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Abstract. Under some mild condition, a random walk in the plane is recurrent. In particular each trajectory is dense, and a natural
question is how much time one needs to approach a given small neighbourhood of the origin. We address this question in the case
of some extended dynamical systems similar to planar random walks, including Z

2-extension of mixing subshifts of finite type. We
define a pointwise recurrence rate and relate it to the dimension of the process, and establish a result of convergence in distribution
of the rescaled return time near the origin.

Résumé. Sous certaines conditions, une marche aléatoire dans le plan est récurrente. En particulier, chaque trajectoire est dense, et
il est naturel d’estimer le temps nécessaire pour revenir dans un petit voisinage de l’origine. Nous nous intéressons à cette question
dans le cas de systèmes dynamiques étendus similaires à des marches aléatoires planaires, notamment celui des Z

2-extension de
sous-shifts de type fini mélangeants. Nous déterminons une vitesse de convergence ponctuelle que nous relions à la dimension du
processus et nous établissons un résultat de convergence en loi du temps de retour à l’origine, correctement normalisé.
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1. Introduction

1.1. Motivation

Let us consider a recurrent random walk or a recurrent dynamical system (with finite or σ -finite invariant measure).
Given an initial condition, say x, we thus know that the process will return back ε close to its starting point x.
A basic question is when? For finite measure preserving dynamical systems this question has some deep relations to
the Hausdorff dimension of the invariant measure. Namely, if τε(x) represents this time, in many situations

τε(x) ≈ 1

εdim

for typical points x, where dim is the Hausdorff dimension of the underlying invariant measure. This has been proved
for interval maps [15] and rapidly mixing systems [1,14]. Another type of result is the exponential distribution of
rescaled return times and the lognormal fluctuations of the return times [4,9].

In this paper we are dealing with systems where the underlying natural measure is indeed infinite. This causes the
return time to be non-integrable, in contrast with the finite measure case. However, the systems we are thinking about
have in common the property that, in some sense, the behaviours at small scale and at large scale are independent.
The large scale dynamics being some kind of recurrent random walk, and the small scale dynamics a finite measure

1Supported in part by the ANR project TEMI (Théorie Ergodique en mesure infinie).
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Table 1
Recurrence for Z

k -extensions. Bε denotes the ball of radius ε, ν is a Gibbs measure on the base and d is the Hausdorff dimension of ν

Dimension Z
0-extension Z

1-extension Z
2-extension

Scale lim
ε→0

log τε

− log ε
= d lim

ε→0

log
√

τε

− log ε
= d lim

ε→0

log logτε

− log ε
= d

Local law ν(ν(Bε)τε > t) → e−t lim
ε→0

ν(ν(Bε)
√

τε > t) ≤ 1
1+βt

ν(ν(Bε)logτε > t) → 1
1+βt

Lognormal fluctuations εdτε εd√
τε εd logτε

preserving system. We provide results in three different cases: two probabilistic models (with some hypothesis of
independence) and an infinite measure dynamical system (a Z

2-extension of a finite measure dynamical system).
The first case treated in Section 2 is a toy model designed to give the hint of the general case. Then, in Section 3
we consider the case of planar random walks. Finally, in Section 4 we give a complete analysis of the quantitative
behaviour of return times in the case of Z

2-extensions of subshifts of finite type. The recurrence for Z
2-extensions of

subshifts of finite type essentially comes from Guivarc’h and Hardy’s local limit theorem [8]. It was proven afterwards
by Conze [6] and Schmidt [16] that it is also a consequence of the central limit theorem.

1.2. Description of the main result: Z
2-extensions of subshifts of finite type

We emphasize that this dimension 2 is at the threshold between recurrent and non-recurrent processes, since in higher
dimension these processes are not recurrent (except if degenerate). It makes sense to show how our results behave
with respect to the dimension. For completeness, we call the non-extended system itself a Z0-extension. In this non-
extended case, the type of results we have in mind (see Table 1) have already been established respectively by Ornstein
and Weiss [13], Hirata [9] and Collet, Galves and Schmitt [4]. The case of Z

2-extension is completely done in Sec-
tion 4. The case of Z

1-extension can be partly derived following the technique used in the present paper.2 The essential
difference is that the local limit theorem has the one-dimensional scaling in 1√

n
, instead of 1

n
in the two-dimensional

case. The following table summarizes the different results as the dimension changes. The first line of results cor-
responds to Theorem 8, the second to Theorem 9 and the third to Corollary 10. We refer to Section 4 for precise
statements.

2. A toy model in dimension two

We present a toy model designed to posses a lot of independence. It has the advantage of giving the right formulas
with elementary proofs.

2.1. Description of the model and statement of the results

Let us consider two sequences of independent identically distributed random variables (Xn)n≥1 and (Yn)n≥0 indepen-
dent one from the other such that:

• the random variable X1 is uniformly distributed on {(1,0), (−1,0), (0,1), (0,−1)};
• the random variable Y0 is uniformly distributed on [0,1]2.

Let us notice that Sn := ∑n
k=1 Xk (with the convention S0 := 0) is the symmetric random walk on Z

2. We study a kind
of random walk Mn on R

2 given by Mn = Sn + Yn.

2For Z1-extensions, the method easily gives the three results presented in the table. However, the result on the local law is not sharp. The determi-
nation of the precise law will be the object of a forthcoming paper.
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Another representation of our model could be the following. Let S = Rd and consider the system Z2 ×S. Attached
to each site i ∈ Z

2 of the lattice, there is a local system which lives on S and σn is a i.i.d. sequence of S-valued random
variables with some density ρ, independent of the Xn’s. Then we look at the random walk (Sn, σn), thinking at σn as
a spin.

We want to study the asymptotic behaviour, as ε goes to zero, of the return time in the open ball B(M0, ε) of
radius ε centered at M0 (for the euclidean metric). Let

τε := min
{
m ≥ 1: |Mm − M0| < ε

}
.

We will prove the following:

Theorem 1. Almost surely, log log τε

− log ε
converges to the dimension 2 of the Lebesgue measure on R

2 as ε goes to zero.

Theorem 2. For all t ≥ 0 we have:

lim
ε→0

P
(
λ
(
B(M0, ε)

)
log τε ≤ t

) = 1

1 + π/t
.

2.2. Proof of the pointwise convergence of the recurrence rate to the dimension

First, let us define R1 := min{m ≥ 1: Sm = 0}. According to [7], we know that we have:

P(R1 > s) ∼ π

log s
as s goes to infinity. (1)

We then define for any p ≥ 0 the pth return time Rp in [0,1)2 by induction:

Rp+1 := inf{m > Rp: Sm = 0}.
Observe that Rp is the pth return time at the origin of the random walk Sn on the lattice, thus the delays between
successive return times Rp − Rp−1, setting R0 = 0, are independent and identically distributed. Consequently:

P(Rp − Rp−1 > s) = P(R1 > s). (2)

The proof of Theorem 1 follows from these two lemmas.

Lemma 3. Almost surely, log logRn

logn
→ 1 as n → ∞.

Proof. It suffices to prove that for any 0 < α < 1, almost surely, en1−α ≤ Rn ≤ 2nen1+α
provided n is sufficiently

large. By independence and Eq. (2) we have

P
(
logRn ≤ n1−α

) ≤ P
(∀p ≤ n, log(Rp − Rp−1) ≤ n1−α

) = P
(
logR1 ≤ n1−α

)n
.

According to the asymptotic formula (1), for n sufficiently large

P
(
logR1 ≤ n1−α

)n ≤
(

1 − π

2n1−α

)n

≤ e−πnα/2.

The first inequality follows then from the Borel–Cantelli lemma.
Moreover, according to formulas (2) and (1), we have

∑
n≥1 P(log(Rn − Rn−1) > n1+α)) < +∞. Hence, by the

Borel–Cantelli lemma, we know that almost surely, for all n sufficiently large, we have Rn − Rn−1 ≤ en1+α
. From this

we get the second inequality. �
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Let Tε := min
{

 ≥ 1: |YR


− Y0| < ε
}
.

Lemma 4. Almost surely, logTε

− logλ(B(Y0,ε))
→ 1 as ε → 0.

Proof. Since (Y
) is an i.i.d. sequence independent of the X′
ks, the random variable Tε has a geometric distribution

with parameter λε := λ(B(Y0, ε)) = πε2. For any α > 0 we have the simple decomposition

P

(∣∣∣∣ logTε

− logλε

− 1

∣∣∣∣ > α

)
= P

(
Tε > λ−1−α

ε

) + P
(
Tε < λ−1+α

ε

)
.

The first term is directly handled by Markov inequality:

P
(
Tε > λ−1−α

ε

) ≤ λα
ε ,

while the second term may be computed using the geometric distribution:

P
(
Tε < λ−1+α

ε

) = 1 − (1 − λε)
�λ−1+α

ε 

= 1 − exp
[⌈

λ−1+α
ε

⌉
log(1 − λε)

]
≤ −⌈

λ−1+α
ε

⌉
log(1 − λε)

= O
(
λα

ε

)
.

Let us define εn := n−1/α . According to the Borel–Cantelli lemma, logTεn− logλεn
converges almost surely to the constant 1.

The conclusion follows from the facts that (εn)n≥1 is a decreasing sequence of real numbers satisfying limn→+∞ εn =
0 and limn→+∞ εn

εn+1
= 1, and Tε is monotone in ε. �

Proof of Theorem 1. Observe that whenever B(M0, ε) is contained in (0,1)2, we have τε = RTε . The theorem follows
from Lemmas 3 and 4 since

log log τε

− log ε
= log logRTε

logTε

logTε

− logλε

logλε

log ε
→ 1 × 1 × 2

almost surely as ε → 0. �

2.3. Proof of the convergence in distribution of the rescaled return time

Proof of Theorem 2. Observe that log τε

logRTε
converges almost surely to 1. Let t > 0. By independence of Tε and the Rn

we have

Fε(t) := P
(
λ
(
B(Y0, ε)

)
logRTε ≤ t

) =
∑
n≥1

P(Tε = n)P

(
logRn ≤ t

λε

)
.

Since Tε has a geometric law with parameter λε , Fε(t) is equal to Gλε(t) with:

Gδ(t) :=
∑
n≥1

δ(1 − δ)n−1
P

(
logRn ≤ t

δ

)
.

First, we notice that the independence of the times between the successive returns gives for any u > 0 that

P(Rn ≤ u) ≤ P

(
max

k=1,...,n
Rk − Rk−1 ≤ u

)
= P(R1 ≤ u)n.
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Let α < 1. Using the inequality above and the equivalence relation (1) we get that for any δ > 0 sufficiently small,

Gδ(t) ≤
∑
n≥1

δ(1 − δ)n−1
(

1 − α
πδ

t

)n

= 1

1 + απ/t
+ O(δ).

This implies that lim supε→0 Fε(t) ≤ 1
1+π/t

.
Fix A > 0 and keeping the same notations observe that we have Fε(t) ≥ Hλε(t) with:

Hδ(t) :=
∑

1≤n≤A/δ

δ(1 − δ)n−1
P

(
logRn ≤ t

δ

)
.

Note that the independence gives in addition that for any u > 0

P(Rn ≤ u) ≥ P

(
max

k=1,...,n
Rk − Rk−1 ≤ u/n

)
= P(R1 ≤ u/n)n.

Let α > 1. Using the inequality above and the equivalence relation (1) we get that for sufficiently small δ > 0

Hδ(t) ≥
∑

1≤n≤A/δ

δ(1 − δ)n−1
(

1 − α
π

t/δ − logn

)n

≥
∑

1≤n≤A/δ

δ(1 − δ)n−1
(

1 − α2 πδ

t

)n

.

Evaluating the limit when δ → 0 of the geometric sum and then letting A → ∞ we end up with lim infδ→0 Hδ(t) ≥
1

1+π/t
, which gives the result. �

3. Random walk on the plane

3.1. Almost sure convergence

We now consider a true random walk on R
2, Sn = X1 +· · ·+Xn where the Xi ’s are i.i.d. random variables distributed

with a law μ of zero mean, with (invertible) covariance matrix Σ2 and characteristic function μ̂(t) = ∫
eit ·x dμ(x).

Let τε be the first return time of the walk in the ε-neighbourhood of the origin:

τε := min
{
n ≥ 1: |Sn| < ε

}
.

Let Ω∗ = {∀n ≥ 1, Sn �= 0}. We notice that outside Ω∗ the return time τε is obviously bounded by the first time
n ≥ 1 for which Sn = 0. Therefore, we will only consider the asymptotic behaviour of τε on Ω∗.

Theorem 5. Assume additionally that the distribution μ satisfies the Cramer condition

lim sup
|t |→∞

∣∣μ̂(t)
∣∣ < 1.

Then on Ω∗ we have limε→0
log log τε

− log ε
= 2 almost surely.

We remark that a kind of Cramer’s condition on the law is necessary, since there exist some planar recurrent random
walks for which the statement of the theorem is false (the return time being even larger than expected). We discovered
after the completion of the proof of this theorem that its statement is contained in Theorem 2 of Cheliotis’s recent
paper [5]. For completeness we describe the strategy of our original proof. A key point is a uniform version of the

local limit theorem. Indeed we need an estimation of the type P(|Sn| < ε) ∼ cε2

n
, with some uniformity in ε (for some

c > 0). We will follow the classical proof of the local limit theorem (see Theorem 10.17 of [3]) to get the following
(see Section 3.3 for its proof):
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Lemma 6. There exists a > 0, ε0 > 0, an integer N , a sequence κn → 0 such that, for any n > N , any ε ∈ (0, ε0) and
for any A ∈ R

2 we have∣∣∣∣P(
Sn ∈ A + [−ε, ε]2) − γ ε2

n
exp

(
−Σ−2A · A

2n

)∣∣∣∣ ≤ ε2κn

n
+ exp(−a

√
n)

ε2
,

with γ = 2
π

√
detΣ2

.

Then, this information on the probability of return is strong enough to estimate the first return time to the ε-
neighbourhood of the origin.

Proof of Theorem 5. For any α > 1
2 , using εn = 1/ logα n, we get that P(|Sn| < εn) is summable. By the Borel–

Cantelli lemma, for almost every x ∈ Ω∗, for all n large enough, we have τεn(x) > n and thus:

lim inf
n→∞

log log τεn(x)

− log εn

≥ lim inf
n→∞

log logn

log logα n
= 1

α
,

which implies by monotonicity and the fact that α is arbitrary that lim infε→0
log log τε(x)

− log ε
≥ 2.

Let α < 1
2 . To control the lim sup, we will take n = nε = �exp(ε−1/α). Let γ ′ < γ and m = (log ε)4. We use

a similar decomposition to that of Dvoretsky and Erdös in [7]. Let Ak = {|Sk| < ε and ∀p = k + 1, . . . , n, |Sp − Sk| >
2ε}. The Ak’s are disjoint, hence by independence and invariance, and according to Lemma 6, for ε small enough, we
have:

1 ≥
n∑

k=m

P(Ak) ≥
n∑

k=m

P
(|Sk| < ε

)
P(τ2ε > n − k) ≥

n∑
k=m

P
(|Sk| < ε

)
P(τ2ε > n) ≥

n∑
k=m

γ ′ε2

k
P(τ2ε > n).

Hence we have P(τε > n) ≤ 1
cε2 logn

≤ cε1/α−2, if n is large enough. Let εp = p−2/(α−2). By the Borel–Cantelli

lemma we have log τεp ≤ ε
−1/α
p almost surely, hence lim supp→∞

log log τεp

− log εp
≤ 1

α
. By monotonicity and the fact that α

is arbitrary we get the result. �

3.2. Limit distribution of return times in neighbourhoods

We introduce a slight modification of the model. Let ε > 0. Let Mε
0 be uniformly distributed on the ball B(0, ε) and

independent3 of the sequence (Sn) introduced in the Section 3.1.
We define the random walk Mε

n = Mε
0 + Sn. We are interested in the limiting distribution of the first return time in

the ball B(0, ε):

τ̃ε = inf
{
n ≥ 1:

∣∣Mε
n

∣∣ < ε
}
.

Theorem 7. Under the hypotheses of Theorem 5, the random variable ε2 log τ̃ε converges in distribution to a random
variable Y with distribution P(Y > t) = P(Ω∗)

1+2
√

det(Σ−2)P(Ω∗)t
(t > 0).

Proof. To simplify notations, we omit the indices ε.
Upper bound: Fix R > 0 and an integer K > 0. Let

Γ = {∀i = 1, . . . ,K, Mi �= M0 and |Mi | ≤ R
}
.

3Using if necessary a larger probability space, let U be a random variable uniformly distributed in the ball B(0,1) and independent of the sequence
(Sn). Then one can take Mε

0 = εU .
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Using the same decomposition as in the proof of Theorem 5, we have

P(Γ ) =
n∑

k=0

P
(
Γ ∩ {|Mk| < ε − 2ν and ∀
 = k + 1, . . . , n, |M
| ≥ ε − 2ν

})
,

where n is equal to �exp( t

ε2 )� for some t > 0. Let ν = ε2 and A = 1
2
√

2ν
Z

2 ∩ B(0, ε − 3ν). Notice that the sets

Qa := (a − ν/
√

2, a + ν/
√

2)2 with a ∈ A are pairwise disjoints and contained in B(0, ε − 2ν). Let m = (log ε)4.
Hence we have

P(Γ ) ≥ P
(
Γ ∩ {∀
 = 1, . . . , n |M
| ≥ ε

})
+

n∑
k=m

∑
a∈A

P
(
Γ ∩ {

Mk ∈ Qa and ∀
 = k + 1, . . . , n, M
 /∈ B(0, ε − 2ν)
})

≥ P
(
Γ ∩ {∀
 = 1, . . . , n, |M
| ≥ ε

})
+

n∑
k=m

∑
a∈A

P
(
Γ ∩ {

Mk ∈ Qa and ∀
 = k + 1, . . . , n, S
 − Sk /∈ B(−a, ε − ν)
})

≥ P
(
Γ ∩ {τ̃ε > n}) +

n∑
k=m

∑
a∈A

P
(
Γ ∩ {Mk ∈ Qa}

)
P
(∀
 = 1, . . . , n, S
 /∈ B(−a, ε − ν)

)
by independence (since m > K whenever ε is sufficiently small). Note that

P
(
Γ ∩ {Mk ∈ Qa}

) =
∫

{∀i,xi �=x0,|xi |≤R}
P(Sk−K ∈ −xK + Qa)dP(M0,...,MK)(x0, . . . , xK).

According to Lemma 6 we get

∀k ≥ m P
(
Γ ∩ {Mk ∈ Qa}

) ≥ P(Γ )
γ ′ν2

2k

for some fixed γ ′ < γ , provided ε is sufficiently small. Hence we have

n∑
k=m

∑
a∈A

P
(
Γ ∩ {Mk ∈ Qa}

)
P
(∀
 = 1, . . . , n, S
 /∈ B(−a, ε − ν)

)

≥
n∑

k=m

∑
a∈A

P(Γ )
γ ′ν2

2k
P
(∀
 = 1, . . . , n,M
 /∈ B(0, ε)|M0 ∈ Qa

)

≥
n∑

k=m

∑
a∈A

P(Γ )
γ ′πε2

k
P(M0 ∈ Qa)P

(∀
 = 1, . . . , n,M
 /∈ B(0, ε)|M0 ∈ Qa

)

≥
n∑

k=m

P(Γ )
γ ′πε2

k

(
P
(∀
 = 1, . . . , n,M
 /∈ B(0, ε)

) − P
(
ε − 4ν ≤ |M0| ≤ ε

))
≥ P(Γ )γ ′πε2 log(n)

(
1 + o(1)

)
P(τ̃ε > n) − o(1).

Therefore since ε2 logn = t + o(1) we get

P(Γ ) ≥ P
(
Γ ∩ {τ̃ε > n}) + γ ′πtP(Γ )P(τ̃ε > n) + o(1)

≥ P
({τ̃ε > n}) − P

(∃1 ≤ i ≤ K, |Mi | > R
) + γ ′πtP(Γ )P(τ̃ε > n) + o(1).
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Hence we have

lim sup
ε→0

P

(
τ̃ε > exp

(
t

ε2

))
≤ P(Γ ) + P(∃1 ≤ i ≤ K, |Mi | > R)

1 + γ ′πtP(Γ )
.

Taking R → ∞ first then K → ∞ we obtain

lim sup
ε→0

P

(
τ̃ε > exp

(
t

ε2

))
≤ P(Ω∗)

1 + γ ′πtP(Ω∗)
.

This holds for all γ ′ < γ , which gives the upper bound.
Lower bound: We only provide a sketch proof since the arguments are very similar. Let m = �(log ε)4�, n =

�exp(t/ε2)�, ν = ε2. We have:

P(Γ ) ≤ P
(
Γ ∩ {τ̃ε > n logn}) +

m∑
k=1

pk +
n logn−n∑

k=m

pk +
n logn∑

k=n logn−n

pk,

where pk = P(Γ ∩ {|Mk| < ε + 2ν and ∀
 = k + 1, . . . , n, |M
| ≥ ε + 2ν}).
By Theorem 5 we have

m∑
k=1

pk ≤ P
(
Γ ∩ {τ3ε ≤ m}) ≤ P

(
Γ \ Ω∗) + o(1)

since almost sure convergence implies convergence in probability.
Next, taking A′ = 1

2
√

2ν
Z

2 ∩ B(0, ε + 3ν), Q̄a := [a − ν/
√

2, a + ν/
√

2]2 and using the same arguments as for the
upper bound we get

n logn−n∑
k=m

pk ≤
n logn−n∑

k=m

∑
a∈A′

P
(
Γ ∩ {

Mk ∈ Q̄a and ∀
 = k + 1, . . . , n, M
 /∈ B(0, ε − 2ν)
})

≤ P(Γ )γ ′πε2 log(n logn − n)P(τ̃ε > n) + o(1),

where now γ ′ > γ .
Finally,

n logn∑
k=n logn−n

pk ≤
n logn∑

k=n logn−n

P
(
Γ ∩ {|Mk| ≤ ε + 2ν

}) ≤
n logn∑

k=n logn−n

P(Γ )
γ ′4ε2

k
= o(1).

Putting these estimates together we end up with

P(Γ ) ≤ P
(
Γ ∩ {τ̃ε > n}) + o(1) + P

(
Γ \ Ω∗) + P(Γ )γ ′πtP(τ̃ε > n).

This gives

lim inf
ε→0

P

(
τ̃ε > exp

(
t

ε2

))
≥ P(Γ ) − P(Γ \ Ω∗) + o(1)

1 + γ ′πtP(Γ )
.

And the conclusion follows as for the upper bound. �
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3.3. Proof of Lemma 6

Proof. Fix A ∈ R
2. Let ε > 0. Let n ≥ 2. For any 0 < a < b, let ha,b(t) be the piecewise affine function equal to 1 on

[−a, a], to 0 outside [−b, b] and with slope 1
b−a

in between. Let Ha,b(x1, x2) = ha,b(x1)ha,b(x2). Let us notice that
we have Hε−ε/n,ε ≤ 1[−ε,ε]2 ≤ Hε,ε+ε/n and thus

E
(
Hε−ε/n,ε(Sn − A)

) ≤ P
(|Sn − A|∞ ≤ ε

) ≤ E
(
Hε,ε+ε/n(Sn − A)

)
.

For any H ∈ L1(R2) we define its Fourier transform Ĥ and its inverse Fourier transform Ȟ by:

∀u ∈ R
2 Ĥ (u) = 1

2π

∫
R2

H(x) exp(−ixu)dx and Ȟ (u) = Ĥ (−u).

With this definition, we immediately get that ‖Ĥa,b‖L∞ = 1
2π

‖Ha,b‖L1 = (a+b)2

2π
and after an easy computation

‖Ĥ‖L1 ≤ (a + b + 4
b−a

)2.

Let us notice that we have for all x ∈ R
2, Ha,b(x) = ˇ̂

Ha,b(x). Hence with the use of Fubini’s theorem we have

E
[
Ha,b(Sn − A)

] = E
[ ˇ̂
Ha,b(Sn − A)

]
= E

[
1

2π

∫
R2

Ĥa,b(u) exp
(
iu(Sn − A)

)
du

]

= 1

2π

∫
R2

Ĥa,b(u)E
[
exp

(
iu(Sn − A)

)]
du

= 1

2π

∫
R2

Ĥa,b(u)
(
E

[
exp(iuX1)

])ne−iuA du.

Denote the characteristic function of X1 by φ(u) = E[exp(iuX1)]. Because of the hypothesis on the distribution of X1,
we know that, if u is non-null, then |φ(u)| < 1. Let us recall that we have:

φ(u) = 1 − 1

2
Σ2u · u + g(u)Σ2u · u, with lim

u→0
g(u) = 0.

Let us fix some β > 0 such that:

∀u ∈ B(0, β)

∣∣∣∣φ(u) −
(

1 − 1

2
Σ2u · u

)∣∣∣∣ ≤ 1

4
Σ2u · u

and such that:

sup
‖u‖2>β

∣∣φ(u)
∣∣ < 1 − 1

4
αβ2,

where α is the smallest modulus of the eigenvalues of Σ2. Now we take (a, b) = (ε, ε + ε
n
) or (a, b) = (ε − ε

n
, ε).

Hence we have:∣∣∣∣
∫

‖u‖2>βn−1/6
Ĥa,b(u)

(
φ(u)

)ne−iuA du

∣∣∣∣ ≤ ‖Ĥa,b‖L1

(
1 − αβ2n−1/3

4

)n

≤
(

3ε + 4n

ε

)2

exp

(
−αβ2n2/3

4

)
. (3)
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Hence, it remains to estimate the following quantity:∫
B(0,βn−1/6)

Ĥa,b(u)
(
φ(u)

)n
e−iuA du = 1

n

∫
B(0,βn1/3)

Ĥa,b

(
v/

√
n
)(

φ
(
v/

√
n
))n

e−ivA/
√

n dv.

We will compare this quantity to 1
n

∫
R2 Ĥa,b(0) exp(− 1

2Σ2v · v)e−ivA/
√

n dv. First we have:∣∣∣∣1

n

∫
B(0,βn1/3)

Ĥa,b

(
v/

√
n
)
e−ivA/

√
n

{
φ
(
v/

√
n
)n − exp

(
−1

2
Σ2v · v

)}
dv

∣∣∣∣
≤ 1

n

∫
B(0,βn1/3)

∣∣Ĥa,b

(
v/

√
n
)∣∣n exp

(
−n − 1

4n
Σ2v · v

)[
1

n
g1

(
v√
n

)
Σ2v · v

]
dv

≤ ‖Ĥa,b‖L∞

n
sup

w∈B(0,βn−1/6)

g1(w)

∫
R2

exp

(
−1

8
Σ2v · v

)[
Σ2v · v]

dv

≤ 4ε2

n
sup

w∈B(0,βn−1/6)

g1(w)

∫
R2

exp

(
−1

8
Σ2v · v

)[
Σ2v · v]

dv ≤ ε2

n
κn, (4)

with limu→0 g1(u) = 0 and limn→+∞ κn = 0.
Second we have:

1

n

∫
B(0,βn1/3)

exp

(
−1

2
Σ2v · v

)∣∣Ĥa,b

(
v/

√
n
) − Ĥa,b(0)

∣∣dv

≤ 1

n
sup

w∈B(0,βn−1/6)

∣∣∇Ĥa,b(w)
∣∣∞

∫
B(0,βn1/3)

|v|2√
n

exp

(
−1

2
Σ2v · v

)
dv

≤ 1

n

2ελ(B(0,2ε))

2π

∫
R2

|v|2√
n

exp

(
−1

2
Σ2v · v

)
dv ≤ ε2

n
κ ′
n, (5)

with limn→+∞ κ ′
n = 0.

Third we have:

1

n

∫
R2\B(0,βn1/3)

exp

(
−1

2
Σ2v · v

)∣∣Ĥa,b(0)
∣∣dv ≤ ε2

n
κ ′′
n , (6)

with limn→+∞ κ ′′
n = 0.

Hence, since Ĥa,b(0) = 1
2π‖Ha,b‖L1, to estimate E(Ha,b(Sn − A)) we are led to study the quantity

‖Ha,b‖L1

n4π2

∫
R2

exp
(−ivA/

√
n
)

exp

(
−1

2
Σ2v · v

)
dv = ‖Ha,b‖L1

n4π2

2π exp(−Σ−2A · A/(2n))√
detΣ2

.

To conclude we notice that |‖Ha,b‖L1 − 4ε2| ≤ 10 ε2

n
. �

4. Case of Euclidean extensions of subshifts of finite type

4.1. Description of the Z
2-extensions of a mixing subshift

Let us fix a finite set A called alphabet. Let us consider a matrix M indexed by A × A with 0–1 entries. We suppose
that there exists a positive integer n0 such that each component of Mn0 is non-zero. We define the set of allowed
sequences Σ as follows:

Σ := {
ω := (ωn)n∈Z: ∀n ∈ Z, M(ωn,ωn+1) = 1

}
.
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Fig. 1. Dynamics of the Z2-extension F of the shift.

We endow Σ with the metric d given by

d
(
ω,ω′) := e−m,

where m is the greatest integer such that ωi = ω′
i whenever |i| < m. We define the shift θ :Σ → Σ by θ((ωn)n∈Z) =

(ωn+1)n∈Z. For any function f :Σ → R we denote by Snf = ∑n−1

=0 f ◦ θ
 its ergodic sum. Let us consider an Hölder

continuous function ϕ :Σ → Z
2. We define the Z

2-extension F of the shift θ by (see Fig. 1)

F :Σ × Z
2 → Σ × Z

2,

(x,m) �→ (
θx,m + ϕ(x)

)
.

We want to know the time needed for a typical orbit starting at (x,m) ∈ Σ ×Z
2 to return ε-close to the initial point

after iterations of the map F . By translation invariance we can assume that the orbit starts in the cell m = 0. More
precisely, let

τε(x) = min
{
n ≥ 1: Fn(x,0) ∈ B(x, ε) × {0}}.

Observe that Fn(x,m) = (θnx,m + Snϕ(x)), thus

τε(x) = min
{
n ≥ 1: Snϕ(x) = 0 and d

(
θnx, x

)
< ε

}
.

Let ν be the Gibbs measure associated to some Hölder continuous potential h, and denote by σ 2
h the asymptotic

variance of h under the measure ν. Recall that σ 2
h vanishes if and only if h is cohomologous to a constant, and in this

case ν is the unique measure of maximal entropy.
We know that there exists a positive integer m0 such that the function ϕ is constant on each m0-cylinder.
Let us denote by σ 2

ϕ the asymptotic covariance matrix of ϕ:

σ 2
ϕ = lim

n→+∞ Covν

(
1√
n

Snϕ

)
.

We suppose that
∫
Σ

ϕ dν = 0.
We add the following hypothesis of non-arithmeticity on ϕ: We suppose that, for any u ∈ [−π;π]2 \ {(0,0)}, the

only solutions (λ, g), with λ ∈ C and g :Σ → C measurable with |g| = 1, of the functional equation

g ◦ σg = λeiu·ϕ

is the trivial one λ = 1 and g = const.
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Note that this condition implies that σ 2
ϕ is invertible. If this non-arithmeticity condition was not satisfied, then the

range of Snϕ would be essentially contained in a sub-lattice and we could make a change of variable (and eventually
of dimension) to reduce our study to the corresponding twisted Z

a-extension (where a is the rank of σ 2
ϕ ). Moreover,

we emphasize that this non-arithmeticity condition is equivalent to the fact that all the circle extensions Tu defined by
Tu(x, t) = (θ(x), t + u · ϕ(x)) are weakly-mixing for u ∈ [−π;π]2 \ {(0,0)}.

In this context, we prove the following results:

Theorem 8. The sequence of random variables log log τε

− log ε
converges almost surely as ε → 0 to the Hausdorff dimen-

sion d of the measure ν.

Theorem 9. The sequence of random variables ν(Bε(·)) log τε(·) converges in distribution as ε → 0 to a random
variable with distribution function t �→ βt

1+βt
1(0;+∞)(t), with β := 1

2π
√

detσ 2
ϕ

.

Corollary 10. If the measure ν is not the measure of maximal entropy, then the sequence of random variables
log log τε+d log ε√− log ε

converges in distribution as ε → 0 to a centered Gaussian random variable of variance 2σ 2
h .

In the case where ν is the measure of maximal entropy, then the sequence of random variables εd log τε converges
in distribution to a finite mixture of the law found in the previous theorem, that is, there exists some probability vector
α = (αn) and positive constants βn such that the sequence of random variables εd log τε converges in distribution to
a random variable with distribution function

∑
n αn

βnt
1+βnt

1(0;+∞)(t).

Example 11. We provide an example where the function ϕ(x) only depends on the first coordinate x0, that is,
ϕ(x) = ϕ(x0). On the shift Σ = {I,E,N,W,S}Z the function ϕ given by ϕ(I) = (0,0), ϕ(E) = (1,0), ϕ(N) = (0,1),
ϕ(W) = (−1,0) and ϕ(S) = (0,−1) fulfills the hypothesis.

The remaining part of the section is devoted to the proof of these results. In Section 4.2 we recall some preliminary
results and prove a uniform conditional local limit theorem. In Section 4.3 we prove Theorem 8 and in Section 4.4 we
prove Theorem 9 and Corollary 10.

4.2. Spectral analysis of the Perron–Frobenius operator and local limit theorem

In order to exploit the spectral properties of the Perron–Frobenius operator we quotient out the “past.” We define:

Σ̂ := {
ω := (ωn)n∈N: ∀n ∈ N, M(ωn,ωn+1) = 1

}
,

d̂
(
(ωn)n≥0,

(
ω′

n

)
n≥0

) := e−r̂(ω,ω′)

with r̂((ωn)n≥0, (ω
′
n)n≥0) = inf{m ≥ 0: ωm �= ω′

m} and

θ̂
(
(ωn)n≥0

) = (ωn+1)n≥0.

Let us define the canonical projection Π :Σ → Σ̂ by π((ωn)n∈Z) = (ωn)n≥0. Let ν̂ be the image probability measure
(on Σ̂ ) of ν by Π . There exists a function ψ : Σ̂ → Z

2 such that ψ ◦ Π = ϕ ◦ θm0 .
Let us denote by P :L2(ν̂) → L2(ν̂) the Perron–Frobenius operator such that:

∀f,g ∈ L2(ν̂)

∫
Σ̂

Pf (x)g(x)dν̂(x) =
∫

Σ̂

f (x)g ◦ θ̂ (x)dν̂(x).

Let η ∈ (0,1). Let us denote by B the set of bounded η-Hölder continuous function g : Σ̂ → C endowed with the
usual Hölder norm:

‖g‖B := ‖g‖∞ + sup
x �=y

|g(y) − g(x)|
d̂(x, y)η

.
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We denote by B∗ the topological dual of B. For all u ∈ R2, we consider the operator Pu defined on (B,‖ · ‖B) by:

Pu(f ) := P
(
eiuψf

)
.

Note that the hypothesis of non-arithmeticity of ϕ is equivalent to the following one on ψ : for any u ∈ [−π;π]2 \
{(0,0)}, the operator Pu has no eigenvalue on the unit circle.

We will use the method introduced by Nagaev in [11,12], adapted by Guivarc’h and Hardy in [8] and extended
by Hennion and Hervé in [10]. It is based on the family of operators (Pu)u and their spectral properties expressed in
these two propositions.

Proposition 12 (Uniform contraction). There exist α ∈ (0,1) and c > 0 such that, for all u ∈ [−π;π]2 \ [−β;β]2,
for all integers n ≥ 0 and for all f ∈ B, we have:∥∥P n

u (f )
∥∥

B ≤ cαn‖f ‖B.

This property easily follows from the fact that the spectral radius is smaller than 1 for u �= 0. In addition, since P

is a quasicompact operator on B and since u �→ Pu is a regular perturbation of P0 = P , we have:

Proposition 13 (Perturbation result). There exist α > 0, β > 0, c1 > 0, c2 > 0, θ ∈ (0,1), u �→ λu belonging to
C3([−β;β]2 → C), u �→ vu belonging to C3([−β;β]2 → B) and u �→ φu belonging to C3([−β;β]2 → B′) such
that, for all u ∈ [−β;β]2, for all f ∈ B and for all n ≥ 0, we have the decomposition:

Pu
n(f ) = λu

nφu(f )vu + Nn
u (f ),

with:

(1) ‖Nu
n(f )‖B ≤ c2α

n‖f ‖B ,
(2) |λu| ≤ e−c1|u|2 and c1|u|2 ≤ σ 2

φu · u,

(3) with initial values: v0 = 1, φ0 = ν̂, ∇λu=0 = 0 and D2λu=0 = −σ 2
ϕ .

This result is a multidimensional version of IV-8, IV-11, IV-12 of [10], in this context.
The next proposition is essential to our work. It may be viewed as a doubly local version of the central limit

theorem: first, it is local in the sense that we are looking at the probability that Snϕ = 0 while the classical central
limit theorem is only concerned with the probability that |Snϕ| ≤ ε

√
n; second, it is local in the sense that we are

looking at this probability conditioned to the fact that we are starting from a set A and landing at a set B on the
base. For any integer q ≥ 0, we call q-cylinder of Σ any set of the form {y ∈ Σ : d(x, y) < e−q} (i.e., {y ∈ Σ : ∀i =
−q, . . . , q, yi = xi}) for some x ∈ Σ .

Proposition 14. There exists a constant c3 > 0 such that, for all integers n > k > m0 and all q > 0, all q-cylinders A

of Σ and all measurable subsets B of Σ̂ , we have:∣∣∣∣ν(
A ∩ {Snϕ = 0} ∩ θ−n

(
θk

(
Π−1(B)

))) − ν(A)ν̂(B)

2π(n − k)
√

det(σ 2
ϕ )

∣∣∣∣ ≤ c3
ν̂(B)keηq

(n − k)3/2
.

Proof. We want to estimate the measure of the set Q = A ∩ {Snϕ = 0} ∩ θ−n(θkΠ−1B). Since A is a q-cylinder,
θ−qA = Π−1Â for the cylinder set Â = Πθ−qA. Next, since ϕ ◦ θm0 = ψ ◦ Π we have the identity {Snϕ ◦ θm0 =
0} = {Snψ ◦ Π = 0}. Thus using the semi-conjugacy θ̂ ◦ Π = Π ◦ θ

θ−q−m0Q = θ−m0
(
Π−1Â

) ∩ {
Snψ ◦ Π ◦ θq = 0

} ∩ θ−n−q+(k−m0)
(
Π−1B

)
= Π−1(θ̂−m0(Â) ∩ {

Snψ ◦ θ̂ q = 0
} ∩ θ̂−n−q+(k−m0)(B)

)
.
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Since ψ is integer-valued, the relation 1{0}(k) = 1
(2π)2

∫
[−π,π]2 eiu·k du for any k ∈ Z2 gives, by invariance of ν,

ν(Q) = Eν̂

(
1
Â

◦ θ̂m01B ◦ θ̂ q+n−(k−m0)
1

(2π)2

∫
[−π,π]2

exp
(
iu · Snψ ◦ θ̂ q

)
du

)

= 1

(2π)2

∫
[−π,π]2

Eν̂

(
1
Â

◦ θ̂m01B ◦ θ̂ q+n−(k−m0) exp
(
iu · Snψ ◦ θ̂ q

))
du.

We then estimate the expectation a(u) = Eν̂ (· · ·). Using the fact that the Perron–Frobenius operator P is the dual of θ̂

we get

a(u) = Eν̂

(
P q

(
1
Â

◦ θ̂m0
)

exp(iu · Snψ)1B ◦ θ̂ n−(k−m0)
)

= Eν̂

(
P n

u

(
P q(1

Â
◦ θ̂m0)1B ◦ θ̂ n−(k−m0)

))
= Eν̂

(
P k−m0

u

(
1BP n−(k−m0)

u P q
(
1
Â

◦ θ̂m0
)))

.

Let us denote for simplicity 
 = n − (k − m0). We first show that for large u, the quantity a(u) is negligeable. Using
the contraction inequality given in Proposition 12 applied to Pu


(1), the fact that ‖P q(1
Â

◦ θ̂m0)‖B ≤ 1 + eη(q+m0),
and the fact that |Eν̂[Pu

k−m0(1Bg)]| ≤ ν̂(B)‖g‖B , we get whenever u /∈ [−β,β]2,∣∣a(u)
∣∣ ≤ Eν̂

(
1BP 
P q

(
1
Â

◦ θ̂m0
)) = O

(
ν̂(B)α
eηq

)
. (7)

We then estimate the main term, coming from small values of u. The decomposition given in Proposition 13 gives
for any u ∈ [−β,β]2

a(u) = λ

uφu

(
P q

(
1
Â

◦ θ̂m0
))

Eν̂

[
Pu

k−m0(1Bvu)
]︸ ︷︷ ︸

a1(u)

+Eν̂

[
P k−m0

u

(
1BN


u

(
P q

(
1
Â

◦ θ̂m0
)))]︸ ︷︷ ︸

a2(u)

.

Notice that the second term is, by inequality (1) in Proposition 13, of order

a2(u) = O
(
ν̂(B)α
eηq

)
. (8)

Moreover, since u �→ vu and u �→ φu are C1-regular with v0 = 1 and φ0 = ν̂, the first term has the estimate

a1(u) = λ

uν̂(Â)Eν̂

[
Pu

k−m0(1B)
] + O

(
λ


u|u|ν̂(B)eηq
)

= λ

uν̂(Â)ν̂(B) + O

(
λ


u|u|ν̂(B)keηq
)
,

where the second estimate is obtained by reintroducing the unperturbed Perron–Frobenius operator P in Pu,
|Eν̂[Pu

k−m0(1B)] − ν̂(B)| = |Eν̂ ((e
iu·Sk−m0 ψ − 1)1B)| ≤ |u|(k − m0)‖ψ‖∞ν̂(B).

In addition, using C3 smoothness of λu and Proposition 13 (the bounds (2) and initial values (3))∣∣∣∣λ

u − exp

(
−


2
σ 2

ϕu · u
)∣∣∣∣ ≤ 


(
exp

(−c1|u|2))
−1
∣∣∣∣λu − exp

(
−1

2
σ 2

ϕu · u
)∣∣∣∣

= O
(

e−c1
|u|2 |u|3) = O

(
e−c4
|u|2 |u|)

for the constant c4 = c1/2. Thus

a1(u) = exp

(
−


2
σ 2

ϕu · u
)

ν̂(Â)ν̂(B) + O
(
e−c4
|u|2 |u|ν̂(B)keηq

)
.

By the classical change of variable v = u
√


 and Gaussian integral one easily sees that∫
[−β,β]2

exp

(
−


2
σ 2

ϕu · u
)

du = 1




∫
[−β

√

,β

√

]2

exp

(
−1

2
σ 2

ϕv · v
)

dv = 2π



√

detσ 2
ϕ

+ O

(
1


3/2

)
.
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Proceeding similarly with the error term one gets as well∫
[−β,β]2

|u|e−c4
|u|2 du = 1


3/2

∫
[−β

√

,β

√

]2

|v|e−c4|v|2 dv = O

(
1


3/2

)
.

Combining these two computations gives by integration of the approximation of a1(u) obtained above that∫
[−β,β]2

a1(u)du = 2π



√

detσ 2
ϕ

ν̂(Â)ν̂(B) + O

(
ν̂(B)keηq


3/2

)
.

From this main estimate and (7) and (8) it follows immediately that

1

(2π)2

∫
[−π,π]2

a(u)du = 1

2π

√

detσ 2
ϕ

ν̂(Â)ν̂(B) + O

(
ν̂(B)keηq

(n − k)3/2

)
.

�

4.3. Proof of the pointwise convergence of the recurrence rate to the dimension

Let us denote by Gn(ε) the set of points for which n is an ε-return:

Gn(ε) := {
x ∈ Σ : Snϕ(x) = 0 and d

(
θn(x), x

)
< ε

}
.

Let us consider the first return time in an ε-neighbourhood of a starting point x ∈ Σ :

τε(x) := inf
{
m ≥ 1: Smϕ(x) = 0 and d

(
θm(x), x

)
< ε

} = inf
{
m ≥ 1: x ∈ Gm(ε)

}
.

Proof of Theorem 8. Let us denote by Ck the set of k-cylinders of Σ . For any δ > 0 denote by Cδ
k ⊂ Ck the set

of cylinders C ∈ Ck such that ν(C) ∈ (e−(d+δ)k, e−(d−δ)k). For any x ∈ Σ let Ck(x) ∈ Ck be the k-cylinder which
contains x. Since d is twice4 the entropy of the ergodic measure ν, by the Shannon–McMillan–Breiman theorem, the
set

Kδ
N = {

x ∈ Σ : ∀k ≥ N,Ck(x) ∈ Cδ
k

}
has a measure ν(Kδ

N) > 1 − δ provided N is taken sufficiently large.

• Let us prove that, almost surely:

lim inf
ε→0

log log τε

− log ε
≥ d.

Let α > 1
d

and 0 < δ < d − 1
α

. Let us take εn := log−α n and kn := �−log εn. According to Proposition 14, whenever
kn ≥ N we have:

ν
(
Kδ

N ∩ Gn(εn)
) ≤ ν

({
x ∈ Kδ

N : Snϕ(x) = 0 and θn(x) ∈ Ckn(x)
})

≤
∑

C∈Cδ
kn

ν
(
C ∩ {Snϕ = 0} ∩ θ−nθkn

(
θ−knC

))

≤ β
∑

C∈Cδ
kn

[
ν(C)ν(C)

n
+ O

(
ν(C)kneηkn

n3/2

)]
.

4Note that we are working with the two-sided symbolic space Σ .



1080 F. Pène and B. Saussol

Observe that for C ∈ Cδ
kn

we have

kneηkn

√
n

= α log logn logαη n√
n

= O
(
εd+δ
n

) = O
(
ν(C)

)
,

hence it follows that

ν
(
Kδ

N ∩ Gn(εn)
) = O

( ∑
C∈Cδ

kn

ν(C)2

n

)
= O

(
1

n(logn)(d−δ)α

)
.

Hence, by the Borel–Cantelli lemma, for a.e. x ∈ Kδ
N , if n is large enough, we have: x /∈ Gn(εn). Hence, if in addition

x is not a periodic point, then for any n large enough, we have: τεn(x) > n. This readily implies that:

lim inf
n→∞

log log τεn

− log εn

≥ 1

α
a.e.,

which proves the lower bound on the lim inf since (εn)n decreases to zero and limn→+∞ εn

εn+1
= 1.

• Let us prove that, almost surely:

lim sup
ε→0

log log τε

− log ε
≤ d.

Let 0 < α < 1
d

and δ > 0 such that 1 − αd − αδ > 0. Let us take εn := log−α n and kn := �−log εn� + 1. For all

 = 1, . . . , n, we define:

A
(ε) := G
(ε) ∩ θ−
{τε > n − 
}.
Let us take Ln := �loga n, with a > 2α(d + δ + η). The sets A
(ε) are pairwise disjoint thus:

1 ≥
n∑


=0

ν
(
A
(εn)

) ≥
n∑


=Ln

∑
C∈Cδ

kn

ν
(
C ∩ A
(εn)

)
.

According to Proposition 14, we have

ν
(
C ∩ A
(εn)

) = ν
(
C ∩ {S
ϕ = 0} ∩ θ−


(
C ∩ {τεn > n − 
}))

=
[

ν(C)

2π
√

detσ 2
+ O

(
kneηkn

√

 − kn

)]
1


 − kn

ν
(
C ∩ {τεn > n})

≥ c′εd+δ
n

1


 − kn

ν
(
C ∩ {τεn > n})

for any C ∈ Cδ
kn

provided kn ≥ N ; indeed, the error term is negligible since:

kneηkn

√

 − kn

= O

(
(log logn) logαη n

loga/2(n)

)
= o

(
εd
n + δ

)
,

since a > 2α(d + δ + η). This chain of inequalities gives

ν
(
Kδ

N ∩ {τε > n}) ≤
∑

C∈Cδ
kn

ν
(
C ∩ {τε > n}) ≤ O

((
εd+δ
n log

n − kn

Ln − kn

)−1)

= O

(
1

log1−αd−αδ n

)
.
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Now let us take np := �exp(p2/(1−αd−αδ))�. We have:

∑
p≥1

ν
(
Kδ

N ∩ {τεnp
> np}) < +∞.

Hence, by the Borel–Cantelli lemma, almost surely x ∈ Kδ
N , we have:

lim sup
p→+∞

log log τεnp

− log εnp

≤ 1

α
.

This gives the estimate lim sup since (εnp )p decreases to zero and since limp→+∞
εnp

εnp+1
= 1.

�

4.4. Fluctuations of the rescaled return time

Recall that Ck(x) = {y ∈ Σ : d(x, y) < e−k}. Let Rk(y) = min{n ≥ 1: θn(y) ∈ Ck(y)} denote the first return time of
a point y into its k-cylinders Ck(y), or equivalently the first repetition time of the sequence of symbols y−k, . . . , yk

of y. There have been many studies on this quantity; among all the results we will use the following:

Proposition 15 (Hirata [9]). For ν-almost every point x ∈ Σ , the return times into the cylinders Ck(x) are asymp-
totically exponentially distributed in the sense that

lim
k→∞νCk(x)

(
Rk(·) >

t

ν(Ck(x))

)
= e−t

for a.e. x, where the convergence is uniform in t .

Lemma 16. Let x be such that limk→∞ νCk(x)(Rk(·) > t
ν(Ck(x))

) = e−t for all t > 0. Then, for all t > 0, we have:

lim
k→+∞νCk(x)

(
τe−k > exp

(
t

ν(Ck(x))

))
= 1

1 + βt
,

with β := 1
2π

√
detσ 2

.

Proof. We are inspired by the method used by Dvoretzky and Erdös in [7]. Let k ≥ m0 and n be some integers. We
make a partition of a cylinder Ck(x) according to the value 
 ≤ n of the last passage in the time interval 0, . . . , n of
the orbit of (x,0) by the map F into Ck(x) × {0}. This gives the following equality:

ν
(
Ck(x)

) =
n∑


=0

ν
(
Ck(x) ∩ {S
 = 0} ∩ θ−


(
Ck(x) ∩ {τe−k > n − 
})). (9)

Upper bound. Let nk = �et/ν(Ck(x))�. First we claim that:

lim sup
k→+∞

νCk(x)

({τe−k > nk}
) ≤ 1

1 + βt
.

Let a > 2η and Lk = eak . According to the decomposition (9) and to Proposition 14, there exists c′
1 > 0 such that,
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for k sufficiently large, we have:

ν
(
Ck(x)

) ≥ ν
(
Ck(x) ∩ {τe−k > nk}

) +
nk∑


=Lk

β
ν(Ck(x))ν(Ck(x) ∩ {τe−k > nk})


 − k

− c3

nk∑

=Lk

keηkν(Ck(x) ∩ {τe−k > nk − 
})
(
 − k)3/2

≥ ν
(
Ck(x) ∩ {τe−k > nk}

)(
1 + βν

(
Ck(x)

) nk∑

=Lk

1


 − k

)
− c′

1ν
(
Ck(x)

)
keηke−ak/2.

Hence, we get:

ν(Ck(x) ∩ {τe−k > nk})
ν(Ck(x))

≤ 1 − c′
1kek(η−a/2)

1 + βν(Ck(x))
∑nk


=Lk
1/(
 − k)

.

The claim follows from the fact that a > 2η.
Lower bound. Let b = lim inf −1

k
logν(Ck(x)) > 0. Without loss of generality we assume that the Hölder exponent

η is such that b > 2η. Let qk = �et/ν(Ck(x))�, nk = �qk log(qk)�, mk = nk − qk and choose δ > 0 such that 2η <

b(1 − δ). We now claim that:

lim inf
k→+∞νCk(x)

({τe−k > qk}
) ≥ 1

1 + βt
.

Let us denote by A
(k, x) the sets involved in the decomposition (9):

A
(k, x) := Ck(x) ∩ {S
 = 0} ∩ θ−

(
Ck(x) ∩ {τe−k > nk − 
}).

For 
 = 0 we have

ν
(
A0(k, x)

) ≤ ν
(
Ck(x) ∩ {τe−k > qk}

)
. (10)

Let Mk = �ν(Ck(x))−1+δ�. We first show that the contribution from small 
 is negligible. According to the expo-
nential statistics for return times, there exists εk , with limk→+∞ εk = 0, such that we have (remember that the A
(k, x)

are disjoints):

Mk∑

=1

ν
(
A
(k, x)

) ≤ ν
(
Ck(x) ∩ {Rk ≤ Mk}

)
≤ ν

(
Ck(x)

)(
1 − exp

(
ν
(
Ck(x)

)δ) + εk

)
= o

(
ν
(
Ck(x)

))
. (11)

We now estimate the measure of A
(k, x) for large values of 
. According to our local limit theorem (Proposition 14),
for all 
 = Mk + 1, . . . , nk , we have:

ν
(
A
(k, x)

) ≤ β
ν(Ck(x))ν(Ck(x) ∩ {τe−k > nk − 
})


 − k︸ ︷︷ ︸
main term

+c3
keηkν(Ck(x) ∩ {τe−k > nk − 
})

(
 − k)3/2︸ ︷︷ ︸
error term

. (12)

Observe that the sum of the error terms is controlled, for some constant c5 > 0, by

∑

≥Mk+1

keηkν(Ck(x))

(
 − k)3/2
≤ c5ν

(
Ck(x)

)
keηk

(
ν
(
Ck(x)

)−1+δ − k
)−1/2 = o

(
ν
(
Ck(x)

))
. (13)
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On the other hand the sum of the main terms may be estimated for non-extremal values of 
 by:

mk∑

=Mk+1

ν(Ck(x))ν(Ck(x) ∩ {τe−k > nk − 
})

 − k

≤ ν
(
Ck(x)

)
ν
(
Ck(x) ∩ {τe−k > qk}

) mk∑

=Mk+1

1


 − k
(14)

and for extremal values of 
 the simple bound below holds:

nk∑

=mk+1

ν(Ck(x))ν(Ck(x) ∩ {τe−k > nk − 
})

 − k

≤ ν
(
Ck(x)

)2
nk∑


=mk+1

1


 − k

≤ c6ν
(
Ck(x)

)2 log

(
nk − k

mk − k

)
= o

(
ν
(
Ck(x)

))
. (15)

Using the decomposition 9 and putting together formulas (10)–(15), we get:

ν
(
Ck(x)

) ≤ ν
(
Ck(x) ∩ {τe−k > qk}

)(
1 + βν

(
Ck(x)

) nk∑

=Mk+1

1


 − k

)
+ o

(
ν
(
Ck(x)

))
≤ ν

(
Ck(x) ∩ {τe−k > qk}

)(
1 + βν

(
Ck(x)

)
lognk

) + o
(
ν
(
Ck(x)

))
.

This proves the claim, which achieves the proof of the lemma. �

Proof of Theorem 9. Since the exponential statistics of return time holds a.e. by Proposition 15, Lemma 16 ap-
plies a.e. and by integration, using the Lebesgue dominated convergence theorem, we get that

lim
k→∞ν

(
log τe−k (·) >

t

ν(Ck(·))
)

= 1

1 + βt

for all t ≥ 0. �

Proof of Corollary 10. Non-zero variance. Let us write:

Yk := log log τe−k (·) − kd√
k

.

In this case ν is a Gibbs measure with a non-degenerate Hölder potential h. The logarithm of the measure of the
k-cylinder about x is, up to some constants, given by the Birkhoff sum

∑k
j=−k h ◦ σ j (x) of h on the orbit of x. It

is well known that such sums follow a central limit theorem (e.g., [2]). This readily implies that Xk = log(ν(Ck(·))+kd√
k

converges in distribution to a centered Gaussian random variable of variance 2σ 2
h . It is enough to prove that Yk + Xk

converges in probability to 0. This will be true if Yk +Xk converges in distribution to 0. This follows from Theorem 9
and from the formula:

Yk + Xk = log log τe−k (·) + log(ν(Ck))√
k

.

Zero variance. In this case the potential is cohomologous to a constant and the measure ν is the measure of maximal
entropy, which is a Markov measure. Denote by π the transition matrix and by p the left eigenvector such that pπ = p.
The measure of a cylinder Ck(x) is equal to px−k

∏k−1
j=−k πxj xj+1 . Since the function logπx0x1 has to be cohomologous

to the entropy, the measure of a cylinder Ck(x) simplifies down to

ν
(
Ck(x)

) = Qx−kxk
e−(2k+1)d/2,
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where Q = (Qij ) is a (constant) matrix. Proceeding as in the proof of Theorem 9, we get that

lim
k→∞ν

(
e−kd log τe−k > t

) =
∑

i,j∈A
lim

k→∞

∫
{x−k=i,xk=j}

1{e−kd log τe−k >t} dν =
∑

i,j∈A
pipj

1

1 + βQij t
.

�
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