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Abstract. We consider the coarse-graining of a lattice system with continuous spin variable. In the first part, two abstract results
are established: sufficient conditions for a logarithmic Sobolev inequality with constants independent of the dimension (Theorem 3)
and sufficient conditions for convergence to the hydrodynamic limit (Theorem 8). In the second part, we use the abstract results to
treat a specific example, namely the Kawasaki dynamics with Ginzburg–Landau-type potential.

Résumé. Nous étudions un système sur réseau à variable de spin continue. Dans la première partie, nous établissons deux résultats
abstraits : des conditions suffisantes pour une inégalité de Sobolev logarithmique avec constante indépendante de la dimension
(Théorème 3), et des conditions suffisantes pour la convergence vers la limite hydrodynamique (Theorème 8). Dans la seconde
partie, nous utilisons ces résultats abstraits pour traiter un exemple spécifique, à savoir la dynamique de Kawasaki avec un potentiel
de type Ginzburg–Landau.
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Introduction

We consider the coarse-graining of a lattice system with continuous spin variable. It has been well known since the
end of the eighties [10] that such problems can be attacked by entropy methods; the reference book [12] summarizes
a decade of works in this direction. It was later discovered that logarithmic Sobolev inequalities are useful technical
tools for such issues (see, e.g., [13,18]).

Establishing the desired logarithmic Sobolev inequality (LSI) with the correct scaling in system size, however, can
be quite challenging. In the present paper we provide a general criterion (Theorem 3) that may be applied to a variety
of situations; with its help we then deduce a criterion for the hydrodynamic limit (Theorem 8). An interesting feature
of the latter result is that it is entirely constructive, yielding explicit estimates for the deviation from hydrodynamic
behavior – while the traditional approach cares only about identification of the limit.

The unity of these results comes not only from the fact that the LSI is used in the proof of the hydrodynamic limit,
but also from the use of a two-scale method in both cases (a macroscopic and a microscopic scale, and no more). It is
very natural in hydrodynamic limits to separate microscopic and macroscopic scales, but in the context of logarithmic
Sobolev inequalities this is less common.

We apply these results to a well-known example from statistical physics which, although slightly academic, has
been studied (as a kind of archetypal problem) by many authors. Namely, we consider a system of spins interacting
by Kawasaki dynamics with a Ginzburg–Landau-type potential. The (conservative) Kawasaki dynamics forces us to
work with the canonical ensemble in which the mean m is fixed. We derive two results: First, we prove an LSI that is
uniform in m and has the optimal scaling in the system size; second, we establish convergence to the hydrodynamic
limit. Neither the LSI nor the hydrodynamic limit are new results (see [4,14,18] and [10,24], respectively), but the
proof is conceptually simpler than previous arguments known to us – and, as mentioned earlier, the final error estimates
are quantitative.

The present work leaves open two natural questions. The first one is the convergence of the microscopic entropy
to the hydrodynamic entropy. The second one is the local Gibbs behavior. To limit the size of this paper, both of these
issues will be addressed in a separate work.

The plan of the paper is as follows: After recalling some background in Section 1, we present our main results
in Section 2. The proof of the abstract LSI result and the abstract hydrodynamic limit result is given in Sections 3
and 4, respectively. The application to Kawasaki dynamics is given in Sections 5 and 6; see in particular Section 5.1
for set-up and preparations. Finally, we include a technical appendix.
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Notation

• P (X) stands for the set of Borel probability measures on X.
• Lip(X) is the set of Lipschitz functions X → R.
• Lk is the k-dimensional Lebesgue measure.
• Hk is the k-dimensional Hausdorff measure.
• TxX is the tangent space to X at x (in this paper X will almost always be an affine Euclidean subspace of R

N ).
• ∇ stands for gradient, Hess for Hessian, | · | for norm, and 〈·, ·〉 for inner product. When there are two spaces X

and Y involved, the relevant space will be indicated with a subscript, e.g., 〈·, ·〉Y . When no space is indicated, by
default the Euclidean space X with the �2 inner product is intended.

• At is the transpose of the operator A.
• Ran(A) is the range of the operator A.
• oscX(Ψ ) = supX Ψ − infX Ψ is the oscillation of Ψ .
• Φ(x) = x logx.
• C is a positive constant that may change from line to line, or even within a line.
• Z is a positive constant enforcing unit mass of a given probability measure.
• idX is the identity map X → X.
• f#μ = μ ◦ f −1 is the image measure of μ by f .
• LSI is an abbreviation for Logarithmic Sobolev Inequality.

1. Background

1.1. Logarithmic Sobolev inequalities

Definition 1 (LSI). Let X be a Riemannian manifold. A probability measure μ ∈ P (X) is said to satisfy an LSI with
constant ρ > 0 (in short: LSI(ρ)) if, for any locally Lipschitz, nonnegative function f ∈ L1(μ),

∫
Φ(f )dμ − Φ

(∫
f dμ

)
≤ 1

ρ

∫ |∇f |2
2f

dμ.

This inequality is a powerful tool for studying particle systems. First of all, it implies convergence to equilibrium
for the diffusion equation naturally associated to the measure μ. It also implies the spectral gap inequality via “lin-
earization.” Most importantly, LSI is well-adapted for developing estimates that are independent of the dimension of
the system (see Criterion 1 below and the discussion following). Nicely written introductions to LSI can be found
in [9,16,21]. As for their application to spin systems, among many references one can quote [4].

The following three fundamental criteria, stated here by order of increasing complexity, are the main results com-
monly used to derive LSI’s:

Criterion 1 (Tensorization principle). If μ1 ∈ P (X1) and μ2 ∈ P (X2) satisfy LSI(ρ1) and LSI(ρ2) respectively, then
μ1 ⊗ μ2 satisfies LSI(min{ρ1, ρ2}).

Criterion 2 (Holley–Stroock perturbation lemma). Let μ ∈ P (X) satisfy LSI(ρ), and let δΨ :X → R be a bounded
function. Let μ̃ ∈ P (X) be defined via

dμ̃

dμ
(x) = 1

Z
exp

(−δΨ (x)
)
.

Then μ̃ satisfies LSI(ρ̃), where

ρ̃ = ρ · exp(−oscX δΨ ). (1)
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Criterion 3 (Bakry–Émery theorem). Let X be a K-dimensional Riemannian manifold, let H ∈ C2(X), and let
μ ∈ P (X) be defined by

dμ

dHK
(x) = 1

Z
exp

(−H(x)
)
.

If there is a constant ρ > 0 such that HessH ≥ ρ, or more explicitly

∀x ∈ X, ∀v ∈ TxX,
〈
v,HessH(x)v

〉 ≥ ρ|v|2,

then μ satisfies LSI(ρ).

These facts are fundamental. The tensorization property is one of the main reasons why LSI’s are suitable for
large (or infinite) configuration spaces ([8], Remark 3.3). The Bakry–Émery theorem [1,20] is the simplest general
sufficient condition for LSI. Taken together, the Holley–Stroock perturbation lemma [11] and Bakry–Émery theorem
considerably extend the class of probability measures known to satisfy LSI.

Still, these three criteria are not always sufficient to treat situations of interest, as can be seen from the following
basic problem, which was our initial motivation. Consider a probability measure μ on R

N (N large) under which all
particles are independent save for one constraint, that the mean is fixed. (This represents an interest in a Gibbs state
distribution for a physical system having one conservation law.) Let μ1(dx) = exp(−ψ(x))dx be the distribution of a
free particle; then μ is an N -fold tensor product of μ1, conditioned by the affine constraint (1/N)

∑
xi = m.

Let us try to establish an LSI for μ, with constants independent of N . If it were not for the conditioning, then
the tensorization principle would apply. Given the mean constraint, our only hope is convexity. Indeed, if ψ were
uniformly convex, then μ would take the form exp(−Ψ (x))dHN−1(x) with Ψ uniformly convex (as the restriction
of the uniformly convex function

∑
ψ(xi)); hence the Bakry–Émery principle would apply (as noticed in [13]). But

if ψ is nonconvex this line of reasoning is doomed. So the problem lies in the combination of conditioning and
nonconvexity.

In Theorem 3 below we shall present a new sufficient condition for LSI. Roughly speaking, it says that if one can
decompose the system into a microscopic and macroscopic scale and prove LSI on each scale separately, then one
can derive an LSI for the original measure. In Section 2.4, we will show how this theorem can be used to deduce a
uniform LSI for the example just described. At first glance, the situation looks bad: We have replaced the problem of
proving one LSI with the problem of proving two LSI’s. The main insight is that by choosing the macroscopic size
sufficiently large, there is some extra convexity to exploit: In the language of physics, the coarse-grained Hamiltonian
is convex.

1.2. Hydrodynamic limit

The subject of hydrodynamic limits of particle systems is an old topic, reviewed in [12]. The field has mainly been
developed via specific model problems, without achieving very general results – which is natural given the complexity
of the subject. Still one usually identifies two main methods: the “GPV” method introduced in [10], based on the con-
vergence of martingales and on entropy estimates; and Yau’s entropy method [24], which is based on a sophisticated
Gronwall-type estimate for a relative entropy functional. Yau’s method is simpler and gives stronger results, but it
makes stronger assumptions on the initial data (closeness to hydrodynamic behavior in the sense of relative entropy
rather than in the sense of macroscopic observables).

Our method is intermediate between these two main strategies. On the one hand, we shall make rather weak
assumptions on the behavior of the initial data; on the other hand, we shall use a Gronwall-type estimate for a well-
chosen functional. The use of logarithmic Sobolev inequalities will lead us to make the rather stringent assumption
of quadratic growth of the interaction potential at infinity (an LSI requires at least quadratic growth at infinity [15],
Section 5.1), but this does not rule out the possibility of an extension of LSI techniques for potentials with subquadratic
growth (as was done for instance in [22] for the convergence to equilibrium of the Fokker–Planck equation).
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2. Main results

2.1. Microscopic and macroscopic variables

In the sequel X and Y will be two Euclidean spaces; think of X as the space of microscopic variables and of Y

as the space of macroscopic variables. There is a linear operator P :X → Y which to every x ∈ X associates the
corresponding macroscopic profile y = Px. We shall assume

PNP t = idY (2)

for some (large) N ∈ N, which we think of as the size of the system, measured at microscopic scale.

Remark 2. To motivate (2), think of the trivial case X = R
N (with its usual Euclidean structure), Y = R, and P is the

average: Px = (1/N)
∑

xi . Then P ty = (1/N)(y, . . . , y) and (2) clearly holds.

The symmetric operator NP tP is the orthogonal projection of X to (kerP)⊥. (Indeed ker(NP tP ) = kerP
and (NP tP )2 = NP t(PNP t )P = NP tP .) This induces a decomposition of X into macroscopic variables in
Y  (kerP)⊥ and microscopic fluctuations in kerP . Consider the probability measure on X

μ(dx) = exp
(−H(x)

)
dx,

where dx is a shorthand for Lebesgue measure on X. The decomposition of variables introduces

(i) A decomposition of measures: Define μ̄ = P#μ as the distribution of macroscopic variables, and let μ(dx|y)

be the conditional measure of x given Px = y. For each y, μ(dy|x) is a probability measure on X, and we have

μ(dx) = μ(dx|y)μ̄(dy), (3)

or more explicitly: for any test function ξ ,
∫

ξ dμ = ∫
Y
(
∫

ξ(x)μ(dx|y))μ̄(dy).
(ii) A decomposition of gradients: If f is a smooth function of x, its gradient ∇f can be decomposed into a

macroscopic gradient and a fluctuation gradient:

∇macrof (x) = NP tP∇f (x), ∇fluctf (x) = (
idX −NP tP

)∇f (x). (4)

Indeed, idX −NP tP is the orthogonal projection onto kerP , which is the tangent space to the fiber {Px = y}.
(iii) An interaction between scales: We will measure interactions between the microscopic and macroscopic scales

via

κ := max
{〈

HessH(x) · u,v
〉;u ∈ Ran

(
NP tP

)
, v ∈ Ran

(
idX −NP tP

); |u| = |v| = 1
}
, (5)

which we will require to be finite.

The macroscopic coarse-graining of the microscopic measure induces a natural coarse-graining of the microscopic
Hamiltonian. Define

H̄ (y) := − 1

N
log

(
dμ̄

dy

)
, (6)

so μ̄(dy) = exp(−NH̄(y))dy. Informally, we can express H̄ as

H̄ (y) = − 1

N
log

∫
{Px=y}

exp
(−H(x)

)
dx.

This coarse-grained Hamiltonian will play a crucial role in our results (as in many other works such as [10,14]).
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2.2. An abstract two-scale criterion for LSI

With the setup and notation of Section 2.1 we have the following result:

Theorem 3 (Two-scale logarithmic Sobolev inequality). Let μ(dx) = exp(−H(x))dx be a probability measure
on X, and let P :X → Y satisfy (2). Assume that

(i) For κ given by (5), we have κ < +∞;
(ii) There is ρ > 0 such that μ(dx|y) satisfies LSI(ρ) for all y;

(iii) There is λ > 0 such that μ̄ satisfies LSI(λN).

Then μ satisfies LSI(ρ̂) with

ρ̂ := 1

2

(
ρ + λ + κ2

ρ
−

√(
ρ + λ + κ2

ρ

)2

− 4ρλ

)
> 0. (7)

Remark 4 (On the assumptions). Assumption (i) says that the Hessian of the potential does not induce a strong
coupling between the microscopic and macroscopic scales. Assumption (ii) says that the distribution of microscopic
fluctuations satisfies a logarithmic Sobolev inequality, independently of the macroscopic state: explicitly, for any y ∈ Y

and any positive f ∈ Lip(X),∫
Φ
(
f (x)

)
μ(dx|y) − Φ

(∫
f (x)μ(dx|y)

)
≤ 1

ρ

∫ |∇fluctf (x)|2
2f (x)

μ(dx|y).

Finally, assumption (iii) says that the logarithmic Sobolev constant at macroscopic scale grows linearly with the
system size (which is the natural scaling).

Remark 5 (Zero interactions). In the particular case that microscopic and macroscopic scales behave independently
(κ = 0), Theorem 3 returns the factorization principle ρ̂ = min{ρ,λ} (cf. Criterion 1 in Section 1.1).

Remark 6 (Checking the assumptions). Assumption (i) is often easy to check; it suffices for instance that H has
bounded Hessian. Then Theorem 3 leaves us with two logarithmic Sobolev inequalities, of very different natures,
to verify. The idea exploited in the application in Section 2.4 is the following: As long as the microscopic scale is
finite, the microscopic LSI can be proved by the usual methods. On the other hand by choosing the microscopic
scale large, one averages over many variables. This averaging should result in a convexification of the macroscopic
Hamiltonian H̄ , so that the Bakry–Émery theorem can be applied. This convexification phenomenon is well known in
statistical mechanics, where it is used in conjunction with renormalization group methods. Theorem 3 as it is stated
would correspond to just one step of the renormalization group, which in principle is reasonable as long as one stays
away from phase transition.

Remark 7. In a different spirit but with similar ingredients, recent work of Blower and Bolley [2], Theorem 1.3, also
proves LSI via a decomposition of the system into components.

2.3. An abstract result for the hydrodynamic limit

Let A be a positive definite symmetric linear operator X → X. We equip X with a (Gibbs) measure μ and we consider
the (reversible) stochastic dynamics on X described by the time-evolution

∂

∂t
(f μ) = ∇ · (A∇f μ) (8)

(to be understood in weak sense; that is, for any smooth test function ξ , one has (d/dt)
∫

ξ(x)f (t, x)μ(dx) =
− ∫ ∇ξ(x) · A∇f (t, x)μ(dx)). Here both μ and f μ are probability measures on X and the unknown f (t, x) is
the microscopic density with respect to μ(dx).
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We are interested in the distribution f̄ (t, y)μ̄(dy) of y = Px under f (t, x)μ(dx); again we assume that P satis-
fies (2). Since μ̄ = P#μ, we have

f̄ (t, y) =
∫

f (t, x)μ(dx|y).

Define the coarse-grained operator Ā :Y → Y by

(Ā)−1 = PA−1NP t . (9)

Let x(t) denote the process associated with the forward equation (8). We shall compare Px(t), the projection of the
microscopic dynamics, with the solution η(t) ∈ Y of the deterministic equation

dη

dt
= −Ā∇Y H̄ (η), (10)

where ∇Y stands for the gradient on Y . (Recall that the notion of gradient depends on the inner product on Y ; see
Section 5.1 for a specific example.) In general Px(t) �= η(t), because the coarse-graining operator P is not compatible
with the kinetics, in the sense that PA �= ĀP .

The key ingredient for the hydrodynamic limit is that fluctuations are strongly penalized by the dynamics, in the
sense that

∀x ∈ X
∣∣(idX − NP tP

)
x
∣∣2 ≤ C

(dimY)2
〈x,Ax〉 as dimY ↑ ∞

(cf. assumption (vi) below); this limit will correspond to considering finer and finer details of the microscopic dynam-
ics. (The rate 1/(dimY)2 is natural for the application we have in mind, but the precise form is not important; any
quantity that is o(1) as (dimY) ↑ ∞ would do.)

Theorem 8 (Hydrodynamic limit). Let μ(dx) = exp(−H(x))dx be a probability measure on X and let P :X → Y

satisfy (2). Assume that:

(i) For κ given by (5), we have κ < +∞;
(ii) There is ρ > 0 such that μ(dx|y) satisfies LSI(ρ) for all y;

(iii′) There is λ > 0 such that 〈ỹ,Hess H̄ (y)ỹ〉Y ≥ λ〈ỹ, ỹ〉Y ;
(iv) There is α > 0 such that

∫ |x|2μ(dx) ≤ αN;
(v) There is β > 0 such that infy∈Y H̄ (y) ≥ −β .

Define M := dimY and let A :X → X be a symmetric linear operator such that:
(vi) There is γ > 0 such that for all x ∈ X, |(idX −NP tP )x|2 ≤ γM−2〈x,Ax〉X .

Let f (t, x) and η(t) solve (8) and (10) respectively, with respective initial data f (0, ·) and η0 satisfying
(vii)

∫
f (0, x) logf (0, x)μ(dx) ≤ C1N; H̄ (η0) ≤ C2.

Define

Θ(t) := 1

2N

∫ 〈(
x − NP tη(t)

)
,A−1(x − NP tη(t)

)〉
f (t, x)μ(dx). (11)

Then for any T > 0 we have, with ρ̂ given by (7),

max

{
sup

0<t≤T

Θ(t),
λ

2

∫ T

0

(∫
Y

∣∣y − η(t)
∣∣2
Y
f̄ (t, y)μ̄(dy)

)
dt

}

≤ Θ(0) + T

(
M

N

)
+

(
C1γ κ2

2λρ2

)
1

M2

+
[√

2T γ

(
α + 2C1

ρ̂

)1/2(
C

1/2
1 + (C2 + β)1/2)] 1

M
.
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Remark 9 (On the assumptions). By the Bakry–Émery theorem, assumption (iii′) implies assumption (iii) from Theo-
rem 3. Notice that assumption (iii′) also implies that H̄ is bounded below for any finite M , so assumption (v) requires
only that this lower bound is uniform in M .

Remark 10 (LSI). By the above remark, the assumptions of Theorem 8 imply in particular that all of the assumptions
of Theorem 3 are satisfied, so μ satisfies LSI(ρ̂) for some ρ̂ > 0. We will use this fact in the proof of Theorem 8.

Remark 11 (On the result). Think of NP tη(t) as a microscopic state that is “purely hydrodynamic” and has η(t)

as its macroscopic profile. Then Θ(t) is a “weak” way to quantify the deviation of x from hydrodynamic behavior.
(In slightly pedantic terms, Θ is, up to a factor (2N)−1, the square of the quadratic Monge–Kantorovich–Wasserstein
distance [20,23] between f μ and δNP tη , where distances in X are measured with the scalar product associated
to A−1.)

The strong quadratic L2(Y ) norm∫
Y

∣∣y − η(t)
∣∣2
Y
f̄ (t, y)μ̄(dy)

is another way to measure the deviation from hydrodynamic behavior. (It is the square of the quadratic Monge–
Kantorovich–Wasserstein distance between P#(f μ) and δη = P#(δNP tη).) A main difference between this functional
and the preceding one is that here hydrodynamic fluctuations are killed by the action of P , while in the definition of
Θ(t) they are penalized by the action of A−1.

The following corollary of Theorem 3 makes the hydrodynamic limit more explicit.

Corollary 12 (Propagation of hydrodynamic behavior). Consider a sequence {Xν,Yν,Pν,Aν,μν,f0,ν , η0,ν}∞ν=1
of data satisfying the assumptions of Theorem 8 for every ν with uniform constants λ,ρ, κ,α,β, γ,C1,C2. Suppose
that

Mν ↑ ∞; Nν ↑ ∞; Nν

Mν

↑ ∞; (12)

further assume that the initial microscopic data satisfy

lim
ν↑∞

1

Nν

∫ (
x − NνP

t
νη0,ν

) · A−1
ν

(
x − NνP

t
νη0,ν

)
f0,ν(x)μν(dx) = 0. (13)

Then for any T > 0,

(a) The microscopic variables are close to the solution of (10) in the weak norm induced by A−1
ν , uniformly in

t ∈ (0, T ):

lim
ν↑∞ sup

0≤t≤T

1

Nν

∫ (
x − NνP

t
νη

) · A−1
ν

(
x − NνP

t
νη

)
f (t, x)μ(dx) = 0; (14)

(b) The macroscopic variables are close to the solution of (10) in the strong L2(Y ) norm, in the time-integrated
sense:

lim
ν↑∞

∫ T

0

∫
Y

∣∣y − η(t)
∣∣2
Y
f̄ (y)μ̄(dy)dt = 0. (15)

Remark 13. For Corollary 12 to be applicable in practice, one should have an explicit representation of the limiting
behavior of η(t) as ν ↑ ∞, after having embedded all spaces Yν into a single functional space. An example will be
presented in the next subsection.
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2.4. Applications to the Kawasaki dynamics

Logarithmic Sobolev inequality
As an application of Theorem 3, we consider an L-periodic lattice system with continuous spin variables governed by
a Ginzburg–Landau-type potential ψ : R → R. We shall assume that

ψ(x) = 1

2
x2 + δψ(x), ‖δψ‖C2(R) < +∞. (16)

(Think for instance of a double-well potential with quadratic growth at infinity.) The grand canonical measure
μN ∈ P (RN) has density

dμN

dLN
(x) = 1

Z
exp

(
−

N∑
i=1

ψ(xi)

)
,

where N = Ld is the number of sites in a period cell.
Now we shall take into account constraints of fixed mean spin. Let XN,m be the (N − 1)-dimensional hyperplane

with mean m ∈ R:

XN,m =
{

(x1, . . . , xN) ∈ R
N ; 1

N

N∑
i=1

xi = m

}

equipped with the �2 inner product,

〈x, x̃〉XN,m
:=

∑
xi x̃i .

For given m, we define the probability measure μN,m ∈ P (XN,m) as the restriction of μN to XN,m. In other words,

dμN,m

dHN−1
(x) = 1

Z
1(1/N)

∑
xi=m exp

(
−

N∑
i=1

ψ(xi)

)
. (17)

The measure μN,m is called the canonical ensemble. It gives the distribution of the random variables x1, . . . , xN

conditioned on the event that their mean value is given by m, that is, (1/N)
∑N

i=1 xi = m.
We will show that the following result can be deduced from Theorem 3:

Theorem 14. Let ψ satisfy (16) and let μN,m be defined by (17). Then there exists ρ > 0 such that for any N ∈ N and
any m ∈ R, μN,m satisfies LSI(ρ).

Remark 15 (From Glauber to Kawasaki). Explicitly, the conclusion of Theorem 14 is that for any Lipschitz density
function f :XN,m → R+, we have

∫
Φ(f )dμN,m − Φ

(∫
f dμN,m

)
≤ 1

ρ

∫
1

2f

N∑
i=1

(
∂f

∂xi

)2

dμN,m, (18)

where f has been extended to be constant in the direction normal to XN,m. This bound is given in terms of the
Dirichlet form associated to the Glauber (mean-field) dynamics. Notice that geometry plays no role.

As already noted in [5], (18) also implies a logarithmic Sobolev inequality for the Kawasaki dynamics via the
discrete Poincaré inequality. For instance, in d = 1, if f satisfies

∑N
i=1

∂f
∂xi

= 0 (i.e., if f is constant normal to XN,m),
then we have

N∑
i=1

(
∂f

∂xi

)2

≤ CN2
N∑

i=1

(
∂f

∂xi

− ∂f

∂xi+1

)2

, (19)
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which together with (18) implies the Kawasaki bound:

∫
Φ(f )dμN,m − Φ

(∫
f dμN,m

)
≤ CN2

ρ

∫
1

2f

N∑
i=1

(
∂f

∂xi

− ∂f

∂xi+1

)2

dμN,m. (20)

For a d-dimensional lattice the result is similar: Take N = Ld , where L is the period; then we obtain (20) with N2

replaced by L2. This is the optimal scaling in d dimensions [25].

Remark 16 (Coarse-graining). In order to use Theorem 3, the main work will go into verifying assumption (iii). We
will rely on the idea of coarse-graining from physics. To be more specific: Setting X = XN,m and Y = YM,m := XM,m

with (say) N = K ·M , we will define the projection operator PN,K :XM,m → YM,m as PN,Kx = y, where each “block
spin” is the average over the block:

yj = 1

K

jK∑
i=(j−1)K+1

xi .

The idea is that for sufficiently large block spin size K , the coarse-grained Hamiltonian is convex (see Lemma 29).

As mentioned earlier, the result in Theorem 14 is not new: the well-known Lu–Yau martingale method has already
been used to prove LSI for the canonical ensemble with a nonconvex potential [4,14,18]. Specifically, LSI for a
bounded perturbation of a Gaussian potential and Kawasaki dynamics is proved in [14] via the martingale method.
An adaptation of the method in [4] extends the result to the (stronger) bound for Glauber dynamics. So our contribution
here is not a new result but rather a new technique.

For completeness and to contrast with the method presented in this paper, we briefly summarize the martingale
method. The first step is to establish LSI for the one-site marginals. Subsequently, one seeks a recursive relationship
for the N -site LSI constant in terms of the (N − 1)-site LSI constant. Turning to the conditional expectations

fk := EμN,m
(f |x1, . . . , xk),

one appeals to a Markovian decomposition of the relative entropy into a sum of terms of the form

ak := EμN,m
(fk logfk − fk−1 logfk−1),

each of which depends only on a single spin. After applying the single-site LSI to each term, one wants to conclude
by bounding the derivatives of ak in terms of the derivatives of f . The central ingredient involves estimating the
covariance terms from the Markovian decomposition by a variance term and a gradient term. Clever but elementary
estimates produce the desired recursive relation and complete the argument.

Our method is more simple-minded. The martingale method, with the one-site distributions, the control of co-
variances on large enough blocks, and the recursive relationship between the LSI constant on (N − 1)-blocks and
N -blocks, operates on several scales. Ours operates on just two: the coarse measure on the blocks, and the fine mea-
sure on the microscale. Moreover, we require just one thing from equilibrium statistical mechanics: the strict convexity
of the limiting free energy. This is a natural object on which to rely; it is precisely the strict convexity of the limit that
rules out phase transition.

Hydrodynamic limit
Next we shall consider the microscopic Kawasaki dynamics and go to the hydrodynamic limit. For simplicity, we
restrict to d = 1. Consider the function ψ and the space and measure XN,0 and μN,0 from above. (This choice of
setting the mean to 0 is arbitrary.) The microscopic Kawasaki dynamics is governed by the N × N matrix A = (Aij )

defined by

Aij = N2(−δi,j−1 + 2δi,j − δi,j+1). (21)

(In the indices of the Kronecker symbols, by convention N + 1 = 1 and 0 = N .)
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We shall identify X = XN,0 with the space X̄ of piecewise constant functions on T
1 = R/Z:

X̄ =
{
x̄ : T1 → R; x̄ is constant on

(
j − 1

N
,

j

N

]
, j = 1, . . . ,N

}
.

By convention, the “step function associated to x ∈ X” denotes the step function x̄ ∈ X̄ with

x̄(θ) = xj , θ ∈
(

j − 1

N
,

j

N

]
. (22)

Similarly, the “vector associated to x̄ ∈ X̄” will denote the vector x ∈ X with

xj = x̄

(
j

N

)
.

The L2 norm on X̄ is not well adapted to study macroscopic profiles. Instead it will be convenient to use the H−1

norm defined as follows: If f : T1 → R is a function (say locally integrable) with zero mean, define

‖f ‖2
H−1 =

∫
T1

w2(θ)dθ; w′ = f,

∫
w(θ)dθ = 0. (23)

The closure of X̄ in the H−1 norm is the usual negative Sobolev space H−1(T1).
The hydrodynamic limit of the Kawasaki dynamics is captured by:

Theorem 17. Assume that ψ satisfies (16). Let f = f (t, x) be a time-dependent probability density on (XN,μN,0)

solving

∂

∂t
(f μN,0) = ∇ · (A∇f μN),

where f (0, ·) = f0(·) satisfies∫
f0(x) logf0(x)μN,0(dx) ≤ CN (24)

for some constant C > 0. Assume that

lim
N↑∞

∫
‖x̄ − ζ0‖2

H−1f0(x)μN,0(dx) = 0 (25)

for some ζ0 ∈ L2(T1) (initial macroscopic profile) with
∫

ζ0 dθ = 0. Then for any T > 0, we have

lim
N↑∞ sup

0≤t≤T

∫ ∥∥x̄ − ζ(t, ·)∥∥2
H−1f (t, x)μN,0(dx) = 0, (26)

where ζ is the unique weak solution of the nonlinear parabolic equation⎧⎨
⎩

∂ζ

∂t
= ∂2

∂θ2
ϕ′(ζ ),

ζ(0, ·) = ζ0,

(27)

and ϕ is the Cramér transform of ψ , i.e.

ϕ(m) = sup
σ∈R

{
σm − log

∫
R

exp
(
σx − ψ(x)

)
dx

}
.



A two-scale approach to logarithmic Sobolev inequalities 313

Remark 18. The precise meaning of “weak solution” in the above statement will be made precise later (see Defini-
tion 32).

Remark 19 (Nontrivial set of initial conditions). In some sense, assumptions (24) and (25) compete with each other,
since (24) requires that the initial data be “sufficiently random,” while (25) requires that the initial data be close in
H−1 to the deterministic quantity ζ0. In light of [17], it seems likely that the solution with deterministic initial data
could be shown to satisfy (24) after an initial layer in time, but we will not try to extend our results to this case here.
We will however give the following simple example, to demonstrate that there are initial conditions satisfying both (24)
and (25).

Consider ζ0 = 0 and take as initial datum a “local Gibbs state” defined by

f (x,0) = exp

(
N∑

i=1

δψ(xi)

)∫
X

exp(−∑N−1
i=1 1/2x2

i + δψ(xi))HN−1(dx)∫
X

exp(−∑N−1
i=1 1/2x2

i )HN−1(dx)
.

Using (16), it is not hard to see that (24) is satisfied. To see that (25) is also satisfied, we will use the fact that the
function w from (23) above is the antiderivative of f with the smallest L2 norm. Therefore

〈x̄, x̄〉H−1 ≤
∫

T1
w̃(θ)2 dθ, where w̃(θ) = 1

N

i−1∑
j=1

xj + xi

(
θ − i − 1

N

)
,

for θ ∈ [(i − 1)/N, i/N) and i = 1, . . . ,N . Directly calculating the L2 norm of w̃ and substituting f (x,0)μ(dx), we
deduce that∫

X

∫
T1

w̃(θ)2 dθf (x,0)μN,0(dx)

= 1

N3

1

Z

∫
X

N∑
i=1

(
1

3
x2
i + xi

i−1∑
j=1

xj +
(

i−1∑
j=1

xj

)2)
exp

(
−1

2

N∑
i=1

x2
i

)
HN−1(dx)

≤ 1

N3

1

Z

∫
X

N∑
i=1

(
5

6
x2
i + 3

2

(
i−1∑
j=1

xj

)2)
exp

(
−1

2

N∑
i=1

x2
i

)
HN−1(dx). (28)

Finally, applying the Poincaré inequality for the Gaussian measure on X to the functions fi = xi and gi = ∑i−1
j=1 xj ,

it follows that the right-hand size goes to zero as N ↑ ∞.
Let us briefly compare Theorem 17 to the existing literature. In spirit the theorem is very close to the result of [10],

with two main technical differences. The first one is that we impose quadratic growth of ψ at infinity (in a strong
sense) instead of just superlinearity. The second one is the expression of macroscopic determinism: The condition
in [10] can be rewritten as

∀ϕ ∈ C2(
T

1), ∀ε > 0, μN,0

[{
x ∈ XN,0;

∣∣∣∣
∫

T1
(ζ0 − x̄)ϕ

∣∣∣∣ ≥ ε

}]
−→

N→∞ 0, (29)

whereas we use condition (25). Condition (25) is only slightly stronger than condition (29) – in fact, the conditions
are equivalent as soon as

lim
R→∞ lim sup

N→∞
N−1

∫
|x|2≥NR

|x|2μN,0(dx) = 0;

see [23], Theorem 7.12, for related results – and has the advantage that it is expressed in terms of a single numeric
quantity, the mean square H−1 norm between the microscopic profile and the limit. Our final result (26) is expressed
in terms of the same mean square norm. This is not just a different way to present the results: Our method yields
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an explicit estimate of how the departure from hydrodynamic behavior (expressed in the mean square H−1 norm)
evolves in time.

This approach is quite different from the one in [10]; it is reminiscent of the one used by Yau [24], who estimates
the departure from hydrodynamic behavior in terms of relative information (or entropy). But Yau’s method leads one
to impose a stronger assumption about the hydrodynamic behavior of the initial data, namely that it should behave
like a local Gibbs state in the sense of relative entropy (see [24] for explanations).

Theorem 17 will be obtained in two steps. First, the abstract Theorem 8 will be used with the spaces XN,0, YM,0
and the projection P from above (see also Section 5.1); in this way we shall see that the behavior of the system is well
described by a macroscopic equation of gradient type

dη

dt
= −Ā∇Y H̄ (η), (30)

where η ∈ YM,0, and Ā, H̄ are as before. Then η is identified with a step function η̄, so that (30) describes an evolution
in L2(T1); in a separate step, it is shown that this evolution approaches the solution of (27) as M ↑ ∞.

3. Proof of the abstract criterion for LSI

This section is devoted to the proof of Theorem 3. The key is to estimate the gradient of the macroscopic density
f̄ (y) = ∫

f (x)μ(dx|y) in terms of the full gradient, separating the contribution of the macroscopic part and the
contribution of the fluctuations.

In the next statement, ∇macro and ∇fluct are defined as in (4).

Proposition 20. Under the assumptions (i) and (ii) of Theorem 3, for any C1 positive function f on X one has, for
any y ∈ Y and for any τ ∈ (0,1),

1

N

|∇Y f̄ (y)|2
f̄ (y)

≤ 1

1 − τ

(
κ2

ρ2

)∫ |∇fluctf (x)|2
f (x)

μ(dx|y) + 1

τ

∫ |∇macrof (x)|2
f (x)

μ(dx|y). (31)

Before proving Proposition 20 we shall see how it can be used to prove Theorem 3.

Proof of Theorem 3. First, the additive property of the entropy implies∫
Φ(f )dμ − Φ

(∫
f dμ

)
=

∫ [∫
Φ
(
f (x)

)
μ(dx|y) − Φ

(∫
f (x)μ(dx|y)

)]
μ̄(dy)

+
[∫

Φ
(
f̄ (y)

)
μ̄(dy) − Φ

(∫
f̄ (y)μ̄(dy)

)]
. (32)

By assumption (ii),∫ [∫
Φ
(
f (x)

)
μ(dx|y) − Φ

(∫
f (x)μ(dx|y)

)]
μ̄(dy)

≤ 1

ρ

∫ [∫ |(idX −NP tP )∇f (x)|2
2f (x)

μ(dx|y)

]
μ̄(dy). (33)

By assumption (iii), μ̄ satisfies LSI(λN ), so that∫
Φ
(
f̄ (y)

)
μ̄(dy) − Φ

(∫
f̄ (y)μ̄(dy)

)

≤ 1

λN

∫ |∇Y f̄ (y)|2
2f̄ (y)

μ̄(dy)
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(31)≤ 1

λ(1 − τ)

(
κ2

ρ2

)∫ (∫ |(idX −NP tP )∇f (x)|2
2f (x)

μ(dx|y)

)
μ̄(dy)

+ 1

λτ

∫ (∫ |NP tP∇f (x)|2
2f (x)

μ(dx|y)

)
μ̄(dy). (34)

(Assumptions (i) and (ii) were used here via Proposition 20.)
The combination of (32), (33) and (34), plus the identity (3), gives

∫
Φ(f )dμ − Φ

(∫
f dμ

)

≤
[

1

ρ
+ 1

λ(1 − τ)

(
κ2

ρ2

)]∫ (∫ |(idX −NP tP )∇f (x)|2
2f

μ(dx|y)

)
μ̄(dy)

+ 1

λτ

∫ |NP tP∇f (x)|2
2f (x)

μ(dx).

It follows that μ satisfies LSI(ρ̂) with

1

ρ̂
= max

{
1

λτ
,

1

ρ
+ 1

λ(1 − τ)

κ2

ρ2

}
.

Optimizing in τ gives the desired result. �

The proof of Proposition 20 is based on two lemmas involving covariance. We recall that the μ-covariance of two
functions f,g ∈ L2(μ) is the real number

covμ(f,g) =
∫

fg dμ −
(∫

f dμ

)(∫
g dμ

)
. (35)

This formula can be extended in an obvious way to vector-valued functions g (just apply (35) to each component).
The first lemma is a computation of the conditional expectation of P∇f in terms of the macroscopic gradient and

a covariance term.

Lemma 21. For any f ∈ Lip(X) and any y ∈ Y ,

∫
P∇f (x)μ(dx|y) = 1

N
∇Y f̄ (y) + P covμ(dx|y)(f,∇H). (36)

The second lemma is a bound on the covariance using the LSI.

Lemma 22. Let μ ∈ P (X) satisfy LSI(ρ) for some ρ > 0. Then for any two Lipschitz functions f :X → R+ and
g :X → R,

∣∣ covμ(f,g)
∣∣ ≤ ‖∇g‖L∞(μ)

√
2

ρ

(∫
f dμ

)(∫
Φ(f )dμ − Φ

(∫
f dμ

))

≤ ‖∇g‖L∞(μ)

ρ

√(∫
f dμ

)(∫ |∇f |2
f

dμ

)
.

Lemma 21 is a straightforward calculation. Lemma 22 goes back to Bodineau and Helffer [3]. Self-contained
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proofs can be found in Ledoux [16] or Otto and Westdickenberg [19]. Below we shall present a short alternative proof
based on the results in [20]. (See Remark 23 for comments.)

Proof of Lemma 21. By definition

f̄ (y) =
∫

f (x)μ(dx|y)

= 1∫
{Px=0} exp(−H(NP ty + z))dz

∫
{Px=0}

f
(
NP ty + z

)
exp

(−H
(
NP ty + z

))
dz.

Thus, for any ỹ ∈ T Y ,

∇Y f̄ (y) · ỹ = N

∫
∇f (x) · P t ỹμ(dx|y) − N

∫
f (x)∇H(x) · P t ỹμ(dx|y)

− N

∫
f (x)μ(dx|y) ·

∫ (−∇H(x) · P t ỹ
)
μ(dx|y)

= N

[∫
P∇f (x)μ(dx|y) −

∫
f (x)P∇H(x)μ(dx|y)

+
∫

f (x)μ(dx|y)

∫
P∇H(x)μ(dx|y)

]
· ỹ,

which proves the result. �

Proof of Lemma 22. Without loss of generality we may assume
∫

f dμ = 1. Let Wp stand for the Monge–
Kantorovich–Wasserstein distance of order p (see [23]): Wp(μ,ν) = inf(E|U −V |p)1/p , where U and V are random
variables with respective law μ and ν. Then

∣∣ covμ(f,g)
∣∣ =

∣∣∣∣
∫

gf dμ −
∫

g dμ

∣∣∣∣
≤ ‖∇g‖L∞ sup

‖∇ϕ‖L∞≤1

∣∣∣∣
∫

ϕf dμ −
∫

ϕ dμ

∣∣∣∣
≤ ‖∇g‖L∞W1(f μ,μ) (37)

≤ ‖∇g‖L∞W2(f μ,μ) (38)

≤ ‖∇g‖L∞

√
2

ρ

∫
Φ(f )dμ, (39)

where (37) comes from the Kantorovich–Rubinstein duality [23], Theorem 1.3, (38) from the Hölder inequality
and (39) from [20], Theorem 1. �

Remark 23. The proof of Lemma 22 in [19], Lemma 1, is longer but more elementary, and mimics the proof of the
main result of [20]. The proof given above is shorter: It uses the main result of [20] directly.

We can finally prove Proposition 20 and thus conclude the proof of Theorem 3.

Proof of Proposition 20. First note that by (2), we have that for any x ∈ X,

∣∣NP tPx
∣∣2 = N |Px|2. (40)
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Then by using successively Lemma 21, the Young inequality 〈a, b〉 ≤ (1 − τ)−1|a|2 + τ−1|b|2, (40), and Jensen’s
inequality (with the convex function (a, b) �−→ |b|2/a), we discover that

|∇Y f̄ (y)|2Y
f̄ (y)

= N2

f̄ (y)

∣∣∣∣ − P covμ(dx|y)(f,∇H) + P

∫
∇f (x)μ(dx|y)

∣∣∣∣
2

Y

≤ N2

1 − τ

1

f̄ (y)

∣∣P covμ(dx|y)(f,∇H)
∣∣2
Y

+ N2

τ

1

f̄ (y)

∣∣∣∣P
∫

∇f (x)μ(dx|y)

∣∣∣∣
2

Y

(40)= N

1 − τ

1

f̄ (y)

∣∣NP tP covμ(dx|y)(f,∇H)
∣∣2

+ N

τ

1

f̄ (y)

∣∣∣∣NP tP

∫
∇f (x)μ(dx|y)

∣∣∣∣
2

≤ N

1 − τ

1

f̄ (y)

∣∣NP tP covμ(dx|y)(f,∇H)
∣∣2

+ N

τ

∫ |NP tP∇f (x)|2
f (x)

μ(dx|y). (41)

It remains only to estimate the first term on the right-hand side. We use assumption (ii) and Lemma 22:

∣∣NP tP covμ(dx|y)

(
f,∇H(x)

)∣∣2
= sup

|x̃|≤1

[
covμ(dx|y)

(
f,NP tP∇H(x) · x̃)]2

= sup
|x̃|≤1

[
covμ(dx|y)

(
f,∇H(x) · (NP tP x̃

))]2

≤ 1

ρ2

(
sup
|x̃|≤1

sup
x

∣∣(idX −NP tP
)∇(∇H(x) · (NP tP x̃

))∣∣2)(∫
f (x)μ(dx|y)

)

×
(∫ |(idX −NP tP )∇f (x)|2

f (x)
μ(dx|y)

)
. (42)

Finally, we observe that

sup
|x̃|≤1

sup
x

∣∣(idX −NP tP
)∇(∇H(x) · (NP tP x̃

))∣∣
= sup

|x̃|≤1,|z̃|≤1
sup
x

〈(
idX −NP tP

)∇(∇H(x) · (NP tP x̃
))

, z̃
〉

= sup
|x̃|≤1,|z̃|≤1

sup
x

〈∇(∇H(x) · (NP tP x̃
))

,
(
idX −NP tP

)
z̃
〉

= sup
{〈∇(∇H(x) · u), v〉; |u|, |v| ≤ 1, u ∈ Ran

(
NP tP

)
,

v ∈ Ran
(
idX −NP tP

)}
(5)= κ. (43)

Substituting (43) into (42) and inserting the result into (41) gives (31). �
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4. Proof of the abstract result for the hydrodynamic limit

In this section we prove Theorem 8. We begin by recording some a priori entropy estimates for the microscopic and
macroscopic systems and a bound on the second moments.

Proposition 24 (Entropy and moment estimates). If f (t, x) and η(t) satisfy the assumptions of Theorem 8, then
for any T < ∞ we have∫

Φ
(
f (T , x)

)
μ(dx) +

∫ T

0

(∫ ∇f · A∇f

f
(t, x)μ(dx)

)
dt =

∫
Φ
(
f (0, x)

)
μ(dx); (44)

H̄
(
η(T )

) +
∫ T

0

〈
dη

dt
, Ā−1 dη

dt

〉
Y

dt = H̄
(
η(0)

); (45)

(∫
|x|2f (t, x)μ(dx)

)1/2

≤
(

2

ρ̂

∫
Φ
(
f (0, x)

)
μ(dx)

)1/2

+
(∫

|x|2μ(dx)

)1/2

. (46)

Remark 25. From (44) together with the positivity of the relative entropy and the positive definiteness of the matrix A,
it follows in particular that

max

{
sup

0≤t≤T

(∫
Φ
(
f (t, x)

)
μ(dx)

)
,

∫ T

0

(∫ ∇f · A∇f

f
(t, x)μ(dx)

)
dt

}

≤
∫

Φ
(
f (0, x)

)
μ(dx). (47)

The proof of the proposition is (for the most part) standard and deferred to the end of the section. With its help, we
shall now prove Theorem 8.

Proof of Theorem 8. The proof of Theorem 8 relies on estimating the time-derivative of Θ(t) to get a Gronwall-type
estimate in the end. It is decomposed into three steps.

Step 1. Computation of (d/dt)Θ(t). In this step we establish the exact formula

d

dt

∫
1

2N

(
x − NP tη

) · A−1(x − NP tη
)
f (t, x)μ(dx)

= −
∫

Y

(∇Y H̄ (y) − ∇Y H̄ (η)
) · (y − η)f̄ (t, y)μ̄(dy) + M

N

−
∫

Y

(y − η) · P covμ(dx|y)(f,∇H)μ̄(dy)

−
∫

1

N

(
idX −NP tP

)
x · ∇f (t, x)μ(dx)

−
∫

dη

dt
· PA−1(idX −NP tP

)
xf (t, x)μ(dx). (48)

To prove (48), we use the definition of the stochastic evolution, the coarse-grained deterministic evolution, and the
splitting x = NP tPx + (idX −NP tP )x to obtain

d

dt

∫
1

2N

(
x − NP tη

) · A−1(x − NP tη
)
f μ(dx)

(8)= −
∫

1

N
A−1(x − NP tη

) · A∇f μ(dx) −
∫

P t dη

dt
· A−1(x − NP tη

)
f μ(dx)
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= −
∫

P t (Px − η) · ∇f μ(dx) −
∫

dη

dt
· PA−1NP t(Px − η)f μ(dx)

−
∫

1

N

(
idX −NP tP

)
x · ∇f μ(dx) −

∫
dη

dt
· PA−1(idX −NP tP

)
xf μ(dx)

(9)= −
∫

(Px − η) · P∇f μ(dx) −
∫

Ā−1 dη

dt
· (Px − η)f μ(dx)

−
∫

1

N

(
idX −NP tP

)
x · ∇f μ(dx) −

∫
dη

dt
· PA−1(idX −NP tP

)
xf μ(dx)

(3),(10)= −
∫

(y − η) · P
∫

∇f μ(dx|y)μ̄(dy) +
∫

∇Y H̄ (η) · (y − η)f̄ μ̄(dy)

−
∫

1

N

(
idX −NP tP

)
x · ∇f μ(dx) −

∫
dη

dt
· PA−1(idX − NP tP

)
xf μ(dx).

We keep the last three terms unchanged, and transform the first term according to Lemma 21:

−
∫

(y − η) · P
∫

∇f μ(dx|y)μ̄(dy)

(36)= − 1

N

∫
(y − η) · ∇Y f̄ μ̄(dy) −

∫
(y − η) · P covμ(dx|y)(f,∇H)μ̄(dy).

It again remains to consider the first term on the right-hand side. Using integration by parts, we obtain

− 1

N

∫
(y − η) · ∇Y f̄ μ̄(dy)

(6)= 1

N

∫
∇Y · yf̄ μ̄(dy) −

∫
(y − η) · ∇Y H̄ (y)f̄ μ̄(dy)

= (dimY)

N
−

∫
(y − η) · ∇Y H̄ (y)f̄ μ̄(dy).

This concludes Step 1.
Step 2. An upper bound. In this step we establish the following upper bound:

d

dt

∫
1

2N

(
x − NP tη

) · A−1(x − NP tη
)
f (t, x)μ(dx) + λ

2

∫
Y

|y − η|2Y f̄ (t, y)μ̄(dy)

≤ M

N
+ γ κ2

2λρ2

1

M2

∫
1

Nf (t, x)
∇f · A∇f (t, x)μ(dx)

+ γ 1/2 1

M

(∫
1

N
|x|2f (t, x)μ(dx)

)1/2

×
((∫

1

Nf (t, x)
∇f · A∇f (t, x)μ(dx)

)1/2

+
(

dη

dt
· Ā−1 dη

dt

)1/2)
. (49)

To establish (49), let us come back to the expression on the right-hand side of (48) and bound it term by term. We
use assumption (iii′) to bound the first term:

−
∫ (∇Y H̄ (y) − ∇Y H̄ (η)

) · (y − η)f̄ μ̄(dy) ≤ −λ

∫
|y − η|2Y f̄ μ̄(dy). (50)
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The third term in (48) is controlled by Cauchy–Schwarz and (40):∣∣∣∣
∫

(y − η) · P covμ(dx|y)(f,∇H)μ̄(dy)

∣∣∣∣
≤

(∫
|y − η|2Y f̄ μ̄(dy) ·

∫
1

f̄

∣∣P covμ(dx|y)(f,∇H)
∣∣2
Y
μ̄(dy)

)1/2

(40)=
(∫

|y − η|2Y f̄ μ̄(dy) ·
∫

1

Nf̄

∣∣NP tP covμ(dx|y)(f,∇H)
∣∣2μ̄(dy)

)1/2

. (51)

Recalling assumption (i) together with (42) and (43) from the proof of Proposition 20, we have

∣∣NP tP covμ(dx|y)(f,∇H)
∣∣2 ≤ κ2

ρ2
f̄

∫
1

f

∣∣(idX −NP tP
)∇f

∣∣2μ(dx|y)

≤ γ
κ2

ρ2

1

M2
f̄

∫
1

f
∇f · A∇f μ(dx|y), (52)

where we have recalled assumption (vi). Substituting (52) into (51) and using Young’s inequality, we find∣∣∣∣
∫

(y − η) · P covμ(dx|y)(f,∇H)μ̄(dy)

∣∣∣∣
≤

(
γ

κ2

ρ2

1

M2

∫
|y − η|2Y f̄ μ̄(dy) ·

∫
1

Nf
∇f · A∇f μ(dx)

)1/2

≤ γ

2λ

κ2

ρ2

1

M2

∫
1

Nf
∇f · A∇f μ(dx) + λ

2

∫
|y − η|2Y f̄ μ̄(dy). (53)

It remains to take care of the last two terms in (48). We begin with the following estimate:

(
idX −NP tP

)
x · A−1(idX −NP tP

)
x ≤ γ

1

M2
|x|2. (54)

Indeed,(
idX −NP tP

)
x · A−1(idX −NP tP

)
x

= x · (idX −NP tP
)
A−1(idX −NP tP

)
x

≤ |x|∣∣(idX −NP tP
)
A−1(idX −NP tP

)
x
∣∣

≤ |x|
(

γ
1

M2
A−1(idX −NP tP

)
x · (idx −NP tP

)
x

)1/2

,

where assumption (vi) was used in the last step.
Now we can estimate the fourth term in (48) by means of Cauchy–Schwarz and (54):∣∣∣∣

∫
1

N

(
idX −NP tP

)
x · ∇f μ(dx)

∣∣∣∣
≤

(∫
1

N

(
idX −NP tP

)
x · A−1(idX −NP tP

)
xf μ(dx)

∫
1

Nf
∇f · A∇f μ(dx)

)1/2

≤
(

γ
1

M2

∫
1

Nf
∇f · A∇f μ(dx) ·

∫
1

N
|x|2f μ(dx)

)1/2

. (55)
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Similarly for the fifth term in (48), we have∣∣∣∣
∫

dη

dt
· PA−1(idX −NP tP

)
xf μ(dx)

∣∣∣∣
≤

(∫
P t dη

dt
· A−1NP t dη

dt
f μ(dx)

)1/2(∫
1

N

(
idX −NP tP

)
x · A−1(idX −NP tP

)
xf μ(dx)

)1/2

(9),(54)≤
(

dη

dt
· Ā−1 dη

dt

)1/2(∫
γ

NM2
|x|2f μ(dx)

)1/2

. (56)

Substituting (50), (53), (55) and (56) into (48) gives (49).
Step 3. Time-integration and conclusion. Recalling the definition (11) and integrating (49) with respect to time, we

observe that for any T > 0, we have

max

{
sup

t∈(0,T )

Θ(t),
λ

2

∫ T

0

∫
Y

|y − η|2Y f̄ (t, y)μ̄(dy)dt

}

≤ Θ(0) + T
M

N
+ γ κ2

2λρ2

1

M2

∫ T

0

∫
1

Nf (t, x)
∇f · A∇f (t, x)μ(dx)dt

+ γ 1/2 1

M

∫ T

0

(∫
1

N
|x|2f (t, x)μ(dx)

)1/2((∫
1

Nf (t, x)
∇f · A∇f (t, x)μ(dx)

)1/2

+
(

dη

dt
· Ā−1 dη

dt

)1/2)
dt. (57)

The first and second terms on the right-hand side are in final form. The third term is the entropy production, and can
be controlled by means of Proposition 24 (inequality (47)). Finally, the last time-integral can be estimated as follows:

∫ T

0

(∫
1

N
|x|2f μ(dx)

)1/2((∫
1

Nf
∇f · A∇f μ(dx)

)1/2

+
(

dη

dt
· Ā−1 dη

dt

)1/2)
dt

≤
(∫ T

0

∫
1

N
|x|2f μ(dx)dt

)1/2((∫ T

0

∫
1

Nf
∇f · A∇f μ(dx)dt

)1/2

+
(∫ T

0

dη

dt
· Ā−1 dη

dt
dt

)1/2)
.

After applying Proposition 24 (together with Young’s inequality), the right-hand side improves to

(
2
∫ T

0

(
1

N

∫
|x|2μ(dx) + 2

Nρ̂

∫
Φ
(
f (0, x)

)
μ(dx)

)
dt

)1/2

×
((

1

N

∫
Φ
(
f (0, x)

)
μ(dx)

)1/2

+ (
H̄

(
η(0)

) − H̄
(
η(T )

))1/2
)

.

Substituting the constants from the assumptions concludes the proof of Theorem 8. �

Proof of Proposition 24. The first two bounds are standard; we shall not be careful about regularity issues. Multi-
ply (8) by ξ = logf and integrate by parts to get∫

Φ
(
f (T , x)

)
μ(dx) −

∫
Φ
(
f (0, x)

)
μ(dx) = −

∫ T

0

∫
1

f
∇f · A∇f μ(dx)dt.

Next, to verify (45) notice that∫ T

0

〈
dη

dt
, Ā−1 dη

dt

〉
Y

dt
(10)= −

∫ T

0

〈
dη

dt
,∇Y H̄ (η)

〉
Y

dt = H̄ (η0) − H̄
(
η(T )

)
.
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It remains to establish (46). According to Remark 10, μ satisfies LSI(ρ̂). By Lemma 26 below,

(∫
|x|2f (t, x)μ(dx)

)1/2

≤
(∫

|x|2μ(dx)

)1/2

+
(

2

ρ̂

∫
Φ
(
f (t, x)

)
μ(dx)

)1/2

,

and the conclusion follows since
∫

Φ(f (t, x))dμ(x) is nonincreasing in t . �

The next lemma was used in the proof of Proposition 24:

Lemma 26. Let ρ > 0 and let μ ∈ P (RN) satisfy LSI(ρ). Then for any probability density f on (RN,μ),

(∫
|x|2f (x)μ(dx)

)1/2

≤
(∫

|x|2μ(dx)

)1/2

+
(

2

ρ

∫
Φ
(
f (x)

)
μ(dx)

)1/2

.

Remark 27. This particular estimate seems to be new. We shall prove it by mimicking the heat semigroup argument
in [20]. It is also possible to prove it more directly as a consequence of the results in [20] (and to generalize it to more
general length structures than just the Euclidean space).

Proof of Lemma 26. Let Ptf be the diffusion semigroup defined by

d

dt

∫
Ptf ξμ(dx) = −

∫
∇Ptf · ∇ξμ(dx) ∀ξ(x) ≥ 0, (58)

P0f = f. (59)

We observe that

d

dt

∫
Φ(Ptf )μ(dx)

(58)= −
∫

1

Ptf
|∇Ptf |2μ(dx)

LSI(ρ)≤ −2ρ

∫
Φ(Ptf )μ(dx),

so that∫
Φ(Ptf )μ(dx) ≤ exp(−2ρt)

∫
Φ(P0f )μ(dx),

and in particular,

lim
t↑∞Ptf = 1. (60)

We now have

d

dt

((∫
|x|2Ptf μ(dx)

)1/2

−
(

2

ρ

∫
Φ(Ptf )μ(dx)

)1/2)

(58)= −
(∫

|x|2Ptf μ(dx)

)−1/2 ∫
x · ∇Ptf μ(dx)

+
(

2ρ

∫
Φ(Ptf )μ(dx)

)−1/2 ∫ 1

Ptf
|∇Ptf |2μ(dx)

LSI(ρ)≥ −
(∫

|x|2Ptf μ(dx)

)−1/2(∫
|x|2Ptf μ(dx)

)1/2(∫
1

Ptf
|∇Ptf |2μ(dx)

)1/2

+
(∫

1

Ptf
|∇Ptf |2μ(dx)

)−1/2 ∫ 1

Ptf
|∇Ptf |2μ(dx)



A two-scale approach to logarithmic Sobolev inequalities 323

= −
(∫

1

Ptf
|∇Ptf |2μ(dx)

)1/2

+
(∫

1

Ptf
|∇Ptf |2μ(dx)

)1/2

= 0.

Integrating this inequality and recalling (59) and (60) leads to:

(∫
|x|2f μ(dx)

)1/2

≤
(∫

|x|2μ(dx)

)1/2

+
(

2

ρ

∫
Φ(f )μ(dx)

)1/2

. �

5. Application: LSI for the canonical ensemble

In this section we shall prove Theorem 14 (modulo a key technical proposition deferred to the Appendix). We begin
by introducing the set-up and notation which will be used throughout this section and also in Section 6.

5.1. Set-up and preparations

In keeping with the abstract framework of Theorem 3, we set

X = XN,m =
{

(x1, . . . , xN) ∈ R
N ; 1

N

N∑
i=1

xi = m

}
,

equipped with the �2 inner product

〈x, x̃〉X =
N∑

i=1

xi x̃i . (61)

We divide the N spins into M blocks and define the macroscopic variables to be the mean of each block. To fix the
ideas, let us first assume that all blocks have the same size K , so that N = MK (see Remark 30 below). Then the
macroscopic variables form a set of M numbers that still have mean m. This motivates the choice of the macroscopic
space as

Y = YM,m =
{

(y1, . . . , yM); 1

M

M∑
j=1

yj = m

}
,

equipped with the L2 inner product

〈y, ỹ〉Y = 1

M

M∑
j=1

yj ỹj . (62)

(Recall that the notion of gradient and Hessian depends on the inner product; cf. (67) and (68) below.) The projection
P = PN,K :XN,m → YM,m is defined by

PN,K(x1, . . . , xN) = (y1, . . . , yM); yj = 1

K

jK∑
i=(j−1)K+1

xi. (63)

It is straightforward to check that PN,K satisfies (2).
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For each y ∈ YM,m we define

XN,K,y = {x ∈ XN,m; PN,Kx = y},
the pre-image of y under the projection. This is the set of all microscopic profiles compatible with the macroscopic
profile y. This decomposition induces the factorization

XN,K,y =
M⊗

j=1

XK,yj

and PN,K factorizes on the fibers XN,K,y .
If μN,m is given by (17), we can explicitly compute the logarithmic densities H and H̄ :

H(x) =
N∑

i=1

ψ(xi) + logZ; (64)

H̄ (y) = − 1

N

(
log

∫
XN,K,y

exp
(−H(x)

)
HN−M(dx) − log Z̄

)

= − 1

N

M∑
j=1

log

(∫
XK,yj

exp
(−H(x)

)
HK−1(dx)

)
+ 1

N
log Z̄,

where Z and Z̄ are normalizing constants. If we further define

ψK(m) := − 1

K
log

(∫
XK,m

exp

(
−

K∑
i=1

ψ(xi)

)
HK−1(dx)

)
, (65)

then we can express H̄ as

H̄ (y) = 1

M

M∑
i=1

ψK(yi) + 1

N
log Z̄. (66)

For future reference, we remark that according to (62) and (66), the gradient of H̄ , defined via

dH̄ (y) = 〈∇Y H̄ (y), ỹ
〉
Y

for all ỹ ∈ Y

is given by(∇Y H̄ (y)
)
i
= ψ ′

K(yi). (67)

Similarly, the Hessian is identified as

(HessY H̄ )ij = ψ ′′
K(yi)δij . (68)

As a final preparation, let us compute the conditional measure μ(dx|y). For each y, the fiber P −1
N,K(y) is (N −M)-

dimensional, and

dμ(·|y)

dHN−M
(x) = exp(−H(x))

exp(−NH̄(y))
= exp

(
−

N∑
i=1

ψ(xi) + K

M∑
j=1

ψK(yj )

)

=
M∏

j=1

exp

(
KψK(yj ) −

jK∑
i=(j−1)K+1

ψ(xi)

)
.
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Hence μ(dx|y) tensorizes on
⊗M

j=1 XK,yj
: more explicitly,

μ(dx|y) =
M⊗

j=1

(exp(−∑jK

i=(j−1)K+1 ψ(xi))

Zj

HK−1(dx)

)
=:

M⊗
j=1

μN,K,j,yj
(dx), (69)

where each μN,K,j,yj
is a probability measure on XK,yj

.

5.2. Proof of Theorem 14

Theorem 14 will follow from Theorem 3 once we verify the assumptions of the latter. We will need two ingredients:
The first ingredient gives a microscopic LSI for any finite K .

Lemma 28 (Microscopic LSI). Consider the measure μN,m given by (17) with ψ satisfying (16), that is:

ψ(x) = 1

2
x2 + δψ(x), ‖δψ‖C2(R) < +∞.

Then for any K < ∞, for all y ∈ YM,m the probability measures μ(dx|y) on XN,K,y satisfy LSI with constant
exp(−KoscR δψ).

The second ingredient will imply a macroscopic LSI for K sufficiently large. (It is a corollary of Proposition 31
below.)

Lemma 29 (Convexity of coarse-grained Hamiltonian). Consider the measure μN,m given by (17) with ψ satisfy-
ing (16). There exist K0 < ∞ and λ > 0 dependent only on ψ such that for any K ≥ K0 we have〈

ỹ,HessH̄ (y)ỹ
〉
Y

≥ λ〈ỹ, ỹ〉Y . (70)

Proof of Theorem 14. We need only verify the assumptions of Theorem 3. Assumption (i) is an obvious consequence
of (16). Assumption (ii) is given by Lemma 28 for any finite K . Finally, assumption (iii) for K sufficiently large
follows from the combination of Lemma 29, the definition (6) of H̄ , and the Bakry–Émery theorem (cf. Criterion 3). �

Remark 30. It remains only to discuss what happens when N/K is not an integer. This is easily handled by general-
izing the construction, allowing for the M blocks to have different sizes:

Px = (y1, . . . , yM); yj = 1

Kj

K1+···+Kj∑
i=K1+···+Kj−1+1

xi;
M∑

j=1

Kj = N.

Then the space Y is defined by (1/M)
∑

αjyj = m, where αj = MKj/N .
With this generalized setting the whole proof goes through provided that the Kj are all large enough but uni-

formly bounded, and, say, 1 ≤ αj ≤ 2. This is always feasible since any number N ≥ K can be decomposed into
N = K1 + · · · + KM where each Kj satisfies K ≤ Kj ≤ 2K and 1 ≤ MKj/N ≤ 2.

5.3. Microscopic LSI

The microscopic LSI follows easily from the factorization (69):

Proof of Lemma 28. According to (69) and the tensorization principle (cf. Criterion 1), it suffices to show that for
every j ,

μN,K,j,yj
satisfies LSI with constant exp(−K oscR δψ). (71)
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According to (69) and (16), we have

μN,K,j,yj
(dx) = 1

Zj

exp

[
−
(

jK∑
i=(j−1)K+1

1

2
x2
i + δΨj (x)

)]
HK−1(dx),

where δΨj (x) :=
jK∑

i=(j−1)K+1

δψ(xi),

and clearly oscR(δΨj ) ≤ K oscR(δψ). Since the Gaussian measure satisfies LSI(1), the Holley–Stroock perturbation
lemma (Criterion 2 in Section 1.1) gives (71). �

5.4. Macroscopic LSI via convexification

Recalling (68), Lemma 29 will follow immediately if we can show that

∀m ∈ R, ψ ′′
K(m) ≥ λ. (72)

While the convexity cannot be true for all K (think that ψ1 = ψ ), we shall see that it does hold for K large enough
(depending on ψ ).

Let x1, . . . , xK be independent, identically distributed random variables with common law Z−1 exp(−ψ(x))dx.
The joint law of (x1, . . . , xK) takes the form Z−1

K exp(−∑
ψ(xi))LK(dx), so the mean value m = (x1 +· · ·+ xK)/K

is distributed according to fK(m)dm, where

fK(m) = 1

ZK

∫
XK,m

exp

(
−

K∑
i=1

ψ(xi)

)
HK−1(dx) = exp(−KψK(m))

ZK

.

Then the classical Cramér theorem in large deviation theory [6] asserts that for any [a, b] ⊂ R,

− 1

K
log

∫ b

a

fK(m)dm −→
K↑∞ inf[a,b]ϕ,

where ϕ is the so-called Cramér transform of exp(−ψ):

ϕ(m) = sup
σ∈R

(
σm − log

∫
R

exp
(
σx − ψ(x)

)
dx

)
. (73)

Since (−1/K) logfK = ψK + (1/K) logZK , the following proposition will appear as a natural local refinement of
Cramér’s theorem:

Proposition 31 (Local Cramér theorem). If ψ : R → R satisfies (16) and ψK is defined by (65) then

ψK −→
K↑∞ϕ in the uniform C2 topology,

where ϕ is the Cramér transform of ψ , defined by (73).

(From here it is easy to deduce (72).) Although the result might be well known in certain circles (maybe in some
equivalent version), for completeness we provide a proof of Proposition 31 in the Appendix, based on a C2 local
central limit theorem and the explicit representation

(ψN − ϕ)(m) = − 1

N
log

(
dgN,m

dL1

)
(0).
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Here gN,m denotes the distribution of (1/
√

N)
∑N

i=1(xi −m), where the xi ’s are independent and distributed according
to the common law dμσ := Z−1 exp(σx − ψ(x))dx, and σ = σ(m) is chosen so that the xi ’s have mean m:∫

R

xμσ (dx) = m. (74)

(The idea of this “exponential” change of measure goes back to Cramér; see Section 5.5 below for details.)

5.5. Statistical mechanics interpretation

It might be enlightening to re-examine the preceding argument in terms of statistical mechanics. As discussed earlier
(cf. Section 2.4), there are two statistical ensembles that play a natural role here: the canonical ensemble μN,m (mean
density m fixed, exponential distribution of energy) and the grand canonical ensemble μN (density m not fixed,
exponential distribution of energy). The one which is of direct relevance for us is the canonical ensemble: Our goal is
to show the strict convexity of the associated free energy, which is by definition

1

N
log

(∫
XN,m

exp

(
N∑

i=1

(
σxi − ψ(xi)

))
HN−1(dx)

)
(65)= σm − ψN(m). (75)

As mentioned above (cf. (74)), Cramér’s trick consists of changing the measure exp(−ψ(x))dx into dμσ =
exp(σx − ψ(x))dx with σ chosen so that the mean is m. This condition can be recast as

dϕ∗

dσ
(σ ) = m, (76)

where

ϕ∗(σ ) := log
∫

exp
(
σx − ψ(x)

)
dx.

For each m there is a unique σ = σ(m) solving (76). Indeed, as is well-known and easy to show (cf. Lemma 41 in
Section A.2), ϕ∗ is uniformly convex and C1, so its derivative is continuous increasing. In fact m and σ are related by
the usual equations of Legendre transform:

m = (
ϕ∗)′(σ ), σ = ϕ′(m), ϕ(m) + ϕ∗(σ ) = mσ. (77)

Consider now the modified grand canonical ensemble defined by

μm
N = 1

Z
exp

(
−

N∑
i=1

(
σxi + ψ(xi)

))
LN(dx). (78)

As it did for μN , conditioning μm
N on (1/N)

∑N
i=1 xi = m gives rise to μN,m (adding a linear function to the Hamil-

tonian dows not affect μN,m). What have we gained? In view of

∫
RN

(
1

N

N∑
i=1

xi

)
μm

N(dx)
(74)= m,

the conditioning is expected to be less dramatic: μm
N should concentrate around the mean anyway by the usual law of

large numbers. The principle of equivalence of ensembles says that μN,m and μm
N should be asymptotically close, in

some sense, as N ↑ ∞. Since the free energy of μm
N , given by

log
∫

R

exp
(
σx − ψ(x)

) = ϕ∗(σ ) = σm − ϕ(m), (79)
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is strictly convex, does the free energy of the canonical ensemble inherit strict convexity for N large?
Statistical mechanics does suggest that one measure of the closeness of ensembles is the difference in free energies

which, according to (75) and (79), is given by

ϕ(m) − ψN(m).

This is precisely the quantity that is controlled (in the C2 topology) in Proposition 31.
To summarize: The local version of Cramér’s theorem quantifies the equivalence of ensembles in the sense that it

proves the asymptotic closeness, in the uniform C2 topology, of the free energies.
This piece of information about the closeness of free energies is the only input from equilibrium statistical mechan-

ics that we need in order to complete the proof of Theorem 14. In particular we do not need to invoke the closeness of
low-dimensional marginals of μm

N and μN,m as in [5,10,14].

6. Application: Hydrodynamic limit for Kawasaki dynamics

6.1. Set-up: functional spaces and projection

In this section we shall use the same set-up as in Section 5.1. In particular, we will consider the spaces X = XN,0 and
Y = YM,0 with �2 inner product (61) and L2 inner product (62), respectively. Moreover, we will project from X to Y

using the projection operator P = PN,K . For simplicity we shall assume that N = KM , where K is so large that ψK

is uniformly convex (recall Section 5.4). The general case can be handled with arguments similar to those used in
Remark 30.

6.2. Proof of Theorem 17

Let us start with a precise definition of the notion of weak solution that will be used.

Definition 32. We will call ζ = ζ(t, θ) a weak solution of (27) on [0, T ] × T
1 if

ζ ∈ L∞
t

(
L2

θ

)
,

∂ζ

∂t
∈ L2

t

(
H−1

θ

)
, ϕ′(ζ ) ∈ L2

t

(
L2

θ

)
, (80)

and 〈
ξ,

∂ζ

∂t

〉
H−1

= −
∫

T1
ξϕ′(ζ )dθ for all ξ ∈ L2, for almost every t ∈ [0, T ]. (81)

As in Corollary 12, we will consider a sequence {Mν,Nν}∞ν=1 with

Mν ↑ ∞, Nν ↑ ∞, Kν = Nν

Mν

↑ ∞. (82)

To simplify notation we shall write just N,K,M for Nν,Kν,Mν . We shall also not explicitly denote the dependence
of X, Y , P , A, f0, and H̄ on ν. Finally, we shall for simplicity abbreviate μN,0 = μ in this section.

Let η̄ν
0 ∈ Ȳ be a step function approximation of ζ0 with∥∥η̄ν
0 − ζ0

∥∥
L2 −→

ν↑∞ 0. (83)

Since by assumption ζ0 lies in L2(T1), we have∥∥η̄ν
0

∥∥
L2 ≤ C. (84)

Let ην
0 ∈ Y be the vector associated to η̄ν

0 . Consider the solutions ην of

dην

dt
= −Ā∇Y H̄

(
ην

)
, ην(0) = ην

0 . (85)
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The next proposition, proven in Section 6.4 below, is the key to pass from the abstract hydrodynamic limit (Corol-
lary 12) to the “concrete” result of Theorem 17:

Proposition 33. With the above notation, the step functions η̄ν converge strongly in L∞(H−1) to the unique weak
solution of

∂ζ

∂t
= ∂2

∂θ2
ϕ′(ζ ), ζ(0, ·) = ζ0. (86)

After these preparations, let us see how to prove Theorem 17.

Proof of Theorem 17. The proof is in two steps based respectively on Corollary 12, and on Proposition 33.
Step 1. Abstract result. In this step the goal is to show

lim
ν↑∞ sup

t∈[0,T ]

∫ 〈
x̄ − η̄ν(t, ·), x̄ − η̄ν(t, ·)〉

H−1f (t, x)μ(dx) = 0. (87)

This will be obtained as a consequence of Corollary 12. There are four assumptions that we need to check in order to
apply this corollary:

(a) There exists α < ∞ such that μ satisfies∫
|x|2μ(dx) ≤ αN. (88)

(b) There exists C < ∞ such that the coarse-grained Hamiltonian satisfies

inf
y∈Y

H̄ (y) ≥ −C, (89)

H̄
(
ην

0

) ≤ C (90)

(c) There exists a universal constant γ < ∞ such that for P and A defined by (63) and (21) respectively, one has∣∣(idX −NP tP
)
x
∣∣2
X

≤ γ

M2
〈x,Ax〉X. (91)

(d) There exists C < ∞ such that for any x ∈ X, if x̄ is the associated step function then

1

C
〈x̄, x̄〉H−1 ≤ 1

N

〈
x,A−1x

〉
X

≤ C〈x̄, x̄〉H−1; (92)

moreover, if x̄ is bounded in L2, then∣∣∣∣〈x̄, x̄〉H−1 − 1

N

〈
x,A−1x

〉
X

∣∣∣∣ ≤ C

N
. (93)

Taking estimates (a)–(d) for granted, let us verify the assumptions of Theorem 8:

– Assumptions (i)–(iii′) are a consequence of (16), Lemmas 28 and 29.
– Assumptions (iv), (v) and (vi) are the same as (88), (89) and (91), respectively.
– Assumption (vii) follows from (24) and (90).

So Theorem 8 applies. Moreover, (12) is given by (82). Hence, in order to invoke Corollary 12 we need only
check (13).

To do so, we use estimate (92) to deduce

1

N

(
x − NP tην

0

) · A−1(x − NP tην
0

) ≤ C
∥∥x̄ − η̄ν

0

∥∥2
H−1

≤ 2C
(‖x̄ − ζ0‖2

H−1 + ∥∥ζ0 − η̄ν
0

∥∥2
H−1

)
, (94)
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where we have observed NP tην
0 = η̄ν

0 . The combination of (94), (83) and (25) gives in particular

lim
N↑∞

∫
1

N

(
x − NP tην

0

) · A−1(x − NP tην
0

)
f0(x)μ(dx) = 0.

Hence, by Corollary 12, we have (14) which, by (92), gives (87).
Step 2. By combining Step 1 and Proposition 33, we obtain

lim
ν↑∞ sup

t∈[0,T ]

∫ ∥∥x̄ − ζ(t, ·)∥∥2
H−1f (t, x)μ(dx)

≤ 2 lim
ν↑∞ sup

t∈[0,T ]

(∫ ∥∥x̄ − η̄ν(t, ·)∥∥2
H−1f (t, x)μ(dx)

+
∫ ∥∥η̄ν(t, ·) − ζ(t, ·)∥∥2

H−1f (t, x)μ(dx)

)

= 2 lim
ν↑∞ sup

t∈[0,T ]

(∫ ∥∥x̄ − η̄ν(t, ·)∥∥2
H−1f (t, x)μ(dx) + ∥∥η̄ν(t, ·) − ζ(t, ·)∥∥2

H−1

)
= 0.

This concludes the proof of Theorem 17, modulo the proofs of estimates (88) to (93), and the proof of Proposi-
tion 33. �

6.3. Proofs of estimates (88)–(93)

Proof of (88). Since μ satisfies the logarithmic Sobolev inequality with constant ρ (cf. Theorem 14), it also satisfies
the spectral gap inequality with the constant ρ, that is,

∫
f (x)2μ(dx) −

(∫
f (x)μ(dx)

)2

≤ 1

ρ

∫ ∣∣∇f (x)
∣∣2μ(dx). (95)

Setting f (x) = xi for any i ∈ {1, . . . ,N}, we have

∫
x2
i μ(dx) =

∫
x2
i μ(dx) −

(∫
xiμ(dx)

)2
(95)≤ 1

ρ

∫
μ(dx) = 1

ρ
.

Summing over i gives (88) with α = 1/ρ. (Here we have used that the mean of xi is zero. In general, the calculation
gives α = 1/ρ + m2.) �

Proof of (89)–(90). Recall that H̄ (η) = (1/M)
∑M

i=1 ψK(ηi) + (1/N) log Z̄ where

Z̄ =
∫

X

exp

(
−

N∑
i=1

ψ(xi)

)
HN−1(dx).

It is easy to see that (16) implies that (1/N) log Z̄ is bounded above and below, so we may without loss of generality
assume that

H̄ (η) = 1

M

M∑
i=1

ψK(ηi). (96)

The lower bound (90) follows from the uniform convergence of ψK (cf. Proposition 31) and the strict convexity of ϕ.
For the upper bound (89), we recall from (77) that

ϕ′′(m) = dσ

dm
.
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Together with Lemma 41 parts (i) and (ii), this implies

1

C
≤ ϕ′′(m) ≤ C, (97)

and in particular, we have

ϕ(m) ≤ C

(
1 + 1

2
m2

)
. (98)

The uniform convergence of ψK (Proposition 31) together with (96) and (98) then gives

H̄
(
ην

0

) ≤ C
(
1 + 〈

ην
0, ην

0

〉
Y

) = C
(
1 + ∥∥η̄ν

0

∥∥2
L2

) (84)≤ C.

�

Proof of (91). Since idX −NP tP is in the kernel of P , each block of K spins has mean zero:

x(j−1)K+1 + · · · + xjK = 0.

Hence, each block satisfies the discrete Poincaré inequality

jK∑
i=(j−1)K+1

x2
i ≤ γK2

jK−1∑
i=(j−1)K+1

(xi − xi+1)
2,

where γ < ∞ is a universal constant. Thus

∣∣(idX −NP tP
)
x
∣∣2
X

≤ γK2
N∑

i=1

(xi − xi+1)
2 (21)= γ

K2

N2
〈x,Ax〉X = γ

1

M2
〈x,Ax〉X. �

Proof of (92)–(93). We can express the discrete norm as:

1

N

〈
x,A−1x

〉
X

= 1

N

N∑
i=1

F 2
i , where xi = N(Fi+1 − Fi) and

N∑
i=1

Fi = 0. (99)

We would like to estimate the H−1 norm in terms of F . For this recall from Definition 23 that

〈x̄, x̄〉H−1 =
∫

T1
w2(θ)dθ, where w′ = x̄ and

∫
T1

w dθ = 0. (100)

It is easy to check that w defined via

w(θ) = Fi + N(Fi+1 − Fi)

(
θ − i − 1

N

)
for θ ∈

[
i − 1

N
,

i

N

)

satisfies (100). Hence

〈x̄, x̄〉H−1 =
N∑

i=1

∫ N−1

0

(
Fi + N(Fi+1 − Fi)θ

)2 dθ = 1

N

N∑
i=1

(
F 2

i + (Fi+1 − Fi)Fi + 1

3
(Fi+1 − Fi)

2
)

= 1

N

〈
x,A−1x

〉
X

+ 1

N

N∑
i=1

(
(Fi+1 − Fi)Fi + 1

3
(Fi+1 − Fi)

2
)

. (101)



332 N. Grunewald et al.

Note that for the second term on the right-hand side we have

− 2

3N

N∑
i=1

F 2
i ≤ 1

N

N∑
i=1

(
(Fi+1 − Fi)Fi + 1

3
(Fi+1 − Fi)

2
)

≤ 0. (102)

Using (102) in (101) gives

〈x̄, x̄〉H−1 ≤ 1

N

〈
x,A−1x

〉
X

≤ 3〈x̄, x̄〉H−1 .

Moreover, if x̄ is bounded in L2, then

1

N

N∑
i=1

x2
i = N

N∑
i=1

(Fi+1 − Fi)
2 ≤ C and

1

N

N∑
i=1

F 2
i ≤ C,

and (101) gives∣∣∣∣〈x̄, x̄〉H−1 − 1

N

〈
x,A−1x

〉
X

∣∣∣∣
= 1

N

∣∣∣∣∣
N∑

i=1

(
(Fi+1 − Fi)Fi + 1

3
(Fi+1 − Fi)

2
)∣∣∣∣∣

≤ 1

N

(
N∑

i=1

(Fi+1 − Fi)
2

N∑
i=1

F 2
i

)1/2

+ 1

3N

N∑
i=1

(Fi+1 − Fi)
2 ≤ C

N
. �

6.4. Proof of Proposition 33

In this section we prove Proposition 33, modulo certain auxiliary lemmas which are deferred to Section 6.5. For the
sequence ην we have the bounds:

Lemma 34. Consider the sequence {ην}∞ν=1 of solutions of (85) subject to (84). There exists C < ∞ (independent
of ν) such that

sup
t∈[0,T ]

〈
ην(t), ην(t)

〉
Y

≤ C, (103)

∫ T

0

〈
dην

dt
(t), (Ā)−1 dην

dt
(t)

〉
Y

dt ≤ C. (104)

In particular, (103) implies that for the sequence of associated step functions η̄ν , there is a subsequence such that

η̄ν ⇀ η∗ weak-∗ in L∞(
L2) = (

L1(L2))∗
for some limit η∗. We will show that η∗ is the unique weak solution of (86) by using the following four lemmas.

Lemma 35. Consider a sequence {ην}∞ν=1 of solutions of (85) satisfying (103) and (104). Consider any subsequence
such that the associated step functions weak-∗ converge in (L1(L2))∗ to a limit η∗. Then η∗ satisfies (80). That is, on
any bounded time interval we have

η∗ ∈ L∞(
L2), ∂η∗

∂t
∈ L2(H−1), ϕ′(η∗) ∈ L2(L2).
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Lemma 36 (Inequality formulation for convex potential). Assume H̄ is convex. Then η satisfies (85) if and only if

∫ T

0
H̄ (η)β(t)dt ≤

∫ T

0
H̄ (η + ξ)β(t)dt −

∫ T

0

〈
ξ, (Ā)−1η

〉
Y
β̇(t)dt (105)

for all ξ ∈ Y and smooth β : [0, T ] → [0,∞).
Similarly, assume ϕ is convex. Then ζ satisfies (81) if and only if

∫ T

0

∫
T1

ϕ
(
ζ(t, θ)

)
β(t)dθ dt

≤
∫ T

0

∫
T1

ϕ
(
ζ(t, θ) + ξ(θ)

)
β(t)dθ dt −

∫ T

0

〈
ξ(·), ζ(t, ·)〉

H−1 β̇(t)dt (106)

for all ξ ∈ L2(T1) and smooth β : [0, T ] → [0,∞).

Lemma 37. Suppose that the sequence {ην}∞ν=1 satisfies (103), (104) and (105), and consider a subsequence such
that

η̄ν ⇀ η∗ weak-∗ in L∞(
L2) = (

L1(L2))∗. (107)

Let ξν := πν(ξ + η∗) − ην , where ξ is an arbitrary L2 function and πν is the L2-projection onto elements of Y .
Then we have

(i) lim
ν↑∞

∫ T

0
H̄

(
ην(t)

)
β(t)dt ≥

∫ T

0

∫
T1

ϕ
(
η∗(t, θ)

)
β(t)dθ dt,

(ii) lim
ν↑∞

∫ T

0
H̄

(
ην(t) + ξν(t)

)
β(t)dt =

∫ T

0

∫
T1

ϕ
(
η∗(t, θ) + ξ(θ)

)
β(t)dθ dt,

(iii) lim
ν↑∞

∫ T

0

〈
ξν(t), (Ā)−1ην(t)

〉
Y
β̇(t)dt =

∫ T

0

〈
ξ(θ), η∗(t, θ)

〉
H−1 β̇(t)dt. (108)

Lemma 38 (Uniqueness). There is at most one weak solution of (86).

Proof of Proposition 33. According to Lemma 34, we can consider a subsequence such that

η̄ν ⇀ η∗ weak-∗ in L∞(
L2) = (

L1(L2))∗
and strongly in L∞(H−1). By Lemma 35, the limit η∗ satisfies condition (80).

According to Lemma 36, ην satisfies

∫ T

0
H̄

(
ην

)
β(t)dt ≤

∫ T

0
H̄

(
ην + ξν

)
β(t)dt −

∫ T

0

〈
ξν, (Ā)−1ην

〉
Y
β̇(t)dt

with ξν := πν(ξ +η∗)−ην as in Lemma 37. By applying (i), (ii) and (iii) from Lemma 37 to the inequality, we deduce
that η∗ satisfies (106); hence, by another application of Lemma 36, η∗ satisfies (81).

Therefore η∗ is a weak solution of (86), and since according to Lemma 38 there is only one weak solution, the full
sequence {η̄ν}∞ν=1 converges to the unique weak solution of (86). �
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6.5. Proofs of auxiliary lemmas

Proof of Lemma 34. To see (103), we begin by computing

d

dt
H̄

(
ην

) = 〈∇Y H̄
(
ην

)
, η̇ν

〉
Y

(109)

(85)= −〈∇Y H̄
(
ην

)
, Ā∇Y H̄

(
ην

)〉
Y

≤ 0,

so that

H̄
(
ην(t)

) ≤ H̄
(
ην

0

)
. (110)

Combining (90) and the strict convexity of H̄ (recall that K has been chosen large enough that H̄ is strictly convex
by Proposition 31), we conclude that there exists C > 0 such that

H̄ (η) ≥ −C + 1

C
〈η,η〉Y , (111)

which gives the uniform in time bound

〈
ην, ην

〉
Y

(111)≤ C
(
H̄

(
ην

) + C
) (110)≤ C

(
H̄

(
ην

0

) + C
) (89)≤ 2C2.

To see (104), we substitute ∇Y H(ην) = −(Ā)−1η̇ν in (109) and integrate in time to deduce

∫ T

0

〈
η̇ν, (Ā)−1η̇ν

〉
Y

dt = −
∫ T

0

d

dt
H̄

(
ην

)
dt

= H̄
(
ην

0

) − H̄
(
ην(t)

) (89),(90)≤ 2C. �

Proof of Lemma 35. By weak lower semicontinuity, we have for all t ∈ [0, T ] that∫
T1

η2∗ dθ ≤ lim inf
ν↑∞

∫
T1

(
η̄ν

)2 dθ = 〈
ην, ην

〉
Y

(103)≤ C,

which is the first estimate.
For the second estimate we employ (92) with x = NP t η̇ν . Recalling that NP tην = η̄ν , we have

∫ T

0

〈 ˙̄ην
, ˙̄ην 〉

H−1 dt
(92)≤ C

N

∫ T

0

〈
NP t η̇ν,A−1NP t η̇ν

〉
X

dt

(9)= C

∫ T

0

〈
η̇, Ā−1η̇

〉
Y

dt
(104)≤ C.

Again using weak lower semicontinuity, we have in particular that

∫ T

0
〈η̇∗, η̇∗〉H−1 dt ≤ C.

The third estimate follows from the first observation along with∣∣ϕ′(m)
∣∣ ≤ C

(
1 + |m|),

which is a consequence of (97). �
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Proof of Lemma 38. Consider the weak formulation:

〈ζ̇ , ξ 〉H−1 = −
∫

T1
ϕ′(ζ )ξ dθ for all ξ ∈ L2, for a.e. t ∈ [0, T ].

Suppose that ζ1 and ζ2 are two weak solutions. Then we have

〈ζ̇1 − ζ̇2, ξ 〉H−1 = −
∫

T1

(
ϕ′(ζ1) − ϕ′(ζ2)

)
ξ dθ.

Recall from the definition of weak solution that

ζi ∈ L∞(
L2), ζ̇i ∈ L2(H−1), ϕ′(ζi) ∈ L2(L2) for i = 1,2.

Hence we may choose ξ = ζ1 − ζ2 as a test function and deduce for a.e. t ∈ [0, T ] that

d

dt

〈
ζ1(t) − ζ2(t), ζ1(t) − ζ2(t)

〉
H−1 = −2

∫
T1

(
ϕ′(ζ1) − ϕ′(ζ2)

)
(ζ1 − ζ2)dθ ≤ 0,

by the convexity of ϕ. Hence ζ1 = ζ2. �

Proof of Lemma 36. We will show that (85) is equivalent to (105). The equivalence of (81) and (106) follows
analogously.

First let us rewrite (85) in weak form as∫ T

0

〈
ξ, (Ā)−1η

〉
Y
β̇(t)dt =

∫ T

0

〈
ξ,∇Y H̄ (η)

〉
Y
β(t)dt (112)

for all ξ ∈ Y and all smooth β : [0, T ] → [0,∞). We begin by showing that (112) implies (105). By convexity, we
have 〈

ξ,∇Y H̄ (η)
〉
Y

≤ −H̄ (η) + H̄ (η + ξ). (113)

Inserting (113) into (112) gives∫ T

0

〈
ξ, (Ā)−1η

〉
Y
β̇(t)dt

≤ −
∫ T

0
H̄ (η)β(t)dt +

∫ T

0
H̄ (η + ξ)β(t)dt (114)

which, after rearranging terms, is (105).
To show that (105) implies (112), we substitute ξ̃ = εξ in Eq. (105), for some ε > 0 and ξ in Y . Dividing both

sides by ε and rearranging terms, we have∫ T

0

〈
ξ, (Ā)−1η

〉
Y
β̇(t)dt ≤

∫ T

0

H̄ (η + εξ) − H̄ (η)

ε
β(t)dt.

Taking the limit ε ↓ 0 returns∫ T

0

〈
ξ, (Ā)−1η

〉
Y
β̇(t)dt ≤

∫ T

0

〈
ξ,∇Y H̄ (η)

〉
Y
β(t)dt.

Repeating the process with ξ̃ = −εξ gives∫ T

0

〈
ξ, (Ā)−1η

〉
Y
β̇(t)dt ≥

∫ T

0

〈
ξ,∇Y H̄ (η)

〉
Y
β(t)dt,

establishing (112). �
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Proof of Lemma 37. As in the proof of (89)–(90), we may assume without loss that H̄ is defined by (96), i.e., that

H̄
(
ην

) = 1

M

M∑
i=1

ψK

(
ην

i

)
. (115)

Proof of (i): The uniform convergence ψK → ϕ, the convexity of ϕ, and the consequent weak lower-semicontinuity
give

∫ T

0
H̄

(
ην

)
β(t)dt

(115)=
∫ T

0

∫
T1

ψK

(
η̄ν

)
β(t)dθ dt

=
∫ T

0

∫
T1

ϕ
(
η̄ν

)
β(t)dθ dt +

∫ T

0

∫
T1

(
ψK

(
η̄ν

) − ϕ
(
η̄ν

))
β(t)dθ dt

≥
∫ T

0

∫
T1

ϕ(η∗)β(t)dθ dt − o(1)M↑∞ −
∫ T

0

∫
T1

sup
R

|ψK − ϕ|β(t)dθ dt

≥
∫ T

0

∫
T1

ϕ(η∗)β(t)dθ dt − o(1)M↑∞ − o(1)K↑∞.

Proof of (ii): By choice of ξν , we have ην + ξν = πν(η∗ + ξ), so that in particular

η̄ν + ξ̄ ν → η∗ + ξ

strongly in L2 for a.e. t as M ↑ ∞. Because of the quadratic bounds on ϕ (cf. (97)), ϕ is continuous with respect to
strong L2 convergence, so that∫

T1
ϕ
(
η̄ν + ξ̄ ν

)
dθ →

∫
T1

ϕ(η∗ + ξ)dθ

for a.e. t as M ↑ ∞. We use the uniform in time bound∣∣∣∣
∫

T1
ϕ
(
η̄ν + ξ̄ ν

)
dθ

∣∣∣∣ ≤ C

(
1 +

∫
T1

∣∣η̄ν + ξ̄ ν
∣∣2 dθ

)
≤ C

(
1 +

∫
T1

|η∗ + ξ |2 dθ

)
≤ C

in the Dominated Convergence Theorem to conclude that

lim
M↑∞

∫ T

0

∫
T1

ϕ
(
η̄ν + ξ̄ ν

)
β(t)dθ dt =

∫ T

0

∫
T1

ϕ(η∗ + ξ)β(t)dθ dt. (116)

Together with the uniform convergence of ψK , this gives∣∣∣∣
∫ T

0
H̄

(
ην + ξν

)
β(t)dt −

∫ T

0

∫
T1

ϕ(η∗ + ξ)β(t)dθ dt

∣∣∣∣
(115)=

∣∣∣∣
∫ T

0

∫
T1

ψK

(
η̄ν + ξ̄ ν

)
β(t)dθ dt −

∫ T

0

∫
T1

ϕ(η∗ + ξ)β(t)dθ dt

∣∣∣∣
≤

∣∣∣∣
∫ T

0

∫
T1

(
ψK

(
η̄ν + ξ̄ ν

) − ϕ
(
η̄ν + ξ̄ ν

))
β(t)dθ dt

∣∣∣∣
+

∣∣∣∣
∫ T

0

∫
T1

(
ϕ
(
η̄ν + ξ̄ ν

) − ϕ(η∗ + ξ)
)
β(t)dθ dt

∣∣∣∣



A two-scale approach to logarithmic Sobolev inequalities 337

(116)≤
∣∣∣∣
∫ T

0

∫
T1

sup
R

|ψK − ϕ|β(t)dθ dt

∣∣∣∣ + o(1)M↑∞

= o(1)K↑∞ + o(1)M↑∞.

Proof of (iii): Recalling that ξν = πν(η∗ + ξ) − ην , (iii) will follow from

lim
ν↑∞

∫ T

0

〈
πν(η∗ + ξ), (Ā)−1ην

〉
Y
β̇(t)dt =

∫ T

0
〈η∗ + ξ, η∗〉H−1 β̇(t)dt, (117)

lim
ν↑∞

∫ T

0

〈
ην, (Ā)−1ην

〉
Y
β̇(t)dt =

∫ T

0
〈η∗, η∗〉H−1 β̇(t)dt. (118)

Equation (117) is a consequence of two facts:

∣∣〈πν(η∗ + ξ), (Ā)−1ην
〉
Y

− 〈
π̄ν(η∗ + ξ), η̄ν

〉
H−1

∣∣ (93)≤ C

N
,

lim
ν↑∞

∫ T

0

〈
π̄ν(η∗ + ξ), η̄ν

〉
H−1 β̇(t)dt =

∫ T

0
〈η∗ + ξ, η∗〉H−1 β̇(t)dt,

the second line following from the strong convergence of π̄ν(η∗ + ξ) and η̄ν in L∞(H−1).
For Eq. (118), on the other hand, it is enough to establish the identity〈

η, (Ā)−1η
〉
Y

= 〈x̃, x̃〉H−1,

where x = NP tη and x̃ =
N∑

i=1

xi

N
δi/N (119)

together with the convergence

lim
ν↑∞

∫ T

0

〈
x̃ν , x̃ν

〉
H−1 β̇(t)dt =

∫ T

0
〈η∗, η∗〉H−1 β̇(t)dt, (120)

where xν = NP tην and x̃ν =
N∑

i=1

xν
i

N
δi/N . (121)

Turning first to (119), we recall from (9) that

〈
η, (Ā)−1η

〉
Y

= 〈
η,PA−1NP tη

〉
Y

= 1

N

〈
NP tη,A−1NP tη

〉
X

= 1

N

〈
x,A−1x

〉
X
,

so that it is enough to show

1

N

〈
x,A−1x

〉
X

= 〈x̃, x̃〉H−1 . (122)

On the one hand, we have

1

N

〈
x,A−1x

〉
X

= 1

N

N∑
i=1

F 2
i ,

where xi = N(Fi+1 − Fi) and
N∑

i=1

Fi = 0. (123)
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On the other hand, recall from Definition 23 that

〈x̃, x̃〉H−1 =
∫

T1
w2(θ)dθ, where w′ = x̃ and

∫
T1

w dθ = 0.

Because of the structure of x̃, we see that w is constant on ((j − 1)/N, j/N) for j = 1, . . . ,N . Denoting the constant
values by w1, . . . ,wN , respectively, we have that

〈x̃, x̃〉H−1 = 1

N

N∑
i=1

w2
i , where wi+1 − wi = xi

N
and

N∑
i=1

wi = 0. (124)

Comparing (123) and (124), we conclude that wi = Fi for i = 1, . . . ,N and that (122) holds.
We turn now to the proof of (120). We remark first that x̃ν weak-∗ converges to η∗ in C([0, T ] × T

1)∗. Indeed, let
g ∈ C([0, T ] × T

1) and notice that

∫ T

0

∫
T1

x̃νg dθ dt =
∫ T

0

1

N

N∑
i=1

xν
i g

(
i

N

)
dt −→

N↑∞

∫ T

0

∫
T1

η∗g dθ dt.

We will now show that ũν := ( ∂2

∂θ2 )−1x̃ν is uniformly Hölder-1/2 in time and space, so that by the Arzela–

Ascoli Theorem, a subsequence converges uniformly on [0, T ] × T
1. By uniqueness of the limit, it follows that

the limit must be ( ∂2

∂θ2 )−1η∗, and hence the full sequence converges. Together with the weak-∗ convergence of x̃ν this
gives

lim
ν↑∞

∫ T

0

∫
T1

x̃ν ũν β̇(t)dθ dt =
∫ T

0

∫
T1

η∗
(

∂2

∂θ2

)−1

η∗β̇(t)dθ dt,

which is equivalent to (120).
Hence, it remains only to deduce the uniform bounds on ũν . In time, we use the uniform bound on ∂

∂t
x̃ν in L2(H−1)

which follows from

∫ T

0

〈
∂

∂t
x̃ν,

∂

∂t
x̃ν

〉
H−1

dt
(122)= 1

N

∫ T

0

〈
∂

∂t
xν,A−1 ∂

∂t
xν

〉
X

dt

(121)=
∫ T

0

〈
∂

∂t
ην, (Ā)−1 ∂

∂t
ην

〉
Y

dt
(104)≤ C.

We deduce a uniform bound on ∂
∂t

ũν in L2(H 1), which by Sobolev imbedding implies

∫ T

0
sup
θ∈T1

∣∣∣∣ ∂

∂t
ũν

∣∣∣∣
2

dt ≤ C,

and in particular,

sup
θ∈T1

∣∣u(t, θ) − u(s, θ)
∣∣ = sup

θ∈T1

∣∣∣∣
∫ t

s

∂

∂τ
ũν(τ, θ)dτ

∣∣∣∣
≤ sup

θ∈T1

(∫ t

s

∣∣∣∣ ∂

∂τ
ũν(τ, θ)

∣∣∣∣
2

dτ

)1/2√|t − s| ≤ C
√|t − s|,

which is the uniform Hölder-1/2 bound in time.
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In space, we use the uniform bound on x̃ν in H−1(T1):

〈
x̃ν, x̃ν

〉
H−1

(122)= 1

N

〈
x,A−1x

〉
X

(92)≤ C〈x̄, x̄〉H−1
(121)= C

〈
η̄ν, η̄ν

〉
H−1

≤ C

∫
T1

(
η̄ν

)2 dθ = C
〈
ην, ην

〉
Y

(103)≤ C

uniformly in time, which implies a uniform bound on ũν in H 1(T1). The uniform Hölder-1/2 bound in space follows
from Sobolev imbedding. �

Appendix: Local Cramér theorem

The main result in this Appendix is Proposition 31. Some elements of the proof may also be found, for instance, in [7],
Chapter XVI, [12], Appendix 2, [10], Section 3, and [14], p. 752 and Section 5.

A.1. Proof of Proposition 31

The proof hinges on Cramér’s representation:

exp
(
N
(
ϕ(m) − ψN(m)

)) = dgN,m

dL1
(0), (125)

which is easy to check by direct substitution and the Coarea Formula. The result will follow from uniform C2 estimates
for the right-hand side of (125).

Proof of Proposition 31. Below we will develop the uniform bounds

1

C
≤ dgN,m

dL1
(0) ≤ C,

∣∣∣∣ d2

dm2

dgN,m

dL1
(0)

∣∣∣∣ ≤ C, (126)

where C denotes a generic constant independent of both m and N . By interpolation, it will also follow that∣∣∣∣ d

dm

dgN,m

dL1
(0)

∣∣∣∣ ≤ C.

Taking derivatives in (125) and applying the bounds, we deduce the uniform convergence of ψN , dψN

dm
and d2ψN

dm2 as
N ↑ ∞.

To begin, recall that gN,m describes the distribution of a sum of independent variables. Hence dgN,m

dL1 can be written
as a convolution. Defining the Fourier transform as

F [f ](ξ) :=
∫

R

exp(iξx)f (x)L1(dx)

and recalling that convolution turns into multiplication under the Fourier transform, we can re-express the right-hand
side of (125) as

dgN,m

dL1
(0) = 1

2π

∫
R

F
[

dgN,m

dL1

]
(ξ)L1(dξ) = 1

2π

∫
R

hN
(
m,N−1/2ξ

)
L1(dξ), (127)

where

h(m, ξ) := exp(−iξm)F
[

dμm

dL1

]
(ξ). (128)
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From the following useful representation,

dμm

dL1
(x)

(78),(79)= exp
(−ϕ∗(σ ) + σx − ψ(x)

)
(129)

(77)= exp
(
ϕ(m) + σ(x − m) − ψ(x)

)
, (130)

we can re-express (128) as

h(m, ξ)
(130)=

∫
R

exp
(−iξm + iξx − ϕ∗(σ ) + σx − ψ(x)

)
L1(dx). (131)

Using (127) and the nonnegativity of gN,m, it follows that (126) is proved once we establish:

1

C
≤

∣∣∣∣
∫

R

hN
(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣ ≤ C (132)

and ∣∣∣∣ d2

dm2

∫
R

hN
(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣ ≤ C. (133)

We will establish (132) and (133) by splitting the integrals into “inner” integrals over {N−1/2|ξ | ≤ δ} and “outer”
integrals over the complement. More precisely, on the one hand we show that there exist δ > 0 and N0 ∈ N such that
for all N ≥ N0 and all m ∈ R,∣∣∣∣

∫
{N−1/2|ξ |≤δ}

hN
(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣ ≤ C, (134)

Re
∫

{N−1/2|ξ |≤δ}
hN

(
m,N−1/2ξ

)
L1(dξ) ≥ 1/C, (135)

∣∣∣∣ d2

dm2

∫
{N−1/2|ξ |≤δ}

hN
(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣ ≤ C. (136)

On the other hand, we will argue that for any δ > 0, we have

lim
N↑∞

∫
{N−1/2|ξ |≥δ}

hN
(
m,N−1/2ξ

)
L1(dξ) = 0, (137)

lim
N↑∞

d2

dm2

∫
{N−1/2|ξ |≥δ}

hN
(
m,N−1/2ξ

)
L1(dξ) = 0, (138)

uniformly in m. The combination of (134)–(138) yields (132) and (133).
First consider the outer integrals. We control h and its derivatives using:

Lemma 39. For h defined by (131) and any δ > 0, there exists a positive constant Cδ (uniform in m) such that for all
|ξ | > δ:

(i)
∣∣h(m, ξ)

∣∣ ≤ 1

1 + |ξ |/Cδ

,

(ii)

∣∣∣∣ ∂h

∂m
(m, ξ)

∣∣∣∣ ≤ Cδ|ξ |,

(iii)

∣∣∣∣ ∂2h

∂m2
(m, ξ)

∣∣∣∣ ≤ Cδ|ξ |2.
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Lemma 39(i) implies (137):∣∣∣∣
∫

{N−1/2|ξ |≥δ}
hN

(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣
= N1/2

∣∣∣∣
∫

{|ξ̂ |≥δ}
hN(m, ξ̂ )L1(dξ̂ )

∣∣∣∣
≤ N1/2

(
1

1 + δ/Cδ

)N−2 ∫
{|ξ̂ |≥δ}

(
1

1 + |ξ̂ |/Cδ

)2

L(dξ̂ ) →
N↑∞ 0.

For (138) we notice that

d2

dm2

∫
{N−1/2|ξ |≥δ}

hN
(
m,N−1/2ξ

)
L1(dξ)

=
∫

{N−1/2|ξ |≥δ}
N2hN−2(m,N−1/2ξ

)( ∂h

∂m

(
m,N−1/2ξ

))2

L1(dξ)

+
∫

{N−1/2|ξ |≥δ}
NhN−1(m,N−1/2ξ

) ∂2h

∂m2

(
m,N−1/2ξ

)
L1(dξ),

so that by Lemma 39(ii) and (iii),∣∣∣∣ d2

dm2

∫
{N−1/2|ξ |≥δ}

hN
(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣
≤ Cδ

∫
{N−1/2|ξ |≥δ}

N2
∣∣h(m,N−1/2ξ

)∣∣N−2|ξ |2 L1(dξ)

= CδN
5/2

∫
{|ξ̂ |≥δ}

∣∣h(m, ξ̂ )
∣∣N−2|ξ̂ |2 L1(dξ̂ ).

We appeal once more to Lemma 39(i) to conclude∣∣∣∣ d2

dm2

∫
{N−1/2|ξ |≥δ}

hN
(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣
≤ CδN

5/2
(

1

1 + δ/Cδ

)N−6 ∫
{|ξ̂ |≥δ}

(
1

1 + |ξ̂ |/Cδ

)4

|ξ̂ |2 L1(dξ̂ ) →
N↑∞ 0,

establishing (138).
We now turn to the inner integrals. Since μm is a probability measure with mean m, we have

h(m,0) = 1,
∂h

∂ξ
(m,0)=0 and (139)

−∂2h

∂ξ2
(m,0) =

∫
(x − m)2μm(dx) = Var(μm) > 0.

According to Lemma 41(ii) in Section A.2, the variance of μm is bounded uniformly above and below:

1/C ≤ Var(μm) ≤ C. (140)

It follows from the lower bound and Taylor’s theorem (see also the proof of Lemma 40 in Section A.2) that there
exists h2(m, ξ) defined on a uniform δ-neighborhood of ξ = 0 such that

h(m, ξ) = exp
(−ξ2h2(m, ξ)

)
, (141)
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and

h2(m,0) = Var(μm). (142)

The motivation for introducing h2 is the formula

hN
(
m,N−1/2ξ

) = exp
(−ξ2h2

(
m,N−1/2ξ

))
. (143)

The necessary control on h2 is given by:

Lemma 40. There exist δ > 0 and C < ∞ (uniform in m) such that for |ξ | ≤ δ and all m ∈ R:

(i)

∣∣∣∣∂h2

∂ξ
(m, ξ)

∣∣∣∣ ≤ C,

(ii)

∣∣∣∣∂h2

∂m
(m, ξ)

∣∣∣∣ ≤ C,

(iii)

∣∣∣∣∂2h2

∂m2
(m, ξ)

∣∣∣∣ ≤ C.

Equipped with Lemma 40, we will now establish (134)–(135). In view of (143), we have∫
{N−1/2|ξ |≤δ}

hN
(
m,N−1/2ξ

)
L1(dξ) =

∫
{N−1/2|ξ |≤δ}

exp
(−ξ2h2

(
m,N−1/2ξ

))
L1(dξ). (144)

According to (140) and Lemma 40(i), we have for |ξ̂ | ≤ δ

Reh2(m, ξ̂ ) ≥ 1/C.

Thus, for N−1/2|ξ | ≤ δ, we have∣∣ exp
(−ξ2h2

(
m,N−1/2ξ

))∣∣ ≤ exp
(−ξ2/C

)
, (145)

so that∣∣∣∣
∫

{N−1/2|ξ |≤δ}
exp

(−ξ2h2
(
m,N−1/2ξ

))
L1(dξ)

∣∣∣∣ ≤ C.

In view of (144), this proves (134).
The proof of (136) is similar. Applying (144), we have

d2

dm2

∫
{N−1/2|ξ |≤δ}

hN
(
m,N−1/2ξ

)
L1(dξ)

=
∫

{N−1/2|ξ |≤δ}
−ξ2 ∂2h2

∂m2

(
m,N−1/2ξ

)
exp

(−ξ2h2
(
m,N−1/2ξ

))
L1(dξ)

+
∫

{N−1/2|ξ |≤δ}
ξ4

(
∂h2

∂m

)2(
m,N−1/2ξ

)
exp

(−ξ2h2
(
m,N−1/2ξ

))
L1(dξ).

According to Lemma 40(ii) and (iii) and (145), this identity yields the estimate∣∣∣∣ d2

dm2

∫
{N−1/2|ξ |≤δ}

hN
(
m,N−1/2ξ

)
L1(dξ)

∣∣∣∣
≤ C

∫
{N−1/2|ξ |≤δ}

(
ξ2 + ξ4) exp

(−ξ2/C
)

L1(dξ) ≤ C.
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Finally, consider (135). It will be convenient to introduce h3 via

h2(m, ξ̂ ) = h2(m,0) + ξ̂h3(m, ξ̂ ), (146)

which, according to Taylor and Lemma 40(i), satisfies

sup
|ξ̂ |≤δ

∣∣h3(m, ξ̂ )
∣∣ ≤ sup

|ξ̂ |≤δ

∣∣∣∣∂h2

∂ξ
(m, ξ̂ )

∣∣∣∣ ≤ C. (147)

By the definition of h3 in (146), we have

exp
(−ξ2h2

(
m,N−1/2ξ

)) − exp
(−ξ2h2(m,0)

)
= exp

(−ξ2h2(m,0)
)(

exp
(−N−1/2ξ3h3

(
m,N−1/2ξ

)) − 1
)

(142)= exp
(−ξ2 Var(μm)

)(
exp

(−N−1/2ξ3h3
(
m,N−1/2ξ

)) − 1
)
. (148)

We use the fact:

∣∣ exp(z) − 1
∣∣ =

∣∣∣∣∣
∞∑

j=1

zj

j !

∣∣∣∣∣ ≤
∞∑

j=1

|z|j
j ! = exp

(|z|) − 1,

with

z = −N−1/2ξ3h3(m, ξ̂ )

to conclude from (148) that∣∣ exp
(−ξ2h2

(
m,N−1/2ξ

)) − exp
(−ξ2h2(m,0)

)∣∣
≤ exp

(−ξ2 Var(μm)
)(

exp
(
N1/2|ξ |3∣∣h3

(
m,N−1/2ξ

)∣∣) − 1
)
.

Together with (140) and (147), this yields for ξ with N−1/2|ξ | ≤ δ:∣∣ exp
(−ξ2h2

(
m,N−1/2ξ

)) − exp
(−ξ2h2(m,0)

)∣∣ ≤ exp
(−ξ2/C

)(
exp

(
Cδξ2) − 1

)
.

Hence, for δ sufficiently small,∣∣∣∣
∫

{N−1/2|ξ |≤δ}
exp

(−ξ2h2
(
m,N−1/2ξ

)) − exp
(−ξ2h2(m,0)

)
L1(dξ)

∣∣∣∣
≤

∫
R

exp
(−ξ2(1/C − Cδ)

) − exp
(−ξ2/C

)
L1(dξ)

= C

(
1√

1/C − Cδ
− 1√

1/C

)
≤ Cδ. (149)

On the other hand, we have by (142) and (140) that

exp
(−ξ2h2(m,0)

) = exp
(−ξ2 Var(μm)

) ≥ exp
(−ξ2/C

)
,

so that∫
{N−1/2|ξ |≤δ}

exp
(−ξ2h2(m,0)

)
L1(dξ) ≥

∫
{N−1/2|ξ |≤δ}

exp
(−ξ2/C

)
L1(dξ)

≥ 1/C − C exp
(−N1/2δ/C

)
. (150)
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The combination of (149) and (150) yields

Re
∫

{N−1/2|ξ |≤δ}
exp

(−ξ2h2
(
m,N−1/2ξ

))
L1(dξ) ≥ 1/C − C

(
exp

(−CN1/2δ
) + δ

)
,

which establishes (135) for δ sufficiently small and N sufficiently large. �

A.2. Proofs of lemmas

Before turning to the proofs, we collect a few ingredients that we will use repeatedly. First, recall that by assumption,
μm is a perturbation of a shifted Gaussian. To be precise, letting

dgσ

dL1
(x) := (2π)−1/2 exp

(
−1

2
(x − σ)2

)
, (151)

we may write μm as

dμm

dL1
(x) = 1

Z
exp

(
−δψ(x) + σx − 1

2
x2

)
= 1

Z̃
exp

(
−δψ(x) − 1

2
(x − σ)2

)
,

and observe that

exp(−oscR δψ)
dgσ

dL1
(x) ≤ dμm

dL1
(x) ≤ exp(oscR δψ)

dgσ

dL1
(x). (152)

A second elementary but important observation is that the mean of a measure μ is optimal in the sense that for all
c ∈ R,∫

R

(x − c)2μ(dx) =
∫

R

x2μ(dx) − 2c

∫
R

xμ(dx) + c2

≥
∫

R

x2μ(dx) −
(∫

R

xμ(dx)

)2

=
∫

R

(
x −

∫
R

yμ(dy)

)2

μ(dx). (153)

Finally, we state and prove a lemma about the map between m and σ that is useful in the proofs of Lemmas 39
and 40. Here and below, we refer to the measure μm as μσ in order to emphasize the σ -dependence. The lemma will
imply in particular that

∀σ ∈ R,
d2ϕ∗

dσ 2
(σ ) ≥ 1

C
> 0. (154)

Lemma 41. Consider the change of variables

m = dϕ∗

dσ
(σ ) (155)

and the corresponding measure μm = μσ ∈ P (R) with density

dμσ

dL1
(x) = exp

(−ϕ∗(σ ) + σx − ψ(x)
)

and mean
∫

R
xμσ (dx) = m, cf. (77), (129) and (74). Then:
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(i) The first two derivatives of m are related to the moments of μσ as:

dm

dσ
= d2ϕ∗

dσ 2
=

∫
R

(x − m)2μσ (dx),

d2m

dσ 2
= d3ϕ∗

dσ 3
=

∫
R

(x − m)3μσ (dx).

(ii) The moments of μσ satisfy the uniform bounds:

1

C
≤

∫
R

(x − m)2μσ (dx) ≤ C,

∣∣∣∣
∫

R

(x − m)3μσ (dx)

∣∣∣∣ ≤ C,

∫
R

(x − m)4μσ (dx) ≤ C.

(iii) The second derivatives of the inverse map are uniformly bounded:

∣∣∣∣ d2σ

dm2

∣∣∣∣ ≤ C.

(iv) The map is uniformly close to the identity: |σ − m| ≤ C.

Proof of Lemma 41.
To show the equalities in (i), we first notice that for the variance we have from (74) and (129)

dm

dσ
= d

dσ

∫
R

x exp
(−ϕ∗(σ ) + σx − ψ(x)

)
L1(dx)

=
∫

R

x(x − m)μσ (dx) =
∫

R

x2μσ (dx) − m2

=
∫

R

(x − m)2μσ (dx). (156)

Together with (77), this establishes the first equality of (i). For the second equality, we take a derivative in (156) and
notice that because μσ has mean m,

d2m

dσ 2
(155),(129)=

∫
R

(x − m)3μσ (dx) − 2
dm

dσ

∫
R

(x − m)μσ (dx)

=
∫

R

(x − m)3μσ (dx).

Next we prove point (iv), which follows from

|σ − m|2 =
∣∣∣∣
∫

R

(σ − x)μσ (dx)

∣∣∣∣
2

≤
∫

R

(σ − x)2μσ (dx)

(152)≤ exp(oscR δψ)

∫
R

(σ − x)2gσ (dx)

≤ exp(oscR δψ).
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Turning to the first estimate in (ii), we observe that on the one hand,∫
R

(x − m)2μσ (dx)
(152)≥ exp(−oscR δψ)

∫
R

(x − m)2gσ (dx)

(153)≥ exp(−oscR δψ)

∫
R

(
x −

∫
R

ygσ (dy)

)2

gσ (dx)

= exp(−oscR δψ).

On the other hand,

∫
R

(x − m)2μσ (dx)
(153)≤

∫
R

(
x −

∫
R

ygσ (dy)

)2

μσ (dx)

(152)≤ exp(oscR δψ)

∫
R

(
x −

∫
R

ygσ (dy)

)2

gσ (dx)

= exp(oscR δψ).

The bound in (ii) on the fourth moment follows from:∫
R

(x − m)4μσ (dx) ≤ C

(∫
R

(x − σ)4μσ (dx) +
∫

R

(σ − m)4μσ (dx)

)
(152)≤ C

(
exp(oscR δψ)

∫
R

(x − σ)4gσ (dx) +
∫

R

(σ − m)4μσ (dx)

)
≤ C,

by (iv) and the definition (151) of gσ . Hölder’s inequality then implies the bound on the third moment.
Finally, (iii) follows immediately from (i), (ii), and:

d2σ

dm2
= d

dσ

(
d2ϕ∗

dσ 2

)−1 dσ

dm
= −d3ϕ∗

dσ 3

(
d2ϕ∗

dσ 2

)−3

. �

Proof of Lemma 39. We prove (i) by splitting it into two pieces. First we bound h by a constant smaller than one,
uniformly in m for ξ bounded away from zero. Then we show the decay for large ξ . By (131) and (78) we have

h(m, ξ) = exp(−iξm)

∫
R

exp(iξx)μσ (dx).

Thus

∣∣h(m, ξ)
∣∣2 =

∣∣∣∣
∫

R

cos(ξx)μσ (dx) + i
∫

R

sin(ξx)μσ (dx)

∣∣∣∣
2

=
(∫

R

cos(ξx)μσ (dx)

)2

+
(∫

R

sin(ξx)μσ (dx)

)2

= 1 −
(∫

R

cos2(ξx)μσ (dx) −
(∫

R

cos(ξx)μσ (dx)

)2)

−
(∫

R

sin2(ξx)μσ (dx) −
(∫

R

sin(ξx)μσ (dx)

)2)

=: 1 − Varμσ

(
cos(ξx)

) − Varμσ

(
sin(ξx)

)
. (157)
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Therefore, to bound h by a constant smaller than one, we need to bound the variances away from zero. Recalling the
elementary observations (152) and (153), we have:

Varμσ

(
cos(ξx)

)
=

∫
R

(
cos(ξx) −

∫
R

cos(ξy)μσ (dy)

)2

μσ (dx)

≥ exp(−oscR δψ)

∫
R

(
cos(ξx) −

∫
R

cos(ξy)μσ (dy)

)2

gσ (dx)

≥ exp(−oscR δψ)

(∫
R

cos2(ξx)gσ (dx) −
(∫

R

cos(ξx)gσ (dx)

)2)
. (158)

Since the Fourier transform of a Gaussian is again Gaussian, the right-hand side of (158) can be computed explicitly.
Looking at the second integral, we have

(∫
R

cos(ξx)gσ (dx)

)2

= 1

4

(
(2π)−1/2

∫
R

(
exp(iξx) + exp(−iξx)

)
exp

(
−1

2
(x − σ)2

)
L1(dx)

)2

= 1

4

(
exp(iξσ )(2π)−1/2

∫
R

exp(iξy) exp

(
−1

2
y2

)
L1(dy)

+ exp(−iξσ )(2π)−1/2
∫

R

exp(−iξy) exp

(
−1

2
y2

)
L1(dy)

)2

= 1

4

(
exp(iξσ ) exp

(
−1

2
ξ2

)
+ exp(−iξσ ) exp

(
−1

2
ξ2

))2

= 1

4

(
exp(2iξσ ) exp

(−ξ2) + exp(−2iξσ ) exp
(−ξ2) + 2 exp

(−ξ2))
= 1

2

(
cos(2ξσ ) + 1

)
exp

(−ξ2).
The second part of the right-hand side of (158) can be computed similarly. We get:∫

R

cos2(ξx)gσ (dx) = 1

2

(
cos(2ξσ ) exp

(−2ξ2) + 1
)
.

Therefore,

∫
R

cos2(ξx)gσ (dx) −
(∫

R

cos(ξx)gσ (dx)

)2

= 1

2

(
1 − exp

(−ξ2) cos(2ξσ )
)(

1 − exp
(−ξ2))

≥ 1

2

(
1 − exp

(−ξ2))2
.

Inserting this into (158) and then (157) (the same inequality holds for Varμσ (sin(ξx))), we obtain

∣∣h(m, ξ)
∣∣2 ≤ 1 − exp(−oscR δψ)

(
1 − exp

(−ξ2))2
.
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Hence for any δ > 0 there exists a Cδ < ∞ (uniform in m) such that

∣∣h(m, ξ)
∣∣ ≤ 1 − 1

Cδ

for |ξ | > δ. (159)

To complete the proof of Lemma 39(i), we need to establish decay of h for large |ξ |-values. This is done by an
integration by parts argument; we have

h(m, ξ) = 1

Z

∫
R

exp(iξx) exp
(
σx − ψ(x)

)
L1(dx)

= 1

Z

∫
R

1

iξ
exp(iξx)

(
σ − x − dδψ

dx
(x)

)
exp

(
σx − 1

2
x2 − δψ(x)

)
L1(dx).

This yields the estimate∣∣h(m, ξ)
∣∣

≤ 1

|ξ |
∫

R

(
|σ − x| +

∣∣∣∣dδψ

dx
(x)

∣∣∣∣
)

μσ (dx)

(152)≤ 1

|ξ | exp(oscR δψ)

∫
R

(
|σ − x| +

∣∣∣∣dδψ

dx
(x)

∣∣∣∣
)

gσ (dx)

≤ 1

|ξ | exp(oscR δψ)

(
(2π)−1/2

∫
R

|y| exp

(
−1

2
y2

)
L1(dy) + sup

R

∣∣∣∣dδψ

dx
(x)

∣∣∣∣
)

. (160)

Since by elementary interpolation

sup
R

∣∣∣∣dδψ

dx
(x)

∣∣∣∣ ≤ C sup
R

∣∣δψ(x)
∣∣ sup

R

∣∣∣∣d2δψ

dx2
(x)

∣∣∣∣(16)
< ∞,

we infer from (160) that

∣∣h(m, ξ)
∣∣ ≤ C

|ξ | . (161)

The combination of (159) and (161) yields Lemma 39(i).
We turn now to the estimates for (ii) and (iii). Since |ξ | ≤ δ, it suffices to prove∣∣∣∣ ∂h

∂m

∣∣∣∣ ≤ C
(
1 + |ξ |),

∣∣∣∣ ∂2h

∂m2

∣∣∣∣ ≤ C
(
1 + |ξ |2).

We appeal to the change of variables (153):

∂h

∂m
= ∂h

∂σ

dσ

dm
and

∂2h

∂m2
= ∂2h

∂σ 2

(
dσ

dm

)2

+ ∂h

∂σ

d2σ

dm2
. (162)

According to Lemma 41(i)–(iii), it thus suffices to prove∣∣∣∣ ∂h

∂σ

∣∣∣∣ ≤ C
(
1 + |ξ |),

∣∣∣∣ ∂2h

∂σ 2

∣∣∣∣ ≤ C
(
1 + |ξ |2). (163)
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The starting point is formula (131):

h =
∫

R

exp
(
iξ(x − m)

)
μσ (dx) =

∫
R

exp
(
iξx − iξm − ϕ∗(σ ) + σx − ψ(x)

)
L1(dx). (164)

Using (155), we infer the identities

∂h

∂σ
=

∫
R

(
−iξ

dm

dσ
+ x − m

)
exp

(
iξ(x − m)

)
μσ (dx), (165)

∂2h

∂σ 2
=

∫
R

(
−iξ

d2m

dσ 2
− dm

dσ

)
exp

(
iξ(x − m)

)
μσ (dx)

+
∫

R

(
−iξ

dm

dσ
+ x − m

)2

exp
(
iξ(x − m)

)
μσ (dx). (166)

By Jensen’s inequality and (74), these yield the inequalities

∣∣∣∣ ∂h

∂σ

∣∣∣∣
2

≤
∫

R

∣∣∣∣ − iξ
dm

dσ
+ x − m

∣∣∣∣
2

μσ (dx)

= ξ2
∣∣∣∣dm

dσ

∣∣∣∣
2

+
∫

R

(x − m)2μσ (dx)

and ∣∣∣∣ ∂2h

∂σ 2

∣∣∣∣ ≤ |ξ |
∣∣∣∣d2m

dσ 2

∣∣∣∣ +
∣∣∣∣dm

dσ

∣∣∣∣ +
∫

R

∣∣∣∣ − iξ
dm

dσ
+ x − m

∣∣∣∣
2

μσ (dx)

= |ξ |
∣∣∣∣d2m

dσ 2

∣∣∣∣ +
∣∣∣∣dm

dσ

∣∣∣∣ + ξ2
∣∣∣∣dm

dσ

∣∣∣∣
2

+
∫

R

(x − m)2μσ (dx).

Hence (163) follows from Lemma 41(i) and (ii). �

Proof of Lemma 40. Since h(m,0) = 1 and ∂h
∂ξ

(m,0) = 0, cf. (139), we may introduce by Taylor the complex-valued
function h1(m, ξ) by

h(m, ξ) = 1 − ξ2h1(m, ξ) = exp
(−ξ2h2(m, ξ)

)
, (167)

so that

h2(m, ξ) =
{−ξ−2 log

(
1 − ξ2h1(m, ξ)

)
, ξ �= 0,

h1(m,0), ξ = 0.
(168)

We claim that Lemma 40 is a consequence of the following bounds on h1:

∣∣h1(m, ξ)
∣∣ ≤ C,

∣∣∣∣∂h1

∂ξ

∣∣∣∣ ≤ C, (169)

∣∣∣∣∂h1

∂m

∣∣∣∣ ≤ C,

∣∣∣∣∂2h1

∂m2

∣∣∣∣ ≤ C. (170)

Indeed, Lemma 12(i) follows from (169) after rewriting (168) in the form:

h2(m, ξ) = h1(m, ξ)f
(
ξ2h1(m, ξ)

)
,

for the function f (z) = −z−1 log(1 − z), which is smooth in a neighborhood of zero. Points (ii) and (iii) follow from
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(170) via the chain rule applied to (168):

∂h2

∂m
= 1

1 − ξ2h1

∂h1

∂m

and

∂2h2

∂m2
= 1

1 − ξ2h1

∂2h1

∂m2
+ ξ2

(1 − ξ2h1)2

(
∂h1

∂m

)2

,

along with the fact that |ξ | ≤ δ. As in the proof of Lemma 39, it will be convenient to consider derivatives with respect
to σ instead of m. By (162) and Lemma 41(i)–(iii), we can establish (170) by showing∣∣∣∣∂h1

∂σ

∣∣∣∣ ≤ C
(
1 + |ξ |) and

∣∣∣∣∂2h1

∂σ 2

∣∣∣∣ ≤ C
(
1 + |ξ |2). (171)

In view of definition (167), which can be reformulated as

h1(m, ξ) = 1

ξ2

∫ ξ

0
(ξ ′ − ξ)

∂2h

∂ξ2
(m, ξ ′)dξ ′,

(169) and (171) are consequences of∣∣∣∣∂2h

∂ξ2

∣∣∣∣ ≤ C,

∣∣∣∣∂3h

∂ξ3

∣∣∣∣ ≤ C, (172)

∣∣∣∣ ∂3h

∂ξ2 ∂σ

∣∣∣∣ ≤ C,

∣∣∣∣ ∂4h

∂ξ2 ∂2σ

∣∣∣∣ ≤ C. (173)

The estimates (172) are easily established. We infer from (164)

∂kh

∂ξk
(m, ξ) =

∫
R

(
i(x − m)

)k exp
(
iξ(x − m)

)
μσ (dx).

Thus, (172) follows from Lemma 41(ii).
For (173) we turn to (165) and (166), which we write as

∂h

∂σ
=

∫
R

a1(σ, ξ)μσ (dx) and
∂2h

∂σ 2
=

∫
R

a2(σ, ξ)μσ (dx),

where we set for abbreviation:

a1(σ, ξ) =
(

−iξ
dm

dσ
+ x − m

)
exp

(
iξ(x − m)

)
,

a2(σ, ξ) =
((

−iξ
d2m

dσ 2
− dm

dσ

)
+

(
−iξ

dm

dσ
+ x − m

)2)
exp

(
iξ(x − m)

)
.

Since for |ξ | ≤ δ we have∣∣∣∣∂2a1

∂ξ2

∣∣∣∣ ≤ C

(∣∣∣∣dm

dσ

∣∣∣∣ + 1

)(|x − m|3 + 1
)

and ∣∣∣∣∂2a2

∂ξ2

∣∣∣∣ ≤ C

(∣∣∣∣d2m

dσ 2

∣∣∣∣ +
∣∣∣∣dm

dσ

∣∣∣∣
2

+
∣∣∣∣dm

dσ

∣∣∣∣ + 1

)(|x − m|4 + 1
)
,

(173) follows from Lemma 41(i) and (ii). �



A two-scale approach to logarithmic Sobolev inequalities 351

Acknowledgement

We thank the referee for a careful reading and useful comments. C.V. thanks Elena Kosygina for kindly giving him
a primer in the probabilistic study of hydrodynamic limits, and providing a preliminary version of [13]. This was the
starting point for our first attempts to solve this problem, back in 1999 as C.V. was enjoying the hospitality of the
University of Santa Barbara.

References

[1] D. Bakry and M. Émery. Diffusions hypercontractives. In Sem. Probab. XIX. Lecture Notes in Mathematics 1123 177–206. Springer, Berlin,
1985. MR0889476

[2] G. Blower and F. Bolley. Concentration of measure on product spaces with applications to Markov processes. Studia Math. 175 (2006) 47–72.
MR2261699

[3] Th. Bodineau and B. Helffer. On log Sobolev inequalities for unbounded spin systems. J. Funct. Anal. 166 (1999) 168–178. MR1704666
[4] D. Chafaï. Glauber versus Kawasaki for spectral gap and logarithmic Sobolev inequalities of some unbounded conservative spin systems.

Markov Process. Related Fields 9 (2001) 341–362. MR2028218
[5] P. Caputo. Uniform Poincaré inequalities for unbounded conservative spin systems: The non-interacting case. Stochastic Process. Appl. 106

(2003) 223–244. MR1989628
[6] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edn. Appl. Math. 38. Springer, New York, 1998. MR1619036
[7] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, New York, 1971. MR0270403
[8] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061–1083. MR0420249
[9] A. Guionnet and B. Zegarlinski. Lectures on logarithmic Sobolev inequalities. In Sminaire de Probabilits, XXXVI. Lecture Notes in Mathe-

matics 1801 1–134. Springer, Berlin, 2003. MR1971582
[10] M. Z. Guo, G. C. Papanicolaou and S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun.

Math. Phys. 118 (1988) 31–59. MR0954674
[11] R. Holley and D. Stroock. Logarithmic Sobolev inequalities and stochastic Ising models. J. Statist. Phys. 46 (1987) 1159–1194. MR0893137
[12] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Springer, Berlin, 1999. MR1707314
[13] E. Kosygina. The behavior of the specific entropy in the hydrodynamic scaling limit. Ann. Probab. 29 (2001) 1086–1110. MR1872737
[14] C. Landim, G. Panizo and H. T. Yau. Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems. Ann. Inst. H.

Poincaré Probab. Statist. 38 (2002) 739–777. MR1931585
[15] M. Ledoux. The Concentration of Measure Phenomenon, Math. Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001.

MR1849347
[16] M. Ledoux. Logarithmic Sobolev inequalities for unbounded spin systems revisted. In Sem. Probab. XXXV. Lecture Notes in Mathematics

1755 167–194. Springer, Berlin. 2001. MR1837286
[17] S. L. Lu. Hydrodynamic scaling with deterministic initial configurations. Ann. Probab. 23 (1995) 1831–1852. MR1379170
[18] S. L. Lu and H. T. Yau. Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156

(1993) 399–433. MR1233852
[19] F. Otto and M. G. Reznikoff. A new criterion for the logarithmic Sobolev inequality and two applications. J. Funct. Anal. 243 (2007) 121–157.

MR2291434
[20] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173

(2000) 361–400. MR1760620
[21] G. Royer. Une Initiation aux Inégalités de Sobolev Logarithmiques. Cours Spécialisés. Soc. Math. de France, Paris, 1999. MR1704288
[22] G. Toscani and C. Villani. On the trend to equilibrium for some dissipative systems with slowly increasing a-priori bounds. J. Stat. Phys. 98

(2000) 1279–1309. MR1751701
[23] C. Villani. Topics in Optimal Transportation. Graduate Texts in Mathematics 58. Amer. Math. Soc., Providence, RI, 2003. MR1964483
[24] H.-T. Yau. Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys. 22 (1991) 63–80. MR1121850
[25] H.-T. Yau. Logarithmic Sobolev inequality for lattice gases with mixing conditions. Commun. Math. Phys. 181 (1996) 367–408. MR1414837


