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Abstract. In this article it is shown that the Brownian motion on the continuum random tree is the scaling limit of the simple
random walks on any family of discrete n-vertex ordered graph trees whose search-depth functions converge to the Brownian
excursion as n → ∞. We prove both a quenched version (for typical realisations of the trees) and an annealed version (averaged
over all realisations of the trees) of our main result. The assumptions of the article cover the important example of simple random
walks on the trees generated by the Galton–Watson branching process, conditioned on the total population size.

Résumé. Dans cet article, nous démontrons qu’un mouvement brownien sur un arbre aléatoire continu est en fait la limite rééche-
lonnée d’un certain type de marches aléatoires simples; ces marches aléatoires simples évoluent sur n’importe quelle famille de
graphes d’arbres discrets ordonnés de n sommets, dont les fonctions de recherche en profondeur convergent vers une excursion
brownienne lorsque n → ∞. Nous prouvons deux versions de notre résultat principal: une première conditionnelle sur les réalisa-
tions typiques des arbres, ainsi qu’une seconde où l’on prend la moyenne sur toutes les réalisations des arbres. Les hypothèses de
cet article couvrent l’exemple important d’une marche aléatoire simple sur les arbres générés par le processus de branchement de
Galton–Watson, étant donné la taille de la population totale.
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1. Introduction

The goal of this investigation is to provide a description for the scaling limit of the simple random walks on a wide
collection of random graph trees. In particular, we will be interested in ordered graph trees whose scaling limit is
the continuum random tree of Aldous, see [2], and we shall demonstrate that the scaling limit of the associated
simple random walks is the Brownian motion on the continuum random tree. This limiting diffusion process was first
constructed on typical realisations of the continuum random tree in [22].

This work falls into the area of random walks in random environments, of which one of the most difficult and
interesting examples is the random walk on a critical percolation cluster. One motivation for studying this process is
to gain further insight into the conductivity properties of the cluster, about which few rigorous results are known. There
is growing evidence that the incipient infinite cluster in high dimensions behaves like the integrated super-Brownian
excursion, which may be viewed as the continuum random tree embedded into Euclidean space, see [15] and [16].
Hence investigating the current problem and other properties of the Brownian motion on the continuum random tree
may help to increase understanding of this more challenging model.

More immediate implications are provided by the relationship between the continuum random tree and various
random graph trees, important examples of which are Galton–Watson process family trees, started from a single



988 D. Croydon

ancestor, conditioned on the total population size being n. Under the assumptions of a critical, finite variance, non-
lattice offspring distribution, it is known that these trees converge to the continuum random tree, see [3]. This family
of trees, with offspring distribution chosen suitably, also provides a representation of a range of combinatorial random
trees; a more detailed discussion of such connections is presented in [2]. The results here provide a rigorous description
of the asymptotics of the simple random walks on these sets. A related model is the branching process conditioned
to never become extinct, and the transition densities of the simple random walks on these trees were estimated in [5].
It is known that these sets converge to the self-similar continuum random tree, [2], and techniques similar to those
applied in this article should yield analogous convergence results for these processes.

Both random walks on the incipient infinite percolation cluster and on a critical branching process conditioned to
never become extinct were considered by Kesten in [19]. The second of these problems is particularly closely related to
ours, and Kesten demonstrates in [18] that the height (distance from the initial ancestor) of the simple random walk on
the branching process studied there converges, when rescaled, to a non-trivial limit. Unfortunately, the argument there
is long, as complicated branching process arguments were necessary to complete the proof. In essence, the structure
of the argument here does owe a debt to this work of Kesten, but by using the ideas provided by Aldous in [3] for
representing abstract trees, we are able to greatly improve the techniques involved and, in the process, generalise
the argument, entirely eliminating the need for any branching process arguments. One further advantage we have
is knowledge of the limiting set and process, Brownian motion on the continuum random tree. As noted above, the
almost-sure existence of this process was initially demonstrated in [22], but a more concise construction is given in
[9]. Using basic properties of this process, and looking at its restriction to finite length sub-trees of the continuum
random tree, we are able to employ a “meet in the middle” approach for demonstrating our main convergence result,
which proves the conjecture of Aldous in [2], Section 5.1. We expect that the problem of extending the results proved
here to showing that the simple random walk on a critical branching process conditioned to never become extinct
converges when rescaled to a related limiting diffusion is merely technical, and may be solved by applying the ideas
used here to an increasing sequence of compact subsets of the infinite tree.

To prove our main results, we will work within the framework developed by Aldous in [1] for building trees as
subsets of the Banach space of infinite sequences of real numbers, l1. Throughout, the usual norm on l1 will be denoted
by ‖ · ‖. We will frequently consider triples of the form (K,ν,Q), where K is a compact metric space (or finite graph),
ν is a Borel probability measure on K (or a probability measure on the vertices of K), and Q is a probability measure
on C([0,R],K) for some R > 0 (or a probability law on the space of {0,1, . . . ,R}-indexed processes taking values
in the vertices of K , respectively). We will say that (K̃, ν̃, Q̃) is an (isometric) embedding of (K,ν,Q) into l1 if there
exists a distance-preserving map ψ :K → l1 such that K̃ = ψ(K), ν̃ = ν ◦ ψ−1 and Q̃ = Q ◦ ψ−1. In the discrete
case, we extend Q̃ to a probability law on C([0,R], l1) by linear interpolation of discrete time processes. Note that the
triple (K̃, ν̃, Q̃) is an element of K(l1)× M1(l

1)× M1(C([0,R], l1)), where K(l1) is the space of compact subsets of
l1, M1(l

1) is the space of Borel probability measures on l1, and M1(C([0,R], l1)) is the space of Borel probability
measures on C([0,R], l1). In statements of convergence and distributional results, we assume that the first of these
spaces is endowed with the usual Hausdorff topology for compact subsets of l1, and the remaining two are endowed
with the topologies induced by the relevant weak convergence. The rescaling operators we will apply to elements of
the form (K̃, ν̃, Q̃) ∈ K(l1) × M1(l

1) × M1(C([0,R], l1)) with R ≥ n3/2 are defined by

Θn(K̃, ν̃, Q̃) := (
n−1/2K̃, ν̃

(
n1/2·), Q̃

({
f ∈ C

([0,R], l1):
(
n−1/2f

(
tn3/2))

t∈[0,1] ∈ ·})),
the images of which are contained in K(l1) × M1(l

1) × M1(C([0,1], l1)).
The main result of this article is the quenched limit that we prove as Theorem 1.1. It describes how, if we have

a collection of (deterministic) ordered graph trees (Tn)n≥1, where we always assume that Tn has n-vertices, whose
search depth functions, (wn)n≥1 say, converge when rescaled to a typical realisation of the normalised Brownian
excursion, w say, then we can describe precisely the scaling limit of the triple (T̃n, μ̃n, P̃Tn

ρ ), which is a specific

isometric embedding of (Tn,μn,PTn
ρ ) into l1, where μn is the uniform measure on the vertices of Tn, and PTn

ρ is the
law of the discrete time simple random walk on Tn, started from the root, ρ = ρ(Tn), of Tn. It is the family of operators
(Θn)n≥1 that we apply to obtain a non-trivial scaling limit, (T̃ , μ̃, P̃T

ρ ), which is a specific isometric embedding of

the triple (Tw,μw,PTw,μw
ρ ) into l1. Here, Tw is the rooted real tree associated with the excursion w (see Section 2.1

for an exact definition), μw is the natural measure on Tw (see (7)), and PTw,μw
ρ is the law of the Brownian motion on

(Tw,μw) started from the root ρ = ρ(Tw) (see Section 2.2).
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In the statement of the following result, we assume that W is the normalised Brownian excursion, built on an
underlying probability space with probability measure P. Furthermore, we introduce a set W ∗ ⊆ C([0,1],R+) that
satisfies P(W ∈ W ∗) = 1, and which may therefore be thought of as a collection of typical realisations of W . The
precise definition of W ∗ is given at (12), and a detailed description of the properties of (Tw,μw,PTw,μw

ρ ) that hold for
w ∈ W ∗ is given by Lemma 2.3.

Theorem 1.1. There exists a set W ∗ ⊆ C([0,1],R+) with P(W ∈ W ∗) = 1 such that if (Tn)n≥1 is a sequence of
ordered graph trees whose search-depth functions (wn)n≥1 satisfy

n−1/2wn → w

in C([0,1],R+) for some w ∈ W ∗, then there exists, for each n, an isometric embedding (T̃n, μ̃n, P̃Tn
ρ ) of the triple

(Tn,μn,PTn
ρ ) into l1 such that

Θn

(
T̃n, μ̃n, P̃Tn

ρ

) → (
T̃ , μ̃, P̃T

ρ

)
in the space K(l1) × M1(l

1) × M1(C([0,1], l1)), where (T̃ , μ̃, P̃T
ρ ) is an isometric embedding of the triple

(Tw,μw,PTw,μw
ρ ) into l1.

The choice of embedding of (Tw,μw,PTw,μw
ρ ) that we use in proving the above result is motivated by the idea of

embedding into l1 an increasing sequence of sub-trees of Tw chosen to span a sample of μw-random vertices of Tw .
It is an artifact of the construction of the pair (Tw,μw) from the excursion w that choosing a μw-random sequence
of vertices can be related to choosing a collection of uniform random variables from [0,1]. Throughout this article,
we will use the notation U = (Un)n≥1 to represent an independent identically-distributed sequence of U [0,1] random
variables built, under P, independently of the random excursion W . We describe fully in Section 2.3 how a pair of the
form (w,u) ∈ C([0,1],R+) × [0,1]N, which can be considered to be a particular realisation of (W,U), can be used
to construct both (Tw,μw,PTw,μw

ρ ) and its isometric l1-embedding (T̃ , μ̃, P̃T
ρ ); at least for a suitably large subset of

C([0,1],R+) × [0,1]N. Similar embeddings are used for discrete trees, see Section 2.5.
The reason for choosing ordered trees in Theorem 1.1 is only for convenience, as it allows us to prove all the

convergence results for the finite length sub-trees in an abstract tree space, leaving embedding into l1 until the end,
and also, in the annealed result we state below, means we do not have to consider awkward conditional distributions
to select these sub-trees. In fact, it is also possible to apply an almost identical argument in the unordered case for
any sequence of discrete trees for which the deterministic analogue of the conditions of [3], Corollary 19 hold. The
stochastic versions of these conditions were used by Aldous in [3] to demonstrate that it is possible to embed all the
relevant objects into l1 in such a way that a random sequence {(Tn,μn)}n≥1 converges in distribution to (TW,μW), the
continuum random tree (and associated measure). Thus, as in the ordered case, there are no extra conditions needed
to extend from the convergence of trees and measures to the convergence of trees, measures and processes. The only
difference in this case is that we will need to use an exchangeability argument similar to [3], Theorem 18, to deduce
Lemma 4.1, rather than the excursion one followed here.

After checking the measurability of the embedding (w,u) 
→ (T̃ , μ̃, P̃T
ρ ) that we employ as a map from

C([0,1],R+) × [0,1]N into K(l1) × M1(l
1) × M1(C([0,1], l1)), see Section 8, there is no problem in defining

a probability law P on K(l1) × M1(l
1) × C([0,1], l1) that satisfies

P(A × B × C) =
∫

C([0,1],R+)×[0,1]N
P
(
(W,U) ∈ (dw,du)

)
1{T̃ ∈A,μ̃∈B}P̃

T
ρ (C), (1)

for every measurable A ⊆ K(l1), B ⊆ M1(l
1), and C ⊆ C([0,1], l1). In fact, we actually show that it is possible to

define a random quintuplet (W,U, T̃ , μ̃, X̃), where the pair (T̃ , μ̃) is constructed (measurably) from (W,U) (so that
it is simply a random embedding of the continuum random tree and associated measure into l1), in such a way that:
the joint law of (W,U) is as described above; the joint law of (T̃ , μ̃, X̃) is P; and moreover,

P
(
X̃ ∈ ·|(W,U)

) = PT̃ ,μ̃
0 , (2)
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where PT̃ ,μ̃
0 is the law of the Brownian motion on (T̃ , μ̃), started from 0 ∈ T̃ . We call the (non-Markovian) process

X̃ the Brownian motion on the continuum random tree (isometrically embedded into l1).
A similar law can be constructed in the discrete case. More specifically, let (Tn)n≥1 be a sequence of random

ordered graph trees with corresponding search-depth functions (Wn)n≥1, and suppose these are built on our underlying
probability space independently of the random variable U . Clearly there is a one-to-one correspondence between
search-depth functions and n-vertex trees, and to imitate the definition of P we will define the related discrete law
in terms of the sequence (Wn)n≥1. It is straightforward to check that the map from a realisation of a search-depth
function and sequence in [0,1], (wn,u) say, to the l1-embedded triple (T̃n, μ̃n, P̃Tn

ρ ) is measurable, and hence we can
define a law Pn on K(l1) × M1(l

1) × C(R+, l1) that satisfies

Pn(A × B × C) =
∫

C([0,1],R+)×[0,1]N
P
(
(Wn,U) ∈ (dw,du)

)
1{T̃n∈A,μ̃n∈B}P̃

Tn
ρ (C), (3)

for every measurable A ⊆ K(l1), B ⊆ M1(l
1), and C ⊆ C(R+, l1). Similarly to the continuous case, if (T̃n, μ̃n, X̃

n)

represents a random variable with law Pn, then (T̃n, μ̃n) is equal in distribution to a certain random l1-embedding
of (Tn,μn). Moreover, conditional on T̃n, the process X̃n is a simple random walk on the elements of T̃n (edges are
assumed to be between points separated by a unit distance) started from the origin.

We are now ready to state our annealed convergence result. The rescaling operator Θn is redefined on K(l1) ×
M1(l

1) × C(R+, l1) in the obvious way, so that if (K̃, ν̃, f̃ ) is an element of this space, then Θn(K̃, ν̃, f̃ ) :=
(n−1/2K̃, ν̃(n1/2·), (n−1/2f̃ (tn3/2))t∈[0,1]). The notation ⇒ is used in all that follows to represent convergence in
distribution.

Theorem 1.2. Suppose that (Tn)n≥1 is a sequence of random ordered graph trees whose search-depth functions
(Wn)n≥1 satisfy

n−1/2Wn �⇒ W (4)

in C([0,1],R+), then if (Pn)n≥1 and P are probability measures satisfying (1) and (3), respectively, then

Pn ◦ Θ−1
n → P

weakly as measures on the space K(l1) × M1(l
1) × C([0,1], l1).

Equivalently, we can also write this result in terms of random variables.

Corollary 1.3. Assume that, for each n, the law of the random triple (T̃n, μ̃n, X̃
n), which consists of a random

l1-embedded graph tree, measure and associated simple random walk, is given by Pn, and (T̃ , μ̃, X̃) is the random
embedding into l1 of the continuum random tree and Brownian motion upon it (so that it has law P). If n−1/2Wn ⇒ W ,
we have that

Θn

(
T̃n, μ̃n, X̃

n
) �⇒ (T̃ , μ̃, X̃)

in the space K(l1) × M1(l
1) × C([0,1], l1).

As a final remark, we note that there is nothing particularly special or fundamental about the space l1, and there
should be no problem in stating the results of this article in a more abstract space of metric space trees, measures
and processes on them by, for example, generalising the spaces investigated in [12] and [14]. Due to the length of the
article, we leave such a presentation for future work.

This article is almost entirely devoted to demonstrating Theorem 1.1. After introducing the majority of the notation
we use and some relevant background material in Section 2, we provide an overview of the proof in Section 2.7, which
explains how the argument is structured. In Section 8 we tackle various measurability issues, and the results we prove
there allow us to derive from Theorem 1.1 the remaining conclusions of this section.
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2. Preliminaries

2.1. Abstract trees and projections

Although the conclusion of this article is stated in terms of trees embedded into l1, for most of the arguments we do
not need to be this specific about the space in which we are working. In this section, we introduce some notation and
concepts for arbitrary metric space trees. For the purposes of this and the next section, we shall assume that K is a
dendrite, which means that it is an arc-wise connected topological space, containing no subset homeomorphic to the
circle. We shall also suppose that dK is a shortest path metric on K , which means that it is additive along the (non-self
intersecting) paths of K . In this article, we shall have cause to refer to the root of various graph trees/dendrites. This is
a distinguished vertex, and we shall denote it by ρ. For brevity, we will usually write the triple (K,dK,ρ) as simply K .
A metric space of this form is also known as a rooted real tree. Note that much of the notation and terminology we
introduce here for the dendrite K also makes sense for graph trees, and so we shall apply it to graphs with no further
explanation.

One of the consequences of K being a dendrite is that, for any x, y ∈ K , there exists a unique (non-self intersecting)
path from x to y. We will use the notation �x, y� to represent such a path. Furthermore, between any 3 vertices
x, y, z ∈ K there is a unique branch point bK(x, y, z) ∈ K which satisfies{

bK(x, y, z)
} = �x, y� ∩ �y, z� ∩ �z, x�.

We define the degree of a vertex x ∈ K by

degK(x) := #
{
connected components of K \ {x}},

which takes values in N ∪ {0,∞}.
In the analysis of the stochastic processes that follows in later sections, we will use the idea of observing processes

on reduced sub-trees (strictly speaking, these are reduced sub-dendrites). Given A ⊆ K , the reduced sub-tree r(K,A)

is the smallest path-wise connected subset of K containing A ∪ {ρ}. In particular, we have

r(K,A) :=
⋃
x∈A

�ρ,x�.

The subset r(K,A) is clearly a dendrite, and in the case of A being finite, r(K,A) is a closed subset of K .
Given an arbitrary closed sub-tree of K , that is a closed set K ′ ⊆ K such that (K ′, dK) is a dendrite, there is

a natural projection from K onto K ′. This continuous map will be denoted by φK,K ′ , and may be defined in the
following way: for a point x ∈ K , φK,K ′(x) is the unique point in �ρ,x� such that

�φK,K ′(x), x� ∩ K ′ = {
φK,K ′(x)

}
. (5)

Note that, necessarily, φK,K ′(x) ∈ K ′. Perhaps a clearer way of describing the projection is provided by the observa-
tion that, for x ∈ K , φK,K ′(x) is the point in K ′ closest to x.

We now provide a brief introduction to the connection between trees and excursions. This is an area which has
been of much recent interest and we shall use the idea to define the continuum random tree in Section 2.3. First, let W
be the collection of continuous functions w : R+ → R+ for which there exists a τ(w) > 0 such that w(t) > 0 if and
only if t ∈ (0, τ (w)). The set W is the space of excursions. For future use, we introduce the notation W (1) := {w ∈
W : τ(w) = 1} to represent the excursions of length 1. Given a function w ∈ W , we define a distance on [0, τ (w)] by
setting

dw(s, t) := w(s) + w(t) − 2mw(s, t),

where mw(s, t) := inf{w(r): r ∈ [s ∧ t, s ∨ t]}. Then, we use the equivalence,

s ∼ t ⇐⇒ dw(s, t) = 0 (6)
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to define Tw := [0, τ (w)]/ ∼. We can write this as Tw = {[s]: s ∈ [0, τ (w)]}, where [s] is the equivalence class
containing s. It is then elementary (see [11], Section 2.1) to check that dTw

([s], [t]) := dw(s, t), defines a metric on
Tw , and also that Tw is a compact dendrite. Furthermore, the metric dTw

is a shortest path metric on Tw . The root of
the tree Tw is defined to be the equivalence class [0].

A natural measure to impose upon Tw is the projection of Lebesgue measure on [0, τ (w)]. For open A ⊆ Tw , let

μw(A) := λ
({

t ∈ [
0, τ (w)

]
: [t] ∈ A

})
, (7)

where, throughout this article, λ is the usual 1-dimensional Lebesgue measure. This defines a Borel measure on
(Tw,dTw

), with total mass equal to τ(w).
To complete this section, we explain how to use a sequences u = (un)n≥1 ∈ [0, τ (w)]N to define a sequence of

increasing sub-trees of Tw . First, define a collection of vertices of Tw by

vn := [un], (8)

where [t] is the equivalence class of t ∈ [0, τ (w)], as defined above. From this collection of vertices we obtain a
sequence of closed sub-trees of Tw by defining, for k ≥ 1,

Tw,u(k) := r
(

Tw, {v1, . . . , vk}
)
.

Note that this sequence is increasing in the sense that Tw,u(k) ⊆ Tw,u(k + 1), for every k. The projection of μw onto
Tw,u(k) will be denoted

μ(k)
w,u := μ ◦ φ−1

Tw,Tw,u(k)
.

This will not be the only measure of interest on Tw,u(k). Since Tw,u(k) is a tree consisting of a finite number of edges
with strictly positive total edge length, there is no problem in defining Lebesgue measure λ

(k)
w,u on Tw,u(k). More

specifically, this is the measure that satisfies

λ(k)
w,u

(
�x, y�

) ∝ dTw
(x, y), ∀x, y,∈ Tw,u(k). (9)

We shall normalise λ
(k)
w,u so that it is a probability measure on Tw,u(k). We remark that this is indeed possible by

applying the fact that diam Tw is finite, which is a simple consequence of the compactness of Tw . Both μ
(k)
w,u and λ

(k)
w,u

are clearly Borel measures on Tw,u(k), and it is straightforward to check that μ
(k)
w,u(A) > 0 and λ

(k)
w,u(A) > 0 for every

non-empty open A ⊆ Tw(k).
Note that we will usually drop the subscripts w and u from the objects described above when it is clear which

excursion and sequence is being considered.

2.2. Processes on abstract trees

Using a result of Kigami, it is possible to establish the existence of “nice” Markov processes on a wide class of
dendrites. As in the previous section, we assume that (K,dK) is a dendrite equipped with a shortest path metric. We
shall suppose further that ν is a σ -finite Borel measure on K that satisfies ν(A) > 0 for every non-empty open set
A ⊆ K . The following result is proved by Kigami as Theorem 5.4 of [20]. Definition 0.5 of [20] specifies the precise
conditions that make a symmetric, non-negative quadratic form a finite resistance form. For more examples of this
type of form, see [21]. We shall not explain here how to construct the finite resistance form associated with a shortest
path metric on a dendrite, as knowledge of this is non-essential for the results of this article. Full details are given in
Section 3 of [20]. We shall however, continue to use the notation (EK, FK) to represent such a form.

Lemma 2.1. Suppose (K,dK) is locally compact and complete, then (EK, FK ∩ L2(K,ν)), where (EK, FK) is the
finite resistance form associated with (K,dK), is a local, regular Dirichlet form on L2(K,ν).
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We now describe briefly the natural construction of the Markov process corresponding to (EK, FK) and measure ν,
and outline the properties of this process that will be relevant to this article. Given the Dirichlet form ( 1

2 EK, FK ∩
L2(K,ν)), we can use the standard association to define a non-negative self-adjoint operator, −ΔK , which satisfies

1

2
EK(u, v) = −

∫
K

uΔKv dν, ∀u ∈ FK ∩ L2(K,ν), v ∈ D(ΔK),

where the domain DΔK of ΔK is dense in L2(K,ν). Although the factor 1
2 looks rather awkward here, it will be

useful in ensuring a particular time-scaling for the reversible Markov process,

XK,ν = ((
X

K,ν
t

)
t≥0,PK,ν

x , x ∈ K
)
,

which is defined from the semi-group given by Pt := etΔK . In fact, the locality of our Dirichlet form ensures that the
process XK,ν is a diffusion on K .

In the case when (K,dK) is compact, Aldous defines in [2] a Brownian motion on (K,dK, ν) to be a process with
the following properties. Note first that, since we only use one metric on any particular dendrite, we will omit the
metric from the notation from now on.

(i) Continuous sample paths.
(ii) Strong Markov.

(iii) Reversible with respect to its invariant measure ν.
(iv) For x, y ∈ K , x �= y, we have

PK,ν
z (σx < σy) = dK(bK(z, x, y), y)

dK(x, y)
, ∀z ∈ K,

where σx′ := inf{t > 0: X
K,ν
t = x′} is the hitting time of x′ ∈ K .

(v) For x, y ∈ K , the mean occupation measure for the process started at x and killed on hitting y has density

2dK

(
bK(z, x, y), y

)
ν(dz), ∀z ∈ K.

As remarked in Section 5.2 of [2], these properties are enough to guarantee the uniqueness of Brownian motion on
(K,ν). We now discuss existence. In fact, the following proposition was essentially proved in [9] and gives us that
the process constructed from the Dirichlet form associated with (EK, FK) and ν, as above, is actually the Brownian
motion on (K,ν). Note how, in this result, the domain of the Dirichlet form does not depend on the choice of measure.
Since it can be proved using exactly the same arguments as Section 8 of [9], we simply state the result.

Proposition 2.2. Let (K,dK) be a compact dendrite and (EK, FK) be the finite resistance form associated with
(K,dK). Then ( 1

2 EK, FK) is a local, regular Dirichlet form on L2(K,ν), and furthermore, the corresponding Markov
process XK,ν is Brownian motion on (K,ν).

2.3. Continuum random tree properties

In this section, we introduce the continuum random tree and a certain collection of random sub-trees of it. Our starting
point is that we assume that we are given a pair of random variables (W,U) built on an underlying probability space
with probability measure P. Under P, the process W = (Wt)t∈[0,1] is a normalised Brownian excursion. For a precise
description of the law of W , see [26], Chapter XII. The random variable U = (Un)n≥1 is a sequence of independent
U [0,1] random variables, independent of W .

Since the random variable (W,U) takes values in W (1) ×[0,1]N, P-a.s., we can use the procedure of Section 2.1 to
define (on at least on a set of probability 1) a compact dendrite and measure, (TW,dTW

,μW), an increasing sequence

of sub-trees (TW,U (k))k≥1, and also, for each k ≥ 1, the measures μ
(k)
W,U and λ

(k)
W,U . The dendrite TW is the continuum

random tree. We shall, in future, drop the subscripts W and U when it will not cause confusion. We note that τ(W) = 1,
P-a.s., and so μ is a probability measure on T , P-a.s.
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In analysing random variables which take values in infinite dimensional spaces, such as continuous time stochastic
processes, it is often useful to proceed by investigating finite dimensional distributions and taking some limit. As
discussed in Section 2.4 of [2], the natural substitute for this in proving the convergence of discrete trees to the
continuum random tree is the investigation of random finite dimensional distributions. We briefly note that this is
the technique that we apply, since if we denote the sequence of vertices that are used to construct T (k) from T by
Vn := [Un], then conditional on W , by definition of the measure μ as the projection of Lebesgue measure on [0,1]
onto T , we have that the vertices (Vn)n≥1 are an independent, identically distributed sample of μ-distributed random
variables.

In the following lemma, we collect together some important properties of (T ,μ) and the sequence of sub-trees and
measures.

Lemma 2.3. There exists a measurable set Γ ⊆ W (1) ×[0,1]N such that P((W,U) ∈ Γ ) = 1, and also if (w,u) ∈ Γ ,
then

(a) T is a compact dendrite with shortest path metric dT .
(b) For every x ∈ T , degT (x) ≤ 3.
(c) If N(T , ε) is the number of ε balls needed to cover T , then

lim sup
ε→0

ε2N(T , ε) < ∞. (10)

(d) The elements of (un)n≥1 are disjoint, and so are the elements of the collection (vn)n≥1, as defined at (8). Moreover,
the collection of vertices (vn)n≥1 is dense in T .

(e) The Brownian motion on (T ,μ) exists, and admits a heat kernel (pt (x, y))t>0,x,y∈T that satisfies

lim sup
t→0

t2/3(ln t−1)−1/3 sup
x∈T

pt(x, x) < ∞. (11)

(f) For each k, μ(k) and λ(k) are Borel probability measures on T (k) that satisfy μ(k)(A) > 0 and λ(k)(A) > 0 for
every non-empty open A ⊆ T (k).

(g) As k → ∞, λ(k) → μ weakly as Borel probability measures on T .

Proof. Parts (a) and (f) are obvious from the construction in Section 2.1. Parts (b) and (c) are covered by [11],
Theorem 4.6(iv) and Proposition 5.2, respectively. The proof of part (d) requires only elementary analysis, and is
therefore omitted. The existence of a heat kernel for Brownian motion on (T ,μ) was established in [9]; the estimate
of part (e) was also proved in the same reference. For part (g), see [1], Theorem 3(ii). �

In future, we shall fix a particular Γ ⊆ W (1) ×[0,1]N that satisfies the claims of the above lemma. We shall denote
by

W ∗ := {
w: (w,u) ∈ Γ for some u ∈ [0,1]N}

(12)

the projection onto the first coordinate of Γ . Roughly speaking, this represents a set of typical realisations of the
continuum random tree (T ,μ) that can be approximated in a good way by a collection (T (k), λ(k)) or (T (k),μ(k)) of
suitably selected sub-trees. Clearly P(W ∈ W ∗) = 1.

Before continuing, we derive an extra tightness condition that holds when (T (k))k≥1 and T are constructed from
(w,u) ∈ Γ .

Lemma 2.4. For (w,u) ∈ Γ , we have that, as k → ∞,

Δ(k) := sup
x∈T

dT
(
x,φT ,T (k)(x)

) → 0.

Proof. Fix ε > 0. By the compactness of T , there exists a finite collection, (xi)
N
i=1, of elements of T such that T ⊆⋃N

i=1 B(xi, ε/2). Furthermore, by the denseness of (vk)k≥1, for each xi , we can find a ki such that dT (xi, vki
) ≤ ε/2.
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Now suppose k ≥ k0 := maxi∈{1,...,N} ki and x ∈ T . Since by definition, T (k0) ⊆ T (k) and φT ,T (k)(x) is the point
of T (k) closest to x, we have dT (x,φT ,T (k)(x)) ≤ dT (x,φT ,T (k0)(x)). Also, by choice of (xi)

N
i=1, we must have,

x ∈ B(xi, ε/2) for some i. Applying this, and using the fact that the branch point bT (0, xi, vki
) is necessarily an

element of T (k0), it may be deduced from the previous inequality that

dT
(
x,φT ,T (k)(x)

) ≤ dT
(
x, bT (0, xi, vki

)
)

≤ ε

2
+ dT

(
xi, b

T (0, xi, vki
)
)

≤ ε

2
+ dT (xi, vki

)

≤ ε.

Thus Δ(k) ≤ ε, for all k ≥ k0, and the lemma follows. �

We now explain how to embed (T ,μ) into l1 by using the sequence of sub-trees (T (k))k≥1. For the purposes of
the following discussion, we assume that (w,u) ∈ Γ . For each k ∈ N, define T̃ (k) to be the subset of l1 obtained
by isometrically embedding T (k) into l1 from the sequence of vertices (v1, . . . , vk) using the sequential construction
of [3], Section 2.2. In short, this procedure involves adding successive branches orthogonally. More precisely, set
T̃ (1) := {tz1: t ∈ [0, dT (ρ, v1)]}, where (zk)k≥1 is the canonical basis for l1. Suppose all the sets (T̃ (k′))k′≤k are
defined, then there exist isometries ψ(k′) : T (k′) → T̃ (k′), for k′ ≤ k, which may be uniquely determined by insisting
that ψ(k′)|T (k′−1) = ψ(k′−1) for each k′ ≤ k, where we use the convention that T (0) = {ρ} and T̃ (0) = {0}. The
inductive step is the following:

T̃ (k + 1) := T̃ (k) ∪ (
ψ(k)

(
φT ,T (k)(vk+1)

) + {
tzk+1: t ∈ [

0, dT
(
φT ,T (k)(vk+1), vk+1

)]})
.

It is easy to check that this procedure results in an increasing sequence of subsets of l1 such that, for each k, (T̃ (k),

‖ · − · ‖) is an isometric copy of (T (k), dT ). We will denote μ̃(k) := μ(k) ◦ ψ(k)−1
and λ̃(k) := λ(k) ◦ ψ(k)−1

, which
are Borel probability measures on l1.

Since on Γ the vertices (vk)k≥1 are dense in T , it is a simple exercise to define a distance-preserving map ψ : T →
l1 that satisfies ψ |T (k) = ψ(k) for each k. Denoting T̃ := ψ(T ), we have that (T̃ ,‖ · − · ‖) is an isometric copy
of (T , dT ). Moreover, if we define the root of T̃ to be 0, then ψ is root-preserving. Also define μ̃ := μ ◦ ψ−1

and P̃T
ρ := PT ,μ

ρ ◦ ψ−1, where PT ,μ
ρ is the law of the Brownian motion on (T ,μ) started from the root. Finally,

although there is no problem with defining the objects T̃ , μ̃, P̃T
ρ , T̃ (k), μ̃(k) and λ̃(k) in a deterministic way for each

(w,u) ∈ Γ , to prove the distributional result of Theorem 1.2 and the conditional relation at (2) we need to show that
the construction is (W,U)-measurable, and we do this in Section 8.

2.4. Coupling processes on the continuum random tree

In this section we suppose that (w,u) ∈ Γ is fixed. On Γ , the assumptions of Proposition 2.2 hold for both (T ,μ)

and (T (k), λ(k)), and so we can construct the Brownian motions on these spaces. It will be useful to couple these
processes, and so we will construct the Brownian motions on (T (k), λ(k)) using a simple time-change argument.

First, denote by X the Brownian motion on (T ,μ) started from ρ, so that, under P, the law of X is PT ,μ
ρ . We

start by showing that this process admits P-a.s. jointly continuous local times. The argument we use follows closely
that of [4], Theorem 7.21, in which the corresponding result was proved for the diffusions on certain deterministic
post-critically finite, self-similar fractals.

Lemma 2.5. For (w,u) ∈ Γ , there exist local times (Lt (x))t≥0,x∈T for the process (Xt )t≥0 which are P-a.s. jointly
continuous in t and x.

Proof. The existence of jointly measurable local times for Brownian motion on (T ,μ) was essentially demonstrated
in the proof of [9], Lemma 8.2, and so it remains to show continuity. Recall that on Γ , the Brownian motion on
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(T ,μ) admits a transition density that satisfies the upper estimate at (11). The 1-potential density, u, is defined from
the transition density by u(x, y) := ∫ ∞

0 e−tpt (x, y)dt , and it is easily deduced from (11) that u(x, y) is finite for
all x, y ∈ T . This allows us to apply [24], Theorem 1, to deduce that the P-a.s. continuity of the local times of X is
equivalent to the P-a.s. continuity of the process (G(x))x∈T , which is defined to be a mean zero, Gaussian process with
covariances given by (u(x, y))x,y∈T . However, to prove the continuity of (G(x))x∈T , by applying [10], Theorem 2.1,

it is sufficient to show that
∫ 1

0

√
lnN(T , ε)dε < ∞, where N(T , ε) is the smallest number of balls of radius ε needed

to cover T . On Γ , we have by (10) that the relevant integral is indeed finite, and so the proof is complete. �

We now explain the coupling that we will apply. For k ≥ 1, define the continuous additive functional (A
(k)
t )t≥0 by

A
(k)
t :=

∫
T (k)

Lt (x)λ(k)(dx) (13)

and its inverse by

τ (k)(t) := inf
{
s: A(k)

s > t
}
. (14)

The process (B
(k)
t )t≥0 is then defined by setting

B
(k)
t := Xτ(k)(t). (15)

In the following lemma, we use the trace theorem for Dirichlet forms to deduce that, under P, B(k) is the Brownian
motion on (T (k), λ(k)) started from ρ.

Lemma 2.6. Fix (w,u) ∈ Γ and k ∈ N. Under P, the process B(k) has law PT (k),λ(k)

ρ .

Proof. Fix k ≥ 1, and let (Eλ(k) , Fλ(k) ) be the trace of (E T , F T ) onto T (k) with respect to the measure λ(k), where
(ET , F T ) is the finite resistance form associated with (T , dT ). In particular, we set Eλ(k) (u,u) := inf{E T (v, v) :
v|T (k) = u,v ∈ F T } for u ∈ L2(T (k), λ(k)), and let Fλ(k) be the set of functions for which this infimum exists fi-
nitely. By the trace theorem for Dirichlet forms, see [13], Theorem 6.2.1, we have that B(k) is the Markov process
associated with ( 1

2 Eλ(k) , Fλ(k) ), considered as a Dirichlet form on L2(T (k), λ(k)), started from ρ.
Since (E T , F T ) is a finite resistance form, it is straightforward to check that so is (Eλ(k) , Fλ(k) ). Hence, because

a finite resistance form is determined by its effective resistance metric (see [20], Definition 0.5, for a precise defi-
nition of such a metric, and Section 3 for the correspondence), and we can easily check that the relevant metric is
simply dT restricted to T (k), we have (Eλ(k) , Fλ(k) ) = (E T (k), F T (k)), where (E T (k), F T (k)) is the finite resistance
form associated with (T (k), dT ). Thus B(k) is the Markov process associated with ( 1

2 E T (k), F T (k)), considered as a
Dirichlet form on L2(T (k), λ(k)), started from ρ. Consequently Proposition 2.2 implies that it is Brownian motion on
(T (k), λ(k)) started from ρ, as claimed. �

2.5. Discrete trees

In this section, we shall describe the notation that we will use for discrete trees. Since the excursion description
of discrete trees is well documented in [3], we shall not present the full details, but simply highlight the results
which will be important here. First, let (Tn)n≥1 be a collection of (rooted) ordered graph trees on n vertices, and, for
each n, define the function ŵn : {1, . . . ,2n − 1} → Tn to be the depth-first search around Tn. We extend ŵn so that
ŵn(0) = ŵn(2n) = ρ, where ρ = ρ(Tn) is the root of Tn. Define the search-depth process wn by

wn

(
i

2n

)
:= dTn

(
ρ, ŵn(i)

)
, 0 ≤ i ≤ 2n,

where dTn
is the graph distance on Tn. Also, extend the definition of wn to the whole of the interval [0,1] by linear

interpolation, so that wn takes values in C([0,1],R+).
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Analogously to the definition of T (k) from (w,u), we shall construct a collection of trees which are sub-trees
of Tn spanning k vertices (some possibly repeated) from wn and a sequence in [0,1]N. For each n, we denote by
un = (un

k)k≥1 an element of [0,1]N. We will presuppose the following condition throughout the remainder of this
section, and frequently in subsequent sections, which formalises the notion that (n−1/2wn,u

n) converges to a typical
realisation of the random variable (W,U).

Assumption 1. For each n, the sequence (un
k)k≥1 is dense in [0,1], and also

(
n−1/2wn,u

n
) → (w,u),

in C([0,1],R+) × [0,1]N, for some (w,u) ∈ Γ .

Since ŵn is only defined at integer values, we require a slightly more complicated procedure to allow us to use un

to choose from the n vertices of Tn. For each n ≥ 0, define the function γn : [0,1] → [0,1] by setting

γn(t) :=
{ �2nt�/2n if wn

(�2nt�/2n
) ≥ wn

(�2nt�/2n
)
,

�2nt�/2n otherwise.

The reason for introducing this particular function is that, by applying an argument similar to Lemma 12 of [3], it is
possible to show that if U1 is uniform on [0,1], with respect to Lebesgue measure, then ŵn(γn(U1)) is uniform on the
vertices of Tn. Alternatively, we have that the measure μn defined by, for A ⊆ Tn,

μn(A) := λ
{
t ∈ [0,1]: ŵn

(
γn(t)

) ∈ A
}
,

is uniform on the vertices of Tn.
We can now define the sub-trees Tn(k). For n ≥ 1, define a collection of vertices by vn

k := ŵn(γn(u
n
k)), and, for

k ≥ 1, let

Tn(k) := r
(

Tn,
{
vn

1 , . . . , vn
k

})
.

The corresponding measure projection of μn onto Tn(k) is denoted

μ(k)
n := μn ◦ φ−1

Tn,Tn(k)
, (16)

where the projection operator φTn,Tn(k) is defined on graph trees analogously to the projection operator for dendrites
(see (5)).

One of the main results in [3] is Theorem 20, in which necessary and sufficient conditions for the distributional
convergence of rescaled search-depth functions to the normalised Brownian excursion are presented. These are the
convergence of random finite dimensional distributions and a tightness result. We now translate one part of this result
into our setting, although we omit the proof since it may be demonstrated by repeating exactly the same steps as
were used in the proof of [3], Theorem 20. Analogous to the definition of Δ(k) in Lemma 2.4, we introduce the
notation

Δ(k)
n := sup

x∈Tn

dTn

(
x,φTn,Tn(k)(x)

)
. (17)

Lemma 2.7. Under Assumption 1, we have that limk→∞ lim supn→∞ n−1/2Δ
(k)
n = 0.

Finally, we note that using the sequential construction of [3], Section 2.2, which was outlined briefly in Section 2.3,
for each n, we can isometrically embed the vertices of Tn into l1 from the vertex sequence (vn

k )k≥1. Observe that,
under Assumption 1, because we are assuming (un

k)k≥1 to be dense in [0,1], the sequence (vn
k )k≥1 will contain all the

vertices of Tn, and so this procedure does result in an isometric embedding for (Tn,μn). We shall denote by ψn the
distance-preserving map from the vertices of Tn into l1, and by T̃n, μ̃n, . . . , the l1 embedded versions of objects. As
with the embeddings for dendrites, we will discuss the measurability of this procedure in Section 8.
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2.6. Discrete processes

We now define the various discrete processes that appear in this article. Here and elsewhere we apply the convention
that the notation m represents a discrete time parameter, in contrast to the continuous time parameter t . Throughout
this section, we shall assume that we have been given a fixed realisation of Tn and (Tn(k))k≥1.

The fundamental process of interest is (Xn
m)m≥0, the simple random walk on the vertices of Tn, which we shall

suppose is built on our underlying probability space. By simple random walk, we mean the process describing the
position of a particle, started from the root, which jumps at each time step to a neighbouring vertex of Tn, with equal
probability being placed on each of the possible choices, and each jump being independent of the past (apart from
the position of the particle at that time). The law of Xn will be denoted PTn

ρ , and its image in l1 under the distance-

preserving map ψn introduced at the end of the previous section (when this is defined) by P̃Tn
ρ := PTn

ρ ◦ψ−1
n . As in the

introduction, we extend P̃Tn
ρ to a law on the continuous paths in l1 by linear interpolation of discrete sample paths.

The first related process we construct is simply the projection of the simple random walk Xn onto Tn(k), we shall
denote this by (X

n,k
m )m≥0, and define it precisely by

Xn,k
m := φTn,Tn(k)

(
Xn

m

)
. (18)

The associated jump process we shall write as (J
n,k
m )m≥0. Of course, Jn,k is nothing more than the simple random

walk on the vertices of Tn(k). It will be useful to be able to express Xn,k in terms of Jn,k , and to do this we introduce
a process (A

n,k
m )m≥0 that is defined by A

n,k
0 = 0 and, for m ≥ 1,

An,k
m := min

{
l ≥ A

n,k
m−1: Xn

l ∈ Tn(k) \ {
Xn

A
n,k
m−1

}}
, (19)

so that the time A
n,k
m − A

n,k
m−1 is the time until the random walk Xn hits a vertex in Tn(k) other than the one it was in

at time A
n,k
m−1. If we then define (τn,k(m))m≥0 by

τn,k(m) := max
{
l: A

n,k
l ≤ m

}
, (20)

it is easy to check that Xn,k is recovered by taking

Xn,k
m = J

n,k

τn,k(m)
. (21)

One of the key steps in our proof of Theorem 1.1 is showing that, as n and then k become large, the process An,k

may be rescaled to a function that is linear in time, see Corollary 5.3. However, the process An,k is relatively difficult
to handle directly, and so we now introduce a closely related process that is more manageable. First, we define the
occupation times, (�

n,k
m (x))m≥0,x∈Tn(k), and a stationary measure, ν

(k)
n , of the jump process Jn,k by setting

�n,k
m (x) :=

m∑
l=0

1x

(
J

n,k
l

)
, ν(k)

n

({x}) := degn,k(x)

2
, (22)

for x a vertex in Tn(k), where degn,k := degTn(k). From these quantities we define the local times (or occupation time

densities), (L
n,k
m (x))m≥0,x∈Tn(k), of the jump process by

Ln,k
m (x) := �

n,k
m (x)

ν
(k)
n ({x})

. (23)

We can use these local times to define an additive functional, (Â
n,k
m )m≥0, by Â

n,k
0 = 0, and for m ≥ 1,

Ân,k
m := n

∫
Tn(k)

L
n,k
m−1(x)μ(k)

n (dx). (24)
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As a result of this integral representation, Ân,k is much easier to deduce convergence results for than An,k ; it also gives
a good approximation of An,k . The reason for this second fact is explained by the following. Extend Ân,k to continuous
time by linear interpolation and let the (continuous time) inverse of Ân,k be defined by τ̂ n,k(t) := max{s: Â

n,k
s ≤ t}.

Now introduce a time-changed version of Jn,k , denoted (X̂
n,k
t )t≥0, and defined by

X̂
n,k
t := J

n,k

τ̂ n,k(t)
. (25)

Clearly, both Xn,k and X̂n,k have by construction the same jump chain, Jn,k . The process Xn,k sits at a vertex in
Tn(k) while Xn jumps about in Tn until Xn hits a different vertex in Tn(k), and so the length of time spent in each
place is a (possibly unbounded) random variable. The process X̂n,k , on the other hand, waits at a vertex x a fixed
time 2nμ

(k)
n ({x})/degn,k(x) before jumping. The processes Xn,k and X̂n,k can be shown to be close when suitably

rescaled, and the reason for this is that the time 2nμ
(k)
n ({x})/degn,k(x) gives a good approximation of the expectation

of the random time that Xn,k must wait at vertex x before jumping. More specifically, we prove a tightness result for
An,k and Ân,k , see Proposition 5.2.

2.7. Overview of proof

As with any long proof, there is a danger that the main arguments will be lost in amongst the details and technicalities.
To try to avoid this problem, we present here a brief summary of the key steps, and an index of processes is provided
in Appendix A. Pictorially, we have that the processes are related in the following fashion

n−1/2Xn
tn3/2 ≈ n−1/2X

n,k

tn3/2 ≈ n−1/2X̂
n,k

tn3/2 = n−1/2J
n,k

τ̂ n,k(tn3/2)
� B

(k)
t → Xt .

The process Xn,k is the projection of Xn onto Tn(k), and so to prove that the two processes are close, we need
to show that the projection operator φTn,Tn(k) does not move points too far. This purely geometrical result, which is
stated as Lemma 6.3, is covered by Lemma 2.7. The connection between Xn,k and X̂n,k was discussed at the end of
the previous section.

The point of transfer between discrete and continuous time processes is Proposition 4.3, where we demonstrate the
unsurprising result that, when rescaled, the simple random walks Jn,k on Tn(k) converge as n → ∞ to the Brownian
motion B(k) on T (k). In showing that the limit of X̂n,k is also close to B(k), by applying the representation at (25)
it will suffice to exhibit the behaviour of Ân,k as n and then k gets large. The two concrete results we prove are the
following. Firstly, by demonstrating that the rescaled local times of the jump processes Jn,k converge when rescaled to
those of B(k) (see Lemma 4.8), we are able show that Ân,k , as defined at (24), may be rescaled to converge to a related
additive functional, Â(k), defined from B(k) (see (28) for a definition of Â(k) and Corollary 4.10 for a statement
of the relevant convergence result). Secondly, we deduce that Â

(k)
t converges to t uniformly on compact intervals

(Proposition 3.5). Although we will not proceed to present these results rigourously in the way we now describe, the
motivation for our argument is provided by the following. First, it is possible to deduce that

n−1/2X̂
n,k

tn3/2 = n−1/2J
n,k

τ̂ n,k(tn3/2)
→ B

(k)

τ̂ (k)(t)
,

where τ̂ (k)(t) is the right continuous inverse of Â(k), defined similarly to (14). Since Â
(k)
t → t uniformly on compact

intervals, τ̂ (k)(t) → t on compact intervals. Thus the continuity of B(k) implies that B
(k)

τ̂ (k)(t)
is close to B

(k)
t uniformly.

The construction of B(k) in Section 2.4 using a time-change argument allows us to prove an almost-sure version
of the limit B(k) → X via standard arguments, which depend only on the fact that the measures λ(k) converge weakly
to μ, see Lemma 3.1.

3. Convergence of Brownian motion on finite trees

In this section, we fix (w,u) ∈ Γ , and show that if the processes (B(k))k≥1 and X are coupled as in Section 2.4, then
B(k) converges P-a.s. on any compact time interval to X as k → ∞. We will also prove the convergence of a related
additive functional.
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Lemma 3.1. Fix (w,u) ∈ Γ and R ∈ (0,∞). If the processes (B(k))k≥1 and X are coupled as in Section 2.4, then
P-a.s.,(

B
(k)
t

)
t∈[0,R] → (Xt )t∈[0,R] as k → ∞,

in C([0,R], T ).

Proof. We start by demonstrating that, P-a.s.,

sup
t∈[0,R+1]

∣∣A(k)
t − t

∣∣ → 0 as k → ∞, (26)

where A(k) is the additive functional defined at (13). Fix ε > 0. By Lemma 2.5 and the definition of Γ , we can assume
that the local times of X are jointly continuous and λ(k) converges weakly to μ. These assertions imply that, point-wise
for t ≥ 0, we have

A
(k)
t =

∫
T (k)

Lt (x)λ(k)(dx) →
∫

T
Lt(x)μ(dx) = t.

Note that the integral over T (k) makes sense because, by construction, T (k) ⊆ T . Using the monotonicity in t of the
functions A(k), we can apply an elementary argument to deduce from this that the uniform convergence at (26) holds.

As a consequence of (26), we also have that supt∈[0,R] |τ (k)
t − t | → 0, where τ (k) is the inverse of A(k) defined at

(14). Recalling from (15) that B
(k)
t := Xτ(k)(t), the P-a.s. continuity of X implies the result. �

To state the corresponding result for convergence of probability laws in l1, we introduce the notation

P̃T (k)
ρ := PT (k),λ(k)

ρ ◦ ψ−1, (27)

where ψ : T → l1 is the distance-preserving map introduced at the end of Section 2.3.

Proposition 3.2. If (w,u) ∈ Γ , then(
T̃ (k), μ̃(k), P̃T (k)

ρ

) → (
T̃ , μ̃, P̃T

ρ

)
,

in the space K(l1) × M1(l
1) × M1(C([0,1], l1)).

Proof. It is easy to check from the construction of T̃ (k) and μ̃(k) that both dl1

H (T̃ (k), T̃ ) and dl1

P (μ̃(k), μ̃) are bounded

above by Δ(k), where dl1

H is the Hausdorff metric on K(l1), dl1

P is the Prohorov metric on M1(l
1), and Δ(k) is the

quantity defined in Lemma 2.4. Applying Lemma 2.4 we immediately are able to deduce that (T̃ (k), μ̃(k)) → (T̃ , μ̃)

in the appropriate space.
Define now B̃(k) := ψ(B(k)) and X̃ := ψ(X), where B(k) and X are coupled as in Section 2.4. Applying the fact

that ψ is distance-preserving and Lemma 3.1, we have that B̃(k) → X̃, P-a.s., in C([0,1], l1). Since B̃(k) has law
P̃T (k)

ρ and X̃ has law P̃T
ρ , the result follows. �

That local times of B(k) exist is guaranteed by the following lemma.

Lemma 3.3. Fix (w,u) ∈ Γ . If B(k) is a random process with law PT (k),λ(k)

ρ , then B(k) admits local times

(L
(k)
t (x))t≥0,x∈T (k) that are P-a.s. jointly continuous in t and x.

Proof. The existence and continuity of local times for B(k) may be shown in exactly the same way as for the
process X, see Lemma 2.5. However, to do this, it is necessary to provide suitable estimates for the size of an ε-cover
for T (k) and on the heat kernel of B(k) in place of (10) and (11), respectively. First, since T (k) is made up of a
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finite collection of line segments, and λ(k) is simply the rescaled Lebesgue measure on these, there is no difficulty in
deducing that there exist constants c1, c2 and r0 > 0 such that

c1r ≤ λ(k)
(
BT (k)(x, r)

) ≤ c2r, ∀x ∈ T (k), r ∈ (0, r0),

where BT (k)(x, r) is the ball of radius r around x in T (k). This allows us to apply [23], Theorem 3.1, to deduce

the existence of a heat kernel (p
(k)
t (x, y))t≥0,x,y∈T (k) for B(k) which satisfies, for some c3 and t0 > 0, p

(k)
t (x, x) ≤

c3t
−1/2, for all x ∈ T (k), t ∈ (0, t0). Secondly, we can use again the simple structure of (T (k), λ(k)) to deduce

that there exists a constant c4 such that N(T (k), ε) ≤ c4ε
−1, for every ε ∈ (0,1). These two estimates enable us to

complete the proof using the argument of Lemma 2.5. �

We now introduce another additive functional, (Â
(k)
t )t≥0, that we will later show describes the scaling limit as

n → ∞ of the functions Ân,k , as defined at (24). Set

Â
(k)
t :=

∫
T (k)

L
(k)
t (x)μ(k)(dx). (28)

The following description of the local times of B(k) will be useful in demonstrating that the additive functionals Â(k)

converge in the subsequent lemma.

Lemma 3.4. Fix (w,u) ∈ Γ . If the processes (B(k))k≥1 and X are coupled as in Section 2.4, then P-a.s., the local
times (L

(k)
t (x))t≥0,x∈T (k) of B(k) satisfy

L
(k)
t (x) = Lτ(k)(t)(x), ∀t ≥ 0, x ∈ T (k),

where (Lt (x))t≥0,x∈T are the local times of X.

Proof. The following argument holds P-a.s. Fix k ≥ 1. Assuming that L
(k)
t (x) is jointly continuous in t and x, it is

possible to deduce that the maps

A 
→
∫

A

dA(k)
u , A 
→

∫
T (k)

∫
A

dLu(x)λ(k)(dx),

for Borel sets A ⊆ R+, are well defined and describe Borel measures on R+. Furthermore, for an interval (s, t] ⊆ R+,
we have∫

(s,t]
dA(k)

u = A
(k)
t − A(k)

s =
∫

T (k)

(
Lt(x) − Ls(x)

)
λ(k)(dx) =

∫
T (k)

∫
(s,t]

dLu(x)λ(k)(dx).

By a standard argument (see [17], Theorem 2.14, for example) if two locally finite Borel measures on R+ agree on
sets of the form (s, t] and have no atom at zero, they are identical. Applying this fact, for a measurable B ⊆ T (k), we
have

∫ t

0
1B

(
B(k)

s

)
ds =

∫ τ (k)(t)

0
1B(Xs)dA(k)

s =
∫

T (k)

∫
[0,τ (k)(t)]∩X−1(B)

dLu(x)λ(k)(dx),

where X−1(B) := {s: Xs ∈ B} is a measurable subset of R+. An elementary argument using the continuity of X

allows it to be deduced that the measure dLu(x) is supported on the set X−1({x}). Hence∫ t

0
1B

(
B(k)

s

)
ds =

∫
T (k)

∫
[0,τ (k)(t)]

1B(x)dLu(x)λ(k)(dx) =
∫

T (k)

1B(x)Lτ(k)(t)(x)λ(k)(dx),

from which the result follows. �
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Proposition 3.5. Fix (w,u) ∈ Γ and R > 0. If the processes (B(k))k≥1 and X are coupled as in Section 2.4, then
P-a.s.,

sup
t∈[0,R]

∣∣Â(k)
t − t

∣∣ → 0 as k → ∞.

Proof. The following proof holds P-a.s. By the previous lemma and the definition of Â(k), we have that, for t ≥ 0,

Â
(k)
t =

∫
T (k)

Lτ(k)(t)(x)μ(k)(dx)

=
∫

T
Lτ(k)(t)

(
φT ,T (k)(x)

)
μ(dx),

where for the second equality we use the definition of μ(k) as the projection of μ onto T (k). It immediately follows
that

sup
t∈[0,R]

∣∣Â(k)
t − t

∣∣ ≤ sup
t∈[0,R]

sup
x,y∈T :

dT (x,y)≤Δ(k)

∣∣Lτ(k)(t)(x) − Lτ(k)(t)(y)
∣∣ + sup

t∈[0,R]

∣∣τ (k)(t) − t
∣∣.

In the proof of Lemma 3.1, we showed that τ (k)(t) → t uniformly on [0,R]. Combining this result with the fact that
Δ(k) → 0 and the continuity of the local times of X (see Lemmas 2.4 and 2.5, respectively), it is straightforward to
use the above estimate to derive the result. �

4. Convergence of jump processes and local times

The primary aim of this section is to demonstrate that the processes Jn,k , when rescaled, converge in distribution
to B(k) as n → ∞. We also show that the additive functional Ân,k defined at (24) converges to the process Â(k)

introduced in the previous section. A key result is Proposition 4.9, where we show the simultaneous convergence of
trees, measures, jump processes and local times, and from which the convergence of Ân,k follows easily using the
continuous mapping theorem. For the purposes of this section, because the trees we discuss have a finite number of
branches, it will be convenient to work in the space of abstract trees with edge lengths using the topology we now
introduce.

We consider elements of the form (T ,μ,f1, f2). Here, T = (T ∗; |e1|, . . . , |el−1|) for some l, where T ∗ is an
ordered graph tree with l vertices, and |e1|, . . . , |el−1| are the edge lengths. By including line segments along edges,
naturally associated with T is a dendrite T equipped with the natural shortest path metric dT . We assume that μ is a
Borel probability measure on T . The continuous T -valued function f1 is defined on some interval [0,R], and can be
considered as the sample path of a process on T . Finally, the R+-valued function f2 is defined on [0,R] × T and can
be thought of as representing the corresponding local times.

To define the topology of interest, we introduce a metric, d , between two such 4-tuplets, (T ,μ,f1, f2) and
(T ′,μ′, f ′

1, f
′
2), when the intervals on which the functions f1, f ′

1 are defined are the same. First, we introduce a
distance d1 between ordered graph trees with edge lengths. If T ∗ �= T ′∗, then set d1(T ,T ′) = ∞. Otherwise, assume
T ∗ = T ′∗. The distance between trees is defined to be the maximal edge length difference, i.e.,

d1
(
T ,T ′) := sup

i

∣∣|ei | −
∣∣e′

i

∣∣∣∣.
When T ∗ = T ′∗, we have a homeomorphism ΥT ,T ′ :T → T ′, under which the point x ∈ T , which is a distance α

along the edge ei (considered from the vertex at the end of ei which is closest to the root), is mapped to the point
x′ ∈ T ′ which is a distance |e′

i |α/|ei | along e′
i . We use this function to define a collection of distances. Let

d2
(
μ,μ′) := dP

(
T ;μ,μ′ ◦ ΥT ,T ′

) + dP

(
T ′;μ ◦ ΥT ′,T ,μ′),
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where dP (T ; ·, ·) is the usual Prohorov metric on T , and we make this choice for the reason that it induces the weak
topology on T . Furthermore, set

d3
(
f1, f

′
1

) := sup
t∈[0,R]

[
dT

(
f1(t),ΥT ′,T

(
f ′

1(t)
)) + dT ′

(
ΥT ,T ′

(
f1(t)

)
, f ′

1(t)
)]

,

d4
(
f2, f

′
2

) := sup
t∈[0,R],x∈T

∣∣f2(t, x) − f ′
2

(
t,ΥT ,T ′(x)

)∣∣.
The metric d is then defined by setting,

d
(
(T ,μ,f1, f2),

(
T ′,μ′f ′

1, f
′
2

)) := (
d1

(
T ,T ′) + d2

(
μ,μ′) + d3

(
f1, f

′
1

) + d4
(
f2, f

′
2

)) ∧ 1.

We are now almost in a position to state and prove the first result of this section. In this lemma and subsequent
results of this section, we assume that we have been given the collections (Tn)n≥1 and (Tn(k))n,k≥1, and that these
are constructed from a sequence {(wn,u

n)}n≥1 that satisfies Assumption 1. We define Tn(k) to be the graph tree with
vertices given by the root and leaves of the graph tree Tn(k) along with their branch points in Tn(k). The edge lengths
of Tn(k) are those induced from the graph distance dTn

on Tn(k), and the ordering of vertices of Tn(k) follows from
the ordering of vertices of Tn. Since there is a natural distance-preserving embedding of the vertices of the graph
tree Tn(k) into the dendrite T n(k), the measure μ

(k)
n , as described at (16), may be thought of as a Borel measure on

T n(k) consisting of a finite number of atoms. Similarly, we define T (k) to be the ordered graph tree with edge lengths
constructed from the pair (w,u) ∈ Γ that corresponds to the limit of {(wn,u

n)}n≥1. Also, the measure μ(k) can be
thought of as a Borel measure on T (k), which is a dendrite with exactly the same structure as T (k). Finally, we also
introduce notation for the rescaled trees and measures, specifically, we set

T̆n(k) := (
Tn(k)∗;n−1/2|e1|, . . . , n−1/2|el−1|

)
,

where Tn(k) has l vertices. We define μ̆
(k)
n to be the probability measure on the dendrite associated with T̆n(k) satis-

fying

μ̆(k)
n = μ(k)

n ◦ Υ
T̆ n(k),T n(k)

.

Lemma 4.1. Under Assumption 1, (T̆n(k), μ̆
(k)
n ) → (T (k),μ(k)), as n → ∞, with respect to the distance d1 + d2.

Proof. The result that d1(T̆n(k), T (k)) → 0 is essentially demonstrated in the proof of [3], Theorem 20, and so we
will restrict ourselves to showing that d2(μ̆

(k)
n ,μ(k)) → 0. First, denote by ϕk the map from [0,1] to T (k) that is

obtained by composing the map t 
→ [t], where [t] is the equivalence class of t ∈ [0,1], as defined by (6), with the
projection map φT ,T (k) (here, we identify T (k) and T (k) in the obvious way). The (non-root) leaves of T (k) are
described by the points ζi := ϕk(ui), i = 1, . . . , k, and we shall denote by bij the branch point of ρ, ζi and ζj in T (k).

For t ∈ [0,1], we must have that t ∈ [ui, uj ] for some i, j ∈ {−1,0, . . . , k}, where we introduce the notation
u−1 = 0 and u0 = 1, and we assume that (ui, uj ) ∩ {u−1, u0, . . . , uk} = ∅. A simple analysis of the construction of
T n(k) allows it to be deduced that

ϕk(t) =
{

�bij , ζi �
(
mw(t, ti) − mw(ti, tj )

)
if mw(t, ti) ≥ mw(t, tj ),

�bij , ζj �
(
mw(t, tj ) − mw(ti, tj )

)
otherwise,

(29)

where mw is the minimum function defined in Section 2.1, and we use the notation �bij , ζi �α to represent the point of
T n(k) that lies on the line segment �bij , ζi � a distance α from bij . Note that the right-hand side of the above expression
is well defined if we set ζ0 = ζ−1 = ρ. Furthermore, observe that if mw(t, ti) = mw(t, tj ) then the two expressions in
the right-hand side of (29) are equal (to bij ).

Analogous to the above definition, we set ϕn,k(t) := Υ
T n(k),T̆ n(k)

(φTn,Tn(k)(ŵn(γn(t)))), which is a map from [0,1]
to T̆ n(k) (we consider that vertices of Tn(k) are embedded in T n(k) in the natural way). Also, denote ζ n

i := ϕn,k(u
n
i ),

and the branch point of ρ, ζ n
i and ζ n

j in T̆ n(k) by bn
ij . An expression for ϕn,k of the form of (29) is not difficult to

deduce.
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Since d1(T̆n(k), T (k)) → 0, for large n we can define the homeomorphism Υ
T̆ n(k),T (k)

from T̆ n(k) to T (k) by
rescaling edges in the way described at the start of this section. For large n, we clearly have that Υ

T̆ n(k),T (k)
(ζ n

i ) = ζi

and Υ
T̆ n(k),T (k)

(bn
ij ) = bij for each i, j ≤ k. Consequently, by considering the expression at (29) and similar formulae

for ϕn,k , we have that under Assumption 1, for every t ∈ [0,1],
Υ

T̆ n(k),T (k)

(
ϕn,k(t)

) → ϕk(t). (30)

By definition, μ̆
(k)
n = λ ◦ ϕ−1

n,k and μ(k) = λ ◦ ϕ−1
k , where λ is the usual Lebesgue measure on [0,1]. Hence, applying

the convergence at (30) and Fatou’s lemma, for open A ⊆ T (k) it follows that lim infn→∞ μ̆
(k)
n ◦ Υ

T (k),T̆ n(k)
(A) ≥

μ(k)(A), which implies that μ̆
(k)
n ◦Υ

T (k),T̆ n(k)
converges weakly to μ(k) as measures on T (k) (see [7], Theorem 2.1). In

particular, we have that dP (T (k); μ̆(k)
n ◦Υ

T (k),T̆ n(k)
,μ(k)) → 0. Finally, the map Υ

T (k),T̆ n(k)
is Lipschitz, and if (cn)n≥1

represents the associated Lipschitz constants, then it follows from d1(T̆n(k), T (k)) → 0 that cn → 1. Consequently

dP

(
T̆ n(k); μ̆(k)

n ,μ(k) ◦ Υ
T̆ n(k),T (k)

) ≤ cndP

(
T (k); μ̆(k)

n ◦ Υ
T (k),T̆ n(k)

,μ(k)
) → 0,

which completes the proof. �

To define the jump process on T̆ n(k) that will be the focus of this section, we need to clarify what we mean by a
vertex and so we introduce the set

V
(
T̆ n(k)

) := {
x ∈ T̆ n(k) : d

T̆ n(k)
(ρ, x) = mn−1/2, for some m ∈ N ∪ {0}}

to represent the “rescaled graph vertices” contained in T̆ n(k). We then define the process J̆ n,k := (J̆
n,k
m )m≥0 to be the

simple random walk on V (T̆ n(k)) started from the root, where we suppose that two elements of V (T̆ n(k)) are joined
by an edge if an only if the line segment between them in T̆ n(k) contains no other point in V (T̆ n(k)). We extend the
definition of J̆ n,k to all t ≥ 0 by linear interpolation. To prove convergence of the jump-processes we will need to
time-scale J̆ n,k according to the length of the graph T̆n(k). We define

Λ(k)
n :=

∑
i

∣∣en,k
i

∣∣, (31)

where |en,k
i | are the edge lengths of T̆n(k). Clearly, under Assumption 1, the previous result implies that Λ

(k)
n → Λ(k),

where Λ(k) is the total length of T (k), defined similarly to (31). In the following results, we use the notation B(k) to
represent the Brownian motion on (T (k), λ(k)) started from the root, where λ(k), as defined as at (9), is now thought
of as a Borel probability measure on T (k). Since T (k) and T (k) are equivalent metric spaces, this is consistent with
the definition of B(k) used in earlier sections.

Lemma 4.2. Fix R ∈ (0,∞) and k ∈ N. Under Assumption 1 it is possible to construct J̆ n,k and B(k) under the
probability measure P in such a way that, P-a.s.,

(
T̆n(k),

(
J̆

n,k

tnΛ
(k)
n

)
t∈[0,R]

) → (
T (k),

(
B

(k)
t

)
t∈[0,R]

)
,

with respect to d1 + d3.

Proof. From the previous lemma we have that T̆n(k) → T (k) with respect to d1. Hence for large n we can define the
homeomorphism Υ

T̆ n(k),T (k)
from T̆ n(k) to T (k) by rescaling edges in the way described at the start of this section.

Now let λ
(k)
n be the scaled Lebesgue measure on T̆ n(k), so the mass of a line segment is proportional to its length,

and it is normalised so that λ
(k)
n (T̆ n(k)) = 1. It is clear that λ

(k)
n ◦ Υ

T (k),T̆ n(k)
→ λ(k) weakly as probability measures

on T (k).
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Let B(k) be the Brownian motion on (T (k), λ(k)) under the probability measure P. By Lemma 3.3, we can assume
that B(k) has jointly continuous local times, P-a.s., which we can use to define the Brownian motion on (T (k), λ

(k)
n ◦

Υ
T (k),T̆ n(k)

) by a time-change, similar to that used to define B(k) from X at (15). By following the argument of
Lemma 3.1 and applying the weak convergence of measures that was noted in the previous paragraph, we are able
to deduce that if B̃n,k is the Brownian motion on (T (k), λ

(k)
n ◦ Υ

T (k),T̆ n(k)
) obtained by this time-change, then P-a.s.,

B̃n,k → B(k), in C([0,R], T (k)). By considering the defining properties of Brownian motion on a dendrite, it is easy
to check that under P the process Bn,k := Υ

T (k),T̆ n(k)
(B̃n,k) is Brownian motion on (T̆ n(k), λ

(k)
n ), and it follows from

the previous sentence that, P-a.s.,(
T̆n(k),

(
B

n,k
t

)
t∈[0,R]

) → (
T (k),

(
B

(k)
t

)
t∈[0,R]

)
, (32)

with respect to d1 + d3.
As a consequence of the hitting probability property of a Brownian motion on a dendrite, if we define hn,k(0) := 0,

and, for m ≥ 1,

hn,k(m) := inf
{
t ≥ hn,k(m − 1): B

n,k
t ∈ V

(
T̆ n(k)

) \ B
n,k

hn,k(m−1)

}
, (33)

to be the hitting times of vertices of V (T̆ n(k)) by Bn,k , then the discrete time process (B
n,k

hn,k(m)
)m≥0 is a version of

the simple random walk on the vertices of V (T̆ n(k)). Hence we can suppose that J̆ n,k is defined by

J̆ n,k
m = B

n,k

hn,k(m)
, (34)

for each m ∈ N. Furthermore, by considering the excursions of Bn,k away from vertices of V (T̆ n(k)), it is possible to

show that (nΛ
(k)
n (hn,k(m) − hn,k(m − 1)))m≥1 are independent and identically distributed, their common distribution

being that of the hitting time of {±1} by a standard Brownian motion in R
1, started from zero. Note that the scaling

factor of Λ
(k)
n is a result of the normalisation of λ

(k)
n . The hitting time of {±1} by a standard Brownian motion in R

1,
started from zero, has expected value 1 and finite fourth moment. As a consequence of these facts, we can apply a
standard martingale estimate ([17], Proposition 7.16, for example) to deduce that, for ε > 0,

P
(

sup
m≤RnΛ

(k)
n

∣∣∣∣hn,k(m) − m

nΛ
(k)
n

∣∣∣∣ ≥ ε

)
≤

(
4

3ε

)4

E

∣∣∣∣hn,k
(⌊

RnΛ(k)
n

⌋) − �RnΛ
(k)
n �

nΛ
(k)
n

∣∣∣∣
4

≤ cn−2,

for some constant c that does not depend on n. Note that the second inequality here may be deduced by an elementary
argument using the fourth moment condition on the random variables of the form hn,k(m) − hn,k(m − 1) (see [6],
Theorem 6.1, for example). Thus a Borel–Cantelli argument implies that P-a.s.,

sup
m≤RnΛ

(k)
n

∣∣∣∣hn,k(m) − m

nΛ
(k)
n

∣∣∣∣ → 0. (35)

Applying this fact, the convergence result at (32), and the coupling of J̆ n,k and Bn,k from (34), the lemma is readily
deduced. �

We are now able to present one of the facts needed in our proof of Theorem 1.1. Recall that Jn,k is the simple
random walk on the vertices of Tn(k) started from ρ. We set J̃ n,k := ψn(J

n,k), where ψn is the distance-preserving
map from the vertices of Tn to l1 introduced at the end of Section 2.5. We extend the definition of J̃ n,k by linear
interpolation.

Proposition 4.3. Suppose that Assumption 1 holds. If we denote by Q̃Tn(k)
ρ the law of (n−1/2J̃

n,k

tnΛ
(k)
n

)t∈[0,1], then

(
n−1/2 T̃n(k), μ̃(k)

n

(
n1/2·), Q̃Tn(k)

ρ

) → (
T̃ (k), μ̃(k), P̃T (k)

ρ

)
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in the space K(l1) × M1(l
1) × M1(C([0,1], l1)), where P̃T (k)

ρ was defined at (27).

Proof. Clearly, mapping (T̆n(k), μ̆
(k)
n , (J̆

n,k

tnΛ
(k)
n

)t∈[0,R]) into l1 with the sequential construction (using the ver-

tices (ζ n
i )ki=1 defined in the proof of Lemma 4.1) results in a triple which is identical (in distribution) to

(n−1/2 T̃n(k), μ̃
(k)
n (n1/2·), (n−1/2J̃

n,k

tnΛ
(k)
n

)t∈[0,R]). Similarly, mapping (T (k),μ(k), (B
(k)
t )t∈[0,R]) into l1 (from the ver-

tices (ζi)
k
i=1, also defined in the proof of Lemma 4.1) yields (T̃ (k), μ̃(k), (B̃

(k)
t )t∈[0,1]), where B̃(k) := ψ(B(k)), as in

the proof of Proposition 3.2. Thus the result is a simple consequence of Lemmas 4.1 and 4.2. �

We now consider the convergence of the local times of J̆ n,k , although before arriving at this result, we must prove
a few preparatory lemmas. We will denote the occupation times and local times of J̆ n,k by (�̆

n,k
m (x))

m≥0,x∈V (T̆ n(k))

and (L̆
n,k
m (x))

m≥0,x∈V (T̆ n(k))
, and define them analogously to (22) and (23), respectively. We extend the domains of

these processes to the whole of R+ × T̆ n(k) by linear interpolation, first in space, and then in time. Let us start by
proving a simple tail estimate on the occupation times of the jump process.

Lemma 4.4. Fix R ∈ (0,∞) and k ∈ N. Suppose that Assumption 1 holds, then there exist constants c1, c2 such that,
for every n,

sup
x∈V (T̆ n(k))

P
(
�̆
n,k

RnΛ
(k)
n

(x) ≥ n1/2t
) ≤ c1e−c2t , ∀t ≥ 0.

Proof. Using the convergence of the trees proved in Lemma 4.1, we have, for large n, mini |en,k
i | ≥ 1

2 mini |e(k)
i |,

where the |en,k
i | are the edge lengths of T̆ n(k) and the |e(k)

i | are the edge lengths of T n(k). Hence, if n is large enough,
for each x ∈ V (T̆ n(k)), we can find a line segment of T̆ n(k), starting at x, which contains no edge endpoints and has

length at least L := 1
4 mini |e(k)

i |. In particular, it follows from the n−1/2 scaling of the trees that this line segment
will contain at least Ln1/2 vertices in V (T̆ n(k)). By considering the jump process J̆ n,k observed on this line segment,
we can use the estimates for the occupation times of a simple random walk on an interval deduced in the Appendix
(Lemma B.2) to obtain an estimate of the appropriate form which holds for large n. This is easily extended to n ∈ N

by suitable choice of c1 and c2, which completes the proof. Note that the two cases considered in Lemma B.2 cover
the possibilities that x is an endpoint of an edge or that it is not. �

We now prove a modulus of continuity result for the local times.

Lemma 4.5. Fix R ∈ (0,∞) and k ∈ N. Suppose that Assumption 1 holds, then for every ε > 0 there exists a con-
stant c such that, for every n ∈ N, δ > 0,

sup
x,y∈V (T̆ n(k)):
d
T̆ n(k)

(x,y)≤δ

P
(
n−1/2 sup

m≤RnΛ
(k)
n

∣∣L̆n,k
m (x) − L̆n,k

m (y)
∣∣ ≥ ε

)
≤ cδ2.

Proof. The argument follows closely the proof of a related estimate in [8]. For brevity we write R′ = R′(n, k) =
RnΛ

(k)
n . Fix x �= y in V (T̆ n(k)) with d

T̆ n(k)
(x, y) ≤ δ. Conditional on the event where the jump chain J̆ n,k hits x

before y occurring, we have by a simple calculation

sup
m≤R′

∣∣∣∣∣L̆n,k
m (x) − L̆n,k

m (y) − 2
�̆
n,k
m (x)∑
i=1

ηi

∣∣∣∣∣ ≤ sup
i≤�̆

n,k

R′ (x)+1

2|ηi |, (36)

where ηi := Ni degn,k(y)−1 − degn,k(x)−1. Here, degn,k := deg
T̆ n(k)

, and Ni is the number of visits by J̆ n,k to y

between the ith and (i + 1)st visits to x. Clearly (ηi)i≥1 is an independent identically-distributed family.
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Noting that Lemma 4.4 allows us to deduce a constant upper bound for the quantity n−1/2E(�̆R′(x) + 1) that is
uniform in n and x, we are able to deduce that

P
(

sup
i≤�̆

n,k

R′ (x)+1

2|ηi | > εn1/2
)

≤ E
(
�̆
n,k
R′ (x) + 1

)
P
(
2|η1| > εn1/2) ≤ c1n

−3/2E|η1|4,

where c1 is a constant that does not depend on n, x or y. Combining this bound with inequality (54) from the Appendix
implies that

P
(

sup
i≤�̆

n,k

R′ (x)+1

2|ηi | > εn1/2
)

≤ c2δ
3, (37)

where c2 is a constant that does not depend on n, x or y.
Furthermore, since the sequence (

∑m
i=0 ηi)m≥0 is a martingale, we are able to use Doob’s martingale norm in-

equality (see [17], Proposition 7.16, for example) to deduce that

P

(
2 sup

m≤R′

∣∣∣∣∣
�̆
n,k
m (x)∑
i=1

ηi

∣∣∣∣∣ > εn1/2

)
≤ c3n

−2E

∣∣∣∣∣
�̆
n,k

R′ (x)∑
i=1

ηi

∣∣∣∣∣
4

,

with c3 not depending on n, x or y. By replicating the proof of the upper estimate for the corresponding martingale
in [8], using the tail bound of Lemma 4.4 and applying the inequality proved in the Appendix at (54), we are able
to bound the right-hand side above by c4δ

2, uniformly in n, x and y. Combining this result with (36) and the bound
at (37) yields

P
(

sup
m≤R′

∣∣L̆n,k
m (x) − L̆n,k

m (y)
∣∣ ≥ εn1/2

∣∣min
{
m: J̆ n,k

m = x
} ≤ min

{
m: J̆ n,k

m = y
}) ≤ c5δ

2,

for every n and x, y ∈ V (T̆ n(k)) with d
T̆ n(k)

(x, y) ≤ δ. However, if we reverse the role of x and y in the left-hand
side, then the same inequality holds, and so we can remove the conditioning to obtain the result. �

We extend this result using a standard maximal inequality.

Lemma 4.6. Fix R ∈ (0,∞) and k ∈ N. Suppose that Assumption 1 holds, then for every ε > 0 there exists a con-
stant c such that, for every n ∈ N, δ > 0,

P
(

sup
x,y∈V (T̆ n(k)):
d
T̆ n(k)

(x,y)≤δ

n−1/2 sup
m≤RnΛ

(k)
n

∣∣L̆n,k
m (x) − L̆n,k

m (y)
∣∣ ≥ ε

)
≤ cδ. (38)

Proof. Let us start by considering a particular edge, ek
i say, of T (k). Define e

n,k
i to be the corresponding edge in the

graph T̆ n(k) when the homeomorphism Υ
T̆ n(k),T (k)

from T̆ n(k) to T (k) is defined. The set of graph vertices embedded

in this edge is V (e
n,k
i ) := V (T̆ n(k)) ∩ e

n,k
i . Since an edge of T̆ n(k) is isomorphic to a Euclidean line-segment, the

estimate proved in the previous lemma can be extended by an application of [7], Theorem 10.3 (or, more precisely,
the simple extension of this result that is alluded to in [7], Problem 10.1), to deduce that

sup
x∈V (e

n,k
i )

P

(
n−1/2 sup

y∈V (e
n,k
i ):

d
T̆ n(k)

(x,y)≤δ

sup
m≤RnΛ

(k)
n

∣∣L̆n,k
m (x) − L̆n,k

m (y)
∣∣ ≥ ε

)
≤ c1δ

2 (39)

uniformly in n and δ, for some constant c1. Now, since the number of edges of T̆ n(k) is bounded uniformly in n

for each k, there is no problem in replacing the set V (e
n,k
i ) by V (T̆ n(k)) in the above expression (increasing c1 if

necessary).
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To complete the proof note that under Assumption 1, for each n and δ, we can choose a δ-net, Aδ
n say, of V (T̆ n(k)),

such that the quantity δ#Aδ
n is bounded uniformly in n and δ. Applying this fact and the bound at (39) (extended to

the whole of V (T̆ n(k))), it is elementary to check that the left-hand side of (38) is bounded above by

∑
x∈Aδ

n

2P
(
n−1/2 sup

y∈V (T̆ n(k)):
d
T̆ n(k)

(x,y)≤2δ

sup
m≤RnΛ

(k)
n

∣∣L̆n,k
m (x) − L̆n,k

m (y)
∣∣ ≥ ε

)
≤ c2δ,

uniformly in n and δ, which completes the proof. �

We now show that the rescaled local times of the jump-chain J̆ n,k are close to those of the Brownian motion Bn,k

on (T̆ n(k), λ
(k)
n ). The existence and continuity of the local times of Bn,k , which we will denote by L̄n,k , may be

proved by repeating the argument of Lemma 3.3. The following argument is essentially the same as that used in [25],
Lemma 7, to demonstrate convergence of the local times of the simple random walk on Z.

Lemma 4.7. Fix R ∈ (0,∞) and k ∈ N. Suppose that Assumption 1 holds and the processes J̆ n,k and Bn,k are
coupled as in the proof of Lemma 4.2, then for every ε > 0,

lim
n→∞ sup

x∈V (T̆ n(k))

P
(

sup
m≤RnΛ

(k)
n

∣∣n−1/2L̆n,k
m (x) − L̄

n,k

hn,k(m)
(x)

∣∣ > ε
)

= 0.

Proof. Fix x ∈ V (T̆ n(k)). Denote by (ςi)i≥1 the hitting times of x by J̆ n,k , and define ηi := L̄
n,k

hn,k(ςi+1)
(x) −

L̄
n,k

hn,k(ςi )
(x), where (hn,k(m))m≥0 are the hitting times defined at (33). It is straightforward to deduce from the defini-

tion of Bn,k and the standard scaling properties of one-dimensional Brownian local times that (ηi)i≥1 is an indepen-
dent, identically-distributed sequence of random variables, each distributed as 2Z/n1/2 degn,k(x), where Z represents
the local time at zero of a standard Brownian motion in R

1, started from zero, evaluated at the hitting time of {±1},
and degn,k := deg

T̆ n(k)
. The explicit distribution of Z is known as a result of a Ray–Knight theorem (see [17], Theo-

rem 22.17, for example). In particular, Z has finite positive moments of all orders and mean 1. Thus, for c1 > 0, if we
write R′ = R′(n, k) = RnΛ

(k)
n ,

P
(

sup
m≤R′

∣∣η1 + · · · + η
�̆
n,k
m (x)

− n−1/2L̆n,k
m (x)

∣∣ > ε
)

=
�R′�∑
m=0

P
(

sup
l≤m

∣∣∣∣η1 + · · · + ηl − 2l

n1/2 degn,k(x)

∣∣∣∣ > ε

)
P
(
�̆
n,k
R′ (x) = m

)

≤ c2n
−1(lnn)2

�c1n
1/2 lnn�∑

m=0

E
(
(Z − 1)4) + P

(
�̆
n,k
R′ (x) ≥ ⌊

c1n
1/2 lnn

⌋)
, (40)

where we have again applied standard martingale inequalities (see [17], Lemma 4.15 and [6], Theorem 6.1, for ex-
ample) to deduce the inequality. Applying Lemma 4.4 and choosing c1 suitably large, we are able to obtain from this
an upper bound of the form c3n

−1/2(lnn)3 that holds for all n ≥ 2, uniformly in x ∈ V (T̆ n(k)), for the probability
at (40).

Observe now that if J̆
n,k
m = x, then η1 + · · · + η

�̆
n,k
m (x)

= L̄
n,k

hn,k(m+1)
(x), otherwise the sum is equal to L̄

n,k

hn,k(m)
(x).

Hence

P
(

sup
m≤R′

∣∣η1 + · · · + η
�̆
n,k
m (x)

− L̄
n,k

hn,k(m)
(x)

∣∣ > ε
)

≤ P
(

sup
m≤R′

∣∣L̄n,k

hn,k(m+1)
(x) − L̄

n,k

hn,k(m)
(x)

∣∣ > ε
)

≤ ε−4
�R′�∑
m=0

E
(∣∣L̄n,k

hn,k(m+1)
(x) − L̄

n,k

hn,k(m)
(x)

∣∣4) = c4n
−1EZ4,
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uniformly in x ∈ V (T̆ n(k)), and since the expectation is finite, this bound converges to zero. The lemma follows. �

We can now combine the estimates of the previous two lemmas to demonstrate that the rescaled local times of J̆ n,k

converge uniformly to the local times L(k) of B(k). Recall that the domains of the local times L̆n,k are extended to
R+ × T̆ n(k) by linear interpolation.

Lemma 4.8. Fix R ∈ (0,∞) and k ∈ N. Suppose that Assumption 1 holds and the processes J̆ n,k and B(k) are coupled
as in the proof of Lemma 4.2, then for every ε > 0,

lim
n→∞ P

(
sup

x∈T (k)

sup
t∈[0,R]

∣∣L(k)
t (x) − n−1/2L̆

n,k

tnΛ
(k)
n

(
Υ

T (k),T̆ n(k)
(x)

)∣∣ ≥ ε
)

= 0.

Proof. In addition to the assumptions of the lemma, suppose also that the processes Bn,k and B(k) are coupled in the
way that was used in the proof of Lemma 4.2. As well as the convergence of processes that was described at (32), it is
possible to show that P-a.s.,

lim
n→∞ sup

x∈T (k)

sup
t∈[0,R]

∣∣L(k)
t (x) − L̄

n,k
t

(
Υ

T (k),T̆ n(k)
(x)

)∣∣ = 0, (41)

by first deducing a time-change representation of L̄n,k ◦ Υ
T (k),T̆ n(k)

in terms of L(k), similar to Lemma 3.4, and
then demonstrating that the relevant time-change additive functional converges uniformly in the same way as in
Proposition 3.5. This allows the problem to be reduced to showing that

lim
n→∞ P

(
sup

x∈T̆ n(k)

sup
t∈[0,R]

∣∣n−1/2L̆
n,k

tnΛ
(k)
n

(x) − L̄
n,k
t (x)

∣∣ ≥ ε
)

= 0. (42)

Now, for each n and δ, we can choose a δ-net, Aδ
n say, of T̆ n(k), consisting of vertices in V (T̆ n(k)) and such

that the quantity δ#Aδ
n is bounded uniformly in n and δ. Using these nets, we can deduce that the probability in the

left-hand side of (42) is bounded above by

P
(

sup
x,y∈T̆ n(k):

d
T̆ n(k)

(x,y)≤δ

sup
t∈[0,R]

∣∣L̄n,k
t (x) − L̄

n,k
t (y)

∣∣ ≥ ε

3

)

+
∑
x∈Aδ

n

sup
x∈V (T̆ n(k))

P
(

sup
t∈[0,R]

∣∣n−1/2L̆
n,k

tnΛ
(k)
n

(x) − L̄
n,k
t (x)

∣∣ ≥ ε

3

)

+ P
(

sup
t∈[0,R]

sup
x,y∈T̆ n(k):

d
T̆ n(k)

(x,y)≤δ

n−1/2
∣∣L̆n,k

tnΛ
(k)
n

(x) − L̆
n,k

tnΛ
(k)
n

(y)
∣∣ ≥ ε

3

)
. (43)

The final term is bounded by c1δ uniformly in n by Lemma 4.6 (since L̆n,k is extended at each time by linear inter-
polation over space, there is no problem in extending the result proved there by replacing V (T̆ n(k)) by T̆ n(k)). The
result at (41) implies that the lim sup as n → ∞ of the first term is bounded above by

P
(

sup
t∈[0,R]

sup
x,y∈T (k):

dT (k)(x,y)≤δ

∣∣L(k)
t (x) − L

(k)
t (y)

∣∣ ≥ ε

3

)
,

and, by choosing δ appropriately, we can make this probability arbitrarily small since the local times L(k) are jointly
continuous in t and x. Thus to complete the proof it will suffice to show that the second term of (43) converges to zero
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for each fixed δ. This is a straightforward consequence of Lemma 4.7, the convergence of local times stated at (41),
and the strong limit law that was proved for the hitting times hn,k at (35). �

Piecing together the convergence results for trees, measures, jump processes and local times that we have already
proved, we obtain the following.

Proposition 4.9. Fix R ∈ (0,∞) and k ∈ N. Suppose that Assumption 1 holds, then(
T̆n(k), μ̆(k)

n ,
(
J̆

n,k

tnΛ
(k)
n

)
t∈[0,R],

(
n−1/2L̆

n,k

tnΛ
(k)
n

(x)
)
t∈[0,R],x∈T̆ n(k)

)
converges in distribution as n → ∞ to

(
T (k),μ(k),

(
B

(k)
t

)
t∈[0,R],

(
L

(k)
t (x)

)
t∈[0,R],x∈T (k)

)
,

with respect to the metric d = (d1 + d2 + d3 + d4) ∧ 1.

From this result, we can deduce the convergence of additive functionals. The definitions of Ân,k and Â(k) should
be recalled from (24) and (28), respectively.

Corollary 4.10. Fix R ∈ (0,∞) and k ∈ N. Suppose that Assumption 1 holds, then

(
n−3/2Â

n,k

tnΛ
(k)
n

)
t∈[0,R] �⇒ (

Â
(k)
t

)
t∈[0,R]

in C([0,R],R+).

Proof. By construction, it will suffice to prove the result when (Â
n,k
t )t≥0 is replaced by, for t ≥ 0,(

n

∫
T̆ n(k)

L̆
n,k
(t−1)∨0(x)μ̆(k)

n (dx)

)
t≥0

.

Given Proposition 4.9, this is a straightforward application of the continuous mapping theorem (see [17], Theo-
rem 4.27, for example). �

5. Tightness for additive functionals

We now analyse the simple random walks on graph trees in order to obtain a tightness result for the processes An,k and
Ân,k , the definitions of which should be recalled from (19) and (24), respectively. We assume throughout this section
that (Tn)n≥1 and (Tn(k))n≥1,k≥1 are given, and are built from a sequence {(wn,u

n)}n≥1 that satisfies Assumption 1.
The proof of our main result, Proposition 5.2, is a modification of the argument used by Kesten in [18], Proposi-

tion (4.52), and involves applying some simple random walk estimates for graph trees that are proved in the Appendix.
In particular, denote the expected holding times of the process Xn,k by αn,k(x) := E(A

n,k
m+1 − A

n,k
m |Jn,k

m = x), for x

a vertex of Tn(k) and some m ≥ dTn
(ρ, x). Note that the time-homogeneity of the simple random walk means that

αn,k(x) is well defined. By Lemma B.3, we have the following exact expression for this quantity

αn,k(x) = 1

degn,k(x)

(
2nμ(k)

n

({x}) − 2 + degn,k(x)
)
, (44)

where we use the notation introduced in Section 2.6, degn,k = degTn(k). We will also consider the expected square

value, βn,k(x) := E((A
n,k
m+1 − A

n,k
m )2|Jn,k

m = x); the bound of Lemma B.3 giving us that

βn,k(x) ≤ 36n2(degn,k(x) + Δ(k)
n

)μ
(k)
n ({x})2

degn,k(x)
. (45)
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Before continuing, for want of a suitable reference we state a simple lemma, which may be proved using elementary
probability theory. See [17], Exercise 6.11, for a closely related result.

Lemma 5.1. Let (Zn,k)n,k≥1 be a collection of random variables and (F n,k)n,k≥1 a collection of σ -algebras on the
probability space with probability measure P. If, for every ε > 0,

lim
k→∞ lim sup

n→∞
P
(
E

(
Zn,k

∣∣F n,k
)
> ε

) = 0,

then, for every ε > 0,

lim
k→∞ lim sup

n→∞
P
(
Zn,k > ε

) = 0.

In the time-scaling of the following result, it will be useful to include the quantity Λ
(k)
n , which was introduced

at (31). Note that, under Assumption 1, the limit as n → ∞ of Λ
(k)
n exists and is finite for each fixed k ∈ N.

Proposition 5.2. Fix R ∈ (0,∞) and ε > 0. If Assumption 1 holds, then

lim
k→∞ lim sup

n→∞
P
(
n−3/2 sup

m≤RnΛ
(k)
n

∣∣An,k
m − Ân,k

m

∣∣ > ε
)

= 0.

Proof. Let m ∈ N. By definition, we have that

∣∣An,k
m − Ân,k

m

∣∣ =
∣∣∣∣∣
m−1∑
l=0

(
A

n,k
l+1 − A

n,k
l − 2nμ

(k)
n ({Jn,k

l })
degn,k(J

n,k
l )

)∣∣∣∣∣
≤

∣∣∣∣∣
m−1∑
l=0

(
A

n,k
l+1 − A

n,k
l − αn,k

(
J

n,k
l

))∣∣∣∣∣ +
m−1∑
l=0

∣∣∣∣αn,k
(
J

n,k
l

) − 2nμ
(k)
n ({Jn,k

l })
degn,k(J

n,k
l )

∣∣∣∣. (46)

We shall consider these two terms separately, starting with the second summand. First, we use the formula at (44) in
place of αn,k to deduce that

sup
m≤RnΛ

(k)
n

m−1∑
l=0

∣∣∣∣αn,k
(
J

n,k
l

) − 2nμ
(k)
n ({Jn,k

l })
degn,k(J

n,k
l )

∣∣∣∣ =
�RnΛ

(k)
n �−1∑

l=0

|2 − degn,k(J
n,k
l )|

degn,k(J
n,k
l )

≤ RnΛ(k)
n .

Hence, when multiplied by n−3/2, as n → ∞, the second term of (46) converges to zero uniformly in m ≤ RnΛ
(k)
n ,

P-a.s.
We now deal with the first summand of (46). Since, conditional on knowing Jn,k , the expected value of A

n,k
l+1 −A

n,k
l

is precisely αn,k(J
n,k
l ), we can use Kolmogorov’s maximum inequality (see [17], Lemma 4.15) to deduce that, for

ε > 0,

P

(
n−3/2 sup

m≤RnΛ
(k)
n

∣∣∣∣∣
m−1∑
l=0

(
A

n,k
l+1 − A

n,k
l − αn,k

(
J

n,k
l

))∣∣∣∣∣ > ε

∣∣∣Jn,k

)

≤ 1

n3ε2

�RnΛ
(k)
n �−1∑

l=0

βn,k
(
J

n,k
l

) ≤ 36

nε2

�RnΛ
(k)
n �−1∑

l=0

(
degn,k

(
J

n,k
l

) + Δ(k)
n

) μ
(k)
n ({Jn,k

l })
degn,k(J

n,k
l )

≤ 18

n2ε2
Â

n,k

�RnΛ
(k)
n �

(
max

x∈Tn(k)
degn,k(x) + Δ(k)

n

)
, (47)
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where we have used the bound at (45) for the second inequality, and we have also dropped a power of μ
(k)
n ({x}), which

is allowed because μ
(k)
n ({x}) ≤ 1. The final inequality follows simply from the definition of Ân,k . For δ > 0, we have

lim
k→∞ lim sup

n→∞
P
(
n−2Â

n,k

�RnΛ
(k)
n �

(
max

x∈Tn(k)
degn,k(x) + Δ(k)

n

)
> δ

)

≤ lim
k→∞ lim sup

n→∞

[
R + 1

δn1/2

(
max

x∈Tn(k)
degn,k(x) + Δ(k)

n

)
+ P

(
n−3/2Â

n,k

�RnΛ
(k)
n � > R + 1

)]
. (48)

Now it is a simple consequence of Lemma 4.1 that maxx∈Tn(k) degn,k(x) is bounded uniformly in n. Combined with
Lemma 2.7, this implies that

lim
k→∞ lim sup

n→∞
n−1/2

(
max

x∈Tn(k)
degn,k(x) + Δ(k)

n

)
= 0,

which deals with the first of the terms of (48). To show the second term is also zero, we apply the distributional
convergence results of Proposition 3.5 and Corollary 4.10. Hence Lemma 5.1 allows us to deduce from the upper
bound at (47) that

lim
k→∞ lim sup

n→∞
P

(
n−3/2 sup

m≤RnΛ
(k)
n

∣∣∣∣∣
m−1∑
l=0

(
A

n,k
l+1 − A

n,k
l − αn,k

(
J

n,k
l

))∣∣∣∣∣ > ε

)
= 0.

By recalling the bound for |An,k
m − Â

n,k
m | from (46), and applying the limit results that we have proved for each of the

summands, it is straightforward to deduce the desired result. �

In conjunction with the convergence results we have already proved for Â(k) and Ân,k in Proposition 3.5 and
Corollary 4.10, respectively, from the above proposition we are able to deduce a concrete description of the growth of
An,k as n and then k get large. We assume that An,k is extended to a continuous time process by linear interpolation.

Corollary 5.3. Fix R ∈ (0,∞) and ε > 0. If Assumption 1 holds, then

lim
k→∞ lim sup

n→∞
P
(

sup
t≤R

∣∣n−3/2A
n,k

tnΛ
(k)
n

− t
∣∣ > ε

)
= 0.

6. Tightness of discrete processes

As in the previous section, we assume that (Tn)n≥1 and (Tn(k))n≥1,k≥1 are given, and are constructed from a sequence
{(wn,u

n)}n≥1 that satisfies Assumption 1. Consequently we can define the isometric embedding ψn : Tn → l1 as at the
end of Section 2.5. We shall denote the l1-embedded versions of Xn, Xn,k and Jn,k by X̃n, X̃n,k and J̃ n,k , respectively,
and extend the definitions of these discrete time processes to continuous time by linear interpolation. The main result
of this section is obtained in Corollary 6.4, which demonstrates a tightness result for X̃n and J̃ n,k when these processes
are rescaled appropriately. We start by proving a lemma which provides a modulus of continuity result for the jump
processes.

Lemma 6.1. Fix R ∈ (0,∞) and ε > 0. If Assumption 1 holds, then

lim
δ→0

lim sup
k→∞

lim sup
n→∞

P
(
n−1/2 sup

s,t≤R: |s−t |≤δ

∥∥J̃
n,k

snΛ
(k)
n

− J̃
n,k

tnΛ
(k)
n

∥∥ ≥ ε
)

= 0.

Proof. By the convergence results of Propositions 3.2 and 4.3, it is sufficient to show that

lim
δ→0

P
(

sup
s,t≤R: |s−t |≤δ

‖X̃s − X̃t‖ ≥ ε
)

= 0,
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where X̃ is the l1-embedded version of X defined in the proof of Proposition 3.2. This is a simple consequence of the
fact that X̃ is continuous, P-a.s. �

We now have enough information to demonstrate a tightness result for X̃n,k and J̃ n,k .

Proposition 6.2. Fix ε > 0. If Assumption 1 holds, then

lim
k→∞ lim sup

n→∞
P
(
n−1/2 sup

t∈[0,1]
∥∥X̃

n,k

tn3/2 − J̃
n,k

tnΛ
(k)
n

∥∥ > ε
)

= 0.

Proof. Fix ε, η > 0. By the modulus of continuity result of Lemma 6.1, we can choose δ ∈ (0,1) such that

lim sup
k→∞

lim sup
n→∞

P
(
n−1/2 sup

s,t≤3: |s−t |≤δ

∥∥J̃
n,k

snΛ
(k)
n

− J̃
n,k

tnΛ
(k)
n

∥∥ ≥ ε
)

≤ η. (49)

Set E1(n, k) := {n−1/2 sups,t≤3: |s−t |≤δ ‖J̃ n,k

snΛ
(k)
n

− J̃
n,k

tnΛ
(k)
n

‖ < ε}. Also define

E2(n, k) :=
{

sup
t≤2

∣∣n−3/2A
n,k

tnΛ
(k)
n

− t
∣∣ < δ

}
.

Note that by (49) and Corollary 5.3,

lim sup
k→∞

lim sup
n→∞

P

(
2⋃

i=1

Ei(n, k)c

)
≤ η. (50)

Assume for the next part of the argument that
⋂2

i=1 Ei(n, k) holds, and note that on E2(n, k) we have, for t ∈ [δ,1],

A
n,k

(t−δ)nΛ
(k)
n

< tn3/2 < A
n,k

(t+δ)nΛ
(k)
n

.

Now recall the definition of τn,k from (20), and note that, because A
n,k
t is strictly increasing and linear between

integer times, then if we extend the definition of τn,k to continuous time by linear interpolation, then τn,k satisfies
τn,k(t) := max{s: n−3/2A

n,k
s ≤ t} for t ≥ 0. As a simple consequence of this and the above pair of inequalities, it

must be the case that |τn,k(tn3/2) − tnΛ
(k)
n | ≤ δnΛ

(k)
n , for t ∈ [0,1]. On E1(n, k), we have a bound for the modulus

of continuity of the jump process J̃ n,k , and using the previous inequality, it is possible to deduce from this that

n−1/2 sup
t∈[0,1]

∥∥J̃
n,k

τn,k(tn3/2)
− J̃

n,k

tnΛ
(k)
n

∥∥ < ε.

However, after relabeling using (21), we are able to obtain from this that

n−1/2 sup
t∈[0,1]

∥∥X̃
n,k

tn3/2 − J̃
n,k

tnΛ
(k)
n

∥∥ ≤ ε + n−1/2,

where the extra n−1/2 term arises due to the difference in the linear interpolation procedures used when defining the
processes J̃

n,k

τn,k(tn3/2)
and X̃

n,k

tn3/2 . Thus we reach the conclusion that

lim sup
k→∞

lim sup
n→∞

P
(

sup
t∈[0,1]

∥∥X̃
n,k

tn3/2 − J̃
n,k

tnΛ
(k)
n

∥∥ > 2εn1/2
)

≤ lim sup
k→∞

lim sup
n→∞

P

(
2⋃

i=1

Ei(n, k)c

)

which, by (50), is bounded above by η. Since η was arbitrary, the proof is complete. �
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Lemma 6.3. If Assumption 1 holds, then P-a.s.

lim
k→∞ lim sup

n→∞
n−1/2 sup

t∈[0,1]

∥∥X̃n
tn3/2 − X̃

n,k

tn3/2

∥∥ = 0.

Proof. From the definition of the process Xn,k as the projection of Xn onto Tn(k), it is clear that the supremum in the
expression is bounded by Δ

(k)
n , as defined at (17). Hence the result follows from Lemma 2.7. �

The two previous results immediately imply the following.

Corollary 6.4. If Assumption 1 holds, then

lim
k→∞ lim sup

n→∞
P
(
n−1/2 sup

t∈[0,1]

∥∥X̃n
tn3/2 − J̃

n,k

tnΛ
(k)
n

∥∥ > ε
)

= 0.

7. Convergence of quenched law

All the hard analysis of the proof of Theorem 1.1 is now complete. However, before proving it, we summarise the
tightness result for the laws of the rescaled processes that we will apply. As in the previous section, we use the notation
J̃ n,k = ψn(J

n,k) and X̃n = ψn(X
n), where ψn is the distance-preserving embedding of vertices of Tn into l1 described

at the end of Section 2.5, and these discrete time processes are extended to continuous time by linear interpolation.
We also include the corresponding tightness results for sets and measures.

Proposition 7.1. Suppose Assumption 1 holds. If we denote by Q̃Tn(k)
ρ the law of the process (n−1/2J̃

n,k

tnΛ
(k)
n

)t∈[0,1], and

by Q̃Tn
ρ the law of (n−1/2X̃n

tn3/2)t∈[0,1], then

lim
k→∞ lim sup

n→∞
dl1

H

(
n−1/2 T̃n, n

−1/2 T̃n(k)
) = 0,

lim
k→∞ lim sup

n→∞
dl1

P

(
μ̃n

(
n1/2·), μ̃(k)

n

(
n1/2·)) = 0,

lim
k→∞ lim sup

n→∞
d

C([0,1],l1)
P

(
Q̃Tn

ρ , Q̃Tn(k)
ρ

) = 0,

where dl1

H is the Hausdorff metric on K(l1), and d·
P is the Prohorov metric on M1(·).

Proof. The first two limits are consequences of Lemma 2.7, and the definitions of Tn(k) and μ
(k)
n using the projection

operator. The third limit can be deduced from Corollary 6.4. �

Proposition 7.2. If Assumption 1 holds, then

Θn

(
T̃n, μ̃n, P̃Tn

ρ

) → (
T̃ , μ̃, P̃T

ρ

)
in the space K(l1) × M1(l

1) × M1(C([0,1], l1)).

Proof. Elementary analysis can be used to obtain the result from Propositions 3.2, 4.3 and 7.1. �

Proof of Theorem 1.1. Suppose n−1/2wn → w ∈ W ∗. By definition of W ∗, see (12), there exists a u ∈ [0,1]N, such
that (w,u) ∈ Γ . If we now take un = u for each n, then the sequence (wn,u

n) satisfies Assumption 1, with the relevant
limit being given by (w,u). Thus Theorem 1.1 follows from Proposition 7.2. �
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8. Measurability and convergence of annealed law

Given the quenched limit result of Theorem 1.1, there is little to do to establish the annealed limit of Theorem 1.2
apart from check the measurability of various objects, and that is the primary aim of this section. Note that in all
the discussions of measurability that follow, we assume that the σ -algebra of the underlying probability space is
P-complete (which is no real restriction, as we can easily complete it if it is not already). Furthermore, to avoid
confusion we will apply subscripts to objects built from deterministic pairs (w,u) ∈ C([0,1],R+) × [0,1]N, as in

Section 2.1, in the following way: T̃w,u, μ̃w,u, P̃Tw,u
ρ , . . . .

We start by showing that the l1-embedded triple (T̃ , μ̃, P̃T
ρ ) := (T̃W,U , μ̃W,U , P̃TW,U

ρ ) is (W,U)-measurable, where

(W,U) are the random variables defined at the start of Section 2.3. Since we have only defined (T̃w,u, μ̃w,u, P̃Tw,u
ρ )

so far for (w,u) ∈ Γ , we extend the definition to the entire of C([0,1],R+) × [0,1]N by setting it to be an arbitrary
constant triple on the set Γ c . The notation P̃T (k)

ρ should be recalled from (27).

Lemma 8.1. (a) For each k ∈ N, the map from Γ ⊆ C([0,1],R+) × [0,1]N (equipped with the usual subspace

topology) to K(l1)× M1(l
1)× M1(C([0,1], l1)) that takes the pair (w,u) to (T̃w,u(k), μ̃

(k)
w,u, P̃Tw,u(k)

ρ ) is continuous.

(b) The map (w,u) 
→ (T̃w,u, μ̃w,u, P̃Tw,u
ρ ) defines a measurable function from Γ (equipped with the subspace

σ -algebra) to K(l1) × M1(l
1) × M1(C([0,1], l1)).

(c) The triple (T̃ , μ̃, P̃T
ρ ) is (W,U)-measurable.

Proof. Let (wn,un) ∈ Γ be such that (wn,un) → (w,u) ∈ Γ . By repeating an almost identical argument
to Lemma 4.1 (and mapping this result into l1 using the sequential construction), we are able to show that
(T̃wn,un(k), μ̃

(k)
wn,un) → (T̃w,u(k), μ̃

(k)
w,u), which deals with the first two coordinates. The simultaneous convergence

of laws in M1(C([0,1], l1)) can be proved by following the steps that lead to (32), and then mapping into l1. This

completes the proof of part (a), which has as a consequence that (w,u) 
→ (T̃w,u(k), μ̃
(k)
w,u, P̃Tw,u(k)

ρ ) is measurable
on Γ . Recall from Proposition 3.2 that on Γ we have

(
T̃w,u(k), μ̃(k)

w,u, P̃Tw,u(k)
ρ

) → (
T̃w,u, μ̃w,u, P̃Tw,u

ρ

)
.

Since a limit of measurable functions is again measurable, this implies part (b). Finally, applying the fact that Γ is a
measurable subset of C([0,1],R+) × [0,1]N chosen (in Lemma 2.3) to satisfy P((W,U) ∈ Γ ) = 1, part (c) follows
easily. �

This result allows us to deduce the existence of a probability measure satisfying (1). First, denote by Ω our un-

derlying probability space, so that (W,U) = (W(ω),U(ω)) and P̃T
ρ = P̃

TW(ω),U(ω)
ρ , where ω ∈ Ω . By part (c) of the

above lemma, the collection of laws (P̃T
ρ )ω∈Ω can be viewed as a probability kernel from Ω to C([0,1], l1) (see [17],

Lemma 1.40). Thus we can extend the probability measure P on Ω to a probability measure P̂ on Ω × C([0,1], l1)

by setting

P̂(dω dX̃) := P(dω)P̃T
ρ (dX̃), (51)

for ω ∈ Ω , X̃ ∈ C([0,1], l1). The above lemma also allows us to deduce that (ω, X̃) 
→ (W(ω),U(ω), T̃W(ω),U(ω),

μ̃W(ω),U(ω), X̃) is a measurable function on Ω × C([0,1], l1), and moreover

P̂(T̃ ∈ A, μ̃ ∈ B, X̃ ∈ C) =
∫

Ω×C([0,1],l1)
P(dω)P̃T

ρ (dX̃)1{T̃ ∈A,μ̃∈B,X̃∈C}

=
∫

Ω

P(dω)1{T̃ ∈A,μ̃∈B}P̃
T
ρ (C)

=
∫

C([0,1],R+)×[0,1]N
P
(
(W,U) ∈ (dw,du)

)
1{T̃ ∈A,μ̃∈B}P̃

T
ρ (C), (52)
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for every measurable A ⊆ K(l1), B ⊆ M1(l
1), and C ⊆ C([0,1], l1), where the final equality is obtained by a simple

change of variables in the integral. Hence if we define P to be the law of (T̃ , μ̃, X̃) under the measure P̂, then P

satisfies (1). That it is the unique measure to do so is standard (see [17], Lemma 1.17, for example). Finally, that the
law of X̃ under the conditional measure P̂(·|(W,U)) is given by P̃T

ρ is readily deduced from (52).
To prove the corresponding discrete results we can follow similar arguments, and so we will omit the proofs.

Henceforth, we suppose that (Tn)n≥1 is a sequence of random ordered graph trees whose search-depth functions
(Wn)n≥1 are independent of U , and also satisfy the convergence result at (4). The triple (T̃n, μ̃n, P̃Tn

ρ ) ∈ K(l1) ×
M1(l

1) × M1(C(R+, l1)) is constructed from the random pair (Wn,U) by following the procedure presented in
Sections 2.5 and 2.6 for deterministic pairs (wn,u), and analogously to Lemma 8.1 we have that this construction
is measurable. By extending the underlying probability space in a similar fashion to (51), we can also deduce the
existence of a probability measure Pn satisfying (3).

To complete this section, we prove the annealed limit result of Theorem 1.2. The two versions of the definition (one
involving laws, and one involving processes) of the rescaling operator Θn should be recalled from the Introduction.

Proof of Theorem 1.2. By [17], Theorem 4.29, it is sufficient to demonstrate that Pn ◦ Θ−1
n (F ) → P(F ) for

any function F of the form F(K,ν,f ) = F1(K)F2(ν)F3(f ), where F1 ∈ Cb(K(l1)), F2 ∈ Cb(M1(l
1)) and F3 ∈

Cb(C([0,1], l1)). Thus we fix F to be such a function.
Now by assumption we have that n−1/2Wn ⇒ W , and so (n−1/2Wn,U) ⇒ (W,U). As a result of the separability

of C([0,1],R+) × [0,1]N, it is therefore possible to construct (n−1/2W ∗
n ,U∗

n ), which is a version of (n−1/2Wn,U),
and (W ∗,U∗), which is a version of (W,U), in such a way that (n−1/2W ∗

n ,U∗
n ) → (W ∗,U∗) almost-surely on some

probability space, Ω∗ say, with probability measure P∗. We now suppose that the random triple (T̃ , μ̃, P̃T
ρ ) is built

from (W ∗,U∗) and that the random triple (T̃n, μ̃n, P̃Tn
ρ ) is built from (W ∗

n ,U∗
n ) for each n.

It is easy to check that the random variables (n−1/2W ∗
n ,U∗

n )n≥1 satisfy Assumption 1 with the relevant limit being

given by (W ∗,U∗) ∈ Γ , P∗-a.s. As a consequence of this, Proposition 7.2 implies that P∗-a.s., Θn(T̃n, μ̃n, P̃Tn
ρ ) →

(T̃ , μ̃, P̃T
ρ ). Thus we have that, P∗-a.s., F1(n

1/2 T̃n) → F1(T̃ ), F2(μ̃n(n
1/2·)) → F2(μ̃) and∫

X̃∈C(R+,l1)

P̃Tn
ρ (df )F3

((
n−1/2X̃

(
tn3/2))

t∈[0,1]
) → P̃T

ρ (F3).

By applying the dominated convergence theorem (twice), it follows that Pn ◦ Θ−1
n (F ) → P(F ), as desired. �

Appendix A. Index of processes

The list below provides a summary (in order of first appearance) of the more important random processes that appear
in the article.

X Brownian motion on (T ,μ). Section 2.4
L Local times of X. Lemma 2.5
A(k) Time-change additive functional from X to B(k). (13)
τ (k) Inverse of A(k). (14)
B(k) Brownian motion on (T (k), λ(k)). (15)
Xn Simple random walk on Tn. Section 2.6
Xn,k Projection of Xn onto Tn(k). (18)
Jn,k Jump process associated with Xn,k . Section 2.6
An,k Time-change additive functional from Xn to Xn,k . (19)
τn,k Inverse of An,k . (20)
�n,k Occupation times for Jn,k . (22)
Ln,k Local times for Jn,k . (23)
Ân,k Additive functional defined using Ln,k . (24)
τ̂ n,k Inverse of Ân,k . Section 2.6
X̂n,k Time-changed version of Jn,k defined using τ̂ n,k . (25)
L(k) Local times of B(k). Lemma 3.3
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Â Additive functional defined using L(k). (28)
J̆ n,k, �̆n,k, L̆n,k Rescaled versions of Jn,k, �n,k,Ln,k on T̆ n(k). Section 4
Bn,k Brownian motion on (T̆ n(k), λ

(k)
n ). Lemma 4.2

hn,k Hitting times of “graph vertices” by Bn,k . (33)
L̄n,k Local times of Bn,k . Section 4

Processes with a tilde represent the corresponding process mapped into l1 by the distance-preserving maps ψ or ψn

as appropriate. See Section 2.3 for the definition of ψ and the end of Section 2.5 for the definition of ψn.

Appendix B. Simple random walk estimates

Collected in this section are several estimates for simple random walks on graphs, which are used in proving the
convergence of the local times of jump processes on finite trees to those of the related Brownian motion, see Section 4.
We also prove results about the moments of the “exit time” of a simple random walk from a graph tree that are applied
to prove the tightness result of Proposition 5.2.

B.1. Occupation time tail bound for an interval

We start by proving an exponential bound for the tail of the distribution of the occupation time of a simple random
walk on an interval. In substance, the estimate was demonstrated by Kesten in the proof of [18], Lemma (4.64), but
we include the proof here in order to state the result in a form that is more readily applicable in our situation.

We start by defining, for some fixed R ∈ N, the sets Γn := {0,1, . . . ,Rn}. Let (Y n
m)m≥0 be a discrete time simple

random walk on Γn, starting from zero, under a probability measure P. Here, we assume that vertices x, y ∈ Γn are
connected by an edge if and only if |x − y| = 1. We also remark that the condition that R is an integer is only for
convenience, and the same argument can be applied for any R > 0, when the interval considered is that between 0 and
�Rn�.

The processes (ξn(x,m))m≥0,x∈Γn will be the occupation time process for Yn, i.e.

ξn(x,m) :=
m∑

i=0

1x

(
Yn

i

)
.

The related hitting times will be written (ςn
m(x))m≥1,x∈Γn , and can be defined by ςn

m(x) := min{l: ξn(x, l) ≥ m}.
Finally, the intervals between the hitting times (σ n

m(x))m≥1,x∈Γn are given by σn
m(x) := ςn

m+1(x) − ςn
m(x). Note that,

for fixed x and n, (σ n
m(x))m≥1 is an independent, identically distributed sequence. We first prove a simple bound on

the tail of the distribution of these intervals.

Lemma B.1. Let x ∈ {0,1}. There exists ε ∈ (0,1), n0 ∈ N, depending only on R, such that

P
(
σn

1 (x) ≥ εn2) >
1

4Rn
, ∀n ≥ n0. (53)

Proof. We will prove the result for x = 0, the proof for x = 1 is almost identical. By conditioning on the first step of
the simple random walk, and then using the strong Markov property, we have

P
(
σn

1 (x) ≥ εn2) ≥ P
(
Yn hits Rn − 1 before returning to 0

∣∣Yn
1 = 1

)
× P

(
Yn spends ≥ εn2 in [1,Rn − 1] before hitting 0

∣∣Yn
0 = Rn − 1

)
.

The first probability here is exactly equal to (Rn − 1)−1, by an elementary calculation. The final term is bounded
below by

P
(
S spends ≥ εn2 in [0,Rn − 2] before hitting Rn − 1|S0 = 0

)
,
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where S = (Sn)n≥0 is a simple random walk on Z. As n → ∞, Donsker’s theorem (see [17], Theorem 14.9, for
example) implies that the final term converges to

P
(
B spends ≥ ε in [0,R) before hitting R|B0 = 0

)
,

where B = (Bt )t≥0 is a standard Brownian motion on R. Clearly, by taking ε small, this probability can be chosen to
be arbitrarily close to 1. The result follows. �

The independence of the sequences (σ n
m(x))m≥1 easily allows us to extend this result to the desired exponential

bound.

Lemma B.2. Let x ∈ {0,1}. There exist constants c1 and c2 depending only on R, such that

P
(
ξn

(
x,n2) ≥ tn

) ≤ c1e−c2t , ∀t ≥ 0, n ∈ N.

Proof. Let x ∈ {0,1}, t ∈ N, and choose ε and n0 to satisfy the bound at (53). By definition, we have for n ≥ n0,

P
(
ξn

(
x,n2) ≥ tn

) ≤ P

(
tn−1∑
m=1

σn
m(x) ≤ n2

)

≤ P

(
tn−1∑
m=1

1{σn
m(x)≥εn2} ≤ ε−1

)

≤ P
(

Bin

(
tn − 1,

1

4Rn

)
≤ ε−1

)

≤ c3e−c4t ,

for some constants c3 and c4 depending only on R. Here, Bin(n,p) represents a binomial random variable with
parameters n and p. Note also that we use the previous lemma for the third inequality. This estimate is easily extended
to all t and n in the desired range by adjusting the constants suitably. �

B.2. Crossing a tree

Consider a graph tree T . Suppose that the shortest path between two vertices x and y in T is of length L, and that
the vertices x and y have degree D1 and D2 respectively. Assume that under the probability measure P, the process
(Xm)m≥0 is a discrete time simple random walk on T started from x. Denote by N the number of visits by X to y

before its first return to x. By observing the random walk on the path between x and y, it is an elementary exercise to
calculate that the exact distribution of N is given by

P(N = k) = 1

L2D1D2

(
1 − 1

LD2

)k−1

,

for k ≥ 1, and P(N = 0) = 1 − 1/LD1. These formulae allow us to deduce that if we define η := (N/D2) − (1/D1),
then Eη = 0; moreover, for every k ≥ 1, there exists a constant c = c(k), which does not depend on D1, D2 or L, such
that

E|η|k ≤ cLk−1. (54)

B.3. Exit times from a tree

In the following lemma, T is a rooted graph tree, with root ρ. The height of T will be written h(T ). For a vertex x ∈ T ,
we write Tx to denote the sub-tree determined by those vertices y of T such that the path from ρ to y passes through x.
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Suppose now that we join D vertices to the root, each connected by a single edge. We shall denote by α(T ,D) the
expected time for a discrete time simple random walk on the graph consisting of T and the D extra vertices to leave
the set of vertices of T , given that it started from ρ (alternatively, this is the expected time for the walk to hit one of
the extra vertices), and we shall denote by β(T ,D) the second moment of this time.

Lemma B.3. For any graph tree T , and D ≥ 1,

α(T ,D) = 2|T | − 2 + D

D
, β(T ,D) ≤ 36

(
D + h(T )

) |T |2
D

.

Proof. The expression for α(T ,D) is standard, see [19], Lemma (2.28) for an example of a proof. In the same
reference, it is also proved that

β(T ,D) ≤ 4α(T ,D)2 + 32h(T )

D

∑
x∈T : x∼ρ

|Tx |2,

where x ∼ ρ means that x is connected to ρ by an edge. The sum is clearly bounded by |T |2, and from the formula
for α(T , d) we have that α(T , d) ≤ 1 + 2|T | ≤ 3|T |. The result is easily deduced from these facts. �
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