linear on I .

Lemma 14.

Ia(ξ) = inf
μ∈I:

m(μ)=ξ

Ia(μ).

Proof. By the definition of Ia in (3.1),

Ia(ξ) ≥ inf
μ∈I:

m(μ)=ξ

Ia(μ)

is clear. To establish the reverse inequality, take any μ ∈ I with m(μ) = ξ . Since E is the set of extremal points of I ,
μ can be expressed as

μ =
∫

Eo

α dμ̂(α) +
∫

E \Eo

α dμ̂(α) =
∫

Eo

α dμ̂(α) + (
1 − μ̂(Eo)

)
μ̃,

where Eo := {α ∈ E : m(α) = 0}, μ̂ is some probability measure on E , and μ̃ ∈ I with m(μ̃) = 0. Then,

Ia(μ) =
∫

Eo

Ia(α)dμ̂(α) + (
1 − μ̂(Eo)

)
Ia(μ̃) (3.3)

≥
∫

Eo

Ia

(
m(α)

)
dμ̂(α) + (

1 − μ̂(Eo)
)
Ia(0) (3.4)

≥ Ia(ξ). (3.5)

The equality in (3.3) uses the affine linearity of Ia . (3.4) follows from two facts: (i) Ia(α) ≥ Ia(m(α)) and
(ii) Ia(μ̃) ≥ Ia(0). The first fact is immediate from the definition of Ia . See Lemma 7.2 of [20] for the proof of
the second fact. Finally, the convexity of Ia gives (3.5). �

Lemma 15. If Ia is strictly convex at ξ , then the infimum in (3.1) is attained.

Proof. Let Wn := {(xi)−n≤i≤0: xi+1 − xi ∈ U,xo = 0}. The simplest compactification of W := ⋃
n Wn is W∞ :=

{(xi)i≤0: xi+1 − xi ∈ U,xo = 0} with the product topology. However, the functions q(·, z) (recall (1.4)) are only
defined on W tr∞, and even when restricted to it they are not continuous since two walks that are identical in the
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immediate past are close to each other in this topology even if one of them visits 0 in the remote past and the other
one does not.

Section 5 of [20] introduces a more convenient compactification W of W . The functions q(·, z) continuously extend
from W to W . Denote the T ∗-invariant probability measures on W by I , and the extremals of I by E . Recall that
Eo := {α ∈ E : m(α) = 0}. Then, Eo ⊂ E ⊂ E and I ⊂ I . Note that the domain of the formula for Ia given in (3.2)
extends to I .

Take μn ∈ E such that m(μn) = ξ and Ia(μn) → Ia(ξ) as n → ∞. Let μ̄ ∈ I be a weak limit point of μn.
Corollary 6.2 of [20] shows that μ̄ has a representation

μ̄ =
∫

Eo

α dμ̂1(α) + (
1 − μ̂1(Eo)

)
μ̄2,

where μ̂1 is some probability measure on Eo, and μ̄2 ∈ I with m(μ2) = 0. Then,

Ia(ξ) = lim
n→∞Ia(μn) ≥ Ia(μ̄) (3.6)

=
∫

Eo

Ia(α)dμ̂1(α) + (
1 − μ̂1(Eo)

)
Ia(μ̄2) (3.7)

≥
∫

Eo

Ia

(
m(α)

)
dμ̂1(α) + (

1 − μ̂1(Eo)
)
Ia(0) (3.8)

≥ Ia(ξ). (3.9)

The inequality in (3.6) follows from the lower semicontinuity of Ia , and the equality in (3.7) is a consequence of the
affine linearity of Ia . (3.8) relies on the fact that Ia(μ̄2) ≥ Ia(0). (See Lemma 7.2 of [20] for the proof.) Finally, the
convexity of Ia gives (3.9). Since Ia is assumed to be strictly convex at ξ , μ̂1(α ∈ Eo: m(α) = ξ,Ia(α) = Ia(ξ)) = 1.
Hence, we are done. �

3.2. Formula for the unique minimizer

Fix any ξ ∈ A. Recall Definition 9 and Theorem 10.

Proposition 16. μ̄∞
ξ is well defined.

Proof. For every K ∈ N, take any bounded function f :UN → R such that f ((zi)i≥1) is independent of (zi)i>K .
Then, f ((zi)i≥1) is independent of (zi)i>K ′ for every K ′ > K as well. So, we need to show that (1.17) does not
change if we replace K by K + 1. But, this is clear because

Eo

[
τ1−1∑
j=0

f
(
(Zj+i )i≥1

)
exp

{〈θ,XτK+1〉 − Λa(θ)τK+1
}∣∣∣β = ∞

]

= Eo

[
τ1−1∑
j=0

f
(
(Zj+i )i≥1

)
exp

{〈θ,XτK
〉 − Λa(θ)τK

}

× {
e〈θ,XτK+1−XτK

〉−Λa(θ)(τK+1−τK)}∣∣∣β = ∞
]

= Eo

[
τ1−1∑
j=0

f
(
(Zj+i )i≥1

)
exp

{〈θ,XτK
〉 − Λa(θ)τK

}∣∣∣β = ∞
]
.
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Explanation: In the second line of the display above, the term in {·} is independent of the others. The expectation
therefore splits, and Lemma 12 implies that

Eo

[
exp

{〈θ,XτK+1 − XτK
〉 − Λa(θ)(τK+1 − τK)

}|β = ∞]
= Eo

[
exp

{〈θ,Xτ1〉 − Λa(θ)τ1
}|β = ∞]= 1. �

The following theorem states that the empirical process

ν̄∞
n,X := 1

n

n−1∑
j=0

1(Zj+i )i≥1

of the walk under Po converges to μ̄∞
ξ when the particle is conditioned to have mean velocity ξ . Here, Zi = Xi −Xi−1.

Theorem 17. For every K ∈ N, f :UN → R such that f ((zi)i≥1) is independent of (zi)i>K and bounded, and ε > 0,

lim sup
δ→0

lim sup
n→∞

1

n
logPo

(∣∣∣∣
∫

f dν̄∞
n,X −

∫
f dμ̄∞

ξ

∣∣∣∣> ε

∣∣∣∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)
< 0.

Proof in the non-nestling case. Since ξ ∈ A, there exists a unique θ ∈ C such that ξ = ∇Λa(θ). Let g(·) := f (·) −∫
f dμ̄∞

ξ . Assume WLOG that |g| ≤ 1. Then,
∫

f dν̄∞
n,X − ∫

f dμ̄∞
ξ = ∫

g dν̄∞
n,X =: 〈g, ν̄∞

n,X〉. For any s ∈ R,

Eo

[
exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]
= Eo

[
n < τK+1, exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]
+

n∑
m=K+1

Eo

[
τm ≤ n < τm+1, exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]
. (3.10)

If |s| is small enough so that 2|θ | + |s| < c2, then the first term in (3.10) is bounded from above by Eo[n <

τK+1, exp{(2|θ | + |s|)τK+1}] which goes to 0 as n → ∞ by Theorem 5 and the monotone convergence theorem.
For j ≥ 0, define

Gj :=
τj+1−1∑
k=τj

g
(
(Zk+i )i≥1

)
(3.11)

with the convention that τo = 0. Note that Gj is a function of Zτj +1, . . . ,Zτj+1+K−1. Therefore, Gj and Gj+K depend
on disjoint sets of steps since τj+1 + K − 1 ≤ τj+K . For any p,q ∈ R with 1 < p < c2/2|θ | and 1/p + 1/q = 1, each
term of the sum in (3.10) can be bounded using Hölder’s inequality:

Eo

[
τm ≤ n < τm+1, exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]
≤ Eo

[
e〈θ,Xτm−Xτ1 〉−Λa(θ)(τm−τ1)+s(G1+···+Gm−K−1)+(2|θ |+|s|)(τ1+τm+1−τm)+|s|(τm−τm−K)

]
≤ Eo

[
e(2|θ |+|s|)τ1

]
Eo

[
e〈θ,Xτm−Xτ1 〉−Λa(θ)(τm−τ1)+p(2|θ |+|s|)(τm+1−τm)+p|s|(τm−τm−K)

]1/p

×
K∏

i=1

Eo

[
e〈θ,Xτm−Xτ1 〉−Λa(θ)(τm−τ1)+(Kq)s(Gi+Gi+K+···+Gi+[(m−K−i−1)/K]K)

]1/(Kq)

≤ Eo

[
exp

{(
2|θ | + |s|)τ1

}]
Eo

[
exp

{
p
(
2|θ | + |s|)τ1

}|β = ∞](K+1)/p

× Eo

[
exp

{〈θ,XτK
〉 − Λa(θ)τK + (Kq)sGo

}|β = ∞](m−K−1)/(Kq)
. (3.12)



Averaged large deviations for RWRE 865

The last inequality follows from the fact that (Gi,Gi+K, . . .) is an i.i.d. sequence. The terms of the product in (3.12)
are finite by Theorem 5 if p(2|θ | + |s|) < c2 and 2|θ | + (Kq)|s| < c2. Putting the pieces together,

lim sup
n→∞

1

n
logEo

[
exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]

≤ 0 ∨ lim sup
n→∞

1

n
log

n∑
m=K+1

Eo

[
exp

{〈θ,XτK
〉 − Λa(θ)τK + (Kq)sGo

}|β = ∞](m−K−1)/(Kq)

≤ 0 ∨ 1

Kq
logEo

[
exp

{〈θ,XτK
〉 − Λa(θ)τK + (Kq)sGo

}|β = ∞]
.

Let h(s) := 1
Kq

logEo[exp{〈θ,XτK
〉 − Λa(θ)τK + (Kq)sGo}|β = ∞]. Lemma 12 implies that h(0) = 0. The map

s �→ h(s) is analytic in a neighborhood of 0, and

h′(0) = Eo

[
Go exp

{〈θ,XτK
〉 − Λa(θ)τK

}|β = ∞]

= Eo

[
τ1−1∑
k=0

g
(
(Zk+i )i≥1

)
exp

{〈θ,XτK
〉 − Λa(θ)τK

}∣∣∣β = ∞
]

= Eo

[(
τ1−1∑
k=0

f
(
(Zk+i )i≥1

)− τ1

∫
f dμ̄∞

ξ

)
exp

{〈θ,XτK
〉 − Λa(θ)τK

}∣∣∣β = ∞
]

= 0

by Definition 9. We conclude that

lim sup
n→∞

1

n
logEo

[
exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]≤ o(s). (3.13)

Whenever s > 0 is small enough, Chebyshev’s inequality and the averaged LDP give

lim sup
n→∞

1

n
logPo

(∫
f dν̄∞

n,X −
∫

f dμ̄∞
ξ > ε

∣∣∣∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)

= lim sup
n→∞

1

n
logPo

(〈
g, ν̄∞

n,X

〉
> ε,

∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)
− lim

n→∞
1

n
logPo

(∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)

≤ lim sup
n→∞

1

n
logEo

[
exp

{〈θ,Xn〉
}
,
〈
g, ν̄∞

n,X

〉
> ε,

∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

]
− 〈θ, ξ 〉 + Ia(ξ) + |θ |δ

≤ lim sup
n→∞

1

n
logEo

[
exp

{〈θ,Xn〉 − Λa(θ)n
}
,
〈
g, ν̄∞

n,X

〉
> ε

]+ |θ |δ

≤ lim sup
n→∞

1

n
logEo

[
exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]− sε + |θ |δ

≤ o(s) − sε + |θ |δ
≤ −sε/2 + |θ |δ

for every δ > 0. Similarly,

lim sup
n→∞

1

n
logPo

(∫
f dν̄∞

n,X −
∫

f dμ̄∞
ξ < −ε

∣∣∣∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)
≤ −sε/2 + |θ |δ.

By combining these two bounds, we finally deduce that

lim sup
δ→0

lim sup
n→∞

1

n
logPo

(∣∣∣∣
∫

f dν̄∞
n,X −

∫
f dμ̄∞

ξ

∣∣∣∣> ε

∣∣∣∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)
≤ −sε/2. �
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Proof in the nestling case. Since ξ ∈ A, there exists a unique θ ∈ C such that Λa(θ) > 0 and ξ = ∇Λa(θ). If
0 < s < Λa(θ), then the first term in (3.10) is bounded from above by Eo[n < τK+1, exp{|θ ||Xn|}] which goes to 0 as
n → ∞ by (1.10) and the monotone convergence theorem.

For any p,q with 1 < p < c1/|θ | and 1/p+1/q = 1, each term of the sum in (3.10) can be bounded using Hölder’s
inequality when 0 < s < Λa(θ)/(p ∨ Kq):

Eo

[
τm ≤ n < τm+1, exp

{〈θ,Xn〉 − Λa(θ)n + ns
〈
g, ν̄∞

n,X

〉}]
≤ Eo

[
e〈θ,Xτ1 〉+〈θ,Xτm−Xτ1 〉−Λa(θ)(τm−τ1)+s(G1+···+Gm−1) sup

τm≤n<τm+1

e〈θ,Xn−Xτm 〉]

≤ Eo

[
exp

{〈θ,Xτ1〉
}]

Eo

[
e〈θ,Xτm−Xτ1 〉−Λa(θ)(τm−τ1)+ps(Gm−K+···+Gm−1) sup

τm≤n<τm+1

ep〈θ,Xn−Xτm 〉]1/p

×
K∏

i=1

Eo

[
e〈θ,Xτm−Xτ1 〉−Λa(θ)(τm−τ1)+(Kq)s(Gi+Gi+K+···+Gi+[(m−K−i−1)/K]K)

]1/(Kq)

≤ Eo

[
exp

{〈θ,Xτ1〉
}]

Eo

[
sup

τK≤n<τK+1

exp
{
p|θ ||Xn|

}∣∣β = ∞
]1/p

(3.14)

× Eo

[
exp

{〈θ,XτK
〉 − Λa(θ)τK + (Kq)sGo

}|β = ∞](m−K−1)/(Kq)
.

The first two terms in (3.14) are finite by (1.10). The last term in (3.14) is equal to the last term in (3.12). The rest of
the argument is identical to the one given in the non-nestling case. �

Proof of Theorem 10. Fix ξ ∈ A. Take any α ∈ E with m(α) = ξ . The corresponding transient process Qα induces
a probability measure ᾱ on UN via the map (xi)i∈Z �→ (x1 − xo, x2 − x1, . . .). If ᾱ = μ̄∞

ξ , then there exist K ∈ N,

f :UN → R and ε > 0 such that f ((zi)i≥1) is bounded and independent of (zi)i>K , and |〈f, ᾱ − μ̄∞
ξ 〉| > ε.

For every w ∈ W tr∞, m ∈ N, and (x1, x2, . . . , xm) such that (xi+1 − xi) ∈ U , it follows easily from (1.2) that

Po(X1 = x1, . . . ,Xm = xm) ≥ κLQw(X1 = x1, . . . ,Xm = xm)

if (x1, x2, . . . , xm) intersects w at most L times. With this observation in mind, let H(n,X) denote the number of
times (X1, . . . ,Xn) intersects (Xi)i≤0. Since the walk under Qα is transient in the ξ direction, there exists a constant
L such that limn→∞ Qα(H(n,X) ≤ L) ≥ 1/2. For notational convenience, let

Aδ
n :=

{∣∣〈f, ν̄∞
n,X − μ̄∞

ξ

〉∣∣> ε,

∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ,H(n + K,X) ≤ L

}
.

By Jensen’s inequality,

Po

(∣∣〈f, ν̄∞
n,X − μ̄∞

ξ

〉∣∣> ε,

∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)

≥ κL sup
w∈W tr∞

Qw
(
Aδ

n

)≥ κL

∫
Ew[1Aδ

n
]dα(w)

= κL

∫
Ew

α

[
1Aδ

n

dQw

dQw
α

∣∣∣∣
σ(Z1,...,Zn+K)

]
dα(w)

= κLQα

(
Aδ

n

) 1

Qα(Aδ
n)

∫
Aδ

n

exp

(
− log

dQw
α

dQw
(z1, . . . , zn+K)

)
dQα(w, z1, . . . , zn+K)

≥ κLQα(Aδ
n) exp

(
− 1

Qα(Aδ
n)

∫
Aδ

n

log
dQw

α

dQw
(z1, . . . , zn+K)dQα(w, z1, . . . , zn+K)

)
.
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Since m(α) = ξ and |〈f, ᾱ − μ̄∞
ξ 〉| > ε, the L1-ergodic theorem implies that

lim
n→∞Qα

(
Aδ

n

)= lim
n→∞Qα

(
H(n + K,X) ≤ L

)≥ 1/2.

Therefore,

lim inf
n→∞

1

n
logPo

(∣∣〈f, ν̄∞
n,X − μ̄∞

ξ

〉∣∣> ε,

∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)

≥ − lim sup
n→∞

1

nQα(Aδ
n)

∫
Aδ

n

log
dQw

α

dQw
(z1, . . . , zn+K)dQα(w, z1, . . . , zn+K)

= −
∫

W tr∞

[∑
z∈U

qα(w, z) log
qα(w, z)

q(w, z)

]
dα(w) = −Ia(α)

again by the L1-ergodic theorem. Finally, Theorem 17 and the averaged LDP give

0 > lim sup
δ→0

lim sup
n→∞

1

n
logPo

(∣∣∣∣
∫

f dν̄∞
n,X −

∫
f dμ̄∞

ξ

∣∣∣∣> ε

∣∣∣∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)

= Ia(ξ) + lim sup
δ→0

lim sup
n→∞

1

n
logPo

(∣∣∣∣
∫

f dν̄∞
n,X −

∫
f dμ̄∞

ξ

∣∣∣∣> ε,

∣∣∣∣Xn

n
− ξ

∣∣∣∣≤ δ

)

≥ Ia(ξ) − Ia(α).

In words, α is not the minimizer of (1.6). Theorem 7 and Lemma 15 imply that the infimum in (1.6) is attained.
Therefore, the probability measure that any minimizer of (1.6) induces on UN is equal to μ̄∞

ξ . This implies that μ̄∞
ξ

corresponds to a transient process with stationary and ergodic increments, and μ∞
ξ (which is defined in the statement

of Theorem 10) is the unique minimizer of (1.6). �

Remark 18. The argument above indirectly proves that μ∞
ξ ∈ E , and that m(μ∞

ξ ) = ξ . These facts are also easy to
show directly using Definition 9. In fact, μ∞

ξ is mixing with rate given by the tail behavior of τ1.
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