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Abstract. We consider the problem of estimating the conditional mean of a real Gaussian variable Y =∑p
i=1 θiXi + ε where

the vector of the covariates (Xi)1≤i≤p follows a joint Gaussian distribution. This issue often occurs when one aims at estimating the
graph or the distribution of a Gaussian graphical model. We introduce a general model selection procedure which is based on
the minimization of a penalized least squares type criterion. It handles a variety of problems such as ordered and complete variable
selection, allows to incorporate some prior knowledge on the model and applies when the number of covariates p is larger than
the number of observations n. Moreover, it is shown to achieve a non-asymptotic oracle inequality independently of the correlation
structure of the covariates. We also exhibit various minimax rates of estimation in the considered framework and hence derive
adaptivity properties of our procedure.

Résumé. Nous nous intéressons à l’estimation de l’espérance conditionelle d’une variable Gaussienne. Ce problème est courant
lorsque l’on veut estimer le graphe ou la distribution d’un modèle graphique gaussien. Dans cet article, nous introduisons une pro-
cédure de sélection de modèle basée sur la minimisation d’un critére des moindres carrés pénalisés. Cette méthode générale permet
de traiter un grand nombre de problèmes comme la sélection ordonnée ou la sélection complête de variables. De plus, elle reste
valable dans un cadre de « grande dimension »: lorsque le nombre de covariables est bien plus élevé que le nombre d’observations.
L’estimateur obtenue vérifie une inégalité oracle non-asymptotique et ce quelque soit la corrélation entre les covariables. Nous
calculons également des vitesses minimax d’estimation dans ce cadre et montrons que notre procédure vérifie diverses propriétés
d’adaptation.
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1. Introduction

1.1. Regression model

We consider the following regression model

Y = Xθ + ε, (1)

where θ is an unknown vector of R
p . The row vector X := (Xi)1≤i≤p follows a real zero mean Gaussian distribution

with non-singular covariance matrix Σ and ε is a real zero mean Gaussian random variable independent of X with
variance σ 2. The variance of ε corresponds to the conditional variance of Y given X, Var(Y |X). In the sequel, the
parameters θ , Σ and σ 2 are considered as unknown.

Suppose we are given n i.i.d. replications of the vector (Y,X). We respectively write Y and X for the vector of n

observations of Y and the n × p matrix of observations of X. In the present work, we propose a new procedure to
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estimate the vector θ , when the matrix Σ and the variance σ 2 are both unknown. This corresponds to estimating the
conditional expectation of the variable Y given the random vector X. Besides, we want to handle the difficult case
of high-dimensional data, i.e. the number of covariates p is possibly much larger than n. This estimation problem is
equivalent to building a suitable predictor of Y given the covariates (Xi)1≤i≤p . Classically, we shall use the mean-
squared prediction error to assess the quality of our estimation. For any (θ1, θ2) ∈ R

p , it is defined by

l(θ1, θ2) := E
[
(Xθ1 − Xθ2)

2]. (2)

1.2. Applications to Gaussian graphical models (GGM)

Estimation in the regression model (1) is mainly motivated by the study of Gaussian graphical models (GGM). Let
Z be a Gaussian random vector indexed by the elements of a finite set Γ . The vector Z is a GGM with respect
to an undirected graph G = (Γ,E) if for any couple (i, j) which is not contained in the edge set E, Zi and Zj

are independent, given the remaining variables. See Lauritzen [22] for definitions and main properties of GGM.
Estimating the neighborhood of a given point i ∈ Γ is equivalent to estimating the support of the regression of Zi

with respect to the covariates (Zj )j∈Γ \{i}. Meinshausen and Bühlmann [25] have taken this point of view in order to
estimate the graph of a GGM. Similarly, we can apply the model selection procedure we shall introduce in this paper
to estimate the support of the regression and therefore the graph G of a GGM.

Interest in these models has grown since they allow the description of dependence structure of high-dimensional
data. As such, they are widely used in spatial statistics [16,28] or probabilistic expert systems [15]. More recently, they
have been applied to the analysis of microarray data. The challenge is to infer the network regulating the expression
of the genes using only a small sample of data, see for instance Schäfer and Strimmer [30], or Wille et al. [38].

This has motivated the search for new estimation procedures to handle the linear regression model (1) with Gaussian
random design. Finally, let us mention that the model (1) is also of interest when estimating the distribution of directed
graphical models or more generally the joint distribution of a large Gaussian random vector. Estimating the joint
distribution of a Gaussian vector (Zi)1≤i≤p indeed amounts to estimating the conditional expectations and variance
of Zi given (Zj )1≤j≤i−1 for any 1 ≤ i ≤ p.

1.3. General oracle inequalities

Estimation of high-dimensional Gaussian linear models has now attracted a lot of attention. Various procedures have
been proposed to perform the estimation of θ when p > n. The challenge at hand it to design estimators that are both
computationally feasible and are proved to be efficient. The Lasso estimator has been introduced by Tibshirani [34].
Meinshausen and Bühlmann [25] have shown that this estimator is consistent under a neighborhood stability condi-
tion. These convergence results were refined in the works of Zhao and Yu [39], Bunea et al. [11], Bickel et al. [5], or
Candès and Plan [14] in a slightly different framework. Candès and Tao [13] have also introduced the Dantzig-selector
procedure which performs similarly as l1 penalization methods. In the more specific context of GGM, Bühlmann and
Kalisch [20] have analyzed the PC algorithm and have proven its consistency when the GGM follows a faithfulness
assumption. All these methods share an attractive computational efficiency and most of them are proven to converge at
the optimal rate when the covariates are nearly independent. However, they also share two main drawbacks. First, the
l1 estimators are known to behave poorly when the covariates are highly correlated and even for some covariance struc-
tures with small correlation (see, e.g., [14]). Similarly, the PC algorithm is not consistent if the faithfulness assumption
is not fulfilled. Second, these procedures do not allow to integrate some biological or physical prior knowledge. Let us
provide two examples. Biologists sometimes have a strong preconception of the underlying biological network thanks
to previous experimentations. For instance, Sachs et al. [29]) have produced multivariate flow cytometry data in order
to study a human T cell signaling pathway. Since this pathway has important medical implications, it was already
extensively studied and a network is conventionally accepted (see [29]). For this particular example, it could be more
interesting to check whether some interactions were forgotten or some unnecessary interactions were added in the
model than performing a complete graph estimation. Moreover, the covariates have in some situations a temporal or
spatial interpretation. In such a case, it is natural to introduce an order between the covariates, by assuming that a co-
variate which is close (in space or time) to the response Y is more likely to be significant. Hence, an ordered variable
selection method is here possibly more relevant than the complete variable selection methods previously mentioned.
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Let us emphasize the main differences of our estimation setting with related studies in the literature. Birgé and
Massart [8] consider model selection in a fixed design setting with known variance. Bunea et al. [10] also suppose that
the variance is known. Yet, they consider a random design setting, but they assume that the regression functions are
bounded (Assumption A.2 in their paper) which is not the case here. Moreover, they obtain risk bounds with respect
to the empirical norm ‖X(θ̂ − θ)‖2

n and not the integrated loss l(·, ·). Here, ‖ · ‖n refers to the canonical norm in R
n

reweighted by
√

n. As mentioned earlier, our objective is to infer the conditional expectation of Y given X. Hence, it
is more significant to assess the risk with respect to the loss l(·, ·). Baraud et al. [4] consider fixed design regression
but do not assume that the variance is known.

Our objective is twofold. First, we introduce a general model selection procedure that is very flexible and allows to
integrate any prior knowledge on the regression. We prove non-asymptotic oracle inequalities that hold without any
assumption on the correlation structure between the covariates. Second, we obtain non-asymptotic rates of estimation
for our model (1) that help us to derive adaptive properties for our criterion.

In the sequel, a model m stands for a subset of {1, . . . , p}. We note dm the size of m whereas the linear space Sm

refers to the set of vectors θ ∈ R
p whose components outside m equal zero. If dm is smaller than n, then we define θ̂m

as the least-square estimator of θ over Sm. In the sequel, Πm stands for the projection of R
n into the space generated

by (Xi )i∈m. Hence, we have the relation Xθ̂m = ΠmY. Since the covariance matrix Σ is non-singular, observe that
almost surely the rank of Πm is dm. Given a collection M of models, our purpose is to select a model m̂ ∈ M that
exhibits a risk as small as possible with respect to the prediction loss function l(·, ·) defined in (2). The model m∗ that
minimizes the risks E[l(θ̂m, θ)] over the whole collection M is called an oracle. Hence, we want to perform as well
as the oracle θ̂m∗ . However, we do not have access to m∗ as it requires the knowledge of the true vector θ . A classical
method to estimate a good model m̂ is achieved through penalization with respect to the complexity of models. In the
sequel, we shall select the model m̂ as

m̂ := arg min
m∈M

Crit(m) := arg min
m∈M

‖Y − ΠmY‖2
n

[
1 + pen(m)

]
, (3)

where pen(·) is a positive function defined on M. Besides, we recall that ‖ · ‖n refers to the canonical norm in R
n

reweighted by
√

n. Observe that Crit(m) is the sum of the least-square error ‖Y − ΠmY‖2
n and a penalty term pen(m)

rescaled by the least-square error in order to come up with the fact that the conditional variance σ 2 is unknown.
We precise in Section 2 the heuristics underlying this model selection criterion. Baraud et al. [4] have extensively
studied this penalization method in the fixed design Gaussian regression framework with unknown variance. In their
introduction, they explain how one may retrieve classical criteria like AIC [2], BIC [31] and FPE [1] by choosing a
suitable penalty function pen(·).

This model selection procedure is really flexible through the choices of the collection M and of the penalty function
pen(·). Indeed, we may perform complete variable selection by taking the collection of subsets of {1, . . . , p} whose
is smaller than some integer d . Otherwise, by taking a nested collection of models, one performs ordered variable
selection. We give more details in Sections 2 and 3. If one has some prior idea on the true model m, then one could
only consider the collection of models that are close in some sense to m. Moreover, one may also give a Bayesian
flavor to the penalty function pen(·) and hence specify some prior knowledge on the model.

First, we state a non-asymptotic oracle inequality when the complexity of the collection M is small and for penalty
functions pen(m) that are larger than Kdm/(n − dm) with K > 1. Then, we prove that the FPE criterion of Akaike
[1] which corresponds to the choice K = 2 achieves an asymptotic exact oracle inequality for the special case of
ordered variable selection. For the sake of completeness, we prove that choosing K smaller than one yields to terrible
performances.

In Section 3.2, we consider general collection of models M. By introducing new penalties that take into account
the complexity of M as in [9], we are able to state a non-asymptotic oracle inequality. In particular, we consider the
problem of complete variable selection. In Section 3.4, we define penalties based on a prior distribution on M. We
then derive the corresponding risk bounds.

Interestingly, these rates of convergence do not depend on the covariance matrix Σ of the covariates, whereas
known results on the Lasso or the Dantzig selector rely on some assumptions on Σ , as discussed in Section 3.2. We
illustrate in Section 5 on simulated examples that for some covariance matrices Σ the Lasso performs poorly whereas
our methods still behaves well. Besides, our penalization method does not require the knowledge of the conditional
variance σ 2. In contrast, the Lasso and the Dantzig selector are constructed for known variance. Since σ 2 is unknown,
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one either has to estimate it or has to use a cross-validation method in order to calibrate the penalty. In both cases,
there is some room for improvements for the practical calibration of these estimators.

However, our model selection procedure suffers from a computational cost that depends linearly on the size of
the collection M. For instance, the complete variable selection problem is NP-hard. This makes it intractable when
p becomes too large (i.e., more than 50). In contrast, our criterion applies for arbitrary p when considering ordered
variable selection since the size of M is linear with n. We shall mention in the discussion some possible extensions
that we hope can cope with the computational issues.

In a simultaneous and independent work to ours, Giraud [18] applies an analogous procedure to estimate the
graph of a GGM. Using slightly different techniques, he obtains non-asymptotic results that are complementary to
ours. However, he performs an unnecessary thresholding to derive an upper bound of the risk. Moreover, he does not
consider the case of nested collections of models as we do in Section 3.1. Finally, he does not derive minimax rates of
estimation.

1.4. Minimax rates of estimation

In order to assess the optimality of our procedure, we investigate in Section 4 the minimax rates of estimation for
ordered and complete variable selection. For ordered variable selection, we compute the minimax rate of estimation
over ellipsoids which is analogous to the rate obtained in the fixed design framework. We derive that our penalized
estimator is adaptive to the collection of ellipsoids independently of the covariance matrix Σ . For complete variable
selection, we prove that the minimax rates of estimator of vectors θ with at most k non-zero components is of order
k logp

n
when the covariates are independent. This is again coherent with the situation observed in the fixed design

setting. Then, the estimator θ̃ defined for complete variable selection problem is shown to be adaptive to any sparse
vector θ . Moreover, it seems that the minimax rates may become faster when the matrix Σ is far from identity. We
investigate this phenomenon in Section 4.2. All these minimax rates of estimation are, to our knowledge, new in
the Gaussian random design regression. Tsybakov [35] has derived minimax rates of estimation in a general random
design regression setup, but his results do not apply in our setting as explained in Section 4.2.

1.5. Organization of the paper and some notations

In Section 2, we precise our estimation procedure and explain the heuristics underlying the penalization method.
The main results are stated in Section 3. In Section 4, we derive the different minimax rates of estimation and assess the
adaptivity of the penalized estimator θ̂m̂. We perform a simulation study and compare the behaviour of our estimator
with Lasso and adaptive Lasso in Section 5. Section 6 contains a final discussion and some extensions, whereas the
proofs are postponed to Section 7.

Throughout the paper, ‖ · ‖2
n stands for the square of the canonical norm in R

n reweighted by n. For any vector Z of
size n, we recall that ΠmZ denotes the orthogonal projection of Z onto the space generated by (Xi )i∈m. The notation
Xm stands for (Xi)i∈m and Xm represents the n×dm matrix of the n observations of Xm. For the sake of simplicity, we
write θ̃ for the penalized estimator θ̂m̂. For any x > 0, �x� is the largest integer smaller than x and 	x
 is the smallest
integer larger than x. Finally, L, L1, L2, . . . denote universal constants that may vary from line to line. The notation
L(·) specifies the dependency on some quantities.

2. Estimation procedure

Given a collection of models M and a penalty pen : M → R
+, the estimator θ̃ is computed as follows:

Model selection procedure:

1. Compute θ̂m = arg minθ ′∈Sm
‖Y − Xθ ′‖2

n for all models m ∈ M.
2. Compute m̂ := arg minm∈M ‖Y − Xθ̂m‖2

n[1 + pen(m)].
3. θ̃ := θ̂m̂.

The choice of the collection M and the penalty function pen(·) depends on the problem under study. In what
follows, we provide some preliminary results for the parametric estimators θ̂m and we give an heuristic explanation
for our penalization method.
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For any vector θ ′ in R
p , we define the mean-squared error γ (·) and its empirical counterpart γn(·) as

γ
(
θ ′) := Eθ

[(
Y − Xθ ′)2] and γn

(
θ ′) := ∥∥Y − Xθ ′∥∥2

n
. (4)

The function γ (·) is closely connected to the loss function l(·, ·) through the relation l(β, θ) = γ (β) − γ (θ).
Given a model m of size strictly smaller than n, we refer to θm as the unique minimizer of γ (·) over the subset Sm.

It then follows that E(Y |Xm) =∑i∈m θiXi and γ (θm) is the conditional variance of Y given Xm. As for it, the least
squares estimator θ̂m is the minimizer of γn(·) over the space Sm.

θ̂m := arg min
θ ′∈Sm

γn

(
θ ′) a.s.

It is almost surely uniquely defined since Σ is assumed to be non-singular and since dm < n. Besides γn(θ̂m) equals
‖Y − ΠmY‖2

n. Let us derive two simple properties of θ̂m that will give us some hints to perform model selection.

Lemma 2.1. For any model m whose dimension is smaller than n − 1, the expected mean-squared error of θ̂m and
the expected least squares of θ̂m respectively equal

E
[
γ (θ̂m)

]= [l(θm, θ) + σ 2](1 + dm

n − dm − 1

)
, (5)

E
[
γn(θ̂m)

]= [l(θm, θ) + σ 2](1 − dm

n

)
. (6)

The proof is postponed to the Appendix. From Eq. (5), we derive a bias variance decomposition of the risk of the
estimator θ̂m:

E
[
l(θ̂m, θ)

] = l(θm, θ) + [σ 2 + l(θm, θ)
] dm

n − dm − 1
.

Hence, θ̂m converges to θm in probability when n converges to infinity. Contrary to the fixed design regression frame-
work, the variance term [σ 2 + l(θm, θ)] dm

n−dm−1 depends on the bias term l(θm, θ). Besides, this variance term does
not necessarily increase when the dimension of the model increases.

Let us now explain the idea underlying our model selection procedure. We aim at choosing a model m̂ that nearly
minimizes the mean-squared error γ (θ̂m). Since we do not have access to γ (θ̂m) nor to the bias l(θm, θ), we perform
an unbiased estimation of the risk as done by Mallows [23] in the fixed design framework.

γ (θ̂m) ≈ γn(θ̂m) + E
[
γ (θ̂m) − γn(θ̂m)

]
≈ γn(θ̂m) + E

[
γn(θ̂m)

] dm

n − dm

[
2 + dm + 1

n − dm − 1

]
≈ γn(θ̂m)

[
1 + dm

n − dm

(
2 + dm + 1

n − dm − 1

)]
. (7)

By Lemma 2.1, these approximations are in fact equalities in expectation. Since the last expression only depends
on the data, we may compute its minimizer over the collection M. This approximation is effective and minimiz-
ing (7) provides a good estimator θ̃ when the size of the collection M is moderate as stated in Theorem 3.1.
We recall that ‖Y − ΠmY‖2

n equals γn(θ̂m). Hence, our previous heuristics would lead to a choice of penalty
pen(m) = dm

n−dm
(2 + dm+1

n−dm−1 ) in our criterion (3), whereas FPE criterion corresponds to pen(m) = 2dm

n−dm
. These two

penalties are equivalent when the dimension dm is small in front of n. In Theorem 3.1, we explain why these criteria
allow to derive approximate oracle inequalities when there is a small number of models. However, when the size of
the collections M increases, we need to design other penalties that take into account the complexity of the collection
M (see Section 3.2).
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3. Oracle inequalities

3.1. A small number of models

In this section, we restrict ourselves to the situation where the collection of models M only contains a small number
of models as defined in [9], Section 3.1.2.

Assumption (HPol). For each d ≥ 1 the number of models m ∈ M such that dm = d grows at most polynomially with
respect to d . In other words, there exists α and β such that for any d ≥ 1, Card({m ∈ M, dm = d}) ≤ αdβ .

Assumption (Hη). The dimension dm of every model m in M is smaller than ηn. Moreover, the number of observa-
tions n is larger than 6/(1 − η).

Assumption (HPol) states that there is at most a polynomial number of models with a given dimension. It includes
in particular the problem of ordered variable selection, on which we will focus in this section. Let us introduce the
collection of models relevant for this issue. For any positive number i smaller or equal to p, we define the model mi :=
{1, . . . , i} and the nested collection Mi := {m0,m1, . . . ,mi}. Here, m0 refers to the empty model. Any collection Mi

satisfies (HPol) with β = 0 and α = 1.

Theorem 3.1. Let η be any positive number smaller than one. Assume that the collection M satisfies (HPol) and (Hη).
If the penalty pen(·) is lower bounded as follows

pen(m) ≥ K
dm

n − dm

for all m ∈ M and some K > 1, (8)

then

E
[
l(θ̃ , θ)

]≤ L(K,η) inf
m∈M

[
l(θm, θ) + n − dm

n
pen(m)

[
σ 2 + l(θm, θ)

]]+ τn, (9)

where the error term τn is defined as

τn = τn

[
Var(Y ),K,η,α,β

] := L1(K,η,α,β)

[
σ 2

n
+ n3+β Var(Y ) exp

[−nL2(K,η)
]]

,

and L2(K,η) is positive.

The theorem applies for any n, any p and there is no hidden dependency on n or p in the constants. Besides,
observe that the theorem does not depend at all on the covariance matrix Σ between the covariates. If we choose the
penalty pen(m) = K dm

n−dm
, we obtain an approximate oracle inequality.

E
[
l(θ̃ , θ)

]≤ L(K,η) inf
m∈M

E
[
l(θ̂m, θ)

]+ τn

[
Var(Y ),K,η,α,β

]
,

thanks to Lemma 2.1. The term in n3+β Var(Y ) exp[−nL2(K,η)] converges exponentially fast to 0 when n goes to
infinity and is therefore considered as negligible. One interesting feature of this oracle inequality is that it allows to
consider models of dimensions as close to n as we want providing that n is large enough. This will not be possible in
the next section when handling more complex collections of models.

If we have stated that θ̃ performs almost as well as the oracle model, one may wonder whether it is possible to
perform exactly as well as the oracle. In the next proposition, we shall prove that under additional assumption the
estimator θ̃ with K = 2 follows an asymptotic exact oracle inequality. We state the result for the problem of ordered
variable selection. Let us assume for a moment that the set of covariates is infinite, i.e. p = +∞. In this setting,
we define the subset Θ of sequences θ = (θi)i≥1 such that 〈X,θ〉 converges in L2. In the following proposition, we
assume that θ ∈ Θ .
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Definition 3.1. Let s and R be two positive numbers. We define the so-called ellipsoid E ′
s(R) as

E ′
s(R) :=

{
(θi)i≥0,

+∞∑
i=1

l(θmi−1 , θmi
)

i−s
≤ R2σ 2

}
.

In Section 4.1, we explain why we call this set E ′
s(R) an ellipsoid.

Proposition 3.2. Assume there exists s, s′, and R such that θ ∈ E ′
s(R) and such that for any positive numbers R′,

θ /∈ E ′
s′(R′). We consider the collection M�n/2� and the penalty pen(m) = 2 dm

n−dm
. Then, there exists a constant L(s,R)

and a sequence τn converging to zero at infinity such that, with probability, at least 1 − L(s,R)
logn

n2 ,

l(θ̃ , θ) ≤ [1 + τ(n)
]

inf
m∈M�n/2�

l(θ̂m, θ). (10)

Admittedly, we make n go to the infinity in this proposition but we are still in a high-dimensional setting since
p = +∞ and since the size of the collection M�n/2� goes to infinity with n. Let us briefly discuss the assumption
on θ . Roughly speaking, it ensures that the oracle model has a dimension not too close to zero (larger than log2(n))
and small before n (smaller than n/ logn). Notice that it is classical to assume that the bias is non-zero for every model
m for proving the asymptotic optimality of Mallows’ Cp (cf., Shibata [32] and Birgé and Massart [9]). Here, we make
a stronger assumption because the bound (10) holds in probability and because the design is Gaussian. Moreover, our
stronger assumption has already been made by Stone [33] and Arlot [3]. We refer to Arlot [3], Section 3.3, for a more
complete discussion of this assumption.

The choice of the collection M�n/2� is arbitrary and one can extend it to many collections that satisfy (HPol)

and (Hη). As mentioned in Section 2, the penalty pen(m) = 2 dm

n−dm
corresponds to the FPE model selection procedure.

In conclusion, the choice of the FPE criterion turns out to be asymptotically optimal when the complexity of M is
small.

We now underline that the condition K > 1 in Theorem 3.1 is almost necessary. Indeed, choosing K smaller than
one yields terrible statistical performances.

Proposition 3.3. Suppose that p is larger than n/2. Let us consider the collection M�n/2� and assume that for some
ν > 0,

pen(m) = (1 − ν)
dm

n − dm

(11)

for any model m ∈ M�n/2�. Then given δ ∈ (0,1), there exists some n0(ν, δ) only depending on ν and δ such that for
n ≥ n0(ν, δ),

Pθ

[
dm̂ ≥ n

4

]
≥ 1 − δ and E

[
l(θ̃ , θ)

]≥ l(θm�n/2� , θ) + L(δ, ν)σ 2.

If one chooses a too small penalty, then the dimension dm̂ of the selected model is huge and the penalized estima-
tor θ̃ performs poorly. The hypothesis p ≥ n/2 is needed for defining the collection M�n/2�. Once again, the choice
of the collection M�n/2� is rather arbitrary and the result of Proposition 3.3 still holds for collections M which satisfy
(HPol) and (Hη) and contain at least one model of large dimension. Theorem 3.1 and Proposition 3.3 tell us that dm

n−dm

is the minimal penalty.
In practice, we advise to choose K between 2 and 3. Admittedly, K = 2 is asymptotically optimal by Proposi-

tion 3.2. Nevertheless, we have observed on simulations that K = 3 gives slightly better results when n is small. For
ordered variable selection, we suggest to take the collection M�n/2�.
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3.2. A general model selection theorem

In this section, we study the performance of the penalized estimator θ̃ for general collections M. Classically, we need
to penalize stronger the models m, incorporating the complexity of the collection. As a special case, we shall consider
the problem of complete variable selection. This is why we define the collections Md

p that consist of all subsets of
{1, . . . , p} of size less or equal to d .

Definition 3.2. Given a collection M, we define the function H(·) by

H(d) := 1

d
log
[
Card

({m ∈ M, dm = d})]
for any integer d ≥ 1.

This function measures the complexity of the collection M. For the collection Md
p , H(k) is upper bounded by

log(ep/k) for any k ≤ d (see Eq. (4.10) in [24]). Contrary to the situation encountered in ordered variable selection,
we are not able to consider models of arbitrary dimensions and we shall do the following assumption.

Assumption (HK,η). Given K > 1 and η > 0, the collection M and the number η satisfy

∀m ∈ M [1 + √
2H(dm)]2dm

n − dm

≤ η < η(K), (12)

where η(K) is defined as η(K) := [1 − 2(3/(K + 2))1/6]2 ∨ [1 − (3/K + 2)1/6]2/4.

The function η(K) is positive and increases when K is larger than one. Besides, η(K) converges to one when K

converges to infinity. We do not claim that the expression of η(K) is optimal. We are more interested in its behavior
when K is large.

Theorem 3.4. Let K > 1 and let η < η(K). Assume that n is larger than some quantity n0(K) only depending on K

and the collection M satisfies (HK,η). If the penalty pen(·) is lower bounded as follows

pen(m) ≥ K
dm

n − dm

(
1 +√2H(dm)

)2
for any m ∈ M, (13)

then

E
[
l(θ̃ , θ)

]≤ L(K,η) inf
m∈M

{
l(θm, θ) + n − dm

n
pen(m)

[
σ 2 + l(θm, θ)

]}+ τn, (14)

where τn is defined as

τn = τn

[
Var(Y ),K,η

] := σ 2 L1(K,η)

n
+ L2(K,η)n5/2 Var(Y ) exp

[−nL3(K,η)
]
,

and L3(K,η) is positive.

This theorem provides an oracle type inequality of the same type as the one obtained in the Gaussian sequential
framework by Birgé and Massart [8]. The risk of the penalized estimator θ̃ almost achieves the infimum of the risks
plus a penalty term depending on the function H(·). As in Theorem 3.1, the error term τn[Var(Y ),K,η] depends on
θ but this part goes exponentially fast to 0 with n.

Comments.

• As for Theorem 3.1, the result holds for arbitrary large p as long as n is larger than the quantity n0(K) (indepen-
dent of p). There is no hidden dependency on p except in the complexity function H(·) and Assumption (HK,η) that
we shall discuss for the particular case of complete variable selection. Moreover, one may easily check Assump-
tion (HK,η) since it only depends on the collection M and not on some unknown quantity.
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• This result (as well as of Theorem 3.1) does not depend at all on the covariance matrix Σ between the covariates.
• The penalty introduced in this theorem only depends on the collection M and a number K > 1. Hence, perform-

ing the procedure does not require any knowledge on σ 2, Σ , or θ . We give hints at the end of the section for
choosing the constant K .

• Observe that Theorem 3.1 is not just corollary of Theorem 3.4. If we apply Theorem 3.4 to the problem of ordered
selection, then the maximal size of the model has to be smaller than n

η(K)
1+η(K)

, which depends on K and is always
smaller than n/2. In contrast, Theorem 3.1 handles models of size up to n − 7.

3.3. Application to complete variable selection

Let us now restate Theorem 3.4 for the particular issue of complete variable selection. Consider K > 1, η < η(K) and
d > 1 such that Md

p satisfies Assumption (HK,η). If we take for any model m ∈ Md
p the penalty term

pen(m) = K
dm

n − dm

[
1 +

√
2 log

(
ep

dm

)]2

, (15)

then we get

E
[
l(θ̃ , θ)

]≤ L(K,η) inf
m∈Md

p

{
l(θm, θ) + dm

n
log

(
ep

dm

)
σ 2
}

+ τn

[
Var(Y ),K,η

]
.

We shall prove in Section 4.2, that the term log(p/dm) is unavoidable and that the obtained estimator is optimal
from a minimax point of view. If the true parameter θ belongs to some unknown model m, then the rates of estimation
of θ̃ is of the order dm

n
log(p/dm)σ 2. Let us compare our result with other procedures:

• The oracle type inequalities look similar to the ones obtained by Birgé and Massart [8], Bunea et al. [10] and Baraud
et al. [4]. However, Birgé and Massart and Bunea et al. assume that the variance σ 2 is known. Moreover, Birgé and
Massart and Baraud et al. only consider a fixed design setting. Yet, Bunea et al. allow the design to be random, but
they assume that the regression functions are bounded (Assumption A.2 in their paper) which is not the case here.
Moreover, they only get risk bounds with respect to the empirical norm ‖ · ‖n and not the integrated loss l(·, ·).

• As mentioned previously, our oracle inequality holds for any covariance matrix Σ . In contrast, Lasso and Dantzig
selector estimators have been shown to satisfy oracle inequalities under assumptions on the empirical design X. In
[13], Candès and Tao indeed assume that the singular values of X restricted to any subset of size proportional to
the sparsity of θ are bounded away from zero. Bickel et al. [5] introduce an extension of this condition prove both
for the Lasso and the Dantzig selector. In a recent work [14], Candès and Plan state that if the empirical correlation
between the covariates is smaller than L(logp)−1, then the Lasso follows an oracle inequality in a majority of cases.
Their condition is in fact almost necessary. On the one hand, they give examples of some low correlated situations,
where the Lasso performs poorly. On the other hand, they prove that the Lasso fails to work well if the correlation
between the covariates if larger than L(logp)−1. Yet, Candès and Plan consider the loss function ‖Xθ̂ − Xθ‖2

n,
whereas we use the integrated loss l(θ̂ , θ), but this does not really change the impact of their result. We refer to
their paper for further details. The main point is that for some correlation structures, our procedure still works well,
whereas the Lasso and the Dantzig selector procedures perform poorly. In many problems such as GGM estimation,
the correlation between the covariates may be high and even the relaxed assumptions of Candès and Plan may not
be fulfilled. In Section 5, we illustrate this phenomenon by comparing our procedure with the Lasso on numerical
examples for independent and highly correlated covariates.

• Suppose that the covariates are independent and that θ belongs to some model m, the rates of convergence of the
Lasso is then of the order dm

n
log(p)σ 2, whereas ours is dm

n
log(p/dm)σ 2. Consider the case where p, and dm are

of the same order whereas n is large. Our model selection procedure therefore outperforms the Lasso by a log(p)

factor even if the covariates are independent.
• Let us restate Assumption (HK,η) for the particular collection Md

p . Given some K > 1 and some η < η(K), the
collection Md

p satisfies (HK,η) if

d ≤ η
n

1 + [1 +√2(1 + log(p/d))]2
. (16)
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If p is much larger than n, the dimension d of the largest model has to be smaller than the order η n
2 log(p)

. Candès
and Plan state a similar condition for the lasso. We believe that this condition is unimprovable. Indeed, Wainwright
states in Theorem 2 of [37] a result going in this sense: it is impossible to estimate reliably the support of a k-sparse
vector θ if n is smaller than the order k log(p/k). If log(p) is larger than n, then we cannot apply Theorem 3.4.
This ultra-high-dimensional setting is also not handled by the theory for the Lasso and the Dantzig selector. Finally,
if p is of the same order as n, then condition (16) is satisfied for dimensions d of the same order as n. Hence, our
method works well even when the sparsity is of the same order as n, which is not the case for the Lasso or the
Dantzig selector.

Let us discuss the practical choice of d and K for complete variable selection. From numerical studies, we advise
to take d ≤ n

2.5[2+log(p/n∨1)] ∧p even if this quantity is slightly larger than what is ensured by the theory. The practical
choice of K depends on the aim of the study. If one aims at minimizing the risk, K = 1.1 gives rather good result.
A larger K like 1.5 or 2 allows to obtain a more conservative procedure and consequently a lower FDR. We compare
these values of K on simulated examples in Section 5.

3.4. Penalties based on a prior distribution

The penalty defined in Theorem 3.4 only depends on the models through their cardinality. However, the methodology
developed in the proof may easily extend to the case where the user has some prior knowledge of the relevant models.
Let πM be a prior probability measure on the collection M. For any non-empty model m ∈ M, we define lm by

lm := − log(πM(m))

dm

.

By convention, we set l∅ to 1. We define in the next proposition penalty functions based on the quantity lm that allow
to get non-asymptotic oracle inequalities.

Assumption (Hl
K,η). Given K > 1 and η > 0, the collection M, the numbers lm and the number η satisfy

∀m ∈ M [1 + √
2lm]2dm

n − dm

≤ η < η(K), (17)

where η(K) is defined as in (HK,η).

Proposition 3.5. Let K > 1 and let η < η(K). Assume that n ≥ n0(K) and that Assumption (Hl
K,η) is fulfilled. If the

penalty pen(·) is lower bounded as follows

pen(m) ≥ K
dm

n − dm

(
1 +√2lm

)2
for any m ∈ M \ {∅}, (18)

then

E
[
l(θ̃ , θ)

]≤ L(K,η) inf
m∈M

{
l(θm, θ) + n − dm

n
pen(m)

[
σ 2 + l(θm, θ)

]}+ τn, (19)

where L(K,η) and τn are the same as in Theorem 3.4.

Comments.

• In this proposition, the penalty (18) as well as the risk bound (19) depend on the prior distribution πM. In fact,
the bound (19) means that θ̃ achieves the trade-off between the bias and some prior weight, which is of the order

− log
[
πM(m)

][
σ 2 + l(θm, θ)

]
/n.

This emphasizes that θ̃ favours models with a high prior probability. Similar risk bounds are obtained in the fixed
design regression framework in Birgé and Massart [7].
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• If the proofs of Proposition 3.5 and Theorem 3.4 are very similar, Proposition 3.5 does not imply the theorem.
• Roughly speaking, Assumption (Hl

K,η) requires that the prior probability πM(m) is not exponentially small with
respect to n.

4. Minimax lower bounds and adaptivity

Throughout this section, we emphasize the dependency of the expectations E(·) and the probabilities P(·) on θ by
writing Eθ and Pθ . We have stated in Section 3 that the penalized estimator θ̃ performs almost as well as the best of
the estimators θ̂m. We now want to compare the risk of θ̃ with the risk of any other possible estimator θ̂ . There is no
hope to make a pointwise comparison with an arbitrary estimator. Therefore, we classically consider the maximal risk
over some suitable subsets Θ of R

p . The minimax risk over the set Θ is given by infθ̂ supθ∈Θ Eθ [l(θ̂ , θ)], where the
infimum is taken over all possible estimators θ̂ of θ . Then, the estimator θ̃ is said to be approximately minimax with
respect to the set Θ if the ratio

supθ∈Θ Eθ [l(θ̃ , θ)]
infθ̂ supθ∈Θ Eθ [l(θ̂ , θ)]

is smaller than a constant that does not depend on σ 2, n or p. The minimax rates of estimation were extensively
studied in the fixed design Gaussian regression framework and we refer for instance to [8] for a detailed discussion. In
this section, we apply a classical methodology known as Fano’s lemma in order to derive minimax rates of estimation
for ordered and complete variable selection. Then, we deduce adaptive properties of the penalized estimator θ̃ .

4.1. Adaptivity with respect to ellipsoids

In this section, we prove that the estimator θ̃ introduced in Section 3.1 to perform ordered variable selection is adaptive
to a large class of ellipsoids.

Definition 4.1. For any non-increasing sequence (ai)1≤i≤p+1 such that a1 = 1 and ap+1 = 0 and any R > 0, we
define the ellipsoid Ea(R) by

Ea(R) :=
{

θ ∈ R
p,

p∑
i=1

l(θmi−1 , θmi
)

a2
i

≤ R2

}
.

This definition is very similar to the notion of ellipsoids introduced in [36]. Let us explain why we call this set an
ellipsoid. Assume for one moment that the (Xi)1≤i≤p are independent identically distributed with variance one. In
this case, the term l(θmi−1, θmi

) equals θ2
i and the definition of Ea(R) translates in

Ea(R) =
{

θ ∈ R
p,

p∑
i=1

θ2
i

a2
i

≤ R2

}
,

which precisely corresponds to a classical definition of an ellipsoid. If the (Xi)1≤i≤p are not i.i.d. with unit variance,
it is always possible to create a sequence X′

i of i.i.d. standard Gaussian variables by orthonormalizing the Xi using
Gram–Schmidt process. If we call θ ′ the vector in R

p such that Xθ = X′θ ′, then it holds that l(θmi−1 , θmi
) = θ ′2

i .
Then, we can express Ea(R) using the coordinates of θ ′ as previously:

Ea(R) =
{

θ ∈ R
p,

p∑
i=1

θ ′2
i

a2
i

≤ R2

}
.

The main advantage of this definition is that it does not directly depend on the covariance of (Xi)1≤i≤p .
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Proposition 4.1. For any sequence (ai)1≤i≤p and any positive number R, the minimax rate of estimation over the
ellipsoid Ea(R) is lower bounded by

inf
θ̂

sup
θ∈Ea(R)

Eθ

[
l(θ̂ , θ)

]≥ L sup
1≤i≤p

[
a2
i R

2 ∧ σ 2i

n

]
. (20)

This result is analogous to the lower bounds obtained in the fixed design regression framework (see, e.g., [24],
Theorem 4.9). Hence, the estimator θ̃ built in Section 3.1 is adaptive to a large class of ellipsoids.

Corollary 4.2. Assume that n is larger than 12. We consider the penalized estimator θ̃ with the collection M�n/2� and
the penalty pen(m) = K dm

n−dm
. Let Ea(R) be an ellipsoid whose radius R satisfies σ 2

n
≤ R2 ≤ σ 2nβ for some β > 0.

Then, θ̃ is approximately minimax on Ea(R)

sup
θ∈Ea(R)

l(θ̃ , θ) ≤ L(K,β) inf
θ̂

sup
θ∈Ea(R)

Eθ

[
l(θ̂ , θ)

]
,

if either n ≥ 2p or a2�n/2�+1R
2 ≤ σ 2/2.

In the fixed design framework, one may build adaptive estimators to any ellipsoid satisfying R2 ≥ σ 2/n so that the
ellipsoid is not degenerate (see, e.g., [24], Section 4.3.3). In our setting, when p is small the estimator θ̃ is adaptive
to all the ellipsoids that have a moderate radius σ 2/n ≤ R2 ≤ nβ . The technical condition R2 ≤ nβ is not really
restrictive. It comes from the term n3l(0p, θ) exp(−nL(K)) in Theorem 3.1 which goes exponentially fast to 0 with n.
When p is larger, θ̃ is adaptive to the ellipsoids that also satisfies a2�n/2�+1R

2 ≤ σ 2/2. In other words, we require that
the ellipsoid is well approximated by the space Sm�n/2� of vectors θ whose support is included in {1, . . . , �n/2�}. If
this condition is not fulfilled, the estimator θ̃ is not proved to be minimax on Ea(R). For such situations, we believe on
the one hand that the estimator θ̃ should be refined and on the other hand that our lower bounds are not sharp. Finally,
the collection M�n/2� may be replaced by any M�nη� in Corollary 4.2.

Since the methods used for minimax lower bounds and the oracle inequalities are analogous to the ones in the
Gaussian sequence framework, one may also adapt in our setting the arguments developed in [24], Section 4.3.5, to
derive minimax rates of estimation over other sets such Besov bodies. However, this is not really relevant for the
regression model (1).

4.2. Adaptivity with respect to sparsity

Our aim is now to analyze the minimax risk for the complete variable selection problem. Let us fix an integer k between
1 and p. We are interested in estimating the vector θ within the class of vectors with a most k non-zero components.
This typically corresponds to the situation encountered in graphical modeling when estimating the neighborhoods of
large sparse graphs. As the graph is assumed to be sparse, only a small number of components of θ are non-zero.

In the sequel, the set Θ[k,p] stands for the subset of vectors θ ∈ R
p , such that at most k coordinates of θ are

non-zero. For any r > 0, we denote Θ[k,p](r) the subset of Θ[k,p] such that any component of θ is smaller than r

in absolute value.
First, we derive a lower bound for the minimax rates of estimation when the covariates are independent. Then,

we prove the estimator θ̃ defined with some collection Md
p and the penalty (15) is adaptive to any sparse vector θ .

Finally, we investigate the minimax rates of estimation for correlated covariates.

Proposition 4.3. Assume that the covariates Xi are independent and have a unit variance. For any k ≤ p and any
radius r > 0,

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[
l(θ̂ , θ)

]≥ Lk

[
r2 ∧ σ 2 1 + log(p/k)

n

]
. (21)

Thanks to Theorem 3.4, we derive the minimax rate of estimation over Θ[k,p].
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Corollary 4.4. Consider K > 0, β > 0, and η < η(K). Assume that n ≥ n0(K) and that the covariates Xi are
independent and have a unit variance. Let d be a positive integer such that Md

p satisfies (HK,η). The penalized

estimator θ̃ defined with the collection Md
p and the penalty (15) is adaptive minimax over the sets Θ[k,p](nβ)

sup
θ∈Θ[k,p]

Eθ

[
l(θ̃ , θ)

]≤ L(K,β,η) inf
θ̂

sup
θ∈Θ[k,p](nβ)

Eθ

[
l(θ̂ , θ)

]
for any k smaller than d .

Hence, the minimax rates of estimation over Θ[k,p](nβ) is of order k
log(ep/k)

n
, which is similar to the rates ob-

tained in the fixed design regression framework. As in previous section, we restrict ourselves to a radius r in Θ[k,p](r)
smaller than nβ because of the term τn(Var(Y ),K,η) which depends on l(0p, θ) but goes exponentially fast to 0 when
n goes to infinity. Let us interpret Corollary 4.4 with regard to condition (16). If p is of the same order as n, the esti-
mator θ̃ is simultaneously minimax over all sets Θ[k,p](nβ) when k is smaller than a constant times n. If p is much
larger than n, the estimator θ̃ is simultaneously minimax over all sets Θ[k,p](nβ) with k smaller than Ln/ log(p).
We conjecture that the minimax rate of estimation is larger than k log(p/k)/n when k becomes larger than n/ logp.
Let us mention that Tsybakov [35] has proved general minimax lower bounds for aggregation in Gaussian random
design regression. However, his result does not apply in our Gaussian design setting since he assumes that the density
of the covariates Xi is lower bounded by a constant μ0.

We have proved that the estimator θ̃ is adaptive to an unknown sparsity when the covariates are independent.
The performance of θ̃ exhibited in Theorem 3.4 do not depend on the covariance matrix Σ . Hence, the minimax rates
of estimation on Θ[k,p] is smaller or equal to the order k log(p/k)/n for any dependence between the covariance.
One may then wonder whether the minimax rate of estimation over Θ[k,p] is not faster when the covariates are corre-
lated. We are unable to derive the minimax rates for a general covariance matrix Σ . This is why we restrict ourselves
to particular examples of correlation structures. Let us first consider a pathological situation: Assume that X1, . . . ,Xk

are independent and that Xk+1, . . . ,Xp are all equal to X1. Admittedly, the covariance matrix Σ is henceforth non-
invertible. In the discussion, we mention that Theorems 3.1 and 3.4 easily extend when Σ is non-invertible if we take
into account that the estimators θ̂m and m̂ are non-necessarily uniquely defined. We may derive from Lemma 2.1 that
the estimator θ̂{1,...,k} achieves the rate k/n over θ [k,p](nβ). Conversely, the parametric rate k/n is optimal. However,
the estimator θ̃ defined with the collection Mk

p and penalty (15) only achieves the rate k log(p/k)/n. Hence, θ̃ is not
minimax over Θ[k,p] for this particular covariance matrix and the minimax rate is degenerate. This emergence of
faster rates for correlation covariates also occurs for testing problems in the model (1) as stated in [36], Section 4.3.
This is why we provide sufficient conditions on Σ so that the minimax rate of estimation is still of the same order as
in the independent case. In the following proposition, ‖ · ‖ refers to the canonical norm in R

p .

Proposition 4.5. Let Ψ denote the correlation matrix of the covariates (Xi)1≤i≤p . Let k be a positive number smaller
p/2 and let δ > 0. Assume that

(1 − δ)2‖θ‖2 ≤ θ∗Ψ θ ≤ (1 + δ)2‖θ‖2 (22)

for all θ ∈ R
p with at most 2k non-zero components. Then, the minimax rate of estimation over Θ[k,p](r) is lower

bounded as follows

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[
l(θ̂ , θ)

]≥ L(1 − δ)2k

[
r2 ∧ σ 2 1 + log(p/k)

(1 + δ)2n

]
.

Assumption (22) corresponds to the δ-Restricted Isometry Property of order 2k introduced by Candès and Tao
[12]. Under such a condition, the minimax rates of estimation is the same as the one in the independent case up to a
constant depending on δ and the estimator θ̃ defined in Corollary 4.4 is still approximately minimax over such sets
Θ[k,p].

However, the δ-Restricted Isometry Property is quite restrictive and seems not to be necessary so that the minimax
rate of estimation stays of the order k log(p/k)/n. Besides, in many situations this condition is not fulfilled. Assume
for instance that the random vector X is a Gaussian Graphical model with respect to a given sparse graph. We expect
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that the correlation between two covariates is large if they are neighbors in the graph and small if they are far-off (w.r.t.
the graph distance). This is why we derive lower bounds on the rate of estimation for correlation matrices often used
to model stationary processes.

Proposition 4.6. Let X1, . . . ,Xp form a stationary process on the one-dimensional torus. More precisely, the corre-
lation between Xi and Xj is a function of |i − j |p where | · |p refers to the toroidal distance defined by:

|i − j |p := (|i − j |)∧ (p − |i − j |).
Ψ1(ω) and Ψ2(t) respectively refer to the correlation matrix of X such that

corr(Xi,Xj ) := exp
(−ω|i − j |p

)
, where ω > 0,

corr(Xi,Xj ) := (1 + |i − j |p
)−t

, where t > 0.

Then, the minimax rates of estimation are lower bounded as follows

inf
θ̂

sup
θ∈Θ[k,p]

Eθ,Ψ1(ω)

[
l(θ̂ , θ)

]≥ L
kσ 2

n

[
1 + log

(�p	log(4k)/ω
−1�
k

)]
,

if k is smaller than p/	log(4k)/ω
 and

inf
θ̂

sup
θ∈Θ[k,p]

Eθ,Ψ2(t)

[
l(θ̂ , θ)

]≥ L
kσ 2

n

[
1 + log

(�p	(4k)1/t − 1
−1�
k

)]
,

if k is smaller than p/	(4k)1/t − 1
.

In the proof of the proposition, we justify that the correlations considered are well defined at least when p is odd.
Let us mention that these correlation models are quite classical when modelling the correlation of time series (see,
e.g., [19]).

If the range ω is larger than 1/pγ or if the range t is larger than γ for some γ < 1, the lower bounds are of order
σ 2 k

n
(1 + logp/k). As a consequence, for any of these correlation models the minimax rate of estimation is of the

same order as the minimax rate of estimation for independent covariates. This means that the estimator θ̃ defined in
Proposition 4.4 is rate-optimal for these correlations matrices.

In conclusion, the estimator θ̃ defined in Corollary 4.4 may not be adaptive to the covariance matrix Σ but rather
achieves the minimax rate over all covariance matrices Σ :

sup
Σ≥0

sup
θ∈Θ[k,p](nβ)

Eθ

[
l(θ̃ , θ)

]≤ L(K,β,η) inf
θ̂

sup
Σ≥0

sup
θ∈Θ[k,p](nβ)

Eθ

[
l(θ̂ , θ)

]
.

Nevertheless, the result makes sense if one considers GGMs since the resulting covariance matrices are typically far
from being independent.

5. Numerical study

In this section, we carry out a small simulation study to evaluate the performance of our estimator θ̃ . As pointed out
earlier, an interesting feature of our criterion lies in its flexibility. However, we restrict ourselves here to the variable
selection problem. Indeed, it allows to assess the efficiency of our procedure with having regard to the Lasso [34] and
adaptive Lasso proposed by Zou [40]. Even if these two procedures assume that the conditional variance σ 2 is known,
they give good results in practice and the comparison with our method is of interest. The calculations are made with
R www.r-project.org/.

http://www.r-project.org/
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5.1. Simulation scheme

We consider the regression model (1) with p = 20 and σ 2 = 1. The number of observations n equal 15, 20 and 30.
We perform two simulation experiments:

1. First simulation experiment: The covariance matrix Σ1 is the identity matrix. This corresponds to the situation
where the covariates are all independent. The vector θ1 has all its components to zero except the three first ones,
which respectively equal 2, 1 and 0.5.

2. Second simulation experiment: Let A be the p × p matrix whose lines (a1, . . . , ap) are respectively defined by

a1 := (1,−1,0, . . . ,0)/
√

2,

a2 := (−1,1.2,0, . . . ,0)/
√

1 + 1.22,

a3 := (1/
√

2,1/
√

2,1/p, . . . ,1/p
)
/

√
1/2 + (p − 2)/p2

and for 4 ≤ j ≤ p, aj corresponds to the j th canonical vector of R
p . Then, we take the covariance matrix

Σ2 = A∗A and the vector θ∗
2 = (40,40,0, . . . ,0). This choice of parameters derives from the simulation exper-

iments of [4]. Observe that the two first covariates are highly correlated.

For each sample we estimate θ with our procedure, the Lasso and the adaptive Lasso. For our procedure we use
the collection M3

p for n = 15, M4
p for n = 20 and M5

p for n = 30. The choice of smaller collections for n = 15
and 20 is due to condition (16). We take the penalty (15) with K = 1.1 1.5 and 2. For the Lasso and adaptive Lasso
procedures, we first normalize the covariates (Xi ). Here, 2

√
logpσ would be a good choice for the parameter λ of the

Lasso. However, we do not have access to σ . Hence, we use an estimation of the variance V̂ar(Y ) which is a (possibly

inaccurate) upper bound of σ 2. This is why we choose the parameter λ of the Lasso between 0.3×2
√

logpV̂ar(Y ) and

2
√

logpV̂ar(Y ) by leave-one-out cross-validation. The number 0.3 is rather arbitrary. In practice, the performances
of the Lasso do not really depend on this number as soon it is neither too small nor close to one. For the adaptive
Lasso procedure, the parameters γ and λ are also estimated thanks to leave-one-out cross-validation: γ can take three

values (0.5,1,2) and the values of λ vary between 0.3 × 2
√

logpV̂ar(Y ) and 2
√

log(p)V̂ar(Y ).
We evaluate the risk ratio

ratio.Risk := E[l(θ̂ , θ)]
infm∈M5

p
E[l(θ̂m, θ)]

as well as the power and the FDR on the basis of 1000 simulations. Here, the power corresponds to the fraction of
non-zero components θ estimated as non-zero by the estimator θ̂ , while the FDR is the ratio of the false discoveries
over the true discoveries.

Power := E

[
Card({i, θi �= 0 and θ̂i �= 0})

Card({i, θi �= 0})
]

and FDR := E

[
Card({i, θi = 0 and θ̂i �= 0})

Card({i, θ̂i �= 0})
]
.

5.2. Results

The results of the first simulation experiment are given in Table 1. We observe that the five estimators perform more
or less similarly as expected by the theory. The results of the second simulation study are reported in Table 2. Clearly,
the Lasso and adaptive Lasso procedures are not consistent in this situation since the power is close to 0 and the FDR
is close to one. Consequently, the risk ratio is quite large and the adaptive Lasso even seems unstable. In contrast, our
method exhibits a large power and a reasonable FDR.

In the two studies, choosing a larger K reduces the power of the estimator but also decreases the FDR. It seems
that the choice K = 1.1 yields a good risk ratio, whereas K = 2 gives a better control of the FDR. Contrary to the
parameter λ for the lasso, we do not need an ad-hoc method such as cross-validation to calibrate K . The second
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Table 1
Our procedure with K = 1.1, 1.5 and 2 and Lasso and adaptive Lasso procedures: Estimation and 95% confidence
interval of Risk ratio (ratio.Risk), Power and FDR when p = 20, Σ = Σ2, θ = θ2, and n = 15, 20 and 30.

Estimator ratio.Risk Power FDR

n = 15

K = 1.1 4.8 ± 0.4 0.67 ± 0.02 0.23 ± 0.02
K = 1.5 5.7 ± 0.4 0.62 ± 0.02 0.20 ± 0.01
K = 2 7.3 ± 0.5 0.54 ± 0.02 0.17 ± 0.01
Lasso 5.8 ± 0.2 0.64 ± 0.01 0.29 ± 0.02
A. Lasso 4.8 ± 0.3 0.64 ± 0.02 0.30 ± 0.02

n = 20

K = 1.1 4.8 ± 0.3 0.77 ± 0.01 0.28 ± 0.02
K = 1.5 5.3 ± 0.4 0.74 ± 0.02 0.25 ± 0.01
K = 2 6.6 ± 0.5 0.68 ± 0.02 0.21 ± 0.01
Lasso 6.0 ± 0.2 0.74 ± 0.01 0.23 ± 0.01
A. Lasso 4.7 ± 0.4 0.75 ± 0.02 0.30 ± 0.01

n = 30

K = 1.1 4.2 ± 0.3 0.87 ± 0.01 0.23 ± 0.02
K = 1.5 4.1 ± 0.2 0.84 ± 0.01 0.19 ± 0.01
K = 2 4.3 ± 0.2 0.81 ± 0.01 0.14 ± 0.01
Lasso 6.6 ± 0.2 0.83 ± 0.01 0.18 ± 0.01
A. Lasso 4.3 ± 0.5 0.86 ± 0.02 0.26 ± 0.01

Table 2
Our procedure with K = 1.1, 1.5 and 2 and Lasso and adaptive Lasso procedures: Estimation and 95% confidence
interval of Risk ratio (ratio.Risk), Power and FDR when p = 20, Σ = Σ1, θ = θ1, and n = 15, 20 and 30.

Estimator ratio.Risk Power FDR

n = 15

K = 1.1 5.3 ± 0.4 0.77 ± 0.03 0.41 ± 0.02
K = 1.5 5.3 ± 0.4 0.76 ± 0.03 0.41 ± 0.02
K = 2 5.5 ± 0.5 0.75 ± 0.03 0.40 ± 0.02
Lasso 13.5 ± 0.3 0.02 ± 0.01 0.99 ± 0.01
A. Lasso 15.0 ± 1.2 0.02 ± 0.01 0.90 ± 0.02

n = 20

K = 1.1 6.4 ± 0.5 0.87 ± 0.02 0.39 ± 0.02
K = 1.5 5.9 ± 0.5 0.87 ± 0.02 0.36 ± 0.02
K = 2 5.5 ± 0.5 0.86 ± 0.02 0.33 ± 0.02
Lasso 16.7 ± 0.3 0.02 ± 0.01 0.98 ± 0.01
A. Lasso 20.5 ± 1.8 0.04 ± 0.01 0.89 ± 0.02

n = 30

K = 1.1 4.5 ± 0.3 0.96 ± 0.02 0.24 ± 0.02
K = 1.5 3.9 ± 0.3 0.95 ± 0.01 0.19 ± 0.02
K = 2 3.5 ± 0.3 0.94 ± 0.01 0.16 ± 0.02
Lasso 22.0 ± 0.3 0.02 ± 0.01 0.99 ± 0.01
A. Lasso 31.8 ± 3.0 0.04 ± 0.01 0.88 ± 0.02

example is certainly quite pathological but it illustrates that our estimator θ̃ performs well even when the Lasso does
not provide an accurate estimation. The good behavior of our method illustrates the strength of Theorem 3.4 that does
not depend on the correlation of the explanatory variables.
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6. Discussion and concluding remarks

Until now, we have assumed that the covariance matrix Σ of the covariates is non-singular. If Σ is singular, the esti-
mators θ̂m and the model m̂ are not necessarily uniquely defined. However, upon defining θ̂m as one of the minimizers
of γn(θ

′) over Sm, one may readily extend the oracle inequalities stated in Theorems 3.1 and 3.4.
Let us recall the main features of our method. We have defined a model selection criterion that satisfies oracle

inequalities regardless of the correlation between the covariates and regardless of the collection of models. Hence,
the estimator θ̃ achieves nice adaptive properties for ordered variable selection or for complete variable selection.
Besides, one can easily combine this method with prior knowledge on the model by choosing a proper collection
M or by modulating the penalty pen(·). Moreover, we may easily calibrate the penalty even when σ 2 is unknown,
whereas the Lasso-type procedures require a cross-validation strategy to choose the parameter λ. The compensation
for these nice properties is a computational cost that depends linearly on the size of M. Hence, the complete variable
selection problem is NP-hard. This makes it intractable when p becomes too large (i.e., more than 50). In contrast,
our criterion applies for arbitrary p when considering ordered variable selection since the size of M is linear with n.
In situations where one has a good prior knowledge on the true model, the collection M is then not too large and our
criterion is also fastly calculable even for large p.

For complete variable selection, Lasso-type procedures are computationally feasible even when p is large and
achieve oracle inequalities under assumptions on the covariance structure. However, there are both theoretical and
practical problems with these estimators. On the one hand, they are known to perform poorly for some covariance
structures. On the other hand, there is some room for improvement in the practical calibration of the lasso, especially
when σ 2 is unknown. In a future work, we would like to combine the strength of our method with these computa-
tionally fast algorithms. The problem at hand is to design a fast data-driven method that picks a subcollection M̂ of
reasonable size. Afterwards, one applies our procedure to M̂ instead of M. A direction that needs further investigation
is taking for M̂ all the subsets of the regularization path given by the lasso.

7. Proofs

7.1. Some notations and probabilistic tools

First, let us define the random variable εm by

Y = Xθm + εm + ε a.s. (23)

By definition of θm, εm follows a normal distribution and is independent of ε and of Xm. Hence, the variance of εm

equals l(θm, θ). The vectors ε and εm refer to the n samples of ε and εm. For any model m and any vector Z of size
n, Π⊥

m Z stands for Z − ΠmZ. For any subset m of {1, . . . , p}, Σm denotes the covariance matrix of the vector X∗
m.

Moreover, we define the row vector Zm := Xm

√
Σ−1

m in order to deal with standard Gaussian vectors. Similarly to
the matrix Xm, the n × dm matrix Zm stands for the n observations of Zm. The notation 〈·, ·〉n refers to the empirical
inner product associated with the norm ‖ · ‖n. Lastly, ϕmax(A) denotes the largest eigenvalue (in absolute value) of a
symmetric square matrix A.

We shall extensively use the explicit expression of θ̂m:

Xθ̂m = Xm

(
X∗

mXm

)−1X∗
mY. (24)

Let us state a first lemma that gives the expressions of γn(θ̂m), γ (θ̂m) and the loss l(θ̂m, θm).

Lemma 7.1. For any model m of size smaller than n,

γn(θ̂m) = ∥∥Π⊥
m (ε + εm)

∥∥2
n
, (25)

γ (θ̂m) = σ 2 + l(θm, θ) + l(θ̂m, θm), (26)

l(θ̂m, θm) = (ε + εm)∗Zm

(
Z∗

mZm

)−2Z∗
m(ε + εm). (27)
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The proof is postponed to the Appendix.
We now introduce the main probabilistic tools used throughout the proofs. First, we need to bound the deviations

of χ2 random variables.

Lemma 7.2. For any integer d > 0 and any positive number x,

P
(
χ2(d) ≤ d − 2

√
dx
)≤ exp(−x),

P
(
χ2(d) ≥ d + 2

√
dx + 2x

)≤ exp(−x).

These bounds are classical and are shown by applying Laplace method. We refer to Lemma 1 in [21] for more
details. Moreover, we state a refined bound for the lower deviations of a χ2 distribution.

Lemma 7.3. For any integer d > 0 and any positive number x,

P

[
χ2(d) ≤ d

[(
1 − δd −

√
2x

d

)
∨ 0

]2]
≤ exp(−x), where δd :=

√
π

2d
+ exp(−d/16). (28)

The proof is postponed to the Appendix. Finally, we shall bound the largest eigenvalue of standard Wishart matrices
and standard inverse Wishart matrices. The following deviation inequality is taken from Theorem 2.13 in [17].

Lemma 7.4. Let Z∗Z be a standard Wishart matrix of parameters (n, d) with n > d . For any positive number x,

P

{
ϕmax

[(
Z∗Z

)−1]≥ [n

(
1 −

√
d

n
− x

)2]−1}
≤ exp

(−nx2/2
)

and

P

[
ϕmax

(
Z∗Z

)≤ n

(
1 +

√
d

n
+ x

)2]
≤ exp

(−nx2/2
)
.

7.2. Proof of Theorem 3.1

Proof of Theorem 3.1. For the sake of simplicity we divide the main steps of the proof in several lemmas. First, let
us fix a model m in the collection M. By definition of m̂, we know that

γn(θ̃)
[
1 + pen(m̂)

]≤ γn(θm)
[
1 + pen(m)

]
.

Subtracting γ (θ) to both sides of this inequality yields

l(θ̃ , θ) ≤ l(θm, θ) + γn(θm)pen(m) + γ n(θm) − γn(θ̃)pen(m̂) − γ n(θ̃), (29)

where γ n(·) := γn(·) − γ (·). The proof is based on the concentration of the term −γ n(θ̃). More precisely, we shall
prove that with overwhelming probability this quantity is of the same order as the penalty term γn(θ̃)pen(m̂).

Let κ1 and κ2 be two positive numbers smaller than one that we shall fix later. For any model m′ ∈ M, we introduce
the random variables Am′ and Bm′ as

Am′ := κ1 + 1 − ‖Π⊥
m′εm′‖2

n

l(θm′, θ)
+ κ2nϕmax

[(
Z∗

m′Zm′
)−1]‖Πm(ε + εm′)‖2

n

l(θm′, θ) + σ 2

− K
dm′

n − dm′

‖Π
m′⊥(ε + εm′)‖2

n

l(θm′, θ) + σ 2
, (30)
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Bm′ := κ−1
1

〈Π⊥
m′ε,Π⊥

m′εm′ 〉2
n

σ 2l(θm′ , θ)
+ ‖Πm′ε‖2

n

σ 2
+ κ2nϕmax

[(
Z∗

m′Zm′
)−1]‖Πm′(ε + εm′)‖2

n

l(θm′, θ) + σ 2

− K
dm′

n − dm′

‖Π⊥
m′(ε + εm′)‖2

n

l(θm′, θ) + σ 2
. (31)

We recall that the notations εm, Zm, 〈·, ·〉n, and ϕmax(·) are defined in Section 7.1. We may upper bound the expression
−γ n(θ̃) − γn(θ̃)pen(m̂) with respect to Am̂ and Bm̂ as follows.

Lemma 7.5. Almost surely, it holds that

−γ n(θ̃) − γn(θ̃)pen(m̂) − σ 2 + ‖ε‖2
n ≤ l(θ̃ , θ)

[
Am̂ ∨ (1 − κ2)

]+ σ 2Bm̂. (32)

Let us set the constants

κ1 := 1

4
and κ2 := (K − 1)(1 − √

η)2

16
∧ 1. (33)

We do not claim that this choice is optimal, but we are not really concerned about the constants for this result. The core
of this proof consists in showing that with overwhelming probability the variable Am̂ is smaller than 1 and Bm̂ is
smaller than a constant over n.

Lemma 7.6. The event Ω1 defined as

Ω1 :=
{
Am̂ ≤ 7

8

}
∩
{
κ2nϕmax

[(
Z∗̂

mZm̂

)−1]≤ K − 1

4

}
satisfies P(Ωc

1) ≤ LCard(M) exp[−nL′(K,η)], where L′(K,η) is positive.

Lemma 7.7. There exists an event Ω2 of probability larger than 1 − exp(−nL) with L > 0 such that

E[Bm̂1Ω1∩Ω2] ≤ L(K,η,α,β)

n
.

Gathering the upper bound (29) and Lemmas 7.5–7.7, we conclude that

E

[
l(θ̃ , θ)1Ω1∩Ω2

(
κ2 ∧ 1

8

)]
≤ l(θm, θ) + E

[
γn(θm)pen(m)

]
+ σ 2 L(K,η,α,β)

n
+ E

[
1Ω1∩Ω2

(
γ n(θm) + σ 2 − ‖ε‖2

n

)]
.

As the expectation of the random variable γ n(θm) + σ 2 − ‖ε‖2
n is zero, it holds that

E
[
1Ω1∩Ω2

(
γ n(θm) + σ 2 − ‖ε‖2

n

)]
= E

[
1Ωc

1∪Ωc
2

(
γ n(θm) + σ 2 − ‖ε‖2

n

)]
≤
√

P
(
Ωc

1

)+ P
(
Ωc

2

)[√
E
[‖εm‖2

n − l(θm, θ)
]2 + 2

√
E
[〈ε,εm〉2

n

]]
≤
√

P
(
Ωc

1

)+ P
(
Ωc

2

)√2

n

[
l(θm, θ) + σ

√
2l(θm, θ)

]
.

The probabilities P(Ωc
1) and P(Ωc

2) converge to 0 at an exponential rate with respect to n. Hence, by taking the
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infimum over all the models m ∈ M, we obtain

E
[
l(θ̃ , θ)1Ω1∩Ω2

] ≤ L(K,η) inf
m∈M

[
l(θm, θ) + (σ 2 + l(θm, θ)

)
pen(m)

]+ L2(K,η,α,β)
σ 2

n

+ L3(K,η)

√
Card(M)

n

[
σ 2 + l(0p, θ)

]
exp
[−nL4(K,η)

]
, (34)

with L4(K,η) > 0. In order to conclude, we need to control the loss of the estimator θ̃ on the event of small probability
Ωc

1 ∪ Ωc
2 . Thanks to the following lemma, we may upper bound the r th risk of the estimators θ̂m.

Proposition 7.8. For any model m and any integer r ≥ 2 such that n − dm − 2r + 1 > 0,

E
[
l(θ̂m, θm)r

]1/r ≤ Lrdmn
[
σ 2 + l(θm, θ)

]
.

The proof is postponed to Section 7.4. We derive from this bound a strong control on E[l(θ̃ , θ)1Ωc
1∪Ωc

2
].

Lemma 7.9.

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

]≤ L(K,η)n2 Card(M)Var(Y ) exp
[−nL′(K,η)

]
, (35)

where L′(K,η) is positive.

By Assumptions (HPol) and (Hη), the cardinality of the collection of M is smaller than αn1+β . We gather the
upper bounds (34) and (35) and so we conclude. �

Proof of Lemma 7.5. Thanks to Lemma 7.1, we decompose γ n(θ̃) as

γ n(θ̃) = ∥∥Π ⊥̂
m (ε + εm̂)

∥∥2
n
− σ 2 − l(θm̂, θ) − (1 − κ2)l(θ̃ , θm̂) − κ2(ε + εm̂)∗Zm̂

(
Z∗̂

mZm̂

)−2Z∗̂
m(ε + εm̂).

Since 2ab ≤ κ1a
2 + κ−1

1 b2 for any κ1 > 0, it holds that

−∥∥Π ⊥̂
m (ε + εm̂)

∥∥2
n
+ ‖ε‖2

n = ‖Πm̂ε‖2
n − ∥∥Π ⊥̂

m εm̂

∥∥2
n
− 2
〈
Π ⊥̂

m ε,Π ⊥̂
m εm̂

〉
n

≤ σ 2
[
κ−1

1

〈Π ⊥̂
m ε,Π ⊥̂

m εm̂〉2
n

σ 2l(θm̂, θ)
+ ‖Πm̂ε‖2

n

σ 2

]
+ l(θm̂, θ)

[
−‖Π ⊥̂

m εm̂‖2
n

l(θm̂, θ)
+ κ1

]
.

Besides, we upper bound expression (27) of l(θ̃ , θm̂) using the largest eigenvalue of (Z∗̂
mZm̂)−1.

(ε + εm̂)∗Zm̂

(
Z∗̂

mZm̂

)−2Z∗̂
m(ε + εm̂) ≤ ϕmax

[(
Z∗̂

mZm̂

)−1]
(ε + εm̂)∗Zm̂

(
Z∗̂

mZm̂

)−1Z∗̂
m(ε + εm̂)

≤ [σ 2 + l(θm̂, θ)
]
nϕmax

[(
Z∗̂

mZm̂

)−1]‖Πm̂(ε + εm̂)‖2
n

σ 2 + l(θm̂, θ)
. (36)

Thanks to assumption (8), we upper bound the penalty terms as follows:

−γn(θ̃)pen(m̂) ≤ −[σ 2 + l(θm̂, θ)
]‖Π ⊥̂

m (ε + εm̂)‖2
n

σ 2 + l(θm̂, θ)
K

dm̂

n − dm̂

.

By gathering the four last identities, we get

−γ n(θ̃) − γn(θ̃)pen(m̂) − σ 2 + ‖ε‖2
n ≤ l(θ̃ , θ)

[
Am̂ ∨ (1 − κ2)

]+ σ 2Bm̂,

since l(θ̃ , θ) decomposes into the sum l(θ̃ , θm̂) + l(θm̂, θ). �
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Proof of Lemma 7.6. We recall that for any model m ∈ M,

Am := 5

4
− ‖Π⊥

m εm‖2
n

l(θm, θ)
+ κ2nϕmax

[(
Z∗

mZm

)−1]‖Πm(ε + εm)‖2
n

l(θm, θ) + σ 2
− K

dm

n − dm

‖Π⊥
m (ε + εm)‖2

n

l(θm, θ) + σ 2
.

In order to control the variable Am̂, we shall simultaneously bound the deviations of the four random variables involved
in any variable Am.

Since Xm is independent of εm/
√

l(θm, θ) and since εm/
√

l(θm, θ) is a standard Gaussian vector of size n, the
random variable n‖Π⊥

m εm‖2
n/ l(θm, θ) follows a χ2 distribution with n− dm degrees of freedom conditionally on Xm.

As this distribution does not depend on Xm, n‖Π⊥
m εm‖2

n/ l(θm, θ) follows a χ2 distribution with n − dm degrees of
freedom. Similarly, the random variables n‖Πm(ε + εm)‖2

n/[l(θm, θ) + σ 2] and n‖Π⊥
m (ε + εm)‖2

n/[l(θm, θ) + σ 2]
follow χ2 distributions with respectively dm and n − dm degrees of freedom. Besides, the matrix (Z∗

mZm) follows a
standard Wishart distribution with parameters (n, dm).

Let x be a positive number we shall fix later. By Lemmas 7.2 and 7.4, there exists an event Ω ′
1 of large probability

P
(
Ω ′c

1

)≤ 4 exp(−nx)Card(M),

such that for conditionally on Ω ′
1,

‖Π⊥
m εm‖2

n

l(θm, θ)
≥ n − dm

n
− 2

√
(n − dm)x

n
, (37)

‖Πm(ε + εm)‖2
n

σ 2 + l(θm, θ)
≤ dm

n
+ 2

√
dmx

n
+ 2x, (38)

‖Π⊥
m (ε + εm)‖2

n

σ 2 + l(θm, θ)
≥ n − dm

n
− 2

√
(n − dm)x

n
, (39)

ϕmax
[(

Z∗
mZm

)−1]≤ {n

[(
1 −

√
dm

n
− √

2x

)
∨ 0

]2}−1

(40)

for every model m ∈ M. Let us prove that for a suitable choice of the number x, Am̂1Ω ′
1

is smaller than 7/8. First, we

constrain nκ2ϕmax[(Z∗̂
mZm̂)−1] to be smaller than K−1

4 on the event Ω ′
1. By (40), it holds that

nϕmax
[(

Z∗̂
mZm̂

)−1]≤ [(1 − √
η − √

2x
)∨ 0

]−2
.

Constraining x to be smaller than
(1−√

η)2

8 ensures that the largest eigenvalue of (Z∗̂
mZm̂)−1 satisfies

nϕmax
[(

Z∗̂
mZm̂

)−1]≤ 4

(1 − √
η)2

.

By definition (33) of κ2, it follows that nκ2ϕmax[(Z∗̂
mZm̂)−1] ≤ (K − 1)/4. Applying inequality 2ab ≤ δa2 + δ−1b2

to the bounds (37)–(39) yields

−‖Π ⊥̂
m εm̂‖2

n

l(θm̂, θ)
≤ −1

2
+ dm̂

2n
+ 2x,

κ2nϕmax
[(

Z∗̂
mZm̂

)−1]‖Πm̂(ε + εm̂)‖2
n

σ 2 + l(θm̂, θ)
≤ K − 1

2

[
dm̂

n
+ 3x

2

]
,

−K
dm̂

n − dm̂

‖Π ⊥̂
m (ε + εm̂)‖2

n

σ 2 + l(θm̂, θ)
≤ −K

dm̂

2n
+ x

2Kη

1 − η
.
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Gathering these three inequalities, we get

Am̂1Ω ′
1
≤ 3

4
+ x

[
2 + 3(K − 1)

4
+ 2K

η

1 − η

]
.

If we set x to

x :=
[

8

(
2 + 3(K − 1)

4
+ 2K

η

1 − η

)]−1

∧ (1 − √
η)2

8
,

then Am̂1Ω ′
1

is smaller than 7
8 and the result follows. �

Proof of Lemma 7.7. We shall simultaneously bound the deviations of the random variables involved in the definition
of Bm for all models m ∈ M. Let us first define the random variable Em as

Em := κ−1
1

〈Π⊥
m ε,Π⊥

m εm〉2
n

σ 2l(θm, θ)
+ ‖Πmε‖2

n

σ 2
.

Factorizing by the norm of ε, we get

Em ≤ κ−1
1

‖ε‖2
n

σ 2

〈Π⊥
m ε/‖Π⊥

m ε‖n,Π
⊥
m εm〉2

n

l(θm, θ)
+ ‖Πmε‖2

n

σ 2
. (41)

The variable n
‖ε‖2

n

σ 2 follows a χ2 distribution with n degrees of freedom. By Lemma 7.2 there exists an event Ω2 of

probability larger than 1 − exp(n/8) such that ‖ε‖2
n

σ 2 is smaller than 2. As κ−1
1 = 4, we obtain

Em1Ω2 ≤ 8
〈Π⊥

m ε/‖Π⊥
m ε‖n,Π

⊥
m εm〉2

n

l(θm, θ)
+ ‖Πmε‖2

n

σ 2
.

Since ε, εm and Xm are independent, it holds that conditionally on Xm and ε,

n
〈Π⊥

m ε/‖Π⊥
m ε‖n,Π

⊥
m εm〉2

n

l(θm, θ)
∼ χ2(1).

Since the distribution depends neither on Xm nor on ε, this random variable follows a χ2 distribution with 1 degree

of freedom. Besides, it is independent of the variable ‖Πmε‖2
n

σ 2 . Arguing as previously, we work out the distribution

n‖Πmε‖2
n

σ 2
∼ χ2(dm).

Consequently, the variable Em1Ω2 is upper bounded by a random variable that follows the distribution of

8

n
T1 + 1

n
T2,

where T1 and T2 are two independent χ2 distribution with respectively 1 and dm degrees of freedom. Moreover, the

random variables n
‖Πm(ε+εm)‖2

n

l(θm,θ)+σ 2 and n
‖Π⊥

m (ε+εm)‖2
n

l(θm,θ)+σ 2 respectively follow a χ2 distribution with dm and n − dm degrees
of freedom.

Let us bound the deviations of the random variables Em1Ω2 , ‖Πm(ε+εm)‖2
n

l(θm,θ)+σ 2 , and ‖Π⊥
m (ε+εm)‖2

n

l(θm,θ)+σ 2 for any model m ∈ M.
We apply Lemma 1 in [21] for Em1Ω2 and Lemma 7.2 for the two remaining random variables. Hence, for any x > 0,
there exists an event F(x) of large probability

P
[
F(x)c

] ≤ e−x

( ∑
m∈M

e−ξ1dm + e−ξ2dm + e−ξ3dm

)
≤ e−x

[
3 + α

+∞∑
d=1

dβ
(
e−ξ1d + e−ξ2d + e−ξ3d

)]
,
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such that conditionally on F(x),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Em1Ω2 ≤ dm+8

n
+ 2

n

√[
dm + 82

]
(ξ1dm + x) + 16 ξ1dm+x

n
,

‖Πm(ε+εm)‖2
n

l(θm,θ)+σ 2 ≤ 1
n

(
dm + 2

√
dm[dmξ2 + x] + 2(dmξ2 + x)

)
,

− Kdm

n−dm

‖(Π⊥
m ε+εm)‖2

n

σ 2+l(θm,θ)
≤ − Kdm

n(n−dm)

(
n − dm − 2

√
(n − dm)(ξ3dm + x)

)
for all models m ∈ M. We shall fix later the positive constants ξ1, ξ2 and ξ3. Let us apply extensively the inequality
2ab ≤ τa2 + τ−1b2. Hence, conditionally on F(x), the model m̂ satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

Em̂1Ω2 ≤ dm̂

n

[
1 + 2

√
ξ1 + 17ξ1 + τ1

]+ x
n

[
17 + τ−1

1

]+ 72
n

,

‖Πm̂(ε+εm̂)‖2
n

l(θm̂,θ)+σ 2 ≤ dm̂

n

[
1 + 2

√
ξ2 + 2ξ2 + τ2

]+ x
n

[
2 + τ−1

2

]
,

− Kdm̂

n−dm̂

‖Π ⊥̂
m (ε+εm̂)‖2

n

σ 2+l(θm̂,θ)
≤ −K dm̂

n

[
1 − 2

√
ξ3

dm̂

n−dm̂
− τ3

]+ K x
n
τ−1

3
dm̂

n−dm̂
.

By Lemma 7.6, we know that conditionally on Ω1, κ2nϕmax[(Z∗̂
mZm̂)−1] is smaller than K−1

4 . By Assumption (Hη),

the ratio dm̂

n−dm̂
is smaller than η

1−η
. Gathering these inequalities we upper bound Bm̂ on the event Ω1 ∩ Ω2 ∩ F(x),

Bm̂ ≤ dm̂

n
U + x

n
V + 72

n
,

where U and V are defined as

U := 1 + 2
√

ξ1 + 17ξ1 + τ1 + K − 1

4

[
1 + 2

√
ξ2 + 2ξ2 + τ2

]− K

[
1 − 2

√
ξ3

√
η

1 − η
− τ3

]
,

V := 17 + τ−1
1 + K − 1

4

[
2 + τ−1

2

]+ Kτ−1
3

η

1 − η
.

Looking closely at U , one observes that it is the sum of the quantity − 3(K−1)
4 and an expression that we can make

arbitrary small by choosing the positive constants ξ1, ξ2, ξ3, τ1, τ2 and τ3 small enough. Consequently, there exists
a suitable choice of these constants only depending on K and η that constrains the quantity U to be non-positive. It
follows that for any x > 0, with probability larger than 1 − e−xL(K,η,α,β),

Bm̂1Ω1∩Ω2 ≤ x

n
L(K,η) + L′(K,η)

n
.

Integrating this upper bound for any x > 0, we conclude

E[Bm̂1Ω1∩Ω2] ≤ L(K,η,α,β)

n
. �

Proof of Lemma 7.9. We perform a very crude upper bound by controlling the sum of the risk of every estimator θ̂m.

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

]≤√P
(
Ωc

1

)+ P
(
Ωc

2

)√ ∑
m∈M

E
[
l(θ̂m, θ)2

]
.

As for any model m ∈ M, l(θ̂m, θ) = l(θm, θ) + l(θ̂m, θm), it follows that

E
[
l(θ̂m, θ)2]≤ 2

{
l(θm, θ)2 + E

[
l(θ̂m, θm)2]}.
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For any model m ∈ M, it holds that n − dm − 3 ≥ (1 − η)n − 3, which is positive by Assumption (Hη). Hence, we
may apply Proposition 7.8 with r = 2 to all models m ∈ M:

E
[
l(θ̂m, θm)2] ≤ L

[
dmn

(
σ 2 + l(θm, θ)

)]2
≤ Ln4 Var(Y )2,

since for any model m, σ 2 + l(θm, θ) ≤ Var(Y ). By summing this bound for all models m ∈ M and applying Lem-
mas 7.6 and 7.7, we get

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

]≤ n2 Card(M)L(K,η)Var(Y ) exp
[−nL′(K,η)

]
,

where L′(K,η) is positive. �

7.3. Proof of Theorem 3.4 and Proposition 3.5

Proof of Theorem 3.4. This proof follows the same approach as the one of Theorem 3.1. We shall only emphasize
the differences with this previous proof. The bound (29) still holds. Let us respectively define the three constants κ1,
κ2 and ν(K) as

κ1 :=
√

3/(K + 2)

1 − √
η − ν(K)

, κ2 := (K − 1)[1 − √
η]2[1 − √

η − ν(K)]2

16
∧ 1,

ν(K) :=
(

3

K + 2

)1/6

∧ 1 − (3/(K + 2))1/6

2
.

We also introduce the random variables Am′ and Bm′ for any model m′ ∈ M.

Am′ := κ1 + 1 − ‖Π⊥
m′εm′‖2

n

l(θm′, θ)
+ κ2nϕmax

[(
Z∗

m′Zm′
)−1]‖Πm′(ε + εm′)‖2

n

l(θm′, θ) + σ 2

− K
[
1 +

√
2H
(
d ′
m

)]2 dm′

n − dm′

‖Π
m′⊥(ε + εm′)‖2

n

l(θm′, θ) + σ 2
,

Bm′ := κ−1
1

〈Π⊥
m′ε,Π⊥

m′εm′ 〉2
n

σ 2l(θm′, θ)
+ ‖Πm′ε‖2

n

σ 2
+ κ2nϕmax

[(
Z∗

m′Zm′
)−1]‖Πm′(ε + εm′)‖2

n

l(θm′, θ) + σ 2

− K
dm′

n − dm′

[
1 +

√
2H
(
d ′
m

)]2 ‖Π⊥
m′(ε + εm′)‖2

n

l(θm′, θ) + σ 2
.

The bound given in Lemma 7.5 clearly extends to

−γ n(θ̃) − γn(θ̃)pen(m̂) − σ 2 + ‖ε‖2
n ≤ l(θ̃ , θ)

[
Am̂ ∨ (1 − κ2)

]+ σ 2Bm̂.

As previously, we control the variable Am̂ on an event of large probability Ω1 and take the expectation of Bm̂ on an
event of large probability Ω1 ∩ Ω2.

Lemma 7.10. Let Ω1 be the event

Ω1 := {Am̂ ≤ s(K,η)
}∩
{
κ2nϕmax

[(
Z∗̂

mZm̂

)−1]≤ (K − 1)(1 − √
η − ν(K))2

4

}
,

where s(K,η) is a function smaller than one. Then, P(Ωc
1) ≤ L(K)n exp[−nL′(K,η)] with L′(K,η) > 0.

The function s(K,η) is given explicitly in the proof of Lemma 7.10.
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Lemma 7.11. Let us assume that n is larger than some quantities n0(K). Then, there exists an event Ω2 of probability
larger than 1 − exp[−nL(K,η)] where L(K,η) > 0 such that

E[Bm̂1Ω1∩Ω2] ≤ L(K,η)

n
.

Gathering inequalities (29), (32), Lemmas 7.10 and 7.11, we obtain as on the previous proof that

E
[
l(θ̃ , θ)1Ω1∩Ω2

] ≤ L(K,η) inf
m∈M

[
l(θm, θ) + (σ 2 + l(θm, θ)

)
pen(m)

]
+ L′(K,η)

[
σ 2

n
+ (σ 2 + l(0p, θ)

)
n exp

[−nL′′(K,η)
]]

. (42)

Afterwards, we control the loss of the estimator θ̃ on the event of small probability Ωc
1 ∪ Ωc

2 .

Lemma 7.12. If n is larger than some quantity n0(K),

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

] ≤ n5/2(σ 2 + l(0p, θ)
)
L(K,η) exp

[−nL′(K,η)
]
,

where L(K,η) is positive.

Gathering this last bound with (42) enables to conclude. �

Proof of Lemma 7.10. This proof is analogous to the proof of Lemma 7.6, except that we shall change the weights
in the concentration inequalities in order to take into account the complexity of the collection of models. Let x be a
positive number we shall fix later. Applying Lemmas 7.2–7.4 ensures that there exists an event Ω ′

1 such that

P
(
Ω ′c

1

)≤ 4 exp(−nx)
∑

m∈M
exp
[−dmH(dm)

]
,

and for all models m ∈ M,

‖Π⊥
m εm‖2

n

l(θm, θ)
≥ n − dm

n

[(
1 − δn−dm −

√
2dmH(dm)

n − dm

−
√

2xn

n − dm

)
∨ 0

]2

, (43)

‖Πm(ε + εm)‖2
n

σ 2 + l(θm, θ)
≤ 2dm

n

[
1 +√H(dm) + H(dm)

]+ 3x, (44)

‖Π⊥
m (ε + εm)‖2

n

σ 2 + l(θm, θ)
≥ n − dm

n

[(
1 − δn−dm −

√
2dmH(dm)

n − dm

−
√

2xn

n − dm

)
∨ 0

]2

, (45)

nϕmax
[(

Z∗
mZm

)−1]≤ [(1 − (1 +√2H(dm)
)√dm

n
− √

2x

)
∨ 0

]−2

.

We recall that δd is defined in (28). Besides, it holds that

P
(
Ω ′c

1

)≤ 4 exp[−nx]
n∑

d=0

Card
[{m ∈ M, dm = d}] exp

[−dH(d)
]≤ 4n exp[−nx].

By Assumption (HK,η), the expression (1 + √
2H(dm))

√
dm

n
is bounded by

√
η. Hence, conditionally on Ω ′

1,

nϕmax
[(

Z∗̂
mZm̂

)−1] ≤ [(1 − √
η − √

2x
)∨ 0

]−2
.
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Constraining x to be smaller than
(1−√

η)2

8 ensures that

nκ2ϕmax
[(

Z∗̂
mZm̂

)−1]1Ω ′
1
≤ (K − 1)(1 − √

η − ν(K))2

4
.

By Assumption (HK,η), the dimension of any model m ∈ M is smaller than n/2. If n is larger than some quantities
only depending on K , then δn/2 is smaller than ν(K). Let us assume first that this is the case. We recall that ν(K) is
defined at the beginning of the proof of Theorem 3.4. Since ν(K) ≤ 1 − √

η, inequality (43) becomes

‖Π ⊥̂
m εm̂‖2

n

l(θm̂, θ)
≥
(

1 − dm̂

n

)[
1 − ν(K) − √

η
]2 − 2

√
2x.

Bounding analogously the remaining terms of Am̂, we get

Am̂ ≤ κ1 + 1 − [1 − √
η − ν(K)

]2 + dm̂

n

(
1 − √

η − ν(K)
)2

U1 + √
xU2 + xU3,

where U1, U2 and U3 are respectively defined as⎧⎪⎨⎪⎩
U1 := −K

[
1 + √

2H(dm̂)
]2 + 1 + (K − 1)/2

[
1 + √

H(dm̂)
]2 ≤ 0,

U2 := 2
√

2[1 + Kη],
U3 := 3

4 (K − 1)
[
1 − √

η − ν(K)
]2

.

Since U1 is non-positive, we obtain an upper bound of Am̂ that does not depend anymore on m̂. By Assump-
tion (HK,η), we know that η < (1 − ν(K) − ( 3

K+2 )1/6)2. Hence, coming back to the definition of κ1 allows to prove

that κ1 is strictly smaller than [1 − √
η − ν(K)]2. Setting

x :=
[ [1 − √

η − ν(K)]2 − κ1

4U2

]2

∧ [1 − √
η − ν(K)]2 − κ1

4U3
∧ (1 − √

η)2

8
,

we get

Am̂ ≤ 1 − 1

2

[(
1 − √

η − ν(K)
)2 − κ1

]
< 1,

on the event Ω ′
1.

In order to take into account the case δn/2 ≥ ν(K), we only have to choose a large constant L(K) in the upper
bound of P(Ωc

1). �

Proof of Lemma 7.11.
Once again, the sketch of the proof closely follows the proof of Lemma 7.7. Let us consider the random variables

Em defined as

Em := κ−1
1

〈Π⊥
m ε,Π⊥

m εm〉2
n

σ 2l(θm, θ)
+ ‖Πmε‖2

n

σ 2
.

Since n‖ε‖2
n/σ

2 follows a χ2 distribution with n degrees of freedom, there exists an event Ω2 of probability larger
than 1 − exp[−nL(K)] such that ‖ε‖2

n/σ
2 is smaller than κ−1

1 = √
(K + 2)/3[1 − √

η − ν(K)] on Ω2. The constant
L(K) in the exponential is positive. We shall simultaneously upper bound the deviations of the random variables Em,
‖Πm(ε+εm)‖2

n

l(θm,θ)+σ 2 , and ‖Π⊥
m (ε+εm)‖2

n

σ 2+l(θm,θ)
. Let ξ be some positive constant that we shall fix later. For any x > 0, we define an
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event F(x) such that conditionally on F(x) ∩ Ω2,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Em ≤ dm+κ−2

1
n

+ 2
n

√[
dm + κ−4

1

][
dm

(
ξ + H(dm)

)+ x
]+ 2κ−2

1
ξ(dm+H(dm))+x

n
,

‖Πm(ε+εm)‖2
n

l(θm,θ)+σ 2 ≤ 1
n

[
dm + 2

√
dm

[
dm

( 1
16 + H(dm)

)+ x
]+ 2

[
dm

( 1
16 + H(dm)

)+ x
]]

,

‖Π⊥
m εm+ε‖2

n

σ 2+l(θm,θ)
≥ n−dm

n

[(
1 − δn−dm −

√
dm(1+2H(dm))

n−dm
−
√

2x
n−dm

)∨ 0
]2

for any model m ∈ M. Then, the probability of F(x) satisfies

P
[
F(x)c

] ≤ e−x

[ ∑
m∈M

exp
[−dmH(dm)

](
e−ξdm + e−dm/16 + e−dm/2)]

≤ e−x

(
1

1 − e−ξ
+ 1

1 − e−1/16
+ 1

1 − e−1/2

)
.

Let us expand the three deviation bounds thanks to the inequality 2ab ≤ τa2 + τ−1b2:

Em ≤ dm

n

[
1 + 2

√
ξ + 2κ−2

1 ξ + τ1ξ + τ2
]+ x

n

[
2κ−2

1 + τ−1
2 + τ1

]
+ κ−2

1

n

[
1 + τ−1

1 κ−2
1

]+ dmH(dm)

n

[
2κ−2

1 + τ1
]+ 2

dm

√
H(dm)

n

≤ dm

n

(
1 +√2H(dm)

)2[
κ−2

1 + 2
√

ξ + 2κ−2
1 ξ + τ1ξ + τ2

]
+ x

n

[
2κ−2

1 + τ−1
2 + τ1

]+ κ−2
1

n

[
1 + τ−1

1 κ−2
1

]
.

Similarly, we get

‖Πm(ε + εm)‖2
n

l(θm, θ) + σ 2
≤ 2

dm

n

[
1 +√2H(dm)

]2 + 5
x

n
.

If n is larger than some quantity n0(K), then δn/2 is smaller than ν(K). Applying Assumption (HK,η), we get

−K
dm

n − dm

(
1 +√2H(dm)

)2 ‖Π⊥
m (ε + εm)‖2

n

l(θm, θ) + σ 2

≤ −K
dm

n

(
1 +√2H(dm)

)2[(1 − √
η − ν(K) −

√
2x

n − dm

)
∨ 0

]2

≤ −K
dm

n

(
1 +√2H(dm)

)2[(1 − √
η − ν(K)

)2 − τ3
]+ 2Kητ−1

3
x

n
.

Let us combine these three bounds with the definitions of Bm, κ1 and κ2. Hence, conditionally to the event Ω1 ∩Ω2 ∩
F(x),

Bm̂ ≤ dm̂

n

[
1 +√2H(m̂)

]2
U1 + x

n
U2 + L(K,η)

n
U3, (46)

where⎧⎪⎨⎪⎩
U1 := −K−1

6

(
1 − √

η − ν(K)
)2 + Kτ3 + 2

√
ξ + 2κ−2

1 ξ + τ1ξ + τ2,

U2 := τ−1
2 + τ1 + L(K,η)

(
1 + τ−1

3

)
,

U3 := 1 + τ−1
1 .
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Since K > 1, there exists a suitable choice of the constants ξ , τ1 and τ2, only depending on K and η that constrains
U1 to be non-positive. Hence, conditionally on the event Ω1 ∩ Ω2 ∩ F(x),

Bm̂ ≤ L(K,η)

n
+ L′(K,η)

x

n
.

Since P[F(x)c] ≤ e−xL(K,η), we conclude by integrating the last expression with respect to x. �

Proof of Lemma 7.12. As in the ordered selection case, we apply Cauchy–Schwarz inequality

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

] ≤
√

P
(
Ωc

1

)+ P
(
Ωc

2

)√
E
[
l(θ̃ , θ)2

]
.

However, there are too many models to bound efficiently the risk of θ̃ by the sum of the risks of the estimators θ̂m.
This is why we use here Hölder’s inequality

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

] ≤ L(K)
√

n exp
[−nL(K,η)

]√√√√E

[ ∑
m∈M

1m=m̂l(θ̂m, θ)2

]

≤ L(K)
√

n exp
[−nL(K,η)

]√ ∑
m∈M

P(m = m̂)1/uE
[
l(θ̂m, θ)2v

]1/v
, (47)

where v := �n
8 �, and u =: v

v−1 . We assume here that n is larger than 8. For any model m ∈ M, the loss l(θ̂m, θ)

decomposes into the sum l(θm, θ) + l(θ̂m, θm). Hence,we obtain the following upper bound by applying Minkowski’s
inequality

E
[
l(θ̂m, θ)2v

]1/2v ≤ l(θm, θ) + E
[
l(θ̂m, θm)2v

]1/2v ≤ Var(Y ) + E
[
l(θ̂m, θm)2v

]1/2v
. (48)

We shall upper bound this last term thanks to Proposition 7.8. Since v is smaller than n/8 and since dm is smaller
than n/2, it follows that for any model m ∈ M, n − dm − 4v + 1 is positive and

E
[
l(θ̂m, θm)2v

]1/2v ≤ 2vLndm

(
σ 2 + l(θm, θ)

)
for any model m ∈ M. Since dm ≤ n and since σ 2 + l(θm, θ) ≤ Var(Y ), we obtain

E
[
l(θ̂m, θm)2v

]1/2v ≤ 2vLn2 Var(Y ). (49)

Gathering upper bounds (47)–(49) we get

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

] ≤ L(K)
√

n exp
[−nL′(K,η)

][
Var(Y ) + 2vLn2 Var(Y )

]√ ∑
m∈M

P(m = m̂)1/u.

Since the sum over m ∈ M of P(m = m̂) is one, the last term of the previous expression is maximized when every
P(m = m̂) equals 1

Card(M)
. Hence,

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

] ≤ n5/2 Var(Y )L(K,η)Card(M)1/(2v) exp
[−nL′(K,η)

]
,

where L′(K,η) is positive. Let us first bound the cardinality of the collection M. We recall that the dimension of any
model m ∈ M is assumed to be smaller than n/2 by (HK,η). Besides, for any d ∈ {1, . . . , n/2}, there are less than
exp(dH(d)) models of dimension d . Hence,

log
(
Card(M)

)≤ log(n) + sup
d=1,...,n/2

dH(d).
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By Assumption (HK,η), dH(d) is smaller than n/2. Thus, log(Card(M)) ≤ log(n) + n/2 and it follows that
Card(M)1/(2v) is smaller than an universal constant providing that n is larger than 8. All in all, we get

E
[
l(θ̃ , θ)1Ωc

1∪Ωc
2

] ≤ n5/2 Var(Y )L(K,η) exp
[−nL′(K,η)

]
,

where L′(K,η) is positive. �

Proof of Proposition 3.5. We apply the same arguments as in the proof of Theorem 3.4, except that we replace
H(dm) by lm.

Am′ := κ1 + 1 − ‖Π⊥
m′εm′ ‖2

n

l(θm′, θ)
+ κ2nϕmax

[(
Z∗

m′Zm′
)−1]‖Πm′(ε + εm′)‖2

n

l(θm′, θ) + σ 2

− K
[
1 +√2lm′

]2 dm′

n − dm′

‖Π
m′⊥(ε + εm′)‖2

n

l(θm′, θ) + σ 2
,

Bm′ := κ−1
1

〈Π⊥
m′ε,Π⊥

m′εm′ 〉2
n

σ 2l(θm′ , θ)
+ ‖Πm′ε‖2

n

σ 2
+ κ2nϕmax

[(
Z∗

m′Zm′
)−1]‖Πm′(ε + εm′)‖2

n

l(θm′, θ) + σ 2

− K
dm′

n − dm′

[
1 +√2l′m

]2 ‖Π⊥
m′(ε + εm′)‖2

n

l(θm′, θ) + σ 2
.

In fact, Lemmas 7.10–7.12 are still valid for this penalty. The previous proofs of these three lemma depend on the
quantity H(dm) through the properties:

H(dm) satisfies Assumption (HK,η) and
∑

m∈M,dm=d

exp
(−dH(dm)

)≤ 1.

Under the assumptions of Proposition 3.5, lm satisfies the corresponding Assumption (Hl
K,η) and is such that∑

m∈M,dm=d exp(−dlm)) ≤ 1. Hence, the proofs of these lemma remain valid in this setting if we replace H(dm)

by lm.
There is only one small difference at the end of the proof of Lemma 7.12 when bounding log(Card(M)). By

definition of lm,

Card(M) − 1 ≤ sup
m∈M\{∅}

exp(dmlm).

Hence, log(Card(M) ≤ 1 + supm∈M\{∅} dmlm, which is smaller than 1 + n/2 by Assumption (Hl
K,η). Hence, the

upper bound shown in the proof of Lemma 7.12 is still valid. �

7.4. Proof of Proposition 7.8

Proof of Proposition 7.8. Let m be a subset of {1, . . . , p}. Thanks to (27), we know that

l(θ̂m, θm) = (ε + εm)∗Zm

(
Z∗

mZm

)−2Z∗
m(ε + εm).

Applying Cauchy–Schwarz inequality, we decompose the r th loss of θ̂m in two terms

E
[
l(θ̂m, θm)r

]1/r ≤ E
[∥∥(ε + εm)(ε + εm)∗

∥∥r

F

∥∥Zm

(
Z∗

mZm

)−2Z∗
m

∥∥r

F

]1/r

≤ E
[∥∥(ε + εm)(ε + εm)∗

∥∥r

F

]1/r
E
{
tr
[(

Z∗
mZm

)−2]r/2}1/r
, (50)
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by independence of ε, εm and Zm. Here, ‖ · ‖F stands for the Frobenius norm in the space of square matrices. We
shall successively upper bound the two terms involved in (50).

∥∥(ε + εm)(ε + εm)∗
∥∥r

F
=
[ ∑

1≤i,j≤n

(ε + εm)[i]2(ε + εm)[j ]2
]r/2

.

This last expression corresponds to the Lr/2 norm of a Gaussian chaos of order 4. By Theorem 3.2.10 in [26], such
chaos satisfy a Khintchine–Kahane type inequality:

Lemma 7.13. For all d ∈ N there exists a constant Ld ∈ (0,∞) such that, if X is a Gaussian chaos of order d with
values in any normed space F with norm ‖ · ‖ and if 1 < s < q < ∞, then

(
E‖X‖q

)1/q ≤ Ld

(
q − 1

s − 1

)d/2

E
[‖X‖s

]1/s
.

Let us assume that r is larger than four. Applying the last lemma with d = 4, q = r/2 and s = 2 yields

E
[∥∥(ε + εm)(ε + εm)∗

∥∥r

F

]2/r ≤ L4(r/2 − 1)2
E
[∥∥(ε + εm)(ε + εm)∗

∥∥4
F

]1/2
.

By standard Gaussian properties, we compute the fourth moment of this chaos and obtain

E
[∥∥(ε + εm)(ε + εm)∗

∥∥4
F

]1/2 ≤ Ln2[σ 2 + l(θm, θ)
]2

.

Hence, we get the upper bound

E
[∥∥(ε + εm)(ε + εm)∗

∥∥r

F

]1/r ≤ L(r − 1)n
[
σ 2 + l(θm, θ)

]
. (51)

Straightforward computations allow to extend this bound to r = 2 and r = 3.
Let us turn to bounding the second term of (50). Since the eigenvalues of the matrix (Z∗

mZm)−1 are almost surely
non-negative, it follows that

tr
[(

Z∗
mZm

)−2]≤ tr
[(

Z∗
mZm

)−1]2
.

Consequently, we shall upper bound the r th moment of the trace of an inverse standard Wishart matrix. For any couple
of matrices A and B respectively of size p1 × q1 and p2 × q2, we define the Kronecker product matrix A ⊗ B as the
matrix of size p1p2 × q1q2 that satisfies:

A ⊗ B
[
i2 + p2(i1 − 1); j2 + q2(j1 − 1)

] := A[i1; j1]B[i2; j2] for any

⎧⎪⎪⎨⎪⎪⎩
1 ≤ i1 ≤ p1,

1 ≤ i2 ≤ p2,

1 ≤ j1 ≤ q1,

1 ≤ j2 ≤ q2.

For any matrix A, ⊗kA refers to the kth power of A with respect to the Kronecker product. Since tr(A)k = tr(⊗kA)

for any square matrix A, we obtain

E
[
tr
(
Z∗

mZm

)−1]k = E
[
tr
(⊗k

(
Z∗

mZm

)−1)]= tr
[
E
(⊗k

(
Z∗

mZm

)−1)]≤√dk
m

∥∥E[⊗k
(
Z∗

mZm

)−1]∥∥
F
,

thanks to Cauchy–Schwarz inequality. In Eq. (4.2) of [27], von Rosen has characterized recursively the expectation of
⊗k(Z∗

mZm)−1 as long as n − dm − 2k − 1 is positive:

vec
(
E
[⊗k+1(Z∗

mZm

)−1])= A(n,dm, k)−1 vec
(
E
[⊗k

(
Z′

mZm

)−1]⊗ I
)
, (52)

where ‘vec’ refers to the vectorized version of the matrix. See Section 2 of [27] for more details about this defin-
ition. A(n,dm, k) is a symmetric matrix of size dk+1

m × dk+1
m which only depends on n, dm and k and is known to
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be diagonally dominant. More precisely, any diagonal element of A(n,dm, k) is greater or equal to one plus the cor-
responding row sums of the absolute values of the off-diagonal elements. Hence, the matrix A is invertible and its
smallest eigenvalue is larger or equal to one. Consequently, ϕmax(A

−1) is smaller or equal to one. It then follows from
(52) that∥∥E[⊗k+1(Z∗

mZm

)−1]∥∥
F

= ∥∥vec
(
E
[⊗k+1(Z∗

mZm

)−1])∥∥
F

≤ ϕmax
(
A−1)∥∥vec

(
E
[⊗k

(
Z∗

mZm

)−1]⊗ I
)∥∥

F

≤ √dm

∥∥E[⊗k
(
Z∗

mZm

)−1]∥∥
F
.

By induction, we obtain

E
[
tr
(
Z∗

mZm

)−1]r ≤ dr
m, (53)

if n − dm − 2r + 1 > 0. Combining upper bounds (51) and (53) enables to conclude

E
[
l(θ̂m, θm)r

]1/r ≤ Lrdmn
(
σ 2 + l(θm, θ)

)
. �

7.5. Proof of Proposition 3.2

Proof of Proposition 3.2. Let m∗ be the model that minimizes the loss function l(θ̂m, θ):

m∗ = arg inf
m∈M�n/2�

l(θ̂m, θ).

It is almost surely uniquely defined. Contrary to the oracle m∗, the model m∗ is random. By definition of m̂, we derive
that

l(θ̃ , θ) ≤ l(θ̂m∗, θ) + γn(θ̂m∗)pen(m∗) + γ n(θ̂m∗) − γn(θ̃)pen(m̂) − γ n(θ̃), (54)

where γ n is defined in the proof of Theorem 3.1. The proof divides in two parts. First, we state that on an event Ω1
of large probability, the dimensions of m̂ and of m∗ are moderate. Afterwards, we prove that on another event of large
probability Ω1 ∩ Ω2 ∩ Ω3, the ratio l(θ̃ , θ)/ l(θ̂m∗, θ) is close to one.

Lemma 7.14. Let us define the event Ω1 as:

Ω1 :=
{

log2(n) < dm∗ <
n

logn
and log2(n) < dm̂ <

n

logn

}
.

The event Ω1 is achieved with large probability: P(Ω1) ≥ 1 − L(R,s)

n2 .

Lemma 7.15. There exists an event Ω2 of probability larger than 1 − L
logn

n
such that[−γ n(θ̃) − γn(θ̃)pen(m̂) − σ 2 + ‖ε‖2

n

]
1Ω1∩Ω2 ≤ l(θ̃ , θ)τ1(n),

where τ1(n) is a positive sequence converging to zero when n goes to infinity.

Lemma 7.16. There exists an event Ω3 of probability larger than 1 − L
logn

n
such that[

γ n(θ̂m∗) + γn(θ̂m∗)pen(m∗) + σ 2 − ‖ε‖2
n

]
1Ω1∩Ω3 ≤ l(θ̂m∗, θ)τ2(n),

where τ2(n) is a positive sequence converging to zero when n goes to infinity.



Model selection and Gaussian design 511

Gathering these three lemma, we derive from the upper bound (54) the inequality

l(θ̃ , θ)

l(θ̂m∗, θ)
1Ω1∩Ω2∩Ω3 ≤ 1 + τ2(n)

1 − τ1(n)
,

which allows to conclude. �

Proof of Lemma 7.14. Let us consider the model mR,s defined by dmR,s
:= �(nR2)1/(1+s)�. If n is larger than some

quantity L(R, s), then dmR,s
is smaller than n/2 and mR,s therefore belongs to the collection M�n/2�. We shall prove

that outside an event of small probability, the loss l(θ̂mR,s
, θ) is smaller than the loss l(θ̂m, θ) of all models m ∈ M�n/2�

whose dimension is smaller than log2(n) or larger than n
logn

. Hence, the model m∗ satisfies log2(n) < dm∗ < n
logn

with
large probability.

First, we need to upper bound the loss l(θ̂mR,s
, θ). Since l(θ̂mR,s

, θ) = l(θmR,s
, θ)+ l(θ̂mR,s

, θmR,s
), it comes to upper

bounding both the bias term and the variance term. Since θ belongs to E ′
s(R),

l(θmR,s
, θ) =

+∞∑
i>dmR,s

l(θmi−1 , θmi
)

≤ (dmi
+ 1)−s

+∞∑
i>dmR,s

l(θmi−1, θmi
)

i−s
≤ σ 2

(
R2

ns

)1/(1+s)

. (55)

Then, we bound the variance term l(θ̂mR,s
, θmR,s

) thanks to (36) as in the proof of Lemma 7.5.

l(θ̂mR,s
, θmR,s

) ≤ [σ 2 + l(θmR,s
, θ)
]
ϕmax

[
n
(
Z∗

mR,s
ZmR,s

)−1]‖ΠmR,s
(ε + εmR,s

)‖2
n

σ 2 + l(θmR,s
, θ)

.

The two random variables involved in this last expression respectively follow (up to a factor n) the distribution of
an inverse Wishart matrix with parameters (n, dmR,s

) and a χ2 distribution with dmR,s
degrees of freedom. Thanks to

Lemmas 7.2 and 7.4, we prove that outside an event of probability smaller than L(R, s) exp[−L′(R, s)n1/(1+s)] with
L′(R, s) > 0,

l(θ̂mR,s
, θmR,s

) ≤ 4
[
σ 2 + l(θmR,s

, θ)
]dmR,s

n
,

if n is large enough. Gathering this last upper bound with (55) yields

l(θ̂mR,s
, θ) ≤ σ 2

[
5
R2/(1+s)

ns/(1+s)
+ 4

(
R2/(1+s)

ns/(1+s)

)2]
≤ σ 2 C(R, s)

ns/(1+s)
, (56)

where C(R, s) is a constant that only depends on R and s.
Let us prove that the bias term of any model of dimension smaller than log2(n) is larger than (56) if n is large

enough. Obviously, we only have to consider the model of dimension �log2(n)�. Assume that there exists an infinite
increasing sequence of integers un satisfying:∑

i>log2(un)

l(θmi−1, θmi
) ≤ C(R, s)

(un+1)s/(1+s)
. (57)

Then, the sequence (vn) defined by vn := log2(un) satisfies∑
i>vn

l(θmi−1 , θmi
) ≤ C(R, s) exp

[
−√

vn+1
s

1 + s

]
.



512 N. Verzelen

Let us consider a subsequence of (vn) such that �vn� is strictly increasing. For the sake of simplicity we still call it vn.
It follows that

+∞∑
i=�v0�+1

l(θmi−1 , θmi
)

i−s′ =
+∞∑
n=0

�vn+1�∑
i=�vn�+1

l(θmi−1 , θmi
)

i−s′

≤ C(R, s)

+∞∑
n=0

�vn+1�s′
exp

[
−√�vn+1� s

1 + s

]
< ∞,

and θ therefore belongs to some ellipsoid Es′(R′). This contradicts the assumption θ does not belong to any ellip-
soid Es′(R′). As a consequence, there only exists a finite sequence of integers un that satisfy condition (57). For n

large enough, the bias term of any model of dimension less than log2(n) is therefore larger than the loss l(θ̂mR,s
, θ)

with overwhelming probability.
Let us turn to the models of dimension larger than n/ logn. We shall prove that with large probability, for any

model m of dimension larger than n/ logn, the variance term l(θ̂m, θm) is larger than the order σ 2/ logn. For any
model m ∈ M�n/2�,

l(θ̂m, θm) ≥ nσ 2

ϕmax(Z∗
mZm)

‖Πm(ε + εm)‖2
n

σ 2 + l(θm, θ)
.

The two random variables involved in this expression respectively follow (up to a factor n) a Wishart distribution with
parameters (n, dm) and a χ2 distribution with dm. Again, we apply Lemmas 7.2 and 7.4 to control the deviations of
these random variables. Hence, outside an event of probability smaller than L(ξ) exp[−nξ/ logn],

l(θ̂m, θm) ≥ σ 2

(
1 +

√
dm

n
+
√

2ξ
dm

n

)−2
dm

n

(
1 − 2

√
ξ
)

for any model m of dimension larger than n/ logn. For any model m ∈ M�n/2�, the ratio dm/n is smaller than 1/2.
As a consequence, we get

l(θ̂m, θm) ≥ σ 2

logn

(
1 − 2

√
ξ
)(

1 +√1/2 +√ξ
)−2

.

Choosing for instance ξ = 1/16 ensures that for n large enough the loss l(θ̂m, θm) is larger than l(θ̂mR,s
, θ) for

every model m of dimension larger than n/ logn outside an event of probability smaller than L1 exp[−L2n/ logn] +
L3(R, s) exp[−L4(R, s)n1/(1+s)] with L4(R, s) > 0.

Let us now turn to the selected model m̂. We shall prove that outside an event of small probability,

γn(θ̂mR,s
)
[
1 + pen(mR,s)

]≤ γn(θ̂m)
[
1 + pen(m)

]
(58)

for all models m of dimension smaller than log2 n or larger than n/ logn. We first consider the models of dimension
smaller than log2(n). For any model m ∈ M�n/2�, γn(θ̂m) ∗ n/[σ 2 + l(θm, θ)] follows a χ2 distribution with n − dm

degrees of freedom. Again, we apply Lemma 7.2. Hence, with probability larger than 1 − e/[n2(e − 1)], the following
upper bound holds for any model m of dimension smaller than log2(n).

γn(θ̂m)
[
1 + pen(m)

] ≥ σ 2
[

1 + l(θm, θ)

σ 2

](
1 + 2

dm

n − dm

)[
n − dm

n
− 2

√
(n − dm)(dm + 2 log(n))

n

]

≥ σ 2
[

1 + l(θm, θ)

σ 2

](
1 + dm

n

)[
1 − 2

√
dm + 2 log(n)

n − dm

]

≥ σ 2
[

1 + l(θm, θ)

σ 2

][
1 − 4

logn√
n

]
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for n large enough. Besides, outside an event of probability smaller than 1
n2 ,

γn(θ̂mR,s
)
[
1 + pen(mR,s)

] ≤ σ 2
[

1 + l(θmR,s
, θ)

σ 2

](
1 + 2

dmR,s

n − dmR,s

)

×
[
n − dmR,s

n
+ 2

√
(n − dmR,s

)2 logn

n
+ 4

logn

n

]
≤ σ 2

[
1 + l(θmR,s

, θ)

σ 2

](
1 + dmR,s

n

)[
1 + 2

√
2 logn√

n − dmR,s

+ 4
logn

n − dmR,s

]
.

For n large enough, dmR,s
is smaller than n

2 , and the last upper bound becomes:

γn(θ̂mR,s
)
[
1 + pen(mR,s)

]≤ σ 2
[

1 + C(R, s)

ns/(1+s)

]2(
1 + 10

log(n)√
n

)
.

Hence, γn(θ̂mR,s
)[1 + pen(mR,s)] ≤ γn(θ̂m)[1 + pen(m)] if

l(θm�log2 n� , θ)

σ 2
≥ 3

C(R, s)

ns/(1+s)
× 1 + 10 log(n)/

√
n

1 − 4 log(n)/
√

n
+ 14

log(n)√
n

.

As previously, this inequality always holds except for a finite number of n, since θ does not belong to any ellip-
soid Es′(R′). Thus, outside an event of probability smaller than L

n2 , dm̂ is larger than log2 n.
Let us now turn to the models of large dimension. Inequality (58) holds if the quantity

‖ε‖2
n

(
2dmR,s

n − dmR,s

− 2dm

n − dm

)
+ ‖Πmε‖2

n

(
1 + 2dm

n − dm

)
+ 〈Π⊥

mR,s
εmR,s

,Π⊥
mR,s

ε + 2εmR,s

〉
n

(
1 + 2dmR,s

n − dmR,s

)
(59)

is non-positive. The three following bounds hold outside an event of probability smaller than L(ξ)

n2 :

‖ε‖2
n ≥ 1 − 4

√
logn√

n
,

‖Πmε‖2
n ≤ (1 + ξ)

dm

n
for all models m of dimension dm >

n

logn
,

〈
Π⊥

mR,s
εmR,s

,Π⊥
mR,s

ε + 2εmR,s

〉
n

≤ l(θmR,s
, θ)

[
n − dmR,s

n
+ 4

√
(n − dmR,s

) logn

n
+ 4 logn

n

]

+ 4
√

l(θmR,s
, θ)σ

√
(n − dmR,s

) logn

n
.

Gathering these three inequalities we upper bound (59) by

σ 2 dm

n − dm

[
−2 + 8

√
logn

n
+ (1 + ξ)

(
n + dm

n

)]
+ 2σ 2 dmR,s

n − dmR,s

+ σ 2L

(
1 + dmR,s

n

)(
l(θmR,s

, θ)

σ 2
+
√

l(θmR,s
, θ)

σ

)(
1 +

√
logn

n − dmR,s

)
.

The dimension of any model m ∈ M�n/2� is assumed to be smaller than n/2 and the dimensions of the models m

considered are larger than n
logn

. For ξ small enough and n large enough, the previous expression is therefore upper
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bounded by

σ 2 2

logn

[
3

2
(1 + ξ) − 2 + 8

√
logn

n

]
+ Lσ 2

[
R2/(1+s)

ns/(1+s)
+ R1/(1+s)

na/(2(1+a))

]
. (60)

For n large enough, this last quantity is clearly non-positive.
All in all, we have proved that for n large enough outside an event of probability smaller than L(R,s)

n2 , it holds that

log2(n) < dm∗ <
n

logn
and log2(n) < dm̂ <

n

logn
. �

Proof of Lemma 7.15. Arguing as in the proof of Theorem 3.1, we upper bound

−γ n(θ̃) − γn(θ̃)pen(m̂) + σ 2 + ‖ε‖2
n ≤ l(θm̂, θ)Am̂ + σ 2Bm̂ + (1 − κ2(n)

)
l(θ̃ , θm̂), (61)

where Am̂ and Bm̂ are respectively defined in (30) and in (31). We will fix the quantities κ1(n) and κ2(n) later. Besides,
we define and bound the quantity Em̂ as in (41).

Applying Lemmas 7.2 and 7.4 and arguing as in the proofs of Lemmas 7.6 and 7.7, there exists an event Ω2 of
large probability

P
(
Ωc

1

)≤ exp[−n/8] + 5
n/logn∑

d=log2(n)

exp

[
− 2d

logn

]
≤ exp[−n/8] + 5 logn

2n2(1 − 1/ logn)
,

and such that conditionally on Ω1 ∩ Ω2,

‖Π ⊥̂
m εm̂‖2

n

l(θm̂, θ)
≥ n − dm̂

n
− 2

√
2(n − dm̂)dm̂/ logn

n
,

‖Πm̂(ε + εm̂)‖2
n

σ 2 + l(θm̂, θ)
≤ dm̂

n
+ 2

√
2dm̂

n
√

logn
+ 4

dm̂

n logn
,

‖Π ⊥̂
m (ε + εm̂)‖2

n

σ 2 + l(θm̂, θ)
≥ n − dm̂

n
− 2

√
2(n − dm̂)dm̂/ logn

n
,

ϕmax
[(

Z∗̂
mZm̂

)−1]≤ n−1

(
1 −

(
1 +

√
4

logn

)√
dm̂

n

)−2

,

‖ε‖2
n ≤ 2,

Em̂ ≤ dm̂ + 2κ−1
1 (n)

n
+ 2

n

√[
dm̂ + (2κ−1

1 (n)
)2] 2dm̂

logn
+ 8κ−1

1 (n)
dm̂

n logn
.

Gathering these six upper bounds, we are able to upper bound Am̂ and Bm̂,

Am̂ ≤ κ1(n) + L1

√
dm̂

n logn
+ dm̂

n

[
−1 + L2

√
dm̂

(n − dm̂) logn
+ κ2(n)

1 + L3/
√

log(n)

[1 − (1 + √
4/logn)

√
dm̂/n)]2

]
,

Bm̂ ≤ dm̂

n

[
−1 + L1

√
dm̂

(n − dm̂) logn
+ κ2(n)

1 + L2/
√

log(n)

[1 − (1 + √
4/logn)

√
dm̂/n)]2

]

+ L3
dm̂

n

[
κ−1

1 (n)

dm̂

+ κ−1
1 (n)

logn
+ 1√

log(n)
+ κ−1

1 (n)√
log(n)dm̂

]
.
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Conditionally to the event Ω1, the dimension of m̂ is moderate. Setting κ1 to 1
logn

, we get

Am̂ ≤ L1

logn
+ dm̂

n

[
−1 + L2

logn
+ κ2(n)

1 + L3/
√

logn

[1 − L4/
√

log(n)]2

]
,

Bm̂ ≤ dm̂

n

[
−1 + L1

logn
+ κ2(n)

1 + L2/
√

logn

[1 − L3/
√

log(n)]2
+ L4√

logn

]
.

Hence, there exists a sequence κ2(n) converging to one such that conditionally on Ω1 ∩ Ω2, Bm̂ is non-positive and
Am̂ is bounded by L

logn
when n is large enough. Coming back to the inequality (61) yields

[−γ n(θ̃) − γn(θ̃)pen(m̂) − σ 2 + ‖ε‖2
n

]
1Ω1∩Ω2 ≤ l(θ̃ , θ)

[
L

logn
∨ (1 − κ2(n)

)]
,

which concludes the proof. �

Proof of Lemma 7.16. We follow a similar approach to the previous proof.

γ n(θ̂m∗) + γn(θ̂m∗)pen(m∗) + σ 2 − ‖ε‖2
n ≤ Cm∗ l(θm∗ , θ) + Dm∗σ

2 + κ2(n)l(θ̂m∗, θm∗), (62)

where for any model m′ ∈ M�n/2�, Cm′ and Dm′ are respectively defined as

Cm′ = κ1(n) + ‖Π⊥
m′εm′ ‖2

n

l(θm′, θ)
− 1 + 2

dm′

n − dm′

‖Π⊥
m′(ε + εm′)‖2

n

l(θm′ , θ) + σ 2

− (1 + κ2(n)
) n

ϕmax(Z∗
m′Zm′)

‖Πm(ε + εm′)‖2
n

l(θm′, θ) + σ 2
,

Dm′ = κ−1
1 (n)

〈Π⊥
m′ε,Π⊥

m′εm′ 〉2
n

σ 2l(θm′, θ)
− ‖Πm′ε‖2

n

σ 2

− (1 + κ2(n)
) n

ϕmax(Z∗
m′Zm′)

‖Πm′(ε + εm′)‖2
n

l(θm′, θ) + σ 2
+ 2

dm′

n − dm′

‖Π⊥
m′(ε + εm′)‖2

n

l(θm′, θ) + σ 2
.

We fix κ1(n) = 1/ logn whereas κ2(n) will be fixed later. Arguing as in the proof of Lemma 7.15, there exists an event
Ω3 of large probability

P
(
Ωc

3

)≤ exp[−n/8] + 5
n/logn∑

d=log2(n)

exp

[
− 2d

logn

]
≤ exp[−n/8] + 5 logn

2n2(1 − 1/ log(n))
,

such that conditionally on Ω1 ∩ Ω3, the two following bounds hold:

Cm∗ ≤ L1

logn
+ dm∗

n

[
1 + L2

logn
− (1 + κ2(n)

) 1 + L3
√

2/logn

[1 + L4/
√

logn]2

]
,

Dm∗ ≤ dm∗
n

[
1 + L1

logn
+ L2√

logn
− (1 + κ2(n)

) 1 + L3
√

2/logn

[1 + L4/
√

logn]2

]
,

if n is large. The main difference with the proof of Lemma 7.15 lies in the fact that we now control the largest
eigenvalue of Z∗

mZm thanks to the second result of Lemma 7.4. There exists a sequence κ2(n) converging to 0 such
that conditionally on Ω1 ∩Ω3, Dm∗ is non-positive and Cm∗ is bounded by L

logn
when n is large. Coming back to (61)

yields[
γ n(θ̂m∗) + pen(m∗) + σ 2 − ‖ε‖2

n

]
1Ω1∪Ω3 ≤ l(θ̂m∗ , θ)

[
L

logn
∨ κ2(n)

]
,

which concludes the proof. �
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7.6. Proof of Proposition 3.3

Proof of Proposition 3.3. The approach is similar to the proof of Proposition 1 in [9]. For any model m ∈ M�n/2�,
let us define

Δ(m,m�n/2�) := γn(θ̂m�n/2�)
[
1 + pen(m�n/2�)

]− γn(θ̂m)
[
1 + pen(m)

]
.

We shall prove that with large probability the quantity Δ(m,m�n/2�) is negative for any model m of dimension smaller
than n/4. Hence, with large probability dm̂ will be larger than n/4. Let us fix a model m of dimension smaller than n/4.

First, we use expression (25) to lower bound γn(θ̂m).

γn(θ̂m) = ∥∥Π⊥
m (ε + εm�n/2�)

∥∥2
n
+ ∥∥Π⊥

m (εm − εm�n/2�)
∥∥2

n

+ 2
〈
Π⊥

m (ε + εm�n/2�),Π
⊥
m (εm − εm�n/2�)

〉
n

≥ ∥∥Π⊥
m (ε + εm�n/2�)

∥∥2
n
−
〈
Π⊥

m (ε + εm�n/2�),
Π⊥

m (εm − εm�n/2�)

‖Π⊥
m (εm − εm�n/2�)‖n

〉2
n

,

since 2ab ≥ −a2 − b2 for any number a and b. Hence, we may upper bound Δ(m,m�n/2�) by

Δ(m,m�n/2�) ≤ ∥∥Π⊥
m�n/2�(ε + εm�n/2�)

∥∥2
n

[
pen(m�n/2�) − pen(m)

]
− ∥∥[Π⊥

m − Π⊥
m�n/2�

]
(ε + εm�n/2�)

∥∥2
n

[
1 + pen(m)

]
+
〈
Π⊥

m (ε + εm�n/2�),
Π⊥

m (εm − εm�n/2�)

‖Π⊥
m (εm − εm�n/2�)‖n

〉2
n

[
1 + pen(m)

]
. (63)

Arguing as the proof of Lemma 2.1, we observe that ‖Π⊥
m�n/2�(ε + εm�n/2�)‖2

n ∗ n/[σ 2 + l(θm�n/2�)] follows a χ2

distribution with n − �n/2� degrees of freedom. Analogously, the random variable ‖[Π⊥
m − Π⊥

m�n/2� ](ε + εm�n/2�)‖2
n ∗

n/[σ 2 + l(θm�n/2�)] follows a χ2 distribution with (dm�n/2� − dm) degrees of freedom. Let us turn to the distribution of
the third term. Coming back to the definition of εm, we observe that

εm − εm�n/2� = Y − Xθm − (Y − Xθm�n/2�) = X(θm − θm�n/2�).

Hence, εm − εm�n/2� is both independent of Xm and of ε + εm�n/2� . Consequently, by conditioning and unconditioning,
we conclude that the random variable defined in (63) follows (up to a [σ 2 + l(θm�n/2�)]/n factor) a χ2 distribution with
1 degree of freedom.

Once again, we apply Lemma 7.2 and the classical deviation bound P(|N (0,1)| ≥ √
2x) ≤ 2e−x . Let x be

some positive number smaller than one that we shall fix later. There exists an event Ωx of probability larger than
1 − exp(−nx/2) − 3 exp(−(n/4 − 1)x) 1

1−e−x such for any model of dimension smaller than n/4,

Δ(m,m�n/2�)
σ 2 + l(θm�n/2�)

≤
(

n − �n/2�
n

)(
1 + 2

√
x + 2x

)(
pen(m�n/2�) − pen(m)

)
− �n/2� − dm

n

(
1 − 2

√
x − 2x

)(
1 + pen(m)

)
.

We now replace the penalty terms by their values thanks to assumption (11). Conditionally to Ωx , we obtain that

Δ(m,m�n/2�)
σ 2 + l(θm�n/2�)

≤ �n/2� − dm

n

{
4(1 − ν)

(√
x + x

)[
1 + dm

n − dm

]
− ν
(
1 − 2

√
x − 2x

)}
.
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Since the dimension of the model m is smaller than n/4, dm

n−dm
is smaller than 1/3. Hence, the last upper bound

becomes

Δ(m,m�n/2�)
σ 2 + l(θm�n/2�)

≤ �n/2� − dm

n

{
16

3
(1 − ν)

(√
x + x

)− ν
(
1 − 2

√
x − 2x

)}
.

There exists some x(ν) such that conditionally on Ωx(ν), Δ(m,m�n/2�) is negative for any model m of dimension
smaller than n/4. Since P(Ωc

x(ν)) goes exponentially fast with ν to 0, there exists some n0(ν, δ) such that for any n

larger than n0(ν, δ), P(Ωc
x(ν)) is smaller than δ. We have proved that with probability larger than 1 − δ, the dimension

of m̂ is larger than n/4.
Let us simultaneously lower bound the loss l(θ̂m, θm) for every model m ∈ M of dimension larger than n/4. In the

sequel, � means “stochastically larger than.” Thanks to (27), we stochastically lower bound l(θ̂m, θm)

l(θ̂m, θm) ≥ nϕmax
(
Z∗

mZm

)−1∥∥Πm(ε + εm)
∥∥2

n

� ϕmax
(
nZ∗

mZm

)−1‖Πmε‖2
n,

where Z∗
mZm follows a standard Wishart distribution with parameters (n, dm). Applying Lemmas 7.2 and 7.4 in order

to simultaneously lower bound the loss l(θ̂m, θm), we find an event Ω ′ of probability larger than 1 − 2 exp(−n/4)

1−e−1/16 , such
that

l(θ̂m, θm)1Ω ′ ≥
(

1 +
√

dm

n
+
√

2dm

16n

)−2
dm

2n
σ 2 ≥ dm

8n
σ 2

for any model m ∈ M of dimension larger than n/4. On the event Ωx(ν), the dimension dm̂ is larger than n/4. As a

consequence, l(θ̃ , θm̂)1Ω ′∩Ωx(ν)
≥ σ 2

32 . All in all, we obtain

E
[
l(θ̃ , θ)

] ≥ l(θm�n/2�, θ) + E
[
1Ω ′∩Ωx(ν)

l(θ̃ , θm̂)
]

≥ l(θm�n/2�, θ) + [1 − P
(
Ωc

x(ν)

)− P
(
Ω ′c)]σ 2

32

≥ l(θm�n/2�, θ) + L(δ, ν)σ 2,

if n is larger than some n0(ν, δ). �

7.7. Proofs of the minimax lower bounds

All these minimax lower bounds are based on Birgé’s version of Fano’s lemma [6].

Lemma 7.17 (Birgé’s lemma). Let (Θ,d) be some pseudo-metric space and {Pθ , θ ∈ Θ} be some statistical model.
Let κ denote some absolute constant smaller than one. Then for any estimator θ̂ and any finite subset Θ1 of Θ , setting
δ = minθ,θ ′∈Θ1,θ �=θ ′ d(θ, θ ′), provided that maxθ,θ ′∈Θ1 K(Pθ ,Pθ ′) ≤ κ log |Θ1|, the following lower bound holds for
every p ≥ 1,

sup
θ∈Θ1

Eθ

[
dp(θ̂ , θ)

]≥ 2−pδp(1 − κ).

First, we compute the Kullback–Leibler divergence between the distribution Pθ and Pθ ′ .

K(Pθ ;Pθ ′) = K
(
Pθ (X);Pθ ′(X)

)+ Eθ

[
K
(
Pθ (Y |X);Pθ ′(Y |X)

)∣∣X].
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The two marginal distributions Pθ (X) and Pθ ′(X) are equal. The conditional distributions Pθ (Y |X) and Pθ ′(Y |X) are
Gaussian with variance σ 2 and with mean respectively equal to Xθ and Xθ ′. Hence, the conditional Kullback–Leibler
divergence equals

K
(
Pθ (Y |X);Pθ ′(Y |X)

)= [X(θ − θ ′)]2

2σ 2
.

Reintegrating with respect to X yields

K(Pθ ;Pθ ′) = l(θ ′, θ)

2σ 2
and K

(
P

⊗n
θ ;P

⊗n
θ ′
)= n

l(θ ′, θ)

2σ 2
. (64)

Proof of Proposition 4.1.
First, we need a lower bound of the minimax rate of estimation on a subspace of dimension D.

Lemma 7.18. Let D be some positive number smaller than p and r be some arbitrary positive number. Let SD be the
set of vectors in R

p whose support in included in {1, . . . ,D}. Then, for any estimator θ̂ of θ ,

sup
θ∈SD,l(0p,θ)≤Dr2

Eθ

[
l(θ̂ , θ)

]≥ LD

[
r2 ∧ σ 2

n

]
. (65)

Let us fix some D ∈ {1, . . . , p}. Consider the set ΘD := {θ ∈ SD, l(0p, θ) ≤ a2
DR2}. Since the aj ’s are non-

increasing, it holds that

p∑
i=1

l(θmi−1 , θmi
)

a2
i

≤
D∑

i=1

l(θmi−1, θmi
)

a2
D

≤ l(0p, θ)

a2
D

≤ R2

for any θ ∈ ΘD . Hence ΘD is included in Ea(R). Applying Lemma 7.18, we get

inf
θ̂

sup
θ∈Ea(R)

≥ LD

[
a2
DR2

D
∧ σ 2

n

]
≥ L

[
a2
DR2 ∧ Dσ 2

n

]
.

Taking the supremum over D in {1, . . . , p} enables to conclude. �

Proof of Lemma 7.18. Let us assume first that Σ = Ip . Consider the hypercube CD(r) := {0, r}D × {0}p−D . Thanks
to (64), we upper bound the Kullback–Leibler divergence between the distributions Pθ and Pθ ′

K
(
P

⊗n
θ ;P

⊗n
θ ′
)≤ nDr2

2σ 2
,

where θ and θ ′ belong to CD(r). Then, we apply Varshamov–Gilbert’s lemma (e.g., Lemma 4.7 in [24]) to the
set CD(r).

Lemma 7.19 (Varshamov–Gilbert’s lemma). Let {0,1}D be equipped with Hamming distance dH . There exists
some subset Θ of {0,1}D with the following properties

dH

(
θ, θ ′)> D/4 for every

(
θ, θ ′) ∈ Θ2 with θ �= θ ′ and log |Θ| ≥ D/8.

Combining Lemma 7.17 with the set Θ defined in the last lemma yields

inf
θ̂

sup
θ∈CD(r)

Eθ

[
dH (θ̂, θ)

]≥ D

16
,
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provided that nDr2

2σ 2 ≤ D/16. Coming back to the loss function l(·, ·) yields

inf
θ̂

sup
θ∈CD(r)

Eθ

[
l(θ̂ , θ)

]≥ LDr2,

if r2 ≤ Lσ 2

n
. Finally, we get

inf
θ̂

sup
θ∈SD,l(0p,θ)≤Dr2

Eθ

[
l(θ̂ , θ)

]≥ LD

[
r2 ∧ σ 2

n

]
.

If we no longer assume that the covariance matrix Σ is the identity, we orthogonalize the sequence Xi thanks to
Gram–Schmidt process. Applying the previous argument to this new sequence of covariates allows to conclude. �

Proof of Corollary 4.2. This result follows from the upper bound on the risk of θ̃ in Theorem 3.1 and the minimax

lower bound of Proposition 4.1. Let Ea(R) an ellipsoid satisfying σ 2

n
≤ R2 ≤ σ 2nβ , then l(0p, θ) is smaller than σ 2nβ .

By Theorem 3.1, the estimator θ̃ defined with the collection M�n/2�∧p and pen(m) = K dm

n−dm
satisfies

Eθ

[
l(θ̃ , θ)

] ≤ L(K) inf
1≤i≤�n/2�∧p

{
l(θmi

, θ) + K
i

n − i

[
σ 2 + l(θmi

, θ)
]}+ L(K,β)

σ 2

n

≤ L(K,β) inf
1≤i≤�n/2�∧p

[
l(θmi

, θ) + i

n
σ 2
]
.

If θ belongs to Ea(R), then

l(θmi
, θ) ≤ a2

i+1

p∑
j=i+1

l(θmj
, θmj−1)

a2
j

≤ R2a2
i+1,

since the (ai)’s are increasing. It follows that

Eθ

[
l(θ̃ , θ)

] ≤ L(K,β) inf
1≤i≤�n/2�∧p

[
R2a2

i+1 + i

n
σ 2
]
. (66)

Let us define i∗ := sup{1 ≤ i ≤ p,R2a2
i ≥ σ 2i

n
}, with the convention sup ∅ = 0. Since R2 ≥ σ 2/n, i∗ is larger or

equal to one. By Proposition 4.1, the minimax rates of estimation is lower bounded as follows

inf
θ̂

sup
θ∈Ea(R)

Eθ

[
l(θ̂ , θ)

]≥ L

[
a2
i∗+1R

2 ∨ σ 2i∗

n

]
≥ L

[
a2
i∗+1R

2 + σ 2i∗

n

]
.

If either p ≤ 2n or a2�n/2�+1R
2 ≤ σ 2/2, then i∗ is smaller or equal to �n/2� ∧ p and we obtain thanks to (66) that

Eθ

[
l(θ̃ , θ)

] ≤ L(K,β)

[
a2
i∗+1R

2 + σ 2i∗

n

]
≤ L(K,β) inf

θ̂
sup

θ∈Ea(R)

E
[
l(θ̂ , θ)

]
. �

Proof of Proposition 4.3. First, we use (64) to upper bound the Kullback–Leibler divergence between the distribu-
tions corresponding to parameters θ and θ ′ in the set Θ[k,p](r)

K
(
P

⊗n
θ ;P

⊗n
θ ′
)≤ nkr2

2σ 2
,

since the covariates are i.i.d. standard Gaussian variables. Let us state a combinatorial argument due to Birgé and
Massart [7].
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Lemma 7.20. Let {0,1}p be equipped with Hamming distance dH and given 1 ≤ k ≤ p/4, define {0,1}pk := {x ∈
{0,1}p: dH (0, x) = k}. There exists some subset Θ of {0,1}pk with the following properties

dH

(
θ, θ ′)> k/8 for every

(
θ, θ ′) ∈ Θ2 with θ �= θ ′ and log |Θ| ≥ k/5 log

(
p

k

)
.

Suppose that k is smaller than p/4. Applying Lemma 7.17 with Hamming distance dH and the set rΘ introduced
in Lemma 7.20 yields

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[
dH (θ̂, θ)

]≥ k

16
, provided that

nkr2

2σ 2
≤ k

10
log

(
p

k

)
. (67)

Since the covariates Xi are independent and of variance 1, the lower bound (67) is equivalent to

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[
l(θ̂ , θ)

]≥ kr2

16
.

All in all, we obtain

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[
l(θ̂ , θ)

]≥ Lk

(
r2 ∧ log(p/k)

n
σ 2
)

.

Since p/k is larger than 4, we obtain the desired lower bound by changing the constant L:

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[
l(θ̂ , θ)

]≥ Lk

(
r2 ∧ 1 + log(p/k)

n
σ 2
)

.

If p/k is smaller than 4, we know from the proof of Lemma 7.18, that

inf
θ̂

sup
θ∈Ck(r)

Eθ

[
l(θ̂ , θ)

]≥ Lk

(
r2 ∧ σ 2

n

)
.

We conclude by observing that log(p/k) is smaller than log(4) and that Ck(r) is included in Θ[k,p](r). �

Proof of Proposition 4.5. Assume first the covariates (Xi) have a unit variance. If this is not the case, then one only
has to rescale them. By condition (22), the Kullback–Leibler divergence between the distributions corresponding to
parameters θ and θ ′ in the set Θ[k,p](r) satisfies

K
(
P

⊗n
θ ;P

⊗n
θ ′
)≤ (1 + δ)2 nkr2

2σ 2
,

We recall that ‖ · ‖ refers to the canonical norm in R
p . Arguing as in the proof of Proposition 4.3, we lower bound the

risk of any estimator θ̂ with the loss function ‖ · ‖,

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[‖θ̂ − θ‖2]≥ Lk

(
r2 ∧ 1 + log(p/k)

(1 + δ)2n
σ 2
)

.

Applying again assumption (22) allows to obtain the desired lower bound on the risk

inf
θ̂

sup
θ∈Θ[k,p](r)

Eθ

[
l(θ̂ , θ)

]≥ Lk(1 − δ)2
(

r2 ∧ 1 + log(p/k)

(1 + δ)2n
σ 2
)

. �

Proof of Proposition 4.6. In short, we find a subset Φ ⊂ {1, . . . , p} whose correlation matrix follows a 1/2-Restricted
Isometry Property of size 2k. We then apply Proposition 4.5 with the subset Φ of covariates.
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We first consider the correlation matrix Ψ1(ω). Let us pick a maximal subset Φ ⊂ {1, . . . , p} of points that are
	log(4k)/ω
 spaced with respect to the toroidal distance. Hence, the cardinality of Φ is �p	log(4k)/ω
−1�. Assume
that k is smaller than this quantity. We call C the correlation matrix of the points that belong to Φ . Obviously, for any
(i, j) ∈ Φ2, it holds that |C(i, j)| ≤ 1/(4k) if i �= j . Hence, any submatrix of C with size 2k is diagonally dominant
and the sum of the absolute value of its non-diagonal elements is smaller than 1/2. Hence, the eigenvalues of any
submatrix of C with size 2k lies between 1/2 and 3/2. The matrix C therefore follows a 1/2-Restricted Isometry
Property of size 2k. Consequently, we may apply Proposition 4.5 with the subset of covariates Φ and the result
follows. The second case is handled similarly.

Definition of the correlations. Let us now justify why these correlations are well defined when p is an odd integer.
We shall prove that the matrices Ψ1(ω) and Ψ2(t) are non-negative. Observe that these two matrices are symmetric
and circulant. This means that there exists a family of numbers (ak)1≤k≤p such that

Ψ1(ω)[i, j ] = ai−j modp for any 1 ≤ i, j ≤ p.

Such matrices are known to be jointly diagonalizable in the same basis and their eigenvalues correspond to the discrete
Fourier transform of (ak). More precisely, their eigenvalues (λl)1≤l≤p are expressed as

λl :=
p−1∑
k=0

exp

(
2iπkl

p

)
ak. (68)

We refer to [28], Section 2.6.2, for more details. In the first example, ak equals exp(−ω(k ∧ (p − k)), whereas it
equals [1 + (k ∧ (p − k))]−t in the second example.

Case 1. Using the expression (68), one can compute λl .

λl = −1 + 2
(p−1)/2∑

k=0

cos

(
2πkl

p

)
exp(−kω)

= −1 + 2 Re

{
(p−1)/2∑

k=0

exp

[
k

(
i2π

l

p
− ω

)]}

= −1 + 2 Re

{
1 − e−ω(p+1)/2(−1)lei2π(l/p)

1 − e−ω+i2π(l/p)

}
= −1 + 2

1 − e−ω cos(2πl/p) + e−ω(p+1)/2(−1)l cos(πl/p)(e−ω − 1)

1 + e−2ω − 2e−ω cos(2πl/p)
.

Hence, we obtain that

λl ≥ 0 ⇐⇒ 1 + 2e−ω(p+1)/2(−1)l cos

(
πl

p

)(
e−ω − 1

)− e−2ω ≥ 0.

It is sufficient to prove that

1 − e−2ω + 2e−ω(p+3)/2 − 2e−ω(p+1)/2 ≥ 0.

This last expression is non-negative if ω equals zero and is increasing with respect to ω. We conclude that λl is
non-negative for any 1 ≤ l ≤ p. The matrix Ψ1(ω) is therefore non-negative and defines a correlation.

Case 2. Let us prove that the corresponding eigenvalues λl are non-negative.

λl = −1 + 2
(p−1)/2∑

k=0

cos

(
2πkl

p

)
(k + 1)−t .
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Using the following identity

(k + 1)−t = 1

�(t)

∫ ∞

0
e−r(k+1)rt−1 dr,

we decompose λl into a sum of integrals.

λl = 1

�(t)

{∫ ∞

0
rt−1e−r

[
−1 + 2

(p−1)/2∑
k=0

cos

(
2πkl

p

)
e−rk

]}
dr.

The term inside the brackets corresponds to the eigenvalue for an exponential correlation with parameter r (Case 1).
This expression is therefore non-negative for any r ≥ 0. In conclusion, the matrix Ψ2(t) is non-negative and the
correlation is defined. �

Appendix

Proof of Lemma 7.1. We recall that γn(θ̂m) = ‖Y −ΠmY‖2
n. Thanks to the definition (23) of ε and εm, we obtain the

first result. Let us turn to the mean squared error γ (θ̂m). In the following computation θ̂m is considered as fixed and
we only use that θ̂m belongs to Sm. By definition,

γ (θ̂m) = EY,X[Y − Xθ̂m]2 = σ 2 + EX

[
X(θ − θ̂m)

]2
= σ 2 + l(θm, θ) + l(θ̂m, θm),

since θm is the orthogonal projection of θ with respect to the inner product associated to the loss l(·, ·). We then derive
that

l(θ̂m, θm) = EXm

[
X(θm − θ̂m)

]2 = (θm − θ̂m)∗Σ(θm − θ̂m).

Since θ̂m is the least-squares estimator of θm, it follows from (23) that

l(θ̂m, θm) = (ε + εm)∗Xm

(
X∗

mXm

)−1
Σm

(
X∗

mXm

)−1X∗
m(ε + εm).

We replace Xm by Zm

√
Σm and therefore obtain

l(θ̂m, θm) = (ε + εm)∗Zm

(
Z∗

mZm

)−2Z∗
m(ε + εm). �

Proof of Lemma 2.1. Thanks to Eq. (25), we know that γn(θ̂m) = ‖Π⊥
m (ε + εm)‖2

n. The variance of ε + εm is
σ 2 + l(θm, θ). Since ε + εm is independent of Xm, γn(θ̂m) ∗ n/[σ 2 + l(θm, θ)] follows a χ2 distribution with n − dm

degrees of freedom and the result follows.
Let us turn to the expectation of γ (θ̂m). By (26), γ (θ̂m) equals

γ (θ̂m) = σ 2 + l(θm, θ) + (ε + εm̂)∗Zm̂

(
Z∗̂

mZm̂

)−2Z∗̂
m(ε + εm̂),

following the arguments of the proof of Lemma 7.1. Since ε + εm and Xm are independent, one may integrate with
respect to ε + εm

E
[
γ (θ̂m)

]= [σ 2 + l(θm, θ)
]{

1 + E
[
tr
(
Z∗

mZm

)−1]}
,

where the last term it the expectation of the trace of an inverse standard Wishart matrix of parameters (n, dm). Thanks
to [27], we know that it equals dm

n−dm−1 . �
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Proof of Lemma 7.3. The random variable
√

χ2(d) may be interpreted as a Lipschitz function with constant 1 on R
d

equipped with the standard Gaussian measure. Hence, we may apply the Gaussian concentration theorem (see, e.g.,
[24], Theorem 3.4). For any x > 0,

P
(√

χ2(d) ≤ E
[√

χ2(d)
]− √

2x
)≤ exp(−x). (A.1)

In order to conclude, we need to lower bound E[√χ2(d)]. Let us introduce the variable Z := 1 −
√

χ2(d)
d

. By defini-
tion, Z is smaller or equal to one. Hence, we upper bound E(Z) as

E(Z) ≤
∫ 1

0
P(Z ≥ t)dt ≤

∫ √
1/8

0
P(Z ≥ t)dt + P

(
Z ≥

√
1

8

)
.

Let us upper bound P(Z ≥ t) for any 0 ≤ t ≤
√

1
8 by applying Lemma 7.2

P(Z ≥ t) ≤ P
(
χ2(d) ≤ d[1 − t]2)

≤ P
(
χ2(d) ≤ d − 2

√
d

√
dt2/2

)≤ exp

(
−dt2

2

)
,

since t ≤ 2 − √
2. Gathering this upper bound with the previous inequality yields

E(Z) ≤ exp

(
− d

16

)
+
∫ +∞

0
exp

(
−dt2

2

)
dt ≤ exp

(
− d

16

)
+
√

π

2d
.

Thus, we obtain E(
√

χ2(d)) ≥ √
d − √

d exp(−d/16) − √
π/2. Combining this lower bound with (A.1) allows to

conclude. �
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