Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

2009, Vol. 45, No. 4, 932–942 DOI: 10.1214/08-AIHP302

© Association des Publications de l'Institut Henri Poincaré, 2009

www.imstat.org/aihp

A probabilistic ergodic decomposition result

Albert Raugi

IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France E-mail: raugi@univ-rennes1.fr

Received 14 April 2008; accepted 1 September 2008

Abstract. Let (X, \mathfrak{X}, μ) be a standard probability space. We say that a sub- σ -algebra \mathfrak{B} of \mathfrak{X} decomposes μ in an ergodic way if any regular conditional probability ${}^{\mathfrak{B}}P$ with respect to \mathfrak{B} and μ satisfies, for μ -almost every $x \in X$, $\forall B \in \mathfrak{B}$, ${}^{\mathfrak{B}}P(x, B) \in \{0, 1\}$. In this case the equality $\mu(\cdot) = \int_{X} {}^{\mathfrak{B}}P(x, \cdot)\mu(\mathrm{d}x)$, gives us an integral decomposition in " \mathfrak{B} -ergodic" components.

For any sub- σ -algebra $\mathfrak B$ of $\mathfrak X$, we denote by $\overline{\mathfrak B}$ the smallest sub- σ -algebra of $\mathfrak X$ containing $\mathfrak B$ and the collection of all sets A in $\mathfrak X$ satisfying $\mu(A)=0$. We say that $\mathfrak B$ is μ -complete if $\mathfrak B=\overline{\mathfrak B}$.

Let $\{\mathfrak{B}_i\colon i\in I\}$ be a non-empty family of sub- σ -algebras which decompose μ in an ergodic way. Suppose that, for any finite subset J of I, $\bigcap_{i\in J}\overline{\mathfrak{B}_i}=\overline{\bigcap_{i\in J}\mathfrak{B}_i}$; this assumption is satisfied in particular when the σ -algebras \mathfrak{B}_i , $i\in I$, are μ -complete. Then we prove that the sub- σ -algebra $\bigcap_{i\in I}\mathfrak{B}_i$ decomposes μ in an ergodic way.

Résumé. Soit (X, \mathfrak{X}, μ) un espace probabilisé standard. Nous disons qu'une sous-tribu \mathfrak{B} de \mathfrak{X} décompose ergodiquement μ si toute probabilité conditionnelle régulière ${}^{\mathfrak{B}}P$ relativement à \mathfrak{B} et μ , vérifie, pour μ -presque tout $x \in X$, $\forall B \in \mathfrak{B}, {}^{\mathfrak{B}}P(x, B) \in \{0, 1\}$. Dans ce cas l'égalité $\mu(\cdot) = \int_X {}^{\mathfrak{B}}P(x, \cdot)\mu(\mathrm{d}x)$, nous donne une décomposition intégrale en composantes " \mathfrak{B} -ergodiques."

Pour toute sous-tribu \mathfrak{B} de \mathfrak{X} , nous notons $\overline{\mathfrak{B}}$ la plus petite sous-tribu de \mathfrak{X} contenant \mathfrak{B} et tous les sous-ensembles mesurables de X de μ -mesure nulle. Nous disons que la tribu \mathfrak{B} est μ -complète si $\mathfrak{B} = \overline{\mathfrak{B}}$.

Soit $\{\mathfrak{B}_i\colon i\in I\}$ une famille non vide de sous-tribus de \mathfrak{X} décomposant ergodiquement μ . Supposons que, pour toute partie finie J de I, $\bigcap_{i\in J}\overline{\mathfrak{B}_i}=\bigcap_{i\in J}\mathfrak{B}_i$; cette hypothèse est satisfaite si les tribus \mathfrak{B}_i , $i\in I$, sont μ -complètes. Alors la sous-tribu $\bigcap_{i\in I}\mathfrak{B}_i$ décompose ergodiquement μ .

MSC: 28A50; 28D05; 60A10

Keywords: Regular conditional probability; Disintegration of probability; Quasi-invariant measures; Ergodic decomposition

1. Introduction

There are several versions of ergodic decomposition theorems in the literature (cf. [3,4,6–8]) which give an integral decomposition of a probability measure μ , on a standard measurable space, in ergodic components. Most of these decompositions are based on abstract results like Choquet's theorem. A probabilistic approach which can prove to be more convenient due to the properties of the conditional expectation (see [2]) is the following. Let (X, \mathfrak{X}, μ) be a standard Borel probability space. Let \mathfrak{B} be a sub- σ -algebra of \mathfrak{X} . We denote by $\mathfrak{B}P$ a regular conditional probability of \mathfrak{B} and μ . We say that \mathfrak{B} decomposes μ in an ergodic way if for μ -almost every $x \in X$, $\forall B \in \mathfrak{B}$, $\mathfrak{B}P(x, B) \in \{0, 1\}$. In this case, the equality $\mu(\mathrm{d}x) = \int_X \mathfrak{B}P(x, \cdot)\mu(\mathrm{d}x)$ gives us an integral decomposition in \mathfrak{B} -ergodic components.

In [7,8] Shimomura proves that the intersection of a decreasing sequence of separable sub- σ -algebras of $\mathfrak X$ decomposes μ in an ergodic way. He also gives an example of a standard probability space and a suitable sub- σ -algebra for which the above decomposition is not ergodic.

Let $\{\mathfrak{B}_i\colon i\in I\}$ be a non-empty family of sub- σ -algebras which decompose μ in an ergodic way. Suppose that, for any finite subset J of I, $\bigcap_{i\in J}\overline{\mathfrak{B}_i}=\bigcap_{i\in J}\mathfrak{B}_i$. The aim of this paper is to prove that the sub- σ -algebra $\bigcap_{i\in I}\mathfrak{B}_i$ decomposes μ in an ergodic way.

2. Preliminaries

It is not necessary to work with standard Borel spaces. We only need probability space for which any sub- σ -algebra has regular conditional probabilities. In this section we recall some results about this property. On a standard Borel space (X, \mathfrak{X}) , it is well known that, for any probability measure μ and any sub- σ -algebra \mathfrak{B} of \mathfrak{X} , there exists a regular conditional probability with respect to μ and \mathfrak{B} .

Definition 2.1. A σ -algebra on a set X is called separable if it is generated by a countable sub-algebra.

Proposition 2.2. Let (X, \mathfrak{X}) be a measurable space with a separable σ -algebra \mathfrak{X} . Then two positive σ -finite measures are equal if they coincide on a countable algebra generating \mathfrak{X} .

Definition 2.3. A class C of subsets of X is said to be compact if, for any sequence $(C_n)_{n\in\mathbb{N}}$ of elements of C with an empty intersection $\bigcap_{n\in\mathbb{N}} C_n$, there exists a natural integer p such that $\bigcap_{n=0}^p C_n = \emptyset$.

Definition 2.4. Let (X, \mathfrak{X}, μ) be a probability space. Let \mathcal{C} be a compact subclass of \mathfrak{X} . We say that \mathcal{C} is μ -approximating if

$$\forall A \in \mathfrak{X} \quad \mu(A) = \sup \{ \mu(C) : C \in \mathcal{C}, C \subset A \}.$$

Definition 2.5. Let (X, \mathfrak{X}, μ) be a probability space. Let \mathfrak{B} be a sub- σ -algebra of \mathfrak{X} . We call regular conditional probability with respect to \mathfrak{B} and μ a map P from $X \times \mathfrak{X}$ to [0, 1] such that:

- (i) for any $x \in X$, $P(x, \cdot)$ is a probability measure on \mathfrak{X} .
- (ii) for any $A \in \mathfrak{X}$, the map $x \in X \mapsto P(x, A)$ is a version of the conditional expectation $\mathbb{E}_{\mu}[1_A|\mathfrak{B}]$; that is, this map is \mathfrak{B} -measurable and, for any $B \in \mathfrak{B}$,

$$\int_X 1_A(x) 1_B(x) \mu(\mathrm{d}x) = \int_X P(x, A) 1_B(x) \mu(\mathrm{d}x).$$

Then for any non-negative (or bounded) \mathfrak{X} -measurable function f, the function Pf defined by $Pf(x) = \int_X f(y) \times P(x, dy)$ (expectation of f with respect to the probability $P(x, \cdot)$) is a version of the conditional expectation $\mathbb{E}_u[f|\mathfrak{B}]$.

Theorem 2.6 ([5], corollaire Proposition V-4-4). Let (X, \mathfrak{X}, μ) be a probability space with a separable σ -algebra \mathfrak{X} containing a μ -approximating compact class.

Then, for any sub- σ -algebra $\mathfrak B$ of $\mathfrak X$ there exists a regular conditional probability with respect to $\mathfrak B$ and μ .

Remarks. Let (X, \mathfrak{X}, μ) be a probability space with a separable σ -algebra \mathfrak{X} containing a μ -approximating compact class. Let \mathfrak{B} be a sub- σ -algebra of \mathfrak{X} .

- 1. If P and Q are two regular conditional probabilities with respect to \mathfrak{B} and μ then, for μ -almost every $x \in X$, the probability measures $P(x,\cdot)$ and $Q(x,\cdot)$ are equal.
- 2. If P is a regular conditional probability with respect to \mathfrak{B} and μ , then for any $B \in \mathfrak{B}$, we have, for μ -almost every $x \in X$,

$$P(x, B) = E_{\mu}[1_B | \mathfrak{B}](x) = 1_B(x) = \delta_x(B) \in \{0, 1\},\$$

where δ_x is the Dirac measure at the point x.

When the σ -algebra $\mathfrak B$ is separable, from Proposition 2.2 we can permute "for any $B \in \mathfrak B$ " and "for μ -almost every $x \in X$."

3. Let $\overline{\mathfrak{B}}$ be the smallest sub- σ -algebra containing \mathfrak{B} and the collection of all sets A in \mathfrak{X} satisfying $\mu(A) = 0$. One sees easily that any regular conditional probability with respect to \mathfrak{B} and μ is a regular conditional probability with respect to $\overline{\mathfrak{B}}$ and μ . For two sub- σ -algebras \mathfrak{B}_1 and \mathfrak{B}_2 of \mathfrak{X} , the sub- σ -algebra $\overline{\mathfrak{B}_1} \cap \overline{\mathfrak{B}_2}$ is not necessarily equal to $\overline{\mathfrak{B}_1} \cap \overline{\mathfrak{B}_2}$; consequently $\mathbb{L}^2(X, \overline{\mathfrak{B}_1} \cap \overline{\mathfrak{B}_2}, \mu)$ is not necessarily equal to $\mathbb{L}^2(X, \overline{\mathfrak{B}_1} \cap \overline{\mathfrak{B}_2}, \mu)$.

3. Main results

Throughout this section, we assume that (X, \mathfrak{X}, μ) is a probability space with a separable σ -algebra \mathfrak{X} containing a μ -approximating compact class. The preceding Remark 2 leads us to introduce the following definition.

Definition 3.1. We say that a sub- σ -algebra \mathfrak{B} of \mathfrak{X} decomposes μ in an ergodic way if one (and thus all) regular conditional probability $\mathfrak{B}P$ with respect to \mathfrak{B} and μ satisfies, for μ -almost every $x \in X$, $\forall B \in \mathfrak{B}$, $\mathfrak{B}P(x, B) \in \{0, 1\}$.

From the preceding Remarks 2 and 3 it follows that:

- Any separable sub- σ -algebra of \mathfrak{X} decomposes μ in an ergodic way.
- If $\overline{\mathfrak{B}}$ decomposes μ in an ergodic way then so does \mathfrak{B} . (Any regular conditional probability $\mathfrak{B}P$ with respect to \mathfrak{B} and μ is a regular conditional probability with respect to $\overline{\mathfrak{B}}$ and μ . If $\overline{\mathfrak{B}}$ decomposes μ in an ergodic way then, for μ -almost every $x \in X$, $\mathfrak{B}P(x, B) \in \{0, 1\}$ for any $B \in \overline{\mathfrak{B}}$ and a fortiori for any $B \in \mathfrak{B}$. Which proves that \mathfrak{B} decomposes μ in an ergodic way.)

Lemma 3.2. Let \mathfrak{B} be a sub- σ -algebra of \mathfrak{X} , and let $\mathfrak{B}P$ be a regular conditional probability with respect to \mathfrak{B} and μ . Then, for μ -almost every $x \in X$, we have the probability equalities

$${}^{\mathfrak{B}}P(y,\cdot) = {}^{\mathfrak{B}}P(x,\cdot)$$
 for ${}^{\mathfrak{B}}P(x,\cdot)$ -almost every $y \in X$

and consequently for any $B \in \mathfrak{B}$, we have for μ -almost every $x \in X$,

$$\forall A \in \mathfrak{X} \quad \int_X 1_A(y) 1_B(y)^{\mathfrak{B}} P(x, \mathrm{d}y) = \int_X \mathfrak{B} P(y, A) 1_B(y)^{\mathfrak{B}} P(x, \mathrm{d}y).$$

The following proposition tells us that the sub- σ -algebra $\mathfrak B$ of $\mathfrak X$ decomposes μ in an ergodic way if and only if, in the last equalities, we can permute "for any $B \in \mathfrak B$ " and "for μ -almost every $x \in X$."

Proposition 3.3. Let \mathfrak{B} be a sub- σ -algebra of \mathfrak{X} , and let ${}^{\mathfrak{B}}P$ be a regular conditional probability with respect to \mathfrak{B} and μ .

Then the two following assertions are equivalent:

- (i) \mathfrak{B} decomposes μ in an ergodic way;
- (ii) For μ -almost every $x \in X$, ${}^{\mathfrak{B}}P$ is a regular conditional probability with respect to \mathfrak{B} and ${}^{\mathfrak{B}}P(x,\cdot)$.

In this case, for any sub- σ -algebra $\mathfrak C$ of $\mathfrak B$ and any regular conditional probability ${}^{\mathfrak C}\!P$ with respect to $\mathfrak C$ and μ , for μ -almost every $x \in X$, ${}^{\mathfrak B}\!P$ is a regular conditional probability with respect to $\mathfrak B$ and ${}^{\mathfrak C}\!P(x,\cdot)$; that is, for μ -almost every $x \in X$,

$$\forall (A,B) \in \mathfrak{X} \times \mathfrak{B} \quad \int_X \mathfrak{B} P(y,A) 1_B(y) \mathcal{C} P(x,\mathrm{d}y) = \int_X 1_A(y) 1_B(y) \mathcal{C} P(x,\mathrm{d}y).$$

Moreover, this assertion is true for any sub- σ -algebra $\mathfrak C$ of $\mathfrak X$ such that, for μ -almost every $x \in X$,

$${}^{\mathfrak{C}}P^{\mathfrak{B}}P(x,\cdot) \stackrel{\text{def}}{=} \int_{Y} {}^{\mathfrak{C}}P(x,\mathrm{d}y)^{\mathfrak{B}}P(y,\cdot) = {}^{\mathfrak{C}}P(x,\cdot).$$

This last property is satisfied when \mathfrak{C} is a sub- σ -algebra of \mathfrak{B} .

Theorem 3.4. Let (X, \mathfrak{X}, μ) be a probability space with a separable σ -algebra \mathfrak{X} containing a μ -approximating compact class. Let $\{\mathfrak{B}_i \colon i \in I\}$ be a non-empty $\underline{family\ of\ sub-\sigma\ -}$ algebras which decompose μ in an ergodic way. We suppose that, for any finite subset J of I, $\bigcap_{i \in J} \overline{\mathfrak{B}_i} = \overline{\bigcap_{i \in J} \mathfrak{B}_i}$.

Then the sub- σ -algebra $\bigcap_{i \in I} \mathfrak{B}_i$ decomposes μ in an ergodic way.

4. Proof of the results

Throughout this section, we assume that (X, \mathfrak{X}, μ) is a probability space with a separable σ -algebra \mathfrak{X} containing a μ -approximating compact class. For any sub- σ -algebra \mathfrak{B} of \mathfrak{X} , we denote by ${}^{\mathfrak{B}}P$ a regular conditional probability with respect to \mathfrak{B} and μ .

4.1. Proof of Lemma 3.2

Let $A \in \mathfrak{X}$. The functions $g(x) = {}^{\mathfrak{B}}P(x, A)$ and $(g(x))^2$ are \mathfrak{B} -measurable. Therefore, for μ -almost every $x \in X$,

$${}^{\mathfrak{B}}Pg(x) = \mathbb{E}_{\mu}[g|\mathfrak{B}](x) = g(x)$$
 and ${}^{\mathfrak{B}}Pg^{2}(x) = g^{2}(x) = ({}^{\mathfrak{B}}Pg(x))^{2}$.

From the Cauchy–Schwarz equality it follows that, for μ -almost every $x \in X$,

$${}^{\mathfrak{B}}P(x,A) = g(x) = g(y) = {}^{\mathfrak{B}}P(y,A)$$
 for ${}^{\mathfrak{B}}P(x,\cdot)$ -almost every $y \in X$.

The first assertion of the lemma is then a consequence of Proposition 2.2.

For any $B \in \mathfrak{B}$ and for μ -almost every $y \in X$,

$${}^{\mathfrak{B}}P(y,B) = \mathbb{E}_{\mu}[1_B|\mathfrak{B}](y) = 1_B(y).$$

As $\mu(dy) = \int_X {}^{\mathfrak{B}}P(x, dy)\mu(dx)$, for μ -almost every $x \in X$,

$$1_B(y) = {}^{\mathfrak{B}}P(y, B)$$
 for ${}^{\mathfrak{B}}P(x, \cdot)$ -almost every $y \in X$.

Hence, for any $A \in \mathfrak{X}$ and for μ -almost every $x \in X$,

$$\int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{B}} P(x, dy) = \int_{X} 1_{A}(y)^{\mathfrak{B}} P(y, B)^{\mathfrak{B}} P(x, dy)
= \int_{X} 1_{A}(y)^{\mathfrak{B}} P(x, B)^{\mathfrak{B}} P(x, dy) \quad \text{(first assertion)}
= {}^{\mathfrak{B}} P(x, A)^{\mathfrak{B}} P(x, B)
= \int_{X} {}^{\mathfrak{B}} P(x, A) 1_{B}(y)^{\mathfrak{B}} P(x, dy)
= \int_{Y} {}^{\mathfrak{B}} P(y, A) 1_{B}(y)^{\mathfrak{B}} P(x, dy) \quad \text{(first assertion)}.$$
(1)

The Proposition 2.2 allows us to permute "for any $A \in \mathfrak{X}$ " and "for μ -almost every $x \in X$."

4.2. Proof of Proposition 3.3

Let X_0 be a measurable subset of X such that $\mu(X_0) = 1$ and for any $x \in X_0$,

$${}^{\mathfrak{B}}P(y,\cdot) = {}^{\mathfrak{B}}P(x,\cdot)$$
 for ${}^{\mathfrak{B}}P(x,\cdot)$ -almost every $y \in X$.

(i) \Rightarrow (ii) If the σ -algebra $\mathfrak B$ decomposes μ in an ergodic way, then there exists a measurable subset X_1 of X such that $\mu(X_1) = 1$ and for any $x \in X_1$,

$$\forall B \in \mathfrak{B} \quad {}^{\mathfrak{B}}P(x,B) \in \{0,1\}.$$

For $x \in X_0 \cap X_1$, we have for any $(A, B) \in \mathfrak{X} \times \mathfrak{B}$,

$$\int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{B}} P(x, dy) = {}^{\mathfrak{B}} P(x, A)^{\mathfrak{B}} P(x, B) = \int_{X} {}^{\mathfrak{B}} P(y, A) 1_{B}(y)^{\mathfrak{B}} P(x, dy),$$

which shows that, for any $x \in X_0 \cap X_1$, ${}^{\mathfrak{B}}P$ is a regular conditional probability with respect to \mathfrak{B} and ${}^{\mathfrak{B}}P(x,\cdot)$.

(ii) \Rightarrow (i) Assume there exists a measurable subset X_2 of X such that $\mu(X_2) = 1$ and for any $x \in X_2$,

$$\forall A \in \mathfrak{X}$$
 ${}^{\mathfrak{B}}P(y, A) = \mathbb{E}_{\mathfrak{B}P(x, \cdot)}[1_A|\mathfrak{B}](y)$ for ${}^{\mathfrak{B}}P(x, \cdot)$ -almost every $y \in X$.

Then for $x \in X_0 \cap X_2$, we have, for any $B \in \mathfrak{B}$,

$${}^{\mathfrak{B}}P(x,B) = {}^{\mathfrak{B}}P(y,B) = \mathbb{E}_{\mathfrak{B}P(x,\cdot)}[1_B|\mathfrak{B}](y) = 1_B(y)$$
 for ${}^{\mathfrak{B}}P(x,\cdot)$ -almost every $y \in X$.

Hence the assertion (i).

To prove the last assertion of the proposition we need the following lemma.

Lemma 4.1. Let \mathfrak{B} and \mathfrak{C} be two sub- σ -algebras of \mathfrak{X} such that $\mathfrak{C} \subset \mathfrak{B}$. Then for μ -almost every $x \in X$, we have the probability equalities

$${}^{\mathfrak{C}}P^{\mathfrak{B}}P(x,\cdot) = {}^{\mathfrak{B}}P^{\mathfrak{C}}P(x,\cdot) = {}^{\mathfrak{C}}P(x,\cdot).$$

Proof. For any $A \in \mathfrak{X}$, we have the classical μ -almost everywhere equalities

$$\mathbb{E}_{\mu}\big[\mathbb{E}_{\mu}[1_{A}|\mathfrak{B}]|\mathfrak{C}\big] = \mathbb{E}_{\mu}\big[\mathbb{E}_{\mu}[1_{A}|\mathfrak{C}]|\mathfrak{B}\big] = \mathbb{E}_{\mu}[1_{A}|\mathfrak{C}].$$

Moreover, if f and g are non-negative (or bounded) measurable functions, we know that: $f = g \ \mu$ -a.e. $\Rightarrow \mathbb{E}_{\mu}[f|\mathfrak{B}] = \mathbb{E}_{\mu}[g|\mathfrak{B}] \ \mu$ -a.e. It follows that, for any $A \in \mathfrak{X}$,

$${}^{\mathfrak{C}}P^{\mathfrak{B}}P(x,A) = {}^{\mathfrak{B}}P^{\mathfrak{C}}P(x,A) = {}^{\mathfrak{C}}P(x,A)$$
 for μ -almost every $x \in X$.

Then the result follows from Proposition 2.2.

Assume (ii), for μ -almost every $z \in X$, we have: for any $(A, B) \in \mathfrak{X} \times \mathfrak{B}$,

$$\int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{B}} P(z, dy) = \int_{X} {\mathfrak{B}} P(y, A) 1_{B}(y)^{\mathfrak{B}} P(z, dy).$$

As $\mu(\mathrm{d}z) = \int_X {}^\mathfrak{C}\!P(x,\mathrm{d}z)\mu(\mathrm{d}x)$, for μ -almost every $x \in X$ and ${}^\mathfrak{C}\!P(x,\cdot)$ -almost every $z \in X$, for any $(A,B) \in \mathfrak{X} \times \mathfrak{B}$,

$$\int_{X} 1_{A}(y) 1_{B}(y)^{\mathfrak{B}} P(z, dy) = \int_{X} {\mathfrak{B}} P(y, A) 1_{B}(y)^{\mathfrak{B}} P(z, dy).$$

Integration by ${}^{\mathfrak{C}}P(x, dz)$ gives us, for μ -almost every $x \in X$,

$$\forall (A, B) \in \mathfrak{X} \times \mathfrak{B} \quad \int_X 1_A(y) 1_B(y)^{\mathfrak{C}} P^{\mathfrak{B}} P(x, \mathrm{d}y) = \int_X \mathfrak{B} P(y, A) 1_B(y)^{\mathfrak{C}} P^{\mathfrak{B}} P(x, \mathrm{d}y).$$

Then the result follows from Lemma 4.1.

4.3. Proof of Theorem 3.4

Case of two σ -algebras

We need the following result.

Theorem 4.2. Let $(\Omega, \mathfrak{F}, \mathbb{P})$ be a probability space. Let \mathfrak{F}_1 [resp. \mathfrak{F}_2] be a sub- σ -algebra of \mathfrak{F} ; we call P_1 [resp. P_2] the operator of conditional expectation relative to \mathfrak{F}_1 [resp. \mathfrak{F}_2] on the space $\mathbb{L}^1(\Omega, \mathfrak{F}, \mathbb{P})$.

Then, for $f \in \mathcal{L}^1(\Omega, \mathfrak{F}, \mathbb{P})$, the sequences of functions

$$\left(\frac{1}{n}\sum_{k=0}^{n-1}(P_1P_2)^k f\right)_{n\geq 1} \quad and \quad \left(\frac{1}{n}\sum_{k=0}^{n-1}(P_2P_1)^k f\right)_{n\geq 1}$$

converge \mathbb{P} -almost everywhere and in norm $\mathbb{L}^1(\mathbb{P})$ towards $\mathbb{E}_{\mathbb{P}}[f|\overline{\mathfrak{F}}_1\cap\overline{\mathfrak{F}}_2]$.

Proof. It's a consequence of the classical ergodic theorem of E. Hopf (see [5], Proposition V-6-3). To identify the limit we note that: P_2P_1 is the dual operator of P_1P_2 and, as the operators P_1 and P_2 are idempotent, the common limit is P_1 - and P_2 -invariant (see also [1]).

Let \mathfrak{B}_1 and \mathfrak{B}_2 be two sub- σ -algebras of \mathfrak{X} decomposing μ in an ergodic way which satisfy $\overline{\mathfrak{B}_1} \cap \overline{\mathfrak{B}_2} = \overline{\mathfrak{B}_1 \cap \mathfrak{B}_2}$. We set $\mathfrak{C} = \mathfrak{B}_1 \cap \mathfrak{B}_2$.

The above theorem tells us that, for any $f \in \mathcal{L}^1(X, \mathfrak{X}, \mu)$ the sequence of functions $(\frac{1}{n} \sum_{k=0}^{n-1} (\mathfrak{B}_1 P \mathfrak{B}_2 P)^k f)_{n \geq 1}$ converges μ -a.e. and in $\mathbb{L}^1(\mu)$ -norm towards $\overline{\mathfrak{C}}Pf = \mathfrak{C}Pf$.

As $\mu(\cdot) = \int_X {}^{\mathfrak{C}} P(x, \cdot) \mu(\mathrm{d}x)$, it follows that, for any $f \in \mathcal{L}^1(X, \mathfrak{X}, \mu)$ and for μ -almost every $x \in X$, the sequence of functions $(\frac{1}{n} \sum_{k=0}^{n-1} ({}^{\mathfrak{B}}_1 P^{\mathfrak{B}}_2 P)^k f)_{n \geq 1}$ converges ${}^{\mathfrak{C}} P(x, \cdot)$ -a.e. towards ${}^{\mathfrak{C}} Pf$.

We call X_0 a measurable subset of X, such that $\mu(X_0) = 1$ and for any $x \in X_0$, for $i \in 1, 2$, $\mathfrak{B}_i P$ is a regular conditional probability with respect to \mathfrak{B}_i and $\mathfrak{C}P(x,\cdot)$ (Proposition 3.3).

The same theorem tells us that, for any $x \in X_0$ and for any $f \in \mathcal{L}^1(X, \mathfrak{X}, {}^{\mathfrak{C}}\!P(x, \cdot))$, the sequence of functions $(\frac{1}{n}\sum_{k=0}^{n-1}({}^{\mathfrak{B}_1}\!P^{\mathfrak{B}_2}\!P)^kf)_{n\geq 1}$ converge ${}^{\mathfrak{C}}\!P(x, \cdot)$ -a.e. and in $\mathbb{L}^1({}^{\mathfrak{C}}\!P(x, \cdot))$ -norm towards $\mathbb{E}_{\mathfrak{C}_P(x, \cdot)}[f|\widetilde{\mathfrak{B}}_1\cap\widetilde{\mathfrak{B}}_2]$ where, for i=1 or $2,\widetilde{\mathfrak{B}}_i$ is the ${}^{\mathfrak{C}}\!P(x, \cdot)$ -completed σ -algebra of \mathfrak{B}_i .

Let \mathcal{X} be a countable subalgebra of \mathfrak{X} generating \mathfrak{X} . From above and Lemma 3.2, it follows that, for μ -almost any $x \in X$, for any $A \in \mathcal{X}$,

for
$${}^{\mathfrak{C}}\!P(x,\cdot)$$
-almost every $y \in X$, ${}^{\mathfrak{C}}\!P(x,A) = {}^{\mathfrak{C}}\!P(y,A) = \mathbb{E}_{\mathfrak{C}_{P(x,\cdot)}}[1_A|\widetilde{\mathfrak{B}}_1 \cap \widetilde{\mathfrak{B}}_2](y)$.

We deduce that, for μ -almost every $x \in X$,

$$\forall (A,C) \in \mathcal{X} \times (\widetilde{\mathfrak{B}}_1 \cap \widetilde{\mathfrak{B}}_2) \quad \int_X 1_A(y) 1_C(y)^{\mathfrak{C}} P(x,\mathrm{d}y) = \int_X {}^{\mathfrak{C}} P(y,A) 1_C(y)^{\mathfrak{C}} P(x,\mathrm{d}y).$$

These equalities extend to the couples $(A, C) \in \mathfrak{X} \times (\widetilde{\mathfrak{B}}_1 \cap \widetilde{\mathfrak{B}}_2)$ (Proposition 2.2).

Since $\mathfrak{C} = \mathfrak{B}_1 \cap \mathfrak{B}_2 \subset \widetilde{\mathfrak{B}}_1 \cap \widetilde{\mathfrak{B}}_2$, the above equalities show that, for μ -almost every $x \in X$, ${}^{\mathfrak{C}}P$ is a regular conditional probability with respect to \mathfrak{C} and ${}^{\mathfrak{C}}P(x,\cdot)$. From the Proposition 3.3, the σ -algebra \mathfrak{C} decomposes μ in an ergodic way.

Case of a sequence of σ -algebras

Let $(\mathfrak{B}_n)_{n\geq 1}$ be a sequence of sub- σ -algebras of \mathfrak{X} which decompose μ in an ergodic way and satisfy the hypothesis of Theorem 3.4.

For any $n \ge 2$, we have

$$\overline{\bigcap_{1\leq i\leq n}\mathfrak{B}_i}\subset\overline{\bigcap_{1\leq i\leq n-1}\mathfrak{B}_i}\cap\overline{\mathfrak{B}_n}\subset\bigcap_{1\leq i\leq n}\overline{\mathfrak{B}_i}.$$

From our hypothesis, it follows that

$$\overline{\bigcap_{1 \le i \le n} \mathfrak{B}_i} = \bigcap_{1 \le i \le n} \overline{\mathfrak{B}_i}$$

and consequently

$$\overline{\bigcap_{1 \le i \le n} \mathfrak{B}_i} = \overline{\bigcap_{1 \le i \le n-1} \mathfrak{B}_i} \cap \overline{\mathfrak{B}_n} = \bigcap_{1 \le i \le n} \overline{\mathfrak{B}_i}.$$

We set

$$\forall n \geq 1$$
 $\mathfrak{C}_n = \bigcap_{k=1}^n \mathfrak{B}_k$ and $\mathfrak{C} = \bigcap_{k \geq 1} \mathfrak{B}_k$.

From the case treated previously, we prove by induction that, for any $n \ge 1$, the σ -algebra \mathfrak{C}_n decomposes μ in an ergodic way. From Proposition 3.3, for μ -almost every $x \in X$,

$$\forall (A,C) \in \mathfrak{X} \times \mathfrak{C}_n \quad \int_X 1_A(y) 1_C(y)^{\mathfrak{C}} P(x,\mathrm{d}y) = \int_X \mathfrak{C}_n P(y,A) 1_C(y)^{\mathfrak{C}} P(x,\mathrm{d}y).$$

The decreasing martingale theorem implies that, for any $A \in \mathfrak{X}$ and for μ -almost every $x \in X$, $\mathbb{E}_{\mu}[1_A|\mathfrak{C}_n](x) \underset{n \to +\infty}{\longrightarrow} \mathbb{E}_{\mu}[1_A|\mathfrak{C}](x)$. Consequently, for any $A \in \mathfrak{X}$ and for μ -almost every $x \in X$, $\mathfrak{C}_n P(x,A) \underset{n \to +\infty}{\longrightarrow} \mathfrak{C}_n P(x,A)$.

As $\mu(\cdot) = \int_X {}^{\mathfrak{C}} P(x, \cdot) \mu(\mathrm{d}x)$, it follows that: for any $A \in \mathfrak{X}$ and for μ -almost every $x \in X$,

for
$${}^{\mathfrak{C}}P(x,\cdot)$$
-almost every $y \in X$, ${}^{\mathfrak{C}_n}P(y,A) \underset{n \to +\infty}{\longrightarrow} {}^{\mathfrak{C}}P(y,A)$.

While limiting itself to elements C of \mathfrak{C} , the dominated convergence theorem implies that, for any $A \in \mathfrak{X}$ and for μ -almost every $x \in X$,

$$\forall C \in \mathfrak{C} \quad \int_X 1_A(y) 1_C(y)^{\mathfrak{C}} P(x, \mathrm{d}y) = \int_X {}^{\mathfrak{C}} P(y, A) 1_C(y)^{\mathfrak{C}} P(x, \mathrm{d}y).$$

Now from Proposition 2.2, we can permute "for any $A \in \mathfrak{X}$ " and "for μ -almost every $x \in X$," which shows that \mathfrak{C} decomposes μ in an ergodic way.

The preceding proof shows the following corollary which improves Shimomura's result.

Corollary 4.3. Let $(\mathfrak{B}_i)_{i\in\mathbb{N}}$ be a sequence of sub- σ -algebras of \mathfrak{X} . If for any $n\in\mathbb{N}$ the σ -algebra $\bigcap_{i=0}^n \mathfrak{B}_i$ decomposes μ in an ergodic way, then the intersection $\bigcap_{i\in\mathbb{N}} \mathfrak{B}_i$ decomposes μ in an ergodic way.

Case of an uncountable family of σ -algebras We need the following lemmas.

Lemma 4.4. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space. Let $\{V_i : i \in I\}$ a noncountable family of closed vector subspaces of \mathcal{H} . Then there exists a countable subset J of I such that $\bigcap_{i \in I} V_i = \bigcap_{i \in J} V_i$.

Proof. We easily see that the orthogonal complement V^{\perp} of $V = \bigcap_{i \in I} V_i$ in \mathcal{H} is equal to $\overline{\text{Vect}(\bigcup_{i \in I} V_i^{\perp})}$ (the closure of the subspace generated by $\bigcup_{i \in I} V_i^{\perp}$). We choose a dense sequence of vectors $(u_n)_{n \geq 1}$ of $\text{Vect}(\bigcup_{i \in I} V_i^{\perp})$ in V^{\perp} . The Schmidt orthonormalization process allows us to extract a maximal orthonormal system; that is, an Hilbert basis $(e_n)_{n \geq 1}$ de V^{\perp} . For any $p \geq 1$, e_p is a finite linear combination of vectors from $\{u_n : n \geq 1\}$; each u_n is itself a finite linear combination of vectors of $\bigcup_{i \in I} V_i^{\perp}$. Therefore, there exists a countable subset I of I such that, $\forall p \geq 1$, $e_p \in \text{Vect}(\bigcup_{i \in J} V_i^{\perp})$. Hence $V^{\perp} = \overline{\text{Vect}(\bigcup_{i \in J} V_i^{\perp})}$ and $V = \bigcap_{i \in J} V_i$.

Lemma 4.5. Let \mathfrak{B} be a sub- σ -algebra of \mathfrak{X} which decomposes μ in an ergodic way. Let \mathfrak{C} be a sub- σ -algebra of \mathfrak{B} such that, for any bounded \mathfrak{B} -measurable function f, there exists a bounded \mathfrak{C} -measurable function g satisfying $f = g \mu$ -a.e.

Then \mathfrak{C} decomposes μ in an ergodic way.

Proof. From Proposition 3.3, for μ -almost every $x \in X$, ${}^{\mathfrak{B}}P$ is a regular conditional probability with respect to \mathfrak{B} and ${}^{\mathfrak{C}}P(x,\cdot)$, that is,

$$\forall (A,B) \in \mathfrak{X} \times \mathfrak{B} \quad \int_X 1_A(y) 1_B(y)^{\mathfrak{C}} P(x,\mathrm{d}y) = \int_X \mathfrak{B} P(y,A) 1_B(y)^{\mathfrak{C}} P(x,\mathrm{d}y).$$

In these equalities, we have to replace ${}^{\mathfrak{B}}P(y, A)$ by ${}^{\mathfrak{C}}P(y, A)$. From Proposition 2.2, we can restrict our equalities to $A \in \mathcal{X}$ a separable sub-algebra of \mathfrak{X} generating \mathfrak{X} .

Let f be a bounded \mathfrak{B} -measurable function. There exists a bounded \mathfrak{C} -measurable function g such that f = g μ -a.e. Then we have, μ -a.e.,

$$\mathbb{E}_{\mu}[f|\mathfrak{B}] = f = g = \mathbb{E}_{\mu}[g|\mathfrak{C}] = \mathbb{E}_{\mu}[f|\mathfrak{C}].$$

It follows that, for μ -almost every $y \in X$,

$$\forall A \in \mathcal{X}$$
 ${}^{\mathfrak{B}}P(y,A) = {}^{\mathfrak{C}}P(y,A).$

Now from $\mu(dy) = \int_{Y} {}^{\mathfrak{C}}P(x, dy)\mu(dx)$ we deduce that, for μ -almost every $x \in X$, for ${}^{\mathfrak{C}}P(x, \cdot)$ -almost every $y \in X$,

$$\forall A \in \mathcal{X}$$
 ${}^{\mathfrak{B}}P(y,A) = {}^{\mathfrak{C}}P(y,A)$

and consequently, for μ -almost every $x \in X$,

$$\forall (A, B) \in \mathcal{X} \times \mathfrak{B} \quad \int_{Y} 1_{A}(y) 1_{B}(y)^{\mathfrak{C}} P(x, \mathrm{d}y) = \int_{Y} {}^{\mathfrak{C}} P(y, A) 1_{B}(y)^{\mathfrak{C}} P(x, \mathrm{d}y).$$

Hence the result. \Box

Lemma 4.6. Let $\{\mathfrak{B}_n: n \in \mathbb{N}^*\}$ be a sequence of sub- σ -algebras of \mathfrak{X} satisfying, for any $n \geq 2$, $\bigcap_{1 \leq k \leq n} \overline{\mathfrak{B}_k} = \bigcap_{1 \leq k \leq n} \mathfrak{B}_k$.

Then $\bigcap_{n \geq 1} \overline{\mathfrak{B}_k} = \bigcap_{n \geq 1} \mathfrak{B}_k$.

Proof. Let $f \in \mathcal{L}^1(X, \mathfrak{X}, \mu)$. From the decreasing martingale theorem, we have, μ -almost everywhere,

$$\mathbb{E}_{\mu} \left[f \middle| \bigcap_{k \ge 1} \overline{\mathfrak{B}_{k}} \right] = \lim_{n \to +\infty} \mathbb{E}_{\mu} \left[f \middle| \bigcap_{1 \le k \le n} \overline{\mathfrak{B}_{k}} \right] = \lim_{n \to +\infty} \mathbb{E}_{\mu} \left[f \middle| \bigcap_{1 \le k \le n} \overline{\mathfrak{B}_{k}} \right] \\
= \lim_{n \to +\infty} \mathbb{E}_{\mu} \left[f \middle| \bigcap_{1 \le k \le n} \mathfrak{B}_{k} \right] = \mathbb{E}_{\mu} \left[f \middle| \bigcap_{k \ge 1} \mathfrak{B}_{k} \right]. \tag{2}$$

Hence the result. \Box

Consider the separable Hilbert space $\mathbb{L}^2(X, \mathfrak{X}, \mu)$. It is well known that, for each sub- σ -algebra \mathfrak{B} of \mathfrak{X} , the space $\mathbb{L}^2(X, \mathfrak{B}, \mu)$ is identified to a closed subspace of $\mathbb{L}^2(X, \mathfrak{X}, \mu)$ and the conditional expectation relative to \mathfrak{B} is identified to the orthogonal projection onto this closed subspace.

Let $\{\mathfrak{B}_i\colon i\in I\}$ be an uncountable family of μ -complete sub- σ -algebras which decompose μ in an ergodic way and satisfy the hypothesis of Theorem 3.4. From the Lemmas 4.4 and 4.6, there exists a countable subset J of I such that

$$\mathbb{L}^{2}\left(X,\bigcap_{i\in I}\mathfrak{B}_{i},\mu\right)\subset\bigcap_{i\in I}\mathbb{L}^{2}(X,\mathfrak{B}_{i},\mu)=\bigcap_{i\in J}\mathbb{L}^{2}(X,\mathfrak{B}_{i},\mu)=\mathbb{L}^{2}\left(X,\bigcap_{i\in J}\mathfrak{B}_{i},\mu\right).$$

It follows that for any $f \in \mathcal{L}^2(X, \bigcap_{i \in I} \mathfrak{B}_i, \mu)$ there exists a function $g \in \mathcal{L}^2(X, \bigcap_{i \in J} \mathfrak{B}_i, \mu)$ such that f = g, μ -a.e. According to the case treated previously, we know that the sub- σ -algebra $\bigcap_{i \in J} \mathfrak{B}_i$ decomposes μ in an ergodic way. Then the result follows from Lemma 4.5.

5. Examples and applications

1. Let (X, \mathfrak{X}, μ) be a probability space with a separable σ -algebra \mathfrak{X} containing a μ -approximating compact class. Let τ be an invertible bi-measurable transformation of (X, \mathfrak{X}) such that μ is quasi-invariant for the action of τ . We consider the sub- σ -algebra $\mathfrak{J} = \mathfrak{J}_{\tau}$ of \mathfrak{X} defined by $\mathfrak{J} = \{B \in \mathfrak{X}: \tau^{-1}(B) = B\}$. Then the following result is well known.

Proposition 5.1. The σ -algebra \mathfrak{J} decomposes μ in an ergodic way.

Proof. An idea of the proof is the following. We consider the contraction T of $\mathbb{L}^1(X, \mathfrak{X}, \mu)$ defined by

$$Tf(x) = f \circ \tau^{-1}(x) \frac{\mathsf{d}(\tau(\mu))}{\mathsf{d}(\mu)}(x).$$

Replacing τ by τ^{-1} we obtain the inverse operator T^{-1} .

From the Chacon–Ornstein ergodic theorem, one proves [2] that, with obvious notations: for any $f \in \mathcal{L}^1(X, \mathfrak{X}, \mu)$ and for μ -almost every $x \in X$,

$$\sum_{k=-n}^{n} T^{k} f(x) / \sum_{k=-n}^{n} T^{k} 1(x) \underset{n \to +\infty}{\longrightarrow} {}^{\mathfrak{I}} P f(x).$$

One sees easily that there exists a measurable subset X_0 of X such that $\mu(X_0)=1$ and for any $x\in X_0$ the probability ${}^{\Im}\!P(x,\cdot)$ is τ -quasi-invariant with $\frac{\mathrm{d}(\tau^{\Im}\!P(x,\cdot))}{\mathrm{d}^{\Im}\!P(x,\cdot)}=\frac{\mathrm{d}(\tau\mu)}{\mathrm{d}\mu}$.

Then the same ergodic theorem tells us that, for any $x \in X_0$, for any $f \in \mathcal{L}^1(X, \mathfrak{X}, {}^{\mathfrak{I}}\!P(x, \cdot))$ and for ${}^{\mathfrak{I}}\!P(x, \cdot)$ -almost every $y \in X$,

$$\sum_{k=-n}^n T^k f(y) / \sum_{k=-n}^n T^k 1(y) \underset{n \to +\infty}{\longrightarrow} \mathbb{E}_{\mathfrak{J}P(x,\cdot)}[f|\mathfrak{J}](x).$$

As in the first case of Theorem 3.4, we prove that for μ -almost every $x \in X$, ${}^{3}\!P$ is a regular conditional probability with respect to \mathfrak{J} and ${}^{3}\!P(x,\cdot)$. The result follows from Proposition 3.3.

In [3], Greshchonig and Schmidt consider the case of a Borel action of a locally compact second countable group G on a standard probability space (X, \mathfrak{X}, μ) ; that is, a group homomorphism $g \mapsto \tau_g$ from G into the group $\operatorname{Aut}(X)$ of Borel automorphisms of X such that the map $(g, x) \mapsto \tau_g x$ from $G \times X$ to X is Borel and μ is quasi-invariant under each τ_g , $g \in G$. They prove that the σ -algebra $\bigcap_{g \in G} \mathfrak{J}_{\tau_g}$ decomposes μ in an ergodic way.

The Theorem 3.4 makes it possible to find and improve this result.

Corollary 5.2. Let $\{\tau_i : i \in I\}$ be a non-empty family of Borel automorphisms of X. Then the sub- σ -algebra $\bigcap_{i \in I} \mathfrak{J}_{\tau_i}$ of \mathfrak{X} decomposes μ in an ergodic way.

Proof. Taking into account the Proposition 5.1, it is enough to show that, for any finite subset J of I, $\bigcap_{i \in J} \overline{\mathfrak{J}_{\tau_i}} = \bigcap_{i \in J} \mathfrak{J}_{\tau_i}$.

Let f be a $\bigcap_{i \in J} \overline{\mathfrak{J}_{\tau_i}}$ -measurable function. We set $X_0 = \bigcap_{i \in J} \{f \circ \tau_i = f\}$; we have $\mu(X_0) = 1$.

We call G the algebraic subgroup of $\operatorname{Aut}(X)$ generated by the Borel automorphisms $\{\tau_i\colon i\in J\}$; G is a countable subset of $\operatorname{Aut}(X)$. The subset $X_1=\bigcap_{s\in G}sX_0$ of X_0 belongs to $\bigcap_{i\in J}\mathfrak{J}_{\tau_i}$ and $\mu(X_1)=1$. Then the function $g=f1_{X_1}$ is $\bigcap_{i\in J}\mathfrak{J}_{\tau_i}$ -measurable and $f=g\mu$ -a.e. Which shows that f is $\bigcap_{i\in J}\mathfrak{J}_{\tau_i}$ -measurable.

2. Let $(X, \mathfrak{X}, \mu, \tau)$ be a dynamical system with a polish space and a not necessarily invertible transformation. We denote by $(Y, \mathfrak{F}, \lambda, \eta)$ the natural extension of our dynamical and by π the natural projection of Y onto X. With obvious notations, one sees easily that f is $\mathfrak{J}_{\eta} \cap \pi^{-1}(\mathfrak{X})$ -measurable (resp. $\overline{\mathfrak{J}_{\eta}} \cap \overline{\pi^{-1}(\mathfrak{X})}$ -measurable) if and only if there exists $g \in \mathfrak{J}_{\tau}$ such that $f = g \circ \pi$ (resp. $f = g \circ \pi$ λ -a.e.). It follows that

$$\overline{\mathfrak{J}_{\eta}} \cap \overline{\pi^{-1}(\mathfrak{X})} = \overline{\mathfrak{J}_{\eta} \cap \pi^{-1}(\mathfrak{X})}.$$

We know that the σ -algebra \mathfrak{J}_{η} decomposes λ in an ergodic way. The σ -algebra $\pi^{-1}(\mathfrak{X})$ is separable. Therefore the σ -algebra $\mathfrak{C} = \mathfrak{J}_{\eta} \cap \pi^{-1}(\mathfrak{X})$ decomposes λ in an ergodic way.

Let P be a regular conditional probability with respect to \mathfrak{J}_{τ} and μ . Let Q be a regular conditional probability with respect to \mathfrak{C} and λ . For any $A \in \mathfrak{X}$ and $C \in \overline{\mathfrak{J}}_{\tau}$ we have:

$$\int_{X} P(x, A) 1_{C}(x) \mu(dx) = \int_{X} 1_{A}(x) 1_{C}(x) \mu(dx)$$

and therefore

$$\int_{Y} P(\pi(y), A) 1_{C}(\pi(y)) \lambda(dy) = \int_{Y} 1_{A}(\pi(y)) 1_{C}(\pi(y)) \lambda(dy)$$

$$= \int_{Y} \mathbb{E}_{\lambda} [1_{A} \circ \pi | \mathfrak{C}](y) 1_{C}(\pi(y)) \lambda(dy)$$

$$= \int_{Y} Q(y, \pi^{-1}(A)) 1_{C}(\pi(y)) \lambda(dy). \tag{3}$$

Which proves, via the Proposition 2.2, that

for
$$\lambda$$
-almost every $y \in Y$, $P(\pi(y), \cdot) = Q(y, \pi^{-1}(\cdot))$

and the σ -algebra \mathfrak{J}_{τ} decomposes μ in an ergodic way.

3. Let P be a transition probability on a measurable space (X, \mathfrak{X}) with a separable σ -algebra \mathfrak{X} containing a μ -approximating compact class.

We denote by Π the set of *P*-invariant probability measures on (X, \mathfrak{X}) :

$$\pi \in \Pi$$
 \Leftrightarrow $\int_X f(x)\pi P(\mathrm{d}x) = \int_X Pf(x)\pi(\mathrm{d}x) = \int_X f(x)\pi(\mathrm{d}x)$

for any non-negative or bounded measurable function f on X. We assume that $\Pi \neq \emptyset$.

For any $\pi \in \Pi$, we denote by \mathfrak{B}_{π} the sub- σ -algebra of \mathfrak{X} defined by:

$$\mathfrak{B}_{\pi} = \{ A \in \mathfrak{X} : P1_A = 1_A \pi \text{-a.e.} \}$$

and we set $\mathfrak{B} = \bigcap_{\pi \in \Pi} \mathfrak{B}_{\pi}$.

Let $\pi \in \Pi$. Let f be a bounded \mathfrak{B}_{π} -measurable function on X. The function g, defined by

$$g(x) = \liminf \frac{1}{n} \sum_{k=0}^{n-1} P^k f(x),$$

satisfies $g = f\pi$ -a.e. and $Pg \le g$. From the latter inequality, it follows that, for any $\sigma \in \Pi$, $Pg = g \sigma$ -a.e. and g is \mathfrak{B} -measurable. We deduce that $\mathfrak{B}_{\pi} = \mathfrak{B} \pi$ -a.e.

From the Hopf theorem ([3], Proposition V-6-3), for any $f \in \mathcal{L}^1(X, \mathfrak{X}, \pi)$, the sequences of functions

$$\left(\frac{1}{n}\sum_{k=0}^{n-1}\frac{\mathrm{d}((f\pi)P^k)}{\mathrm{d}\pi}\right)_{n\geq 1}\quad\text{and}\quad \left(\frac{1}{n}\sum_{k=0}^{n-1}P^kf\right)_{n\geq 1}$$

converge π -almost everywhere and in norm $\mathbb{L}^1(\pi)$ towards $\mathfrak{B}_{\pi}Pf = \mathfrak{B}Pf$. As in Example 1, one deduces that \mathfrak{B} decomposes π in an ergodic way.

Acknowledgments

I wish to thank B. Bekka and S. Gouëzel for helpful discussions and the referees for their careful reading and valuable comments.

References

- [1] D. L. Burkholder and Y. S. Chow. Iterates of conditional expectations operators. Proc. Amer. Math. Soc. 12 (1961) 490-495. MR0142144
- [2] J.-P. Conze and A. Raugi. On the ergodic decomposition for a cocycle. Preprint, 2007. (pdf version "ReducErg.pdf" in personal university site.)
- [3] G. Greschonig and K. Schmidt. Ergodic decomposition of quasi-invariant probability measures. Colloq. Math. 84/85 (2000) 495–514. MR1784210
- [4] J. Kerstan and A. Wakolbinger. Ergodic decomposition of probability laws. Z. Wahrsch. Verw. Gebiete 56 (1981) no. 3 399-414. MR0621119
- [5] J. Neveu. Bases Mathématiques du Calcul des Probabilités. Masson, Paris, 1964. MR0198504
- [6] K. Schmidt. A probabilistic proof of ergodic decomposition. Sankhyā Ser. A 40 (1978) no. 1 10–18. MR0545459
- [7] H. Shimomura. Ergodic decomposition of quasi-invariant measures. Publ. Res. Inst. Math. Sci. 14 (1978) no. 2 359–381. MR0509194
- [8] H. Shimomura. Remark to the ergodic decomposition of measures. Publ. Res. Inst. Math. Sci. 26 (1990) no. 5 861-865. MR1082320