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Abstract. The methods to establish the limiting spectral distribution (LSD) of large dimensional random matrices includes the
well-known moment method which invokes the trace formula. Its success has been demonstrated in several types of matrices such
as the Wigner matrix and the sample covariance matrix. In a recent article Bryc, Dembo and Jiang [Ann. Probab. 34 (2006) 1–38]
establish the LSD for random Toeplitz and Hankel matrices using the moment method. They perform the necessary counting of
terms in the trace by splitting the relevant sets into equivalence classes and relating the limits of the counts to certain volume
calculations. Bose and Sen [Electron. J. Probab. 13 (2008) 588–628] have developed this method further and have provided a
general framework which deals with symmetric matrices with entries coming from an independent sequence.

In this article we enlarge the scope of the above approach to consider matrices of the form Ap = 1
nXX′ where X is a p×n matrix

with real entries. We establish some general results on the existence of the spectral distribution of such matrices, appropriately
centered and scaled, when p → ∞ and n = n(p) → ∞ and p/n → y with 0 ≤ y < ∞. As examples we show the existence of the
spectral distribution when X is taken to be the appropriate asymmetric Hankel, Toeplitz, circulant and reverse circulant matrices.
In particular, when y = 0, the limits for all these matrices coincide and is the same as the limit for the symmetric Toeplitz derived
in Bryc, Dembo and Jiang [Ann. Probab. 34 (2006) 1–38]. In other cases, we obtain new limiting spectral distributions for which
no closed form expressions are known. We demonstrate the nature of these limits through some simulation results.

Résumé. Une des méthodes pour obtenir la limite des distributions spectrales (LSD) des grandes matrices aléatoires est la fameuse
méthode des moments, basée sur la formule des traces. Son succès a été clairement établi pour différents types de matrices telles que
les matrices de Wigner et les matrices de covariance. Dans un article récent, Bryc, Dembo et Jiang [Ann. Probab. 34 (2006) 1–38]
ont obtenu la LSD pour des matrices de Toeplitz et de Hankel en utilisant cette méthode. Ils arrivent à estimer les traces des moments
de telles matrices en séparant les différents termes par classes d’équivalence et en reliant les asymptotiques des dénombrements
afférents avec les calculs de certains volumes. Bose et Sen [Electron. J. Probab. 13 (2008) 588–628] ont développé cette idée et
ont donné un cadre général pour traiter de matrices symmétriques dont les entrées viennent d’une suite indépendante.

Dans cet article, nous généralisons cette approche pour considérer des matrices de la form Ap = 1
nXX′ où X est une matrice p×

n avec des entrées réelles. Nous démontrons un résultat général d’existence de la LSD de telles matrices, correctement recentrées
et rééchelonnées, quand p et n tendent vers l’infini de telle façon que p/n tende vers y ∈ (0,∞). Par exemple, nous montrons
l’existence de la LSD quand X est la matrice asymétrique de Hankel, de Toeplitz, circulante ou circulante inverse. En particulier,
quand y = 0, les limites correspondent à celles obtenues par Bryc, Dembo et Jiang [Ann. Probab. 34 (2006) 1–38]. Sinon, nous
obtenons de nouvelles lois limites pour lesquelles aucune expression explicite n’est connue. Nous étudions ces lois par quelques
simulations.
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1. Introduction

1.1. Random matrices and spectral distribution

Random matrices were introduced in mathematical statistics by Wishart [20]. In 1950 Wigner successfully used ran-
dom matrices to model the nuclear energy levels of a disordered particle system. The seminal work, Wigner [19] laid
the foundation of this subject. This theory has grown into a separate field now, with application in many branches of
sciences that includes areas as diverse as multivariate statistics, operator algebra, number theory, signal processing
and wireless communication.

Spectral properties of random matrices is in general a rich and attractive area for mathematicians. In particular,
when the dimension of the random matrix is large, the problem of studying the behavior of the eigenvalues in the bulk
of the spectrum has arisen naturally in many areas of science and has received considerable attention. Suppose Ap is a
p×p random matrix. Let λ1, . . . , λp ∈ R (or C) denote its eigenvalues. When the eigenvalues are real, our convention
will be to always write them in ascending order. The empirical spectral measure μp of Ap is the random measure on R

(or C) given by

μp = 1

p

p∑
i=1

δλi
, (1)

where δx is the Dirac delta measure at x. The random probability distribution function on R (or C) corresponding
to μp , is known as the Empirical Spectral Distribution (ESD) of Ap . We will denote it by FAp .

If {FAp } converges weakly (as p tends to infinity), either almost surely or in probability, to some (nonrandom)
probability distribution, then that distribution is called the Limiting Spectral Distribution (LSD) of {Ap}. Proving
existence of LSD and deriving its properties for general patterned matrices has drawn significant attention in the
literature. We refer to Bai [1] and Bose and Sen [6] for information on several interesting situations where the LSD
exists and can be explicitly specified.

Possibly the two most significant matrices whose LSD have been extensively studied, are the Wigner and the sample
covariance matrices. For simplicity, let us assume for the time being that all random sequences under consideration
are independent and uniformly bounded.

1. Wigner matrix. In its simplest form, the Wigner matrix W
(s)
n [18,19], of order n is an n × n symmetric matrix

whose entries on and above the diagonal are i.i.d. random variables with zero mean and variance one. Denoting those
i.i.d. random variables by {xij : 1 ≤ i ≤ j}, we can visualize the Wigner matrix as

W(s)
n =

⎡⎢⎢⎣
x11 x12 x13 . . . x1(n−1) x1n

x12 x22 x23 . . . x2(n−1) x2n

...

x1n x2n x3n . . . xn(n−1) xnn

⎤⎥⎥⎦ . (2)

It is well known that almost surely,

LSD of n−1/2W(s)
n is the semicircle law W, (3)

with the density function

pW(s) =
{

1
2π

√
4 − s2 if |s| ≤ 2,

0 otherwise.
(4)

2. Sample covariance matrix (S matrix). Suppose {xjk: j, k = 1,2, . . .} is a double array of i.i.d. real random
variables with mean zero and variance 1. The matrix

Ap(W) = n−1WpW ′
p where Wp = (

(xij )
)

1≤i≤p,1≤j≤n
(5)

is called a sample covariance matrix (in short an S matrix). Let Ip denote the identity matrix of order p. The following
results are well known. See [1] or [6] for moment method and Stieltjes transform method proofs. To have the historical
idea of the successive development of these results see [3] for (a) and [9,11,13,17,21,22] for (b).
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(a) If p → ∞ and p/n −→ 0 then almost surely,

LSD of
√

n

p

(
Ap(W) − Ip

)
is the semicircle law given in (4) above. (6)

(b) If p → ∞ and p/n −→ y ∈ (0,∞) then almost surely,

LSD of Ap(W) is the Marčenko–Pastur law MPy given in (8) below. (7)

The Marčenko–Pastur law, MPy , has a positive mass 1 − 1
y

at the origin if y > 1. Elsewhere it has a density:

MPy(x) =
{

1
2πxy

√
(b − x)(x − a) if a ≤ x ≤ b,

0 otherwise,
(8)

where a = a(y) = (1 − √
y)2 and b = b(y) = (1 + √

y)2.

Suppose p = n. Then Wn above is a square matrix with i.i.d. elements, and the Wigner matrix W
(s)
n is obtained

from Wn by retaining the elements above and on the diagonal of Wn and letting symmetry dictate the choice of the
rest of the elements of W

(s)
n . We loosely say that Wn is the asymmetric version of W

(s)
n . It is interesting to note the

following:

(i) The LSD of n−1/2W
(s)
n in (3) and that of

√
n
p
( 1
n
WpW ′

p − Ip) in (6) are identical.

(ii) If W and M are random variables obeying respectively, the semicircle law and the Marčenko–Pastur law with

y = 1, then M
D= W 2 in law. That is, the LSD of n−1/2W

(s)
n and that of 1

n
WpW ′

p bears this squaring relationship when
p/n → 1.

1.2. The problem and its motivation

In view of the above discussion, it thus is natural to study the LSD of matrices of the form Ap(X) = (1/n)XpX′
p

where Xp is a p × n suitably patterned (asymmetric) random matrix. Asymmetry is used loosely. It just means
that Xp is not necessarily symmetric. In particular one may ask the following questions.

(i) Suppose p/n → y,0 < y < ∞. When does the LSD of Ap(X) = 1
n
XpX′

p exist?

(ii) Suppose p/n → 0. When does the LSD of
√

n
p
(Ap(X)− Ip) exist? Note that unlike the S matrix, the mean of

Ap(X) is not in general equal to Ip and hence other centering/normalisations may also need to be allowed.
(iii) Suppose Xp is a p × n (asymmetric) patterned matrix and Ap(X) = 1

n
XpX′

p for which the limit in (ii) holds.

Call it A. Now consider the square symmetric matrix X
(s)
n obtained from Xp by letting p = n and symmetrising it by

retaining the elements of Xp above and on the diagonal and allowing symmetry to dictate the rest of the elements.

Suppose as n → ∞, the LSD of n−1/2X
(s)
n exists. Call it B . In general, is there any relation between B and A?

A further motivation to study the LSD of 1
n
XpX′

p comes from wireless communications theory. Many results on the
information-theoretic limits of various wireless communication channels make substantial use of asymptotic random
matrix theory, as the size of the matrix increases. An extended survey of results and works in this area may be found
in [16]. Also see [15] for a review of some of the existing mathematical results that are relevant to the analysis of
the properties of random matrices arising in wireless communications. The study of the asymptotic distribution of the
singular values is seen as an important aspect in the analysis and design of wireless communication channels.

A typical wireless communication channel may be described by the linear vector memoryless channel:

y = Xpθ + ε,

where θ is the n-dimensional vector of the signal input, y is the p-dimensional vector of the signal output, and the p

dimensional vector ε is the additive noise. Xp , in turn, is the p × n random matrix, generally with complex entries.
Silverstein and Tulino [15] emphasize the asymptotic distribution of the squared singular-values of Xp under

various assumptions on the joint distribution of the random matrix coefficients where n and p tend to infinity while
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the aspect ratio, p/n → y,0 < y < ∞. In their model, generally speaking, the channel matrix Xp can be viewed as
Xp = f (A1,A2, . . . ,Ak) where {Ai} are some independent random (rectangular) matrices with complex entries, each
having its own meaning in terms of the channel. In most of the cases they studied, some Ai have all i.i.d. entries, while
the LSD of the other matrices AjA

∗
j , j 	= i are assumed to exist. Then the LSD of XpX∗

p is computed in terms of the
LSD of AjA

∗
j , j 	= i .

Specifically, certain CDMA channels can be modeled (e.g. see [16], Chapter 3, and [15]) as Xp = CSA where C

is a p × p random symmetric Toeplitz matrix, S is a matrix with i.i.d. complex entries independent of C, and A is
an n × n deterministic diagonal matrix. One of the main theorems in [15] establishes the LSD of Xp = CSA for
random p × p matrix C, not necessarily Toeplitz, under the added assumption that the LSD of the matrices CC′
exists. When C is a random symmetric Topelitz matrix, the existence of the LSD of CC′ is immediate from the recent
work of Bryc, Dembo and Jiang [7] and, Hammond and Miller [10]. This also motivates us to study the LSD of XpX′

p

matrices in some generality where Xp is not necessarily square and symmetric.

1.3. The moment method

We shall use the method of moments to study this convergence. To briefly describe this method, suppose {Yp} is a
sequence of random variables with distribution functions {Fp} such that E(Y h

p ) → βh for every positive integer h, and
{βh} satisfies Carleman’s condition (see [8], page 224):

∞∑
h=1

β
−1/2h

2h = ∞. (9)

Then there exists a distribution function F , such that for all h,

βh = βh(F ) =
∫

xh dF(x) (10)

and {Yp} (or equivalently {Fp}) converges to F in distribution. We will often in short write βh when the underlying
distribution F is clear from the context.

Now suppose {Ap} is a sequence of p × p symmetric matrices (with possibly random entries), and let, by a slight
abuse of notation, βh(Ap) denote the hth moment of the ESD of Ap . Suppose there is a sequence of nonrandom
{βh}∞h=1 satisfying Carleman’s condition such that,

(M1) First moment condition: For every h ≥ 1, E[βh(Ap)] → βh and
(M2) Second moment condition: For every h ≥ 1, Var[βh(Ap)] → 0.

Then the LSD is identified by {βh}∞h=1 and the convergence to LSD holds in probability. This convergence may
be strengthened to almost sure convergence by strengthening (M2), for example, by replacing variance by the fourth
moment and showing that

(M4) Fourth moment condition: For every h ≥ 1, E[βh(Ap) − E(βh(Ap))]4 = O(p−2).

For any symmetric p × p matrix A with eigenvalues λ1, . . . , λp , the trace formula

βh(A) = p−1
p∑

i=1

λh
i = p−1 Tr

(
Ah
)

is invoked to compute moments. Moment method proofs are known for the results on Wigner matrix and the sample
covariance matrix given earlier. See for example, [6].

1.4. Brief overview of our results

Let Z be the set of all integers. Let {xα}α∈Z be an input sequence where Z = Z or Z
2 and {xα} are independent with

Exα = 0 and Ex2
α = 1. Let Lp : {1,2, . . . , p} × {1,2, . . . , n = n(p)} → Z be a sequence of functions which we call
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link functions. For simplicity of notation, we will write L for Lp . We shall later impose suitable restriction on the link
functions Lp and sufficient probabilistic assumptions on the variables. Consider the matrices

Xp = (
(xLp(i,j))

)
1≤i≤p,1≤j≤n

and Ap = Ap(X) = (1/n)XpX′
p.

The function Lp defines an appropriate pattern and we may call these matrices patterned matrices. The assumptions
on the link function restrict the number and manner in which any element of the input sequence may occur in the
matrix.

We shall consider two different regimes:

Regime I. p → ∞, p/n → y ∈ (0,∞). In this case, we consider the spectral distribution of Ap = Ap(X) =
n−1XpX′

p .

Regime II. p → ∞, p/n → 0. In this case we consider the spectral distribution of (np)−1/2(XpX′
p − nIp) =√

n
p
(Ap − Ip) where Ip is the identity matrix of order p.

We will use the following assumptions on the input sequences in two regimes.

Assumption R1. In Regime I, {xα} are independent with mean zero and variance one, and are either uniformly
bounded or identically distributed.

Assumption R2. In Regime II, {xα} are independent with mean zero and variance 1. Further, λ ≥ 1 is such that
p = O(n1/λ) and supα E(|xα|4(1+1/λ)+δ) < ∞ for some δ > 0.

The moment method requires all moments to be finite. However, in Regime I, our basic assumption will be that
the input sequence has finite second moment. To deal with this, we first prove a truncation result which shows that
in Regime I, under appropriate assumption on the link function, without loss of generality, we may assume the input
sequence to be uniformly bounded. The situation in Regime II is significantly more involved and there we assume
existence of higher moments.

We then establish a negligibility result which implies that for nonzero contribution to the limiting moments, only
summands in the trace formula which are “pair matched” matter. See next section for details on “matching.” The
existence of the limit of the sum of pair matched terms and then the computation of the limit establishes the LSD.

Quite interestingly, under reasonable assumptions on the allowed pattern, if the limit of empirical moments exist,
they automatically satisfy Carleman’s condition and thus ensures the existence of the LSD. However, we are unaware
of any general existing method of imposing suitable restrictions on the link function to guarantee the existence of
limits of moments.

As examples of our method, we let Xp to be the nonsymmetric Toeplitz, Hankel, reverse circulant and circulant
matrices. We show that the LSD exists in both Regimes I and II, thereby answering questions (i) and (ii) in the previous
section affirmatively for these matrices. The LSD in Regime I are all new.

However, in Regime II, the LSD of all four matrices above are identical to the LSD obtained by Bryc, Dembo and
Jiang [7] for the symmetric Toeplitz matrix T

(s)
n . This implies that the answer to question (iii) is not straightforward

and needs further investigation.
Closed form expressions for the LSD or for its moments do not seem to be easily obtainable. We provide a few

simulations to demonstrate the nature of the LSD and it is an interesting problem to derive detailed properties of the
LSD in any of these cases.

1.5. Examples

In this section we will consider some specific nonsymmetric matrices of interest. In particular, let Xp be the asymmet-
ric versions of the four matrices Toeplitz, Hankel, circulant and reverse circulant. Then it turns out that in Regime II,

the LSD for
√

n
p
(Ap(Xp) − Ip) exists and is identical to the LSD for n−1/2T

(s)
n obtained by Bryc, Dembo and Jiang
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[7] for the symmetric n × n Toeplitz matrix T
(s)
n . In Regime I, the LSD for Ap(Xp) exist but they are all different.

The proofs of the results given below are presented in Section 5.

1.5.1. The asymmetric Toeplitz matrix
The n × n symmetric Toeplitz matrix is defined as T

(s)
n = ((x|i−j |)). It is known that if the input sequence {xi} has

mean zero and variance one and is either independent and uniformly bounded or, is i.i.d., then

n−1/2T (s)
n converges weakly almost surely to LT (say).

See for example [6,7] and [10]. It may be noted that the moments of LT may be represented as volumes of certain
subsets of the unit hypercubes but are not known in any explicit form.

Let

Tp = T = (
(xi−j )

)
p×n

, Ap(T ) = n−1TpT ′
p.

Note that Tp is the nonsymmetric Toeplitz matrix.

Theorem 1. (i) [Regime I ] Assume R1 holds. If p
n

→ y ∈ (0,∞) then empirical spectral distribution FAp(T ) con-
verges in distribution almost surely to a nonrandom distribution which does not depend on the distribution of {xi}.

(ii) [Regime II ] Assume R2 holds. Then F

√
n
p

(Ap(T )−Ip)
converges in distribution to LT almost surely.

1.5.2. The asymmetric Hankel matrix
Suppose {xi, i = 0,±1,±2, . . .} is an independent input sequence. Let H

(s)
n = ((xi+j )) be the n×n symmetric Hankel

matrix. It is known that if {xi} has mean zero and variance one and is either uniformly bounded or i.i.d., then

Fn−1/2H
(s)
n converges weakly almost surely.

See for example [6] and [7].
Now let H = Hp×n be the asymmetric Hankel matrix where the (i, j)th entry is xi+j if i ≥ j and x−(i+j) if i < j .

Let H
(s)
p = ((xi+j ))p,n be the rectangular Hankel matrix with symmetric link function. Let

Ap(H) = n−1HpH ′
p and Ap

(
H(s)

)= n−1H(s)
p H(s)

p

′
.

We then have the following theorem.

Theorem 2. (i) [Regime I ] Assume R1 holds. If p
n

→ y ∈ (0,∞) then FAp(H) converges almost surely to a nonrandom
distribution which does not depend on the distribution of {xi}.

(ii) [Regime II ] Assume R2 holds. Then F

√
n
p
(Ap(H)−Ip)

converges almost surely to LT . The same limit continues
to hold if Ap(H) is replaced Ap(H(s)).

1.5.3. The asymmetric reverse circulant matrix
The symmetric Reverse Circulant R

(s)
n has the link function L(i, j) = (i + j) mod n. The LSD of n−1/2R

(s)
n has been

discussed in [5] and [6]. In particular it is known that if {xi} are independent with mean zero and variance 1 and are
either (i) uniformly bounded or (ii) identically distributed, then the LSD R of n−1/2R

(s)
n exists almost surely and has

the density,

fR(x) = |x| exp(−x2), −∞ < x < ∞
with moments

β2h+1(R) = 0 and β2h(R) = h! for all h ≥ 0.
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Let R
(s)
p be the p ×n matrix with link function L(i, j) = (i + j) mod n and Rp = Rp×n be the asymmetric version

of R
(s)
p with the link function

L(i, j) =
{

(i + j) mod n for i ≥ j ,
−[(i + j) mod n

]
for i < j . (11)

So, in effect, the rows of Rp are the first p rows of an (asymmetric) Reverse Circulant matrix. Let

Ap(R) = n−1RpR′
p and Ap

(
R(s)

)= n−1R(s)
p R(s)

p

′
.

We then have the following theorem.

Theorem 3. (i) [Regime I ] Assume R1 holds. If p
n

→ y ∈ (0,∞) then FAp(R) converges almost surely to a nonrandom
distribution which does not depend on the distribution of {xi}.

(ii) [Regime II ] Assume R2 holds. Then F

√
n
p

(Ap(R)−Ip)
converges almost surely to LT . The same limit continues

to hold if Ap(R) is replaced Ap(R(s)).

1.6. The asymmetric circulant matrix

The square circulant matrix is well known in the literature. Its eigenvalues can be explicitly computed and are closely
related to the periodogram. Its LSD is the bivariate normal distribution. See for example [5]. Its symmetric version is
treated in [6] and [14]. Let

Cp = Cp×n = (
(xL(i,j))

)
where L(i, j) = (n − i + j) mod n, and Ap(C) = p−1CpC′

p.

Theorem 4. (i) [Regime I ] Assume R1 holds. If p
n

→ y ∈ (0,∞) then FAp(C) converges almost surely to a nonrandom
distribution which does not depend on the distribution of {xi}.

(ii) [Regime II ] Assume R2 holds. Then F

√
n
p

(Ap(C)−Ip)
converges almost surely to LT .

2. Basic notation, definitions and assumptions

Examples of link functions that correspond to matrices of interest are as follows:

0. Covariance matrix: Lp(i, j) = (i, j).
1. Asymmetric Toeplitz matrix: Lp(i, j) = i − j .
2. Asymmetric Hankel matrix: Lp(i, j) = sgn(i − j)(i + j) where

sgn(l) =
{1 if l ≥ 0,

−1 if l < 0.
(12)

3. Asymmetric Reverse Circulant: Lp(i, j) = sgn(i − j)(i + j) mod n.
4. Asymmetric Circulant: Lp(i, j) = (n + j − i) mod n.

For any set G, #G and |G| will stand for the number of elements of G. We shall use the following general assump-
tions on the link function.

Assumptions on link function L.

A. There exists positive integer 	 such that for any α ∈ Z and p ≥ 1:

(i) #{i: Lp(i, j) = α} ≤ 	 for all j ∈ {1,2, . . . , n} and
(ii) #{j : Lp(i, j) = α} ≤ 	 for all i ∈ {1,2, . . . , p}.

A′. For any α ∈ Z and p ≥ 1, #{i: Lp(i, j) = α} ≤ 1 for all j ∈ {1,2, . . . , n}.
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B. kpαp = O(np) where

kp = #
{
α: Lp(i, j) = α,1 ≤ i ≤ p,1 ≤ j ≤ n

}
, αp = max

α∈Z

∣∣L−1
p (α)

∣∣.
Assumption A stipulates that with increasing dimensions, the number of times any fixed input variable appears in

any given row or column, remains bounded. Assumption A′ stipulates that no input appears more than once in any
column. Assumption B makes sure that no particular input appears too many times in the matrix. Clearly A′ implies
A(i) but B is not related to either A or A′. Consider the link function Lp(i, j) = (1,1) if i = j and Lp(i, j) = (i, j) if
i 	= j . This link function satisfies A(ii) and A′ but not B. On the other hand if Lp(i, j) = 1 for all (i, j) then it satisfies
B but not A. It is easy to verify that the link functions listed above satisfy these assumptions. It may also be noted that
the symmetric Toeplitz link function does not satisfy Assumption A′.

Towards applying the moment method, we need a few notions, most of which are given in details in [6] in the
context of symmetric matrices. These concepts and definitions will remain valid in Regime II also, with appropriate
changes.

The trace formula. Let Ap = n−1XpX′
p. Then the hth moment of ESD of Ap is given by

p−1 TrAh
p = p−1n−h

∑
1≤i1,i2,...,ih≤n

xLp(i1,i2)xLp(i3,i2) · · ·xLp(i2h−1,i2h)xLp(i1,i2h). (13)

Circuits. Any function π : {0,1,2, . . . ,2h} → Z+ is said to be a circuit if

(i) π(0) = π(2h),
(ii) 1 ≤ π(2i) ≤ p ∀0 ≤ i ≤ h and

(iii) 1 ≤ π(2i − 1) ≤ n ∀1 ≤ i ≤ h.

The length l(π) of π is taken to be (2h). A circuit depends on h and p but we will suppress this dependence.
Matched circuits. Let

ξπ (2i − 1) = L
(
π(2i − 2),π(2i − 1)

)
, 1 ≤ i ≤ h and

ξπ (2i) = L
(
π(2i),π(2i − 1)

)
, 1 ≤ i ≤ h.

These will be called L-values.
A circuit π is said to have an edge of order e(1 ≤ e ≤ 2h) if it has an L-value repeated exactly e times. Any π with

all e ≥ 2 will be called L-matched (in short matched). For any such π , given any i, there is at least one j 	= i such
that ξπ (i) = ξπ (j).

Define for any circuit π ,

Xπ =
h∏

i=1

xξπ (2i−1)xξπ (2i). (14)

Due to the mean zero and independence assumption, if π has at least one edge of order one then E(Xπ ) = 0.
Equivalence relation on circuits. Two circuits π1 and π2 of same length are said to be equivalent if their L values

agree at exactly the same pairs (i, j). That is, iff {ξπ1(i) = ξπ1(j) ⇔ ξπ2(i) = ξπ2(j)}. This defines an equivalence
relation between the circuits.

Words. Equivalence classes arising from the above equivalence relation may be identified with partitions of
{1,2, . . . ,2h} – to any partition we associate a word w of length l(w) = 2h of letters where the first occurrence
of each letter is in alphabetical order. For example, if h = 3, then the partition {{1,3,6}, {2,4}, {5}} is represented by
the word ababca. Let |w| denote the number of different letters that appear in w.

The notion of order e edges, matching, nonmatching for π , carries over to words in a natural manner. For instance,
the word ababa is matched. The word abcadbaa is nonmatched, has edges of order 1, 2 and 4 and the corresponding
partition is {{1,4,7,8}, {2,6}, {3}, {5}}. As pointed out, it will be enough to consider only matched words since
E(Xπ ) = 0 for nonmatched words. The following fact is obvious.
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Word count.

#{w: w is of length 2h and has only order 2 edges with |w| = h} = (2h)!
2hh! . (15)

The class Π(w). Let w[i] denote the ith entry of w. The equivalence class corresponding to w will be denoted by

Π(w) = {
π : w[i] = w[j ] ⇔ ξπ (i) = ξπ (j)

}
.

If π ∈ Π(w), then clearly the number of distinct L-values equals |w|. Notationally,

#
{
ξπ (i): 1 ≤ i ≤ 2h

}= |w|.
Note that now, with the above definition, we may rewrite the trace formula as

p−1 TrAh
p = p−1n−h

∑
π : π circuit

Xπ = p−1n−h
∑
w

∑
π∈Π(w)

Xπ ,

where the first sum is taken over all words with length (2h). After taking expectation, only the matched words survive
and

E
[
p−1 TrAh

p

]= p−1n−h
∑

w matched

∑
π∈Π(w)

EXπ .

To deal with (M4), we need multiple circuits. The following notions will be useful for dealing with multiple circuits:
Jointly matched and cross-matched circuits. k circuits π1,π2, . . . , πk are said to be jointly matched if each L-value

occurs at least twice across all circuits. They are said to be cross-matched if each circuit has at least one L-value
which occurs in at least one of the other circuits.

The class Π∗(w). Define for any (matched) word w,

Π∗(w) = {
π : w[i] = w[j ] ⇒ ξπ (i) = ξπ (j)

}
. (16)

Note that Π∗(w) ⊇ Π(w). However, as we will see, Π∗(w) is equivalent to Π(w) for asymptotic considerations, but
is easier to work with.

Vertex and generating vertex. Each π(i) of a circuit π will be called a vertex. Further, π(2i),0 ≤ i ≤ h will be
called even vertices or p-vertices and π(2i − 1),1 ≤ i ≤ h will be called odd vertices or n-vertices.

A vertex π is said to be generating if either i = 0 or w[i] is the position of the first occurrence of a letter. For
example, if w = abbcab then π(0),π(1),π(2),π(4) are generating vertices.

We will call an odd generating vertex π(2i − 1) Type I if π(2i) is also an even generating vertex. Otherwise we
will call π(2i − 1) a Type II odd generating vertex.

Obviously, number of generating vertices in π is |w| + 1. By Assumption A on L function given earlier, a circuit
of a fixed length is completely determined, up to a finitely many choices by its generating vertices. Hence, in Regime I
under the assumption A, we obtain the simple but crucial estimate∣∣Π∗(w)

∣∣= O
(
n|w|+1).

Let [a] denote the integer part of a. For Regime II, we will further assume A′. In that case, it shall be shown that∣∣Π∗(w)
∣∣= O

(
p1+[(|w|+1)/2]n[|w|/2]).

3. Regime I

In Regime I, p → ∞ such that p/n → y ∈ (0,∞) and we consider the spectral distribution of Ap = Ap(X) =
n−1XpX′

p . There are two main theorems in this section. Theorem 5 is proved under Assumption B. We show that the
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input sequence may be taken to be bounded without loss of generality. This allows us to deal with bounded sequences
in all examples later. This result is proved sketchily in [6], with special reference to the sample covariance matrix. We
provide a detailed proof for clarity and completeness. Theorem 6 is proved under Assumptions A and B. We show that
the ESD of {Ap(X)} is almost surely tight and any subsequential limit is sub Gaussian. Invoking the trace formula,
we show that the LSD exists iff the moments converge. Further, in the limit, only pair matched terms potentially
contribute.

To prove Theorem 5, we will need the following notion and result.
The bounded Lipschitz metric dBL is defined on the space of probability measures as:

dBL(μ, ν) = sup

{∫
f dμ −

∫
f dν: ‖f ‖∞ + ‖f ‖L ≤ 1

}
(17)

where

‖f ‖∞ = sup
x

∣∣f (x)
∣∣, ‖f ‖L = sup

x 	=y

∣∣f (x) − f (y)
∣∣/|x − y|.

Recall that convergence in dBL implies weak convergence of measures.
The following inequalities provide estimate of the metric distance dBL in terms of trace. Proofs may be found in

[2] or [1] and uses Lidskii’s theorem (see [4], page 69).

Lemma 1. (i) Suppose A,B are n × n symmetric real matrices. Then

d2
BL

(
FA,FB

)≤
(

1

n

n∑
i=1

|λi(A) − λi(B)|
)2

≤ 1

n

n∑
i=1

(
λi(A) − λi(B)

)2 ≤ 1

n
Tr(A − B)2. (18)

(ii) For any square matrix S, let FS denote its empirical spectral distribution. Suppose X and Y are p × n real
matrices. Let A = XX′ and B = YY ′ Then

d2
BL

(
FA,FB

)≤
(

1

p

p∑
i=1

∣∣λi(A) − λi(B)
∣∣)2

≤ 2

p2
Tr(A + B)Tr

[
(X − Y)(X − Y)′

]
. (19)

Theorem 5. Let p → ∞, p
n

→ y ∈ (0,∞) and Assumption B holds so that αpkp = O(np). Suppose for every bounded

mean zero and variance one i.i.d. input sequence, Fn−1XpX′
p converges weakly to some fixed nonrandom distribution G

almost surely. Then the same limit continues to hold if the input sequence is i.i.d. with mean zero and variance one.

Proof. Without loss of generality we shall assume that Z = Z and also write X for Xp . For t > 0, denote

μ(t) = E
[
x0I

(|x0| > t
)]= −E

[
x0I

(|x0| ≤ t
)]

and let

σ 2(t) = Var
(
x0I

(|x0| ≤ t
))= E

[
x2

0I
(|x0| ≤ t

)]− μ(t)2.

Since E(x0) = 0 and E(x2
0) = 1, we have μ(t) → 0 and σ(t) → 1 as t → ∞ and σ 2(t) ≤ 1. Define bounded random

variables

x∗
i = xiI(|xi | ≤ t) + μ(t)

σ (t)
= xi − x̄i

σ (t)
where x̄i = xiI

(|xi | > t
)− μ(t) = xi − σ(t)x∗

i . (20)

It is easy to see that E(x̄2
0) = 1 − σ 2(t) − μ(t)2 → 0 as t tends to infinity. Further, {x∗

i } are i.i.d. bounded, mean
zero and variance one random variables. Let us replace the entries xLp(i,j) of the matrix Xp by the truncated version
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x∗
Lp(i,j)

(respectively x̄Lp(i,j)) and denote this matrix by Y (respectively X̄p). By triangle inequality and (19),

d2
BL

(
Fn−1XpX′

p ,F n−1YY ′)
≤ 2d2

BL

(
Fn−1XpX′

p ,F n−1σ(t)2YY ′)+ 2d2
BL

(
Fn−1YY ′

,F n−1σ(t)2YY ′)
≤ 2

p2n2
Tr
(
XpX′

p + σ(t)2YY ′)Tr
(
Xp − σ(t)Y

)(
Xp − σ(t)Y ′)

+ 2

p2n2
Tr
(
YY ′ + σ(t)2YY ′)Tr

(
σ(t)Y − Y

)(
σ(t)Y − Y

)′
.

To tackle the first term on the right side above,

Tr
(
XpX′

p + σ(t)2YY ′)
=

p∑
i=1

n∑
k=1

x2
Lp(i,k) + σ(t)2

p∑
i=1

n∑
k=1

x∗2
Lp(i,k)

≤ αpkp

(∑kp

i=1 x2
i

kp

)
+

p∑
i=1

n∑
k=1

(xLp(i,k) − x̄Lp(i,k))
2

≤ αpkp

(∑kp

i=1 x2
i

kp

)
+ αnkp

(∑kp

i=1 x2
i I {|xi | > t}
kp

)
+ |μ(t)|αpkp

(∑kp

i=1 |xi |
kp

)
+ αpkp

(∑kp

i=1 x̄2
i

kp

)
.

Therefore using αpkp = O(np) and the SLLN, we can see that (np)−1(Tr(XpX′
p + σ(t)2YY ′)) is bounded. Now,

1

np

∣∣Tr
(
Xp − σ(t)Y

)(
Xp − σ(t)Y

)′∣∣= 1

np

∣∣Tr(X̄pX̄′
p)
∣∣≤ 1

np
αpkp

(
1

kp

kp∑
i=1

x̄2
i

)
,

which is bounded by CE(x̄2
i ) almost surely, for some constant C. Here we use the condition αpkp = O(np) and SLLN

for {x̄2
i }. Since E(x̄2

i ) → 0 as t → ∞ we can make the right side tend to 0 almost surely, by first letting p tend to
infinity, and then letting t tend to infinity. This takes care of the first term.

To tackle the second term,

T2 = 2

n2p2

[
Tr
((

σ(t)2)YY ′ + YY ′)Tr
((

σ(t)Y − Y
)(

σ(t)Y − Y
)′)]

= 2

n2p2

(
σ(t)2 + 1

)(
σ(t) − 1

)2(Tr
(
YY ′))2

≤ 2

n2p2

(
σ(t)2 + 1

)(
σ(t) − 1

)2

(
p∑

i=1

n∑
k=1

x∗2
Lp(i,k)

)2

≤ 2

n2p2

(
σ(t)2 + 1

) (σ (t) − 1)2

σ(t)2

[
αpkp

(∑kp

i=1 x2
i

kp

)
+ αpkp

(∑kp

i=1 x2
i I {|xi | > t}
kp

)

+ |μ(t)|αpkp

(∑kp

i=1 |xi |
kp

)
+ αpkp

(∑kp

i=1 x̄2
i

kp

)]2

.

Again using the condition αpkp = O(np) and σ(t) → 1 as t → ∞ we get T2 → 0 almost surely. This completes
the proof of the theorem. �
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To investigate the existence of the LSD of Ap = Ap(X) = (1/n)XpX′
p , in view of Theorem 5, we shall assume

that the input sequence is i.i.d. bounded, with mean zero and variance 1. Recall the two formulae given earlier:

p−1 TrAh
p = p−1n−h

∑
π : π circuit

Xπ = p−1n−h
∑
w

∑
π∈Π(w)

Xπ ,

where the first sum is taken over all words with length (2h) and

E
[
p−1 TrAh

p

]= p−1n−h
∑

w matched

∑
π∈Π(w)

EXπ .

Theorem 6. Let Ap = (1/n)XpX′
p where the entries of Xp are bounded, independent with mean zero and variance

1 and Lp satisfies Properties A and B. Let p/n → y, 0 < y < ∞. Then

(i) If w is a matched word of length (2h) with an edge of order ≥ 3, then p−1n−h
∑

π∈Π(w) EXπ → 0.
(ii) For each h ≥ 1,∣∣∣∣E[p−1 TrAh

p

]−
∑

w matched
|w|=h

p−1n−h
∣∣Π∗(w)

∣∣∣∣∣∣→ 0.

(iii) For each h ≥ 1, p−1 TrAh
p − E[p−1 TrAh

p] a.s.→ 0.

(iv) If we denote βh = lim supp

∑
w matched|w|=h

p−1n−h|Π∗(w)|, then {βh}h≥1 satisfies Carleman’s condition.

The sequence of ESD, {FAp(X)} is almost surely tight. Any subsequential limit is sub Gaussian. The LSD exists iff
limp

∑
w matched|w|=h

p−1n−h|Π∗(w)| exists for each h. The same LSD continues to hold if the input sequence is i.i.d. (not

necessarily bounded) with mean zero and variance one.

Remark 1. Without assuming anything further on the link function Lp , the above limits need not exist. However in
Section 1.5, we have seen several examples where the limits do indeed exist.

Proof of Theorem 6. For the special case of covariance matrix, a proof can be found in [6]. The same arguments may
be adapted to general link functions. For the sake of completeness, here are the essential steps.

Recall that circuits which have at least one edge of order 1 contribute zero. Thus, consider all circuits which have
at least one edge of order at least 3 and all other edges of order at least 2. Let Nh,3+ be the number of such circuits of
length (2h).

Suppose first that p = n. Then y = 1. In this case π has uniform range, 1 ≤ π(i) ≤ n, 1 ≤ i ≤ 2h. Then, from the
arguments of Bryc, Dembo and Jiang [7], n−(1+h)Nh,3+ → 0.

Now for general y > 0, the range of π(i) is not same for every i. For odd vertices, it is from 1 to n and for even
vertices, it is 1 to p. However, this case is easily reduced to the previous case (p = n) as follows: let Π̃(w) be the
possibly larger class of same circuits but with range 1 ≤ π(i) ≤ max(p,n), 1 ≤ i ≤ 2h. Then, there is a constant C,
such that

p−1n−h
∑

w has one edge
of order at least 3

∣∣Π(w)
∣∣≤ C

[
max(p,n)

]−(h+1)
∑

w has one edge
of order at least 3

∣∣Π̃(w)
∣∣→ 0

from the previous case. This proves (i). Statement (ii) is then a consequence.
For (iii), it is enough to show that

E
[
p−1 TrAh

p − Ep−1 TrAh
p

]4 = O
(
p−2).



Spectral distribution 689

The proof is essentially same as the proof of Lemma 2(b) in [6]. For the sake of completeness, we give the full proof
here. We write the fourth moment as

1

p4
E
[
TrAh

p − E
(
TrAh

p

)]4 = 1

p4n4h

∑
π1,π2,π3,π4

E

[
4∏

i=1

(Xπi
− EXπi

)

]
.

If (π1,π2,π3,π4) are not jointly matched, then one of the circuits, say πj , has an L-value which does not occur any-
where else. Also note that EXπj

= 0. Hence, using independence, E[∏4
i=1(Xπi

− EXπi
)] = E[Xπj

∏4
i=1,i 	=j (Xπi

−
EXπi

)] = 0.

Further, if (π1,π2,π3,π4) is jointly matched but is not cross-matched then one of the circuits, say πj is only
self-matched, that is, none of its L-values is shared with those of the other circuits. Then again by independence,

E

[
4∏

i=1

(Xπi
− EXπi

)

]
= E

[
(Xπj

− EXπj
)
]
E

[
4∏

i=1,i 	=j

(Xπi
− EXπi

)

]
= 0.

So it is clear that for non-zero contribution, the quadruple of circuits must be jointly matched and cross matched.
Observe that the total number of edges in each circuit of the quadruple is (2h). So total number of edges over 4 circuits
is (8h). Since they are at least pair matched, there can be at most (4h) distinct edges i.e. distinct L-values. In [7] the
authors estimated the number of quadruples of circuits which are jointly matched and cross matched. They used a
method of counting which they applied only to Toeplitz and Hankel link function. But that method works as well for
any general link function satisfying Assumption A. Using this method, we can say that apart from π1(0), π2(0), π3(0)

and π4(0) which are always generating vertices, there can be at most (4h − 2) many generating vertices to determine
(4h) distinct L-values. So total number of generating vertices obtained using Bryc, Dembo and Jiang [7] method is at
most (4h + 2). Since p

n
→ y,0 < y < ∞, it is easy to see that there is a constant K which depends on y and h, such

that

1

p4
E
[
TrAh

p − E
(
TrAh

p

)]4 ≤ K
p4h+2

p4h+4
= O

(
p−2). (21)

This guarantees that if there is convergence, it is almost sure. So (iii) is proved.
By Assumption A, for any matched word w of length (2h) with |w| = h, we have |Π∗(w)| ≤ nh+1	h which

combined with the fact (15) yields the validity of Carleman’s condition, proving (iv).
The other claims of the theorem are easy consequences of all the discussion so far. �

4. Regime II

In this case, p → ∞ and p/n → 0. From the experience of the existing results for the sample covariance matrix (see
for example [2]), the following scaled and centered version is required. Define

Np = Np(X) =
(

n

p

)1/2(1

n
XpX′

p − Ip

)
=
√

n

p

(
Ap(X) − Ip

)
. (22)

Straightforward extension of Theorem 5 is not possible to this situation. In Theorem 7 we show how the matrix Np

defined above may be approximated by the following matrix Bp = Bp(X) with bounded entries under additional
moment assumption.

(Bp)ij = 1√
np

n∑
l=1

x̂L(i,l)x̂L(j,l) if i 	= j and (Bp)ii = 0, (23)

where x̃α = xαI(|xα| ≤ εpn1/4), x̂α = x̃α − Ex̃α and εp will be chosen later.
Theorem 8 establishes the relationship between the existence of the LSD and the limits of the empirical moments.
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In Theorem 9 we prove an interesting result in Regime II. Suppose L(1) and L(2) are two link functions satisfying
Assumptions A(ii), A′ and B and they agree on the set {(i, j): 1 ≤ i ≤ p,1 ≤ j ≤ n and i < j}. Then we show that
the corresponding matrices Np(X) have identical LSD.

In Theorem 10 we work with Assumption A and show the closeness of LSD in probability when two link functions
agree on the above set.

Theorem 7. Let p,n → ∞ so that p/n → 0 and Assumption R2 holds. Suppose Lp satisfies Assumptions A and B.
Then there exists a nonrandom sequence {εp} with the property that εp ↓ 0 but εpp1/4 ↑ ∞ as p ↑ ∞ such that
D(FBp ,FNp) → 0 a.s. where D is the metric for convergence in distribution on the space of all probability distribu-
tion functions.

Proof. Let

X̃p = (
(x̃L(i,j))

)
1≤i≤p,1≤j≤n

and Ñp = 1√
np

(
X̃pX̃′

p − nIp

)
,

sup
x

∣∣FNp(x) − F Ñp (x)
∣∣≤ p−1 rank(Xp − X̃p) ≤ p−1

p∑
i=1

n∑
j=1

ηL(i,j) where ηα = I
(|xα| > εpn1/4).

The first inequality above follows from [1], Lemma 2.6.
Write qp = supα P(|xα| > εpn1/4). We claim that there exists a sequence εp ↓ 0 going to zero arbitrarily slowly

such that

qp ≤ εpn−(1+1/λ)+δ/8. (24)

To establish the claim, for simplicity, assume n = n(p) is an increasing function of p. Fix any ε > 0. We have

n(1+1/λ)+δ/8 sup
α

P
(|xα| > εn1/4)≤ ε−4(1+1/λ)−δ/2 sup

α
E|xα|4(1+1/λ)+δ/2

I
(|xα| > εn1/4)→ 0 (25)

since the random variables {|xα|4(1+1/λ)+δ/2} are uniformly integrable.
Given m ≥ 1, by (25) find an integer pm such that n ≥ nm := n(pm) implies

n(1+1/λ)+δ/8 sup
α

P
(|xα| > m−1n1/4)≤ m−1.

Define εp = 1/m if pm ≤ p < pm+1 and εp = n(p1)
(1+1/λ)+δ/8 for p < p1. Note that by choosing the integers in

the sequence p1 < p2 < · · · as large as we want, we can make εp go to zero as slowly as we like. Clearly, εp satisfies
the inequality (24).

For any β > 0, and with Yi independent Bernoulli with E(Yi) ≤ qp ,

P

(
sup
x

∣∣FNp(x) − F Ñp (x)
∣∣> β

)
≤ P

(
p−1

p∑
i=1

n∑
j=1

ηL(i,j) > β

)

≤ P

(
αpp−1

kp∑
i=1

Yi > β

)

≤ (βp)−1αp

kp∑
i=1

EYi by Markov inequality

≤ (βp)−1αpkpqp

≤ Cnqp = o
(
n−(1/λ+δ/8)

)= o
(
p−(1+λδ/8)

)
,
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where the constant C is such that αpkp ≤ Cβnp. Hence by Borel-Cantelli lemma,

sup
x

∣∣FNp(x) − F Ñp (x)
∣∣→ 0 a.s.

Let

X̂p = (
(x̂L(i,j))

)
1≤i≤p,1≤j≤n

and N̂p = 1√
np

(
X̂pX̂′

p − nIp

)
.

Using Lemma 1(i) and (ii),

sup
x

∣∣F N̂p (x) − F Ñp (x)
∣∣≤ (

p−1
p∑

i=1

∣∣λi(N̂p) − λi(Ñp)
∣∣)2

≤ 1

np3
Tr
(
X̃pX̃′

p + X̂pX̂′
p

)
Tr
(
E(X̃p)E(X̃′

p)
)
.

Using the moment condition, the condition on the truncation level, the condition αpkp = O(np), and an appropriate
strong law of large numbers for independent random variables, it is easy to show that the above expression tends to 0
almost surely. We omit the tedious details.

On the other hand,

d2
BL

(
F N̂p ,FBp

) ≤ 1

p
Tr(N̂p − Bp)2

≤ 1

2np2

p∑
i=1

(
n∑

l=1

(
x̂2
L(i,l) − Ex̂2

L(i,l)

))2

+ 1

2np2

p∑
i=1

(
n∑

l=1

(
1 − Ex̂2

L(i,l)

))2

= M + N say.

Note that for every i, j , there exists α such that

0 ≤ 1 − Ex̂2
L(i,j) = Ex2

αI
(|xα| > εpn1/4)+ (

ExαI
(|xα| > εpn1/4))2 ≤ 1

ε2
pn1/2

(
Ex4

α + E
2x2

α

)
. (26)

From (26), it is immediate that

N ≤ n2p

2np2

1

nε4
p

(
sup
α

(
Ex4

α + E
2x2

α

))2 → 0 since εpp1/4 → ∞.

Now we will deal with the first term, M .

p∑
i=1

(
n∑

l=1

(
x̂2
L(i,l) − Ex̂2

L(i,l)

))2

=
∑
α

aα

(
x̂2
α − Ex̂2

α

)2 +
∑
α 	=α′

bα,α′
(
x̂2
α − Ex̂2

α

)(
x̂2
α′ − Ex̂2

α′
)

= T1p + T2p (say),

where aα, bα,α′ ≥ 0. Obviously,

#{α ∈ Z : aα ≥ 1} ≤ kp and #
{(

α,α′) ∈ Z 2: α 	= α′, bα,α′ ≥ 1
}≤ k2

p.

Also, aα ≤ αp for all α and bα,α′ ≤ 	2αp for all α 	= α′. Hence,∑
p

1

4n2p4
ET 2

1p =
∑
p

1

4n2p4

∑
α

a2
αE
(
x̂2
α − Ex̂2

α

)4

+
∑
p

1

4n2p4

∑
α 	=α′

aαaα′E
(
x̂2
α − Ex̂2

α

)2
E
(
x̂2
α′ − Ex̂2

α′
)2



692 A. Bose, S. Gangopadhyay and A. Sen

≤
∑
p

α2
pkp

4n2p4
sup
α

E
(
x̂2
α − Ex̂2

α

)4 +
∑
p

α2
pk2

p

4n2p4
sup
α

E
2(x̂2

α − Ex̂2
α

)2

≤ sup
α

∑
p

α2
pkp

4n2p4

(
n1/4εp

)4
Ex4

α + sup
α

∑
p

α2
pk2

p

4n2p4
E

2x4
α < ∞,

where we use the fact that αpkp = O(np) and αp ≤ 	p. Thus, T1p/(2np2) → 0 a.s.
It now remains to tackle T2p . Let yα = x̂2

α − Ex̂2
α,α ∈ Z . Then {yα} are mean zero independent random variables.

∑
p

1

4n2p4
ET 2

2p =
∑
p

1

4n2p4
E

(∑
α 	=α′

bα,α′yαyα′
)2

≤
∑
p

1

4n2p4

∑
α 	=α′

b2
α,α′Ey2

αy2
α′

≤ sup
α

∑
p

k2
pα2

p

4n2p4
E

2x2
α < ∞.

Thus by Borel-Cantelli lemma, T2p/(np2) → 0 almost surely and this completes the proof. �

Remark 2. (a) From results of [3], it is known that for the special case of sample covariance matrix, finite fourth
moment is needed for the above approximation to work, and inter alia, for the existence of the LSD almost surely.
Here the link function is more general, necessitating slightly higher moments.

(b) If we carefully follow the above proof, finiteness of the 4(1 + 1/λ) + δ-th moment was only needed in proving

that supx |FNp(x) − F Ñp(x)| a.s.→ 0. If we impose the weaker assumption supα Ex4
α < ∞, then qp ≤ εp/n for suitably

chosen sequence {εp} ↓ 0 and supx |FNp(x) − F Ñp (x)| P→ 0 holds and hence D(FBp,FNp) → 0 in probability.

Having approximated Np by Bp , we now need to establish the behaviour of the moments of Bp . This is done
through a series of Lemma, finally leading to Theorem 8. In the subsequent discussion, we will use the following
notation.

Π 	=(w) := {
π ∈ Π(w): π(2i − 2) 	= π(2i) ∀1 ≤ i ≤ h

}
,

Π∗	=(w) := {
π ∈ Π∗(w): π(2i − 2) 	= π(2i) ∀1 ≤ i ≤ h

}
.

Analogous to Π(w) and Π∗(w), we define, for several words w1,w2, . . . ,wk ,

Π(w1,w2, . . . ,wk) := {
(π1,π2, . . . , πk): wi[s] = wj [�] ⇔ ξπi

(s) = ξπj
(�),1 ≤ i, j ≤ k

}
,

Π∗(w1,w2, . . . ,wk) := {
(π1,π2, . . . , πk): wi[k] = wj [�] ⇒ ξπi

(k) = ξπj
(�),1 ≤ i, j ≤ k

}
.

(Definition of ξπ has been given earlier.)
Moreover,

Π 	=(w1,w2, . . . ,wk) := {
(π1,π2, . . . , πk) ∈ Π(w1,w2, . . . ,wk):

πi(0) 	= πi(2), . . . , πi(2h − 2) 	= πi(2h), 1 ≤ i ≤ k
}
.

For Lemmas 2–5, we will always assume that the link function L satisfies Assumption A(ii) and A′.

Lemma 2. Fix h ≥ 1 and a matched word w of length 2h. Then we have∣∣Π 	=(w)
∣∣≤ Khp

1+[(|w|+1)/2]n[|w|/2], (27)
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where Kh is some constant depending on h.

Proof. Let k be the number of odd generating vertices, denoted by π(2i1 − 1),π(2i2 − 1), . . . , π(2ik − 1) where
1 ≤ i1 < i2 < · · · < ik < h. We wish to emphasize that ik < h since {ξπ (2h − 1), ξπ (2h)} cannot be a matched edge as
ξπ (2h − 1) 	= ξπ (2h) by A′.

Recall the definition of Type I and Type II generating vertex given in Section 2. Let t be the number of Type I odd
generating vertices. Since total number of generating vertices apart from π(0) is |w|, we have t ≤ [|w|/2].

Now, fix a Type II generating vertex π(2i − 1). Also, suppose we have already made our choices for the vertices
π(j), j < 2i − 1 which come before π(2i − 1). Since π(2i) is not a generating vertex,

ξπ (2i) = ξπ (j) for some j < 2i − 1. (28)

(Note that since π(2i − 2) 	= π(2i), we cannot have ξπ (2i) = ξπ (2i − 1) by Assumption A′). Now that the value
of ξπ (j) has been fixed, for each value of π(2i), there can be at most 	 many choices for π(2i − 1) such that (28)
is satisfied. Thus, we can only have at most p	 many choices for the generating vertex π(2i − 1). In short, there are
only O(p) possibilities for a Type II odd generating vertex to choose from.

With the above crucial observation before us, it is now easy to conclude∣∣Π 	=(w)
∣∣= O

(
p#even generating vertices+#Type II verticesn#Type I vertices)= O

(
p1+[(|w|+1)/2]n[|w|/2]). �

Lemma 3. (i) For every h ≥ 1 even,∣∣∣∣p−1
E TrBh

p −
∑

w matched,|w|=h

p−1−h/2n−h/2
∣∣Π∗	=(w)

∣∣∣∣∣∣→ 0.

(ii) For every h ≥ 1 odd, limp→∞ p−1E TrBh
p = 0.

Proof. Let X̂π be as defined in (14) with xα replaced by x̂α . From the fact that Ex̂α = 0 and Bii = 0 for all i, we have

p−1
E TrBh

p = p−(1+h/2)n−h/2
∑

w matched

∑
π∈Π(w),

π(2i−2)	=π(2i),∀1≤i≤h

EX̂π .

Fix a matched word w of length 2h. It induces a partition on 2h L-values ξπ (1), ξπ (2), ξπ (3), . . . , ξπ (2h) resulting
in |w| many groups (partition blocks) where the values of ξπ within a group are same but across the groups they are
different. Let Ck be the number of groups of size k. Clearly,

C2 + C3 + · · · + C2h = |w| and 2C2 + 3C3 + · · · + 2hC2h = 2h.

Note that

sup
α

∣∣Ex̂2
α − 1

∣∣= o(1) and sup
α

E|x̂α|k ≤ (
εpn1/4)k−2 ∀k ≥ 2.

Thus if π ∈ Π(w),

E|x̂ξπ (1)x̂ξπ (2) · · · x̂ξπ (2h)| ≤
(
εpn1/4)0·C2+1·C3+···+(2h−2)·C2h ≤ (εpn1/4)2h−2|w|.

Using Lemma 2,∑
π∈Π(w),

π(2i−2)	=π(2i)∀1≤i≤h

E|x̂ξπ (1)x̂ξπ (2) · · · x̂ξπ (2h)| ≤ (
εpn1/4)2h−2|w|(

Khp
1+[(|w|+1)/2]n[|w|/2])

= (εp)2h−2|w|nh/2−(|w|/2−[|w|/2])p1+[(|w|+1)/2].
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Case I. Either |w| < h or |w| = h with h odd. Then

1

p1+h/2nh/2

∑
π∈Π(w),

π(2i−2)	=π(2i)∀1≤i≤h

E|x̂ξπ (1)x̂ξπ (2) · · · x̂ξπ (2h)| → 0. (29)

Case II. If |w| = h with h even, then

lim
p

1

p1+h/2nh/2

∑
π∈Π(w),

π(2i−2)	=π(2i)∀1≤i≤h

Ex̂ξπ (1)x̂ξπ (2) · · · x̂ξπ (2h)

= lim
p

1

p1+h/2nh/2

∣∣Π 	=(w)
∣∣(1 + o(1)

)h
= lim

p

1

p1+h/2nh/2

∣∣Π 	=(w)
∣∣

= lim
p

1

p1+h/2nh/2

∣∣Π∗	=(w)
∣∣.

This completes the proof. �

Fix jointly matched and cross-matched words (w1,w2,w3,w4) of length (2h) each. Let

κ = total number of distinct letters in w1,w2,w3 and w4. (30)

Lemma 4. For some constants Ch depending on h,

#
{
(π1,π2,π3,π4) ∈ Π(w1,w2,w3,w4): πi(0) 	= πi(2), . . . , πi(2h − 2) 	= πi(2h), i = 1,2,3,4

}
≤
{

Chp
2+2hn2h if κ = 4h or 4h − 1,

Chp
4+[(1+κ)/2]n[κ/2] if κ ≤ 4h − 2.

(31)

Proof. Case I. κ = 4h − 1 or 4h. Since the circuits are cross-matched, upon reordering the circuits, making circular
shift and counting anti-clockwise if necessary, we may assume, without loss of generality, ξπ1(2h) does not match
with any L-value in π1 when κ = 4h − 1. Because of cross matching, when κ = 4h, we may further assume that
ξπ2(2h) does not match with any L-value in π1 or π2.

We first fix the values of the p-vertices πi(0),1 ≤ i ≤ 4, all of which are even generating vertices. Then we scan
all the vertices from left to right, one circuit after another. We will then, as argued in [7], obtain a total (4h + 2)

generating vertices instead of (4h + 4) generating vertices which we would have obtained by usual counting.
In our dynamic counting, we scan the L-values in the following order:

ξπ1(1), ξπ1(2), ξπ1(3), . . . , ξπ1(2h), ξπ2(1), ξπ2(2), . . . , ξπ2(2h), ξπ3(1), . . . , ξπ4(2h).

From the arguments given in Lemma 2, it is clear that for an odd vertex πi(2j − 1) to be Type I, both ξπi
(2j − 1)

and ξπi
(2j) have to be the first appearances of two distinct L values. So, total number of Type I n-generating vertices

is at most κ/2.
Case II. κ ≤ 4h − 2. We again apply the crucial fact that for an odd vertex πi(2j − 1) to be Type I, we need both

ξπj
(2j − 1) and ξπj

(2j) to be the first appearances of two distinct L-values, while the circuits being scanned from
left to right and one after another. Since there are exactly κ distinct L-values, the number of Type I odd vertices is
not more than κ/2. Combining this with the fact that total number of generating vertices equals (κ + 4), we get the
required bound. �
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Lemma 5. For each fixed h ≥ 1,

∞∑
p=1

E
[
p−1(TrBh

p − E(TrBh
p)
)]4

< ∞.

Proof. As argued earlier and from the fact that the diagonal elements of Bp are all zero, we have

E
[
p−1(TrBh

p − E
(
TrBh

p

))]4 = p−4−2hn−2h
∑

∗

∗∑
E

(
4∏

i=1

(X̂πi
− EX̂πi

)

)
,

where the outer sum
∑

∗ is over all quadruples of words (w1,w2,w3,w4), each of length 2h and which are
jointly matched and cross-matched. The inner sum

∑∗ is over all quadruples of circuits {(π1,π2,π3,π4) ∈
Π(w1,w2,w3,w4): πi(0) 	= πi(2), . . . , πi(2h − 2) 	= πi(2h), i = 1,2,3,4}.

Note that by definition of κ , κ ≤ 4h for any jointly matched quadruple of words (w1,w2,w3,w4) of total length 8h.
Fix w1,w2,w3,w4, jointly matched and cross-matched.

Case I. κ = 4h or 4h − 1. Then the maximum power with which any x̂α can occur in
∏4

i=1 X̂πi
is bounded by 4.

But since supα E(x̂α)4 < ∞, we immediately have |E(
∏4

i=1(X̂πi
− EX̂πi

))| < ∞. Thus, by Lemma 4,

p−4−2hn−2h
∑

∗:κ∈{4h−1,4h}

∗∑
E

(
4∏

i=1

(X̂πi
− EX̂πi

)

)
= p−4−2hn−2hO

(
p2+2hn2h

)= O
(
p−2).

Case II. Suppose now that κ = 4h − k, k ≥ 2. Borrowing notation from Lemma 3, we have

C2 + C3 + · · · + C8h = κ and 2C2 + 3C3 + · · · + 8hC8h = 8h.

These two equations immediately give

C3 + 2C4 + · · · + (8h − 2)C8h = 8h − 2κ = 2k.

It is also easy to see that

C2k+2+i = 0 ∀i ≥ 1 and C5 + 2C6 + · · · + (2k − 2)C2k+2 ≤ 2k − 2.

Since the input variables are truncated at εpn1/4 and since supα E(x4
α) < ∞,

sup
α

E

∣∣∣∣∣
4∏

i=1

X̂πi

∣∣∣∣∣≤ E(x̂α)4n
C5+2C6+···+(2k−2)C2k+2

4 = O
(
n(2k−2)/4).

Thus, by Lemma 4, for any k ≥ 2,

p−4−2hn−2h
∑

∗:κ∈{4h−k}

∗∑
E

(
4∏

i=1

(X̂πi
− EX̂πi

)

)
≤ p−4−2hn−2hChp

4+[(4h−k+1)/2]n[(4h−k)/2]O
(
n(k−1)/2)

= O
(
p−4−2hp−2hp4+[(4h−k+1)/2]p[(4h−k)/2])O(p(k−1)/2)

= O
(
p−4−4hp(4+4h−k)+(k−1)/2)= O

(
p−(k/2+1)

)
.

For a quick explanation of the first equality above, just note that total power of n in the previous expression is
negative. �

We are now ready to summarize the results of Theorem 7 and Lemma 2–5 in the following theorem in Regime II.
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Theorem 8. Let p,n → ∞ so that p/n → 0 and Assumption R2 holds. Suppose Lp satisfies Assumptions A(ii), A′
and B. Suppose {εp} satisfying {εp} ↓ 0 and εpp1/4 → ∞ is appropriately chosen. Then

(i) For every h ≥ 1 even,

p−1
E TrBh

p −
∑

w matched,|w|=h

p−(1+h/2)n−h/2
∣∣Π∗	=(w)

∣∣→ 0.

(ii) For every h ≥ 1 odd, limp→∞ p−1
E TrBh

p = 0.

(iii) For each h ≥ 1, p−1 TrBh
p − Ep−1 TrBh

p

a.s.→ 0.

(iv) β2h ≡ lim supp

∑
w matched|w|=2h

p−(1+h)n−h|Π∗	=(w)|, satisfies Carleman’s condition.

As a consequence, the sequence {FNp } is almost surely tight. Every subsequential limit is symmetric and sub
Gaussian. The LSD of {FNp } exists almost surely, iff lim

∑
w matched|w|=2h

p−(1+h)n−h|Π∗	=(w)| exists. These give the (2h)th

moment of the LSD.

Below we will deal with two matrices with different link functions L(1) or L(2). The corresponding relevant quan-
tities will now be denoted with added superscripts (1) and (2) respectively.

Theorem 9. Let L(1) and L(2) be two link functions satisfying Assumptions A(ii), A′ and B and agreeing on the set
{(i, j): 1 ≤ i ≤ p,1 ≤ j ≤ n, i < j}. Then, for each matched word w of length (4h) with |w| = 2h,

1

ph+1nh

∣∣Π∗(1)
	= (w) − Π∗(2)

	= (w)
∣∣→ 0.

Hence, in Regime II under Assumption R2, FN
(i)
p , i = 1,2 have identical asymptotic behaviour.

Proof of Theorem 9. Define for each link function L(i), i = 1,2

�
(i)
j := {

π ∈ Π∗(i)
	= (w): 1 ≤ π(2j + 1) ≤ p

}
, j = 1,2, . . . ,2h.

Now, it is enough to prove that for a fixed j ,

1

ph+1nh

∣∣�(i)
j

∣∣→ 0.

Consider the transformation π �→ π̂ , where π̂ is also a circuit with

π̂ (0) = π(2j), π̂(1) = π(2j + 1), . . . , π(4h − 1) = π(2j − 1), π̂(4h) = π(2j).

Then it is easy to show that the map π �→ π̂ is a bijection between �
(i)
j and �

(i)
1 and therefore, |�(i)

j | = |�(i)
1 |.

Observe that π(1) is always a Type I odd generating vertex. By Lemma 2, we have |Π∗(i)(w)| = O(ph+1nh).
Since, in the definition of �

(i)
1 we are restricting one of the Type I odd generating vertex to be a p generating vertex,

we are going to lose a factor of n in the bound and pick up a factor of p instead. Thus, |�(i)
1 | = O(ph+2nh−1) and

hence

1

ph+1nh

∣∣�(i)
j

∣∣= O

(
p

n

)
→ 0. �

The symmetric Toeplitz link function L(i, j) = |i − j | does not satisfy Assumption A′ but the asymmetric Toeplitz
link function L(i, j) = i − j does. Hence the above result is not applicable for this pair of link functions. However,
under Assumption A, we can directly claim the closeness of LSD, but only in probability.
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Theorem 10. Assume {xα} are independent with mean zero and supα Ex4
α < ∞. Suppose L(1) and L(2) are two link

functions such that L(1)(i, j) = L(2)(i, j) on the set {(i, j): 1 ≤ i ≤ p,p ≤ j ≤ n} and both satisfy Assumption A. Set
X = ((xL(1)(i,j)))p×n and Y = ((xL(2)(i,j)))p×n. Then

dBL

(
F

√
n/p(Ap(X)−Ip),F

√
n/p(Ap(Y )−Ip)

) P→ 0.

Proof. Let X = [X0: Z] and Y = [Y0: Z] where X0 and Y0 are p × p sub-matrices of X and Y respectively. Note
that

Ed2
BL

(
F

√
n/p(Ap(X)−Ip),F

√
n/p(Ap(Y )−Ip)

) ≤ n−1p−2
E Tr

(
XX′ − YY ′)2

= n−1p−2
E Tr

(
X0X

′
0 − Y0Y

′
0

)2

≤ 2n−1(
E Tr

(
p−1X0X

′
0

)2 + E Tr
(
p−1Y0Y

′
0

)2)
.

Calculations similar to those done in Regime I now imply that

Ep−1 Tr
(
p−1X0X

′
0

)2 ≤ K and Ep−1 Tr
(
p−1Y0Y

′
0

)2 ≤ K,

for some constant K . Since p/n → 0, the result follows immediately. �

5. Proofs of Theorems 1–4

For convenience of counting, in Regime I, the pair matched words are classified as follows. In a pair matched circuit
of length (2h), there are h distinct L-values and hence (h + 1) generating vertices. But the number of odd (or even)
generating vertices depends on the corresponding word. Note that there is always at least one even generating vertex
π(0), and the number of even generating vertices is bounded by h. Let

Wt,h = {
w: w is pair-matched of length 2h with (t + 1) even generating vertices

}
. (32)

Obviously the total number of odd generating vertices for a word in Wt,h is (h − t).
Symmetric words. In most of the examples, due to the circuit restriction, only words where each letter appears in

an odd and an even position have positive contribution in the limit. We call these symmetric words. Let

W 0
t,h = {w: w ∈ Wt,h and w is symmetric}.

5.1. Proof of Theorem 1

(i) In view of Theorem 6 we will only have to show that, for each h ≥ 1 and each word w ∈ Wt,h,
limp p−1n−h|Π∗(w)| exists.

We first show that the circuit condition implies that words which are not symmetric do not contribute in the limit.

Lemma 6. Suppose p/n → y ∈ (0,∞). Let w be any pair-matched word of length (2h) which is not symmetric. Then
in Regime I,

p−1n−h
∣∣Π∗(w)

∣∣→ 0 asp → ∞. (33)

Proof. Fix a pair-matched non-symmetric word w of length (2h) and hence |w| = h. Let S be the set of (h + 1)

indices corresponding to generating vertices of w. Now because of the circuit condition π(0) − π(2h) = 0, we must
have

ξπ (1) − ξπ (2) + ξπ (3) − · · · + ξπ (2h − 1) − ξπ (2h) = 0. (34)
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Let us enumerate S, left to right, as {0, i1, i2, . . . , ih} and for each it ∈ S \ {0}, let jt be its matching index, so that,
ξπ (it ) = ξπ (jt ), it < jt .

Since w is not symmetric, there exists at least one pair of matching indices of the same parity. Because of Eq. (34)
number of pairs of matching L-values with odd indices is same as the number of pairs of matching L-values with
even indices. Consider the set P of all indices of S \ {0} whose matching counterpart is of the same parity. Let
imax = max P . Let jmax be the matching index for imax.

So for any i ∈ S \ {0} with i > imax , ξπ (i) has a matching L-value with index of opposite parity and hence if they
are substituted in Eq. (34), they have same value but opposite sign. Therefore, they cancel out each other.

Now, according to our convention, we start choosing generating vertices from the left end of the circuit. We stop
when we reach π(imax). By this process we have fully determined the values of {ξπ (t)} for all t < imax. On the other
hand, if we consider ξπ (t) with t > imax, then we immediately realize that:

1. Either its value is already determined. This is the case when its matching counterpart appears at the left of ξπ (imax).
2. Or, its matching counterpart has index of opposite parity as we have observed before.

Thus in Eq. (34), except ξπ (imax) and ξπ (jmax), all other {ξπ (t)} are either already determined or get cancelled with
their own counterpart. So, (34) forces ξπ (imax) + ξπ (jmax) = 2ξπ (imax) to take some particular value. Therefore,
π(imax) has no free choice though it is a generating vertex. This is a contradiction and the proof of the lemma is
complete. �

Therefore, going back to the proof of part (i) of the theorem,

βh = lim
p

h−1∑
t=0

(
p

n

)t ∑
w∈W 0

t,h

1

pt+1nh−t

∣∣Π∗(w)
∣∣.

Fix a w ∈ W 0
t,h. If w[2i] = w[2j + 1] then we have following restriction,

π(2i − 1) − π(2i) = π(2j + 1) − π(2j).

Let G be the set of indices of size (h + 1) corresponding to all generating vertices. It is easy to see that if we
consider the above h linear restrictions on the vertices of the circuits and do not take into account the circuit condition
π(0) = π(2h), then each dependent vertex can be written in a unique manner as an integral linear combination of
generating vertices which occur to the left of that particular vertex in the circuit. Mathematically,

π(i) =
∑

j :j≤i,j∈G

ai,jπ(j) for some ai,j ∈ Z.

Note that for i ∈ G, aj,i = I{i = j} and since w is symmetric, we have π(2h) = π(0) so that the circuit condition is
automatically satisfied.

To compute the scaled limit of |Π∗(w)| introduce the following notation. Define

t2i = π(2i)

p
, t2i+1 = π(2i + 1)

n
and yn = p/n.

From the above discussion, if i /∈ G ∪ {2h}, ti can be written in a unique manner as a linear combination of tG :=
{tj : j ∈ G}, namely,

t2i−1 = LT
2i−1,n(tG) :=

∑
2j−1∈G,2j−1≤2i−1

a2i−1,2j−1t2j−1 +
∑

2j∈G,2j≤i

yna2i−1,2j t2j ,

t2i = LT
2i,n(tG) :=

∑
2j−1∈G,2j−1≤2i

(1/yn)a2i,2j−1t2j−1 +
∑

2j∈G,2j≤i

a2i,2j t2j .
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It is obvious that these linear combinations LT
i,n(tG) depend on the word w but we suppress this dependence for

notational brevity. Thus the number of elements in Π∗(w) can be expressed alternatively as follows:

∣∣Π∗(w)
∣∣ = #

{
(t0, t1, . . . , t2h): t2i ∈ {1/p,2/p, . . . ,p/p}, t2i−1 ∈ {1/n,2/n, . . . , n/n}

and
p

n
t2i − t2i+1 = p

n
t2j − t2j−1 if w[2i + 1] = w[2j ]

}
= #

{
tG: tg ∈ {1/p,2/p, . . . ,p/p} if g is even and tg ∈ {1/n,2/n, . . . , n/n} if g is odd, g ∈ G,

0 < LT
i,n(tG) ≤ 1,∀i /∈ G ∪ {2h}}.

It does not take us long to recognize the above complicated expression as a multi-dimensional Riemann sum. Therefore
from the theory of Riemann integration, its convergence follows and we have

βh =
h−1∑
t=1

yt
∑

w∈W 0
t,h

lim
p→∞

1

pt+1nh−t

∣∣Π∗(w)
∣∣

=
h−1∑
t=1

yt
∑

w∈W 0
t,h

∫ 1

0

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
h+1

I
(
0 < LT

i (tG) ≤ 1,∀i /∈ G ∪ {2h})dtG,

where LT
i (tG) is same as LT

i,n(tG) with all yn being replaced by y. This replacement can be justified by Polya’s
theorem as we can think of each ti as a discrete uniform random variable converging to a U(0,1) random variable
which is continuous. The above argument shows that in case yn → y ∈ (0,∞), the LSD of Ap(T ) exists.

(ii) We now consider the case p
n

→ 0 and prove part (ii) of the theorem. In view of Theorem 8, we only need to
show that for each matched word of length (4h), with |w| = 2h,

lim
p→∞p−(1+h)n−h

∣∣Π∗	=(w)
∣∣ exists.

Note that if π ∈ Π∗	=(w), then ξπ (i) 	= ξπ (i + 1) for all i odd. Hence, there can be only two types of matching
between the L-values as listed below:

1. Double bond. A matching is said to have a double bond if there exists two consecutive odd-even L-values which
match pairwise with another two consecutive odd-even L-values. There can be again two possibilities:
(a) Crossing. ξπ (2i + 1) = ξπ (2j + 2) and ξπ (2i + 2) = ξπ (2j + 1) for some i < j .
(b) Non-crossing. ξπ (2i + 1) = ξπ (2j + 1) and ξπ (2i + 2) = ξπ (2j + 2) for some i < j .

2. Single bond. The remaining types of pairing will be termed as single bond. They give rise to following type of
equations:

ξπ (2i + 1) = ξπ (s) and ξπ (2i + 2) = ξπ (t) where {s, t} 	= {2j + 1,2j + 2} for all j.

Claim. Let w be a matched word of length 4h. If w has a single bond, then

lim
p→∞p−(1+h)n−h

∣∣Π∗	=(w)
∣∣= 0.

Proof. Recall the definition of a Type I generating vertex. It is clear that if π(2i − 1) is Type I, then

ξπ (s) = ξπ (2i − 1) or ξπ (s) = ξπ (2i) ⇒ s > 2i.

We show that number of Type I odd generating vertices is strictly less than h. Then the proof will follow immedi-
ately since the total number of generating vertices is (2h + 1).
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Total number of odd vertices (generating, non-generating together) is (2h). Let us form two mutually exclusive
and exhaustive sets U and V where U contains all odd vertices involved in double bonds and V contains all the rest
of the odd vertices. Quite clearly, if {ξπ (2u1 − 1), ξπ (2u1)} = {ξπ (2u2 − 1), ξπ (2u2)} is a double bond with u1 < u2,
then π(2u1 − 1),π(2u2 − 1) ∈ U and π(2u1 − 1) is a Type I odd generating vertex. Thus, total number of Type I odd
generating vertices in U is (1/2)|U |. Next we argue that the total number of Type I generating vertices in V is strictly
less than (1/2)|V | and hence, the total number of Type I odd generating vertices is strictly less than h.

Note that exactly half of the odd vertices, which are involved in double bond matching, are Type I odd vertices.
Now, let us count the number of Type I odd vertices which are involved in single bond matchings. We list the Type I
odd generating vertices in V as

V1 := {
π(2g1 − 1),π(2g2 − 1), . . . , π(2gs − 1)

}
and the rest of the vertices of V by

V2 := V \ V1 = {
π(2d1 − 1),π(2d2 − 1), . . . , π(2dt − 1)

}
.

For i 	= j , write 2i − 1 ↔ 2j − 1 if {ξπ(2i−1), ξπ(2i)} ∩ {ξπ(2j−1), ξπ(2j)} 	= ∅. From the definition of Type I odd
generating vertex, it is clear that 2gi − 1 ↔ 2gj − 1 is not possible.

We claim that 2di − 1 ↔ 2gl − 1 and 2di − 1 ↔ 2gm − 1, l 	= m cannot occur simultaneously. Because if that
happens, then we have

π(2di − 2) − π(2di − 1) = π(2ga) − π(2ga − 1),

π(2di) − π(2di − 1) = π(2gb − 2) − π(2gb − 1), {a, b} = {l,m}.
Subtracting we get,

π(2gb − 1) − π(2ga − 1) = π(2di − 2) − π(2di) + π(2gb − 2) − π(2ga).

Vertices on the right side are all even and hence the number of choices on the right side is O(p). On the other hand, in
the left side we have two Type I odd vertices each of which has free choices of the order n. This is an impossibility.

So in summary, the relation ↔ associates a vertex in V1 with two vertices in V2 (single bond), but a vertex in V2
is not associated to two distinct vertices in V1. Therefore, |V1| < |V2|. So the total number of Type I odd generating
vertices in V is strictly less than |V |/2. Thus, total number of Type I odd vertices is strictly less than (|U |+|V |)/2 = h

which concludes the proof of the claim. �

Reverting to the proof of part (ii), we may now, for the rest of our calculation, consider only those words which
produce no single bond. By the circuit constraint, we have

ξπ (1) − ξπ (2) + · · · + ξπ (2i − 1) − ξπ (2i) + · · · + ξπ (4h − 1) − ξπ (4h) = 0. (35)

Note that if i forms a non-crossing double bond with j then ξπ (2i − 1) − ξπ (2i) = ξπ (2j − 1) − ξπ (2j). If w has
at least one non-crossing double bond then (35) leads to a nontrivial restriction on the vertices of the circuit reducing
the number of even generating vertices by one and thus p−(1+h)n−h|Π∗	=(w)| → 0. Thus we may restrict ourselves to
those words which give rise to only crossing double bonds. Let us fix one such word w of length (4h), with |w| = 2h.
Now let us consider a pair of equations forming a crossing double bond:

π(2i) − π(2i + 1) = π(2j + 2) − π(2j + 1),

π(2i + 2) − π(2i + 1) = π(2j) − π(2j + 1) for i < j. (36)

In the above equations π(2i +1) is a Type I odd generating vertex and π(2j +1) is a non generating odd vertex which
pairs up with π(2i + 1). Note that,

π(2j + 1) = π(2j + 2) − π(2i) + π(2i + 1)

= π(2j) − π(2i + 2) + π(2i + 1).
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Since −p < π(2j + 2) − π(2i) < p, if π(2i + 1) is chosen freely between p and (n − p), we do not have any
restriction on even vertices imposed by odd vertices, that is, even vertices can be chosen independent of the choice of
odd vertices satisfying the following restrictions:

π(2i) − π(2i + 2) = π(2j + 2) − π(2j). (37)

But if π(2i + 1) ∈ {1,2, . . . , p − 1} ∪ {n − p + 1, n − p + 2, . . . , n}, then the choice of even vertices is restricted
by the choice of π(2i + 1) because of the constraint 1 ≤ π(2j + 1) ≤ n.

Define a new word ŵ of length 2h, so that

ŵ[i] = ŵ[j ] iff w[2i − 1] = w[2j ] and w[2i] = w[2j − 1].

It is easy to see that |ŵ| = h. Let π̂ be a circuit of length 2h given by π̂ (i) = π(2i).
Since p

n
→ 0,

p−(1+h)n−h
∣∣Π∗	=(w)

∣∣ = p−(1+h)n−h
∣∣Π∗	=(w) ∩ {

π : p ≤ π(2i − 1) ≤ n − p,∀1 ≤ i ≤ 2h
}∣∣+ o(1)

= p−(1+h)
∣∣{π̂ : ŵ[i] = ŵ[j ] ⇒ π̂(i) − π̂(i + 1) = π̂(j + 1) − π̂(j)

}∣∣+ o(1).

The above restriction on π̂ is precisely the same restriction on pair matched circuits of length 2h that is obtained
in the symmetric Toeplitz matrix. See for example [6] and [7]. Also, note that every word of length 2h with h letters

can be obtained through this procedure. Therefore, in this case, the LSD of
√

n
p
(Ap(T ) − Ip) is LT .

5.2. Proof of Theorem 2

(i) By Theorem 6, we know that the hth moment of Hankel LSD is given by

βh = lim
p→∞

h−1∑
t=0

(
p

n

)t ∑
w∈Wt,h

1

pt+1nh−t

∣∣Π∗(w)
∣∣. (38)

We note that Π∗(w) ⊆ Π∗
H̃

(w) where Π∗
H̃

(w) is as defined in (16) with symmetric Hankel link function L(i, j) = i+j

and each vertex having same range between 1 and max(p,n) since in the latter case we have more circuits but fewer
restrictions. From the arguments given in [6] for symmetric Hankel link function, it follows that for any non-symmetric
word w, n−(h+1)|Π∗(w)| → 0. Thus, (38) reduces to

βh = lim
p→∞

h−1∑
t=0

(
p

n

)t ∑
w∈W 0

t,h

1

pt+1nh−t

∣∣Π∗(w)
∣∣.

Let us first consider the case when the link function is symmetric Hankel, i.e. L(i, j) = i + j . In that case for a
word w ∈ W 0

t,h, if w[2i] = w[2j + 1], we have the restriction,

π(2i − 1) + π(2i) = π(2j) + π(2j + 1).

Just as in the Toeplitz case, we can express each vertex in a unique manner as an integral linear combination of
generating vertices occurring to its left.

π(i) =
∑

j :j≤i,j∈G

bi,jπ(j) for some bi,j ∈ Z, (39)

with bj,i = I{i = j} if i ∈ G and π(2h) = π(0) since w is symmetric.
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We scale the vertices as before and call them ti . Similar to the Toeplitz case, we define LH
i,n(tG) as the linear

combination which expresses ti in terms of “free cordinates” tG and LH
i (tG) as its limiting version. It immediately

yields

lim
p→∞

1

pt+1nh−t

∣∣Π∗(w)
∣∣= ∫ 1

0

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
h+1

I
(
0 < LH

i (tG) ≤ 1,∀i /∈ G ∪ {2h})dtG. (40)

Now consider the asymmetric link function. Here instead of calculating the (h+1)-dimensional Eucledean volume
of the entire set {0 ≤ LH

i (tG) ≤ 1,∀i /∈ S ∪ {2h}}, we need to take into account the restricting hyperplanes that arise
from asymmetric nature of the link function since it assumes different signs around the diagonal. So, unlike the
symmetric case, this imposes the following extra restrictions in addition to the usual equality between two L-values
ξπ (2i) and ξπ (2j + 1):

either π(2i − 1) ≤ π(2i), π(2j − 1) ≤ π(2j) or π(2i − 1) > π(2i), π(2j − 1) > π(2j).

Thus the size of the set Π∗(w) is same as the cardinality of {tG: 0 < LH
i,n(tG) ≤ 1,∀i /∈ G∪{2h}, sgn(LH

2i+1,n(tG)−
ynL

H
2i,n(tG)) = sgn(LH

2j+1,n(tG) − ynL
H
2j,n(tG)) if w[2i + 1] = w[2j ]}, where each ti , i ∈ G takes values in

{1/n,2/n, . . . , n/n} or {1/p,2/p, . . . ,p/p} depending on whether i is odd or even.
This entire set may be written as a product of indicator functions in terms of {LH

i,n(tG)}, albeit in a complicated
manner. When summed over tG, in the limit this equals the corresponding Riemann integral where the indicators are
replaced by their limits and yn is replaced by y. Let us denote the giant indicator function by f H (tG). So, we have

βh =
h−1∑
t=1

yt
∑

w∈W 0
t,h

lim
p→∞

1

pnh

∣∣Π∗(w)
∣∣= h−1∑

t=1

yt
∑

w∈W 0
t,h

∫ 1

0

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
h+1

f H (tG)dtG. (41)

(ii) By Theorem 9, it is equivalent to prove the existence of the LSD for the symmetric Hankel case. Along this line,
we can just imitate the argument for the asymmetric Toeplitz matrix in Regime II. Here also the essential contribution
comes from the words having only crossing double bonds. But we now have a different pair of equations instead
of (36) in Toeplitz case,

π(2i) + π(2i + 1) = π(2j + 2) + π(2j + 1),

π(2i + 2) + π(2i + 1) = π(2j) + π(2j + 1) for i < j. (42)

But once we cancel the odd vertices as we did in the Toeplitz case, we are again reduced to the Toeplitz type
restrictions on even vertices. We omit the details. Hence we conclude that the LSD exists and is LT .

5.3. Proof of Theorem 3

(i) We need to show that for each h ≥ 1 the following limit exists.

βh = lim
p→∞

h−1∑
t=0

(
p

n

)t ∑
w∈Wt,h

1

pt+1nh−t

∣∣Π∗(w)
∣∣. (43)

Similar to Hankel case, we note that Π∗(w) ⊆ Π∗
R̃
(w) where Π∗

R̃
(w) is as defined in (16) with symmetric reverse

circulant link function L(i, j) = (i + j) mod n. In [6], it has been argued that for symmetric reverse circulant link
function, the circuit condition enforces that for any non-symmetric word w, n−(h+1)|Π∗(w)| → 0. Thus, the sum
in (43) is only over symmetric words,

βh = lim
p→∞

h−1∑
t=0

(
p

n

)t ∑
w∈W 0

t,h

1

pt+1nh−t

∣∣Π∗(w)
∣∣.
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It now remains to show that for each symmetric word w ∈ W 0
t,h, p−(t+1)n−(h−t)|Π∗(w)| converges.

Let us first consider the symmetric link function L(i, j) = (i + j) mod n. In this case, if w[i] = w[j ], we obtain
the restriction of the following type:(

π(i) + π(i − 1)
)

mod n = (
π(j) + π(j − 1)

)
mod n,

which is equivalent to(
π(i) + π(i − 1)

)− (
π(j) + π(j − 1)

) ∈ nZ.

We now have exactly the same set of equations as in the Hankel case (39), with some added relaxations given as
follows

π(i) −
∑

j :j≤i,j∈G

bi,jπ(j) ∈ nZ for all i /∈ G.

If i /∈ G∪{2h}, we can choose a unique integer ki,n = ki,n(π(j): j ∈ G) such that 1 ≤∑
j :j≤i,j∈G bi,jπ(j)+ki,n ≤ n.

Thus once we fix the generating vertices, there is exactly one choice for each of the non-generating odd vertices. For
the non-generating even vertices, things are a bit complicated.

For a real number a, let

℘(a) := max{m ∈ Z: m < a}, �(a) := a − ℘(a).

Using these notation, ki,n can be written as the following

ki,n

n
= 1

n
�

( ∑
j :j≤i,j∈G

bi,jπ(j)

)
.

Now let us fix 2i /∈ G, i 	= h. We have at least [yn] choices for the vertex π(2i). Moreover, we can have an additional
choice for π(2i) if∑

j :j≤2i,j∈G

b2i,jπ(j) + k2i,n ≤ p − [yn]n.

Dividing by n, the above condition can be rewritten as

ynL
H
2i,n(tG) + �

(
ynL

H
2i,n(tG)

)≤ yn − [yn].
Let S = {2i: 2i /∈ G, i 	= h}. From the above discussion, we can conclude that for the symmetric link function, the

size of the set Π∗(w) when w ∈ W 0
t,h is given by

[yn]h−t−1pt+1nh−t +
∑

∅ 	=S′⊆S

#
{
tG: ynL

H
2i,n(tG) + �

(
ynL

H
2i,n(tG)

)≤ yn − [yn],∀2i ∈ S′}.
Note that � has discontinuities only at integer points. Therefore, we have the following convergence

lim
p→∞

1

pt+1nh−t

∣∣Π∗(w)
∣∣

= [y]h−t−1 +
∑

∅ 	=S′⊆S

∫ 1

0
· · ·

∫ 1

0
I
(
yLH

2i (tG) + �
(
yLH

2i (tG)
)≤ y − [y],∀2i ∈ S ′)dtG.

Coming back to the asymmetric case, we now have extra restrictions,

sgn
(
π(2i + 1) − π(2i)

)= sgn
(
π(2j + 1) − π(2j)

)
if w[2i] = w[2j + 1].
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We can now incorporate restrictions sgn(t2i+1 −yt2i ) = sgn(t2j+1 −yt2j ) in the integral as we did in the Hankel case.
The even non-generating vertices, except for π(2h) which is constrained to equal to π(0), do not have a unique choice
once we determine the generating vertices, instead there are [yn] + 1 choices for each of them as observed above.

In the symmetric case, for many of the choices, the integrand was simply equal to 1. But here due to the additional
constraints regarding signs, the integrand is not necessarily equal to 1 and simplification is not possible anymore and
all the relevant indicators will appear in the integrand. We omit details.

(ii) In Regime II, invoking Theorem 9, it suffices to work with the symmetric link function L(i, j) = (i +j) mod n.
We again imitate the proof of the Toeplitz case. Here a typical restriction in a word containing only crossing double
bonds reads as,(

π(2i) + π(2i + 1)
)

mod n = (
π(2j + 2) + π(2j + 1)

)
mod n,(

π(2i + 2) + π(2i + 1)
)

mod n = (
π(2j) + π(2j + 1)

)
mod n for i < j. (44)

As in the case of Toeplitz and Hankel matrices, we choose generating odd vertices between p and (n−p), the only
restriction that even vertices need to satisfy is(

π(2i) − π(2i + 2)
)

mod n = (
π(2j + 2) − π(2j)

)
mod n.

But since p is negligible compared to n, and an even vertex can take values between 1 and p, this is equivalent to
usual Toeplitz restriction(

π(2i) − π(2i + 2)
)= (

π(2j + 2) − π(2j)
)
.

Hence, the LSD exists and the limit is exactly LT .

5.4. Proof of Theorem 4

(i) As in the previous examples, we need to prove that for each h ≥ 1 the following limit exists.

βh = lim
p→∞

h−1∑
t=0

(
p

n

)t ∑
w∈Wt,h

1

pt+1nh−t

∣∣Π∗(w)
∣∣.

We now obtain exactly the same set of equations as in the Toeplitz case with some added relaxations given as follows

π(i) −
∑

j :j≤i,j∈G

ai,jπ(j) ∈ nZ for all i /∈ G.

In the Toeplitz proof, we already argued that for any non-symmetric word,
∑

j :j∈G a2h,jπ(j) = π(0) induces a
nontrivial restriction on the generating vertices. On the other hand, we can have a bounded (≤ [yn] + 1) number of
choices for the non-generating vertices. Thus non-symmetric words do not contribute in the limit.

The rest of the proof is exactly similar to the (symmetric) reverse circulant case. We omit details to avoid repetition.
(ii) We note that on and above the diagonal, the circulant link function exactly matches with the link function

L(i, j) = j − i. But the link function L(i, j) = j − i is nothing but the asymmetric Toeplitz link function once we
index input random variables as {x−i : i ∈ Z}. We may now invoke Theorem 9 to conclude the proof.

5.5. Some comments on the four examples

Suppose p/n → y ∈ (0,∞) and R1 holds. We make the following observations.

(i) The LSD of Ap(T ) and Ap(H(s)) are identical. This has been observed in Remark 1.2 of [7] for p = n. The
same argument extends to the general case of rectangular matrices. As before let Tp be the p ×n asymmetric Toeplitz

matrix and Pn be the symmetric permutation matrix Pn := ((I{i + j = n + 1}))ni,j=1. Then note that H
(s)
p := TpPn

is the p × n Hankel matrix, with symmetric link, for the input sequence {xn+1+k: k ≥ 0}. This implies H
(s)
p H

(s)
p

′ =
Tp(PnP

′
n)T

′
p = TpT ′

p since PnP
′
n = In. Therefore, the assertion follows.
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(ii) The LSD of Ap(C) and Ap(R(s)) are identical. To see this, first note the distribution of singular values for the
p × n matrix Cp with the usual circulant link function L(i, j) = (n + j − i) mod n will be unchanged if we use a
new link function L(i, j) = (n + i − j) mod n. To convince ourselves, all we need to do is to take {x(n−k)mod n: k =
0,1, . . . , n − 1} as the input sequence in the second case.

Second, observe that if Ĉp is the p × n “modified” circulant matrix with the link function L(i, j) = (n + i −
j) mod n, then R

(s)
p := ĈpPn is the p × n symmetric reverse circulant matrix for the input sequence {x1+k: k ≥ 0}.

The claim follows immediately.
(iii) The LSD of Ap(H) and Ap(H(s)) are different. Note that if p = n then the square of Wigner and covariance

matrices has the same LSD. It may be tempting to believe that the same holds for other link function also when p = n.
This is not true and the LSD for Ap(H) and Ap(H(s)) are different.

To understand why this is so, note that Bose and Sen [6] define a certain class of symmetric words known as
Catalan words. It turns out that for the Wigner link function, the non-Catalan words do not contribute in the limit and
for any Catalan word w,

limn−(h+1)
∣∣Π∗(w)

∣∣= 1

for both, Ap(W) and Ap(W(s)) and hence the LSD for Ap(W) and Ap(W(s)) are equal.
For the symmetric and asymmetric Hankel link functions, we still have for any Catalan word w,

limn−(h+1)
∣∣Π∗(w)

∣∣= 1.

However, there are now additional contributions from the words which are non-Catalan but symmetric (e.g. w =
abcabc) and they do not agree for H and H(s). Indeed, the contributions from such words for asymmetric link function
are strictly less than those for symmetric link functions due to additional sign constraints. So, hth moment of the LSD
of Ap(H) is strictly greater than hth moment of the LSD of Ap(H(s)). See also Fig. 3.

(iv) Suppose p = yn where y is an integer. Then the hth moment of the LSD of Ap(C) has a closed form expres-
sion and is given by

βC
h =

h−1∑
t=0

yt
∣∣W 0

t,h

∣∣ah−t−1 = yh−1
h−1∑
t=0

∣∣W 0
t,h

∣∣= h!ah−1.

Suppose Y is distributed as the reverse circulant LSD fR(·). Let ξ be a Bernoulli random variable having mass
(1 − 1/y) at zero and independent of Y . Then Ap(C) has LSD ∼ aξY 2. This is easily verified by noting that

E
(
aξY 2)h = ah

E(ξ)E
(
Y 2h

)= ah−1h!.
(v) In Regime II the symmetric link function L(i, j) = |i − j | does not obey Assumption A′. However, since it

obeys Assumption A, by Theorem 10,
√

n
p
(Ap(T (s))− Ip) has the same LSD as for the asymmetric case, namely LT .

5.6. Simulations

(i) The histogram from 50 replications for the ESD of Ap(T ) when p = 300,p/n = 1/3 is given in Fig. 1, illus-
trating Theorem 1(i).

It is not too difficult to show that the support is unbounded. The more interesting evidence is that the support of
the LSD excludes a neighbourhood of zero. Recall that for the S matrix with y < 1, the infimum of the support is
(1 − √

y)2. It will be interesting to prove that the infimum of the support in this case is also strictly positive and find
its value. Such a result would be of interest due to numerical technique of “pre-multiplication” by patterned matrices
which is used to solve large systems of sparse equations, see for example [12].

(ii) By Theorem 1(ii), in Regime II, the LSD for the asymmetric Toeplitz matrix exists. By Theorem 10, the same
LSD continues to hold for symmetric Toeplitz matrices. In Fig. 2 we report the result of a simulation of these matrices.
The two histograms of ESD, based on 30 replications each, are similar and the apparent difference could be only due
to the finite sample effect, p = 200,p/n = 0.01.

(iii) Figure 3 shows the histograms of the ESD from 50 replications for Ap(X) with p = n = 500 where X is the
symmetric and the asymmetric Hankel matrix. This illustrates Theorem 2(i).
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Fig. 1. Histogram for empirical spectral distribution for 50 realizations of (1/n)T T ′ with U(−√
3,

√
3) entries where T is a 300×900 asymmetric

Toeplitz matrix.

Fig. 2. Histograms for empirical spectral distribution for 30 realizations of 1√
np

(T T ′ −nI) with N(0,1) entries where T is a 200×20000 Toeplitz

matrix with asymmetric link function (left) and symmetric link function (right).

Fig. 3. Histograms for empirical spectral distribution for 50 realizations of (1/n)HH ′ with N(0,1) entries where H is a 500 × 500 Hankel matrix
with symmetric link function (color: gray) and asymmetric link function (color: black).
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