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Abstract. Let X̂ = C − Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the
times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in
order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these
times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.

Résumé. Soit Y un processus de Lévy réel quelconque et C un subordinateur indépendant de Y . On considère les temps en lesquels
le processus X̂ = C − Y atteint un nouveau maximum par un saut de C. Nous donnons une condition nécessaire et suffisante pour
que l’ensemble de ces temps soit discret. Lorsque tel est le cas et que le processus X̂ dérive vers −∞, nous décomposons son
maximum absolu en cette suite de temps. Nous déduisons alors de cette décomposition une formule du type Pollaczek–Hinchin
pour la loi du maximum absolu de X̂.
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1. Introduction

Several papers in recent years [4–7] formulated the insurance risk processes in a general Lévy setting, and addressed
questions about ruin probabilities of such processes. The model proposed in [4] assumed that the insurance risk process
X = (X(t): t ≥ 0) is equal to X(t) = ct +Z(t)−C(t), where c > 0 is the premium rate, C = (C(t): t ≥ 0) is the claim
process modeled by a subordinator with finite mean EC(1) < c, and Z = (Z(t): t ≥ 0) is a general spectrally negative
Lévy process with mean zero serving as a perturbation. Relying on the fluctuation theory and the explicit formula for
the infimum of a spectrally negative Lévy process, the authors derived the following Pollaczek–Hinchin-type formula
for the survival probability with the initial capital x ≥ 0:

θ(x) = (1 − ρ)

∞∑
n=0

ρn
(
G(n+1)∗ ∗ Hn∗)(x). (1.1)

Here ρ = EC(1)/c, G is the distribution function of the absolute infimum of −ct −Y(t), and H is the integrated tail of
the Lévy measure of the subordinator. The following explanation of formula (1.1) is given: Consider the dual process
X̂ = −X, and let SX̂ = sup0≤t<∞ X̂(t). Then θ(x) = P(SX̂ ≤ x). By considering times when a new supremum of

X̂ is reached by a jump of the subordinator C, SX̂ may be written as a geometric sum of two types of i.i.d. random
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variables: one type with the distribution of the supremum of X̂ before the first such time, and the second type with the
distribution of the overshoot. This leads to the formula (1.1) for θ(x). A non-obvious fact is that the times when a new
supremum of X̂ is reached by a jump of the subordinator C are indeed discrete (which makes the above mentioned
decomposition possible). For the spectrally negative process X (i.e., spectrally positive X̂), this fact was proved by
using that the distribution of the supremum of X at an independent exponential time has exponential distribution.

In this paper we consider a general Lévy process Y , an independent subordinator C, and define X = Y − C. We
consider the times when a new supremum of X̂ = −X is reached by a jump of the subordinator C. Our main result
gives a necessary and sufficient condition for such times to be discrete. The precise setting and the result are described
in the next section. Section 3 contains proofs, corollaries and examples. Finally, in Section 4, following closely the
decomposition arguments from [4], we sketch a proof of a Pollaczek–Hinchin-type formula (1.1) for the distribution
of the supremum of the process X̂ in the case when X drifts to +∞ and the times when a new supremum of X̂ = −X

is reached by a jump of the subordinator C are discrete.

2. Setting and the main result

Let Y = (Y (t): t ≥ 0) be a one-dimensional Lévy process with characteristic exponent

Ψ (λ) = ibλ + 1

2
a2λ2 +

∫
R

(
1 − eiλx − iλx1|x|≤1

)
Π(dx),

where b ∈ R, a ≥ 0, and Π is a measure on R \ {0} satisfying
∫

R
(x2 ∧ 1)Π(dx) < ∞ called the Lévy measure of Y .

Let C = (C(t): t ≥ 0) be a subordinator independent of Y with the Laplace exponent

Φ(λ) =
∫

(0,∞)

(
1 − e−λx

)
ν(dx).

Here ν is a measure on (0,∞) satisfying
∫
(0,∞)

(x ∧ 1)ν(dx) < ∞, called the Lévy measure of C. We assume that
both Y and C have right continuous paths with left limits. Let ΔC(t) = C(t) − C(t−) be the jump of C at time t .
Then (ΔC(t): t ≥ 0) is a Poisson point process with characteristic measure ν.

For t ≥ 0 let F 0(t) = σ(Ys,Cs : 0 ≤ s ≤ t). The filtration that we are going to work with is F = (F (t): t ≥ 0), the
usual augmentation of F 0(t).

Let X(t) := Y(t) − C(t), t ≥ 0. Then X = (X(t): t ≥ 0) is a Lévy process with respect to the filtration F . Further,
let Ŷ , respectively X̂, denote the dual processes of Y , respectively X. Thus, Ŷ (t) = −Y(t) and X̂(t) = −X(t) =
C(t) − Y(t). The supremum process of X̂, respectively Ŷ will be denoted by SX̂ , respectively SŶ . Thus

SX̂(t) = sup
0≤s≤t

X̂(s), SŶ (t) = sup
0≤s≤t

Ŷ (s).

Similarly, let SX (respectively SY ) denote the supremum process of X (respectively Y ).
We will be interested in times when a new supremum of X̂ is attained by a jump of the subordinator C. To be more

precise, define

σ = inf
{
t > 0: ΔC(t) > SX̂(t−) − X̂(t−)

}
.

Clearly, σ is an F -stopping time, and by the Blumenthal 0–1 law, P(σ = 0) = 0 or 1. If σ > 0 a.s., we think of σ as
the first time when a new supremum of X̂ is attained by a jump of the subordinator C. If σ = 0 a.s., then the number
of times a new supremum of X̂ is attained by a jump of the subordinator C is infinite and time 0 is an accumulation
point of such times.

The goal of the paper is to give a necessary and sufficient condition for P(σ > 0) = 1. It is clear that if C is a
compound Poisson process, then σ > 0 a.s. Therefore, from now on we assume that ν((0,∞)) = ∞, i.e., C is not
compound Poisson.

Let τ0 = inf{t > 0: X(t) > 0} be the first passage time of X over the level 0. Recall that 0 is said to be regular for
(0,∞) (with respect to the process X), if P(τ0 = 0) = 1, and irregular otherwise. Assume that 0 is regular for (0,∞)
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with respect to X. Let LX = (LX(t): t ≥ 0) be the local time of the reflected process SX − X at 0, and denote by
T X = (T X(t): t ≥ 0) the inverse local time, T X(t) = inf{s ≥ 0: LX(s) > t}. Let HX = (HX(t): t ≥ 0) be the ladder
height process of X defined by HX(t) = SX(T X(t)) = X(T X(t)). By the regularity of 0 for (0,∞), HX is not a
compound Poisson process. The two-dimensional process (T X,HX) is a bivariate (possibly killed) subordinator. We
denote its bivariate Laplace exponent by κX(·, ·). The renewal function of HX is defined by

V X(x) = E

∫ ∞

0
1HX(t)≤x dt = E

∫ ∞

0
1SX(t)≤x dLX(t), x ≥ 0.

Note that 0 is regular for (0,∞) also with respect to Y . Let LY , T Y , HY , V Y and κY be respectively the local time
of SY − Y at 0, the inverse local time, the ladder height process of Y , the renewal function of Y , and the bivariate
Laplace exponent of (T Y ,HY ). Here is our main result:

Theorem 2.1. Assume that 0 is regular for (0,∞) with respect to X. Then the following are equivalent:

(a) σ > 0 a.s.,
(b)

∫ 1
0 V X(x)ν(dx) < ∞,

(c)
∫ 1

0 V Y (x)ν(dx) < ∞.

Condition (b) is not satisfactory, because, except in some special cases, it is difficult to check. It serves only as an
intermediary step towards condition (c) which is better since the processes Y and C are separated. It is easy to see that
(b) implies (c), while the reverse implication relies on the following result from [2].

Proposition 2.2. Let Z = Z+ − Z− where Z+ and Z− are independent subordinators with no drift. Let μ+ and μ−
be their respective Lévy measures, and V + and V − their respective renewal functions. Then

lim
t↓0

Z+(t)

Z−(t)
= 0 a.s.

if and only if∫ 1

0
V −(x)μ+(dx) < ∞.

A consequence of condition (c) is that limt↓0 C(t)/SY (t) = 0 a.s. (See the proof of Theorem 2.1 given in Section 3.)
By Proposition 3.5 this implies that V X(x) and V Y (x) are comparable for small x. We show by an example that
limt↓0 C(t)/SY (t) = 0 a.s. is not, in general, equivalent to the conditions in Theorem 2.1.

We end this section by discussing briefly the case when 0 is irregular for (0,∞) with respect to X. This is possible
only if X, and thus consequently Y , is of bounded variation. Let Y = Y 1 − Y 2 be the difference of two subordinators.
Then X̂ = (C + Y 2) − Y 1. Since 0 is irregular for (−∞,0) with respect to X̂, the process X̂ stays above zero for a
positive amount of time. Upward jumps come from independent subordinators C and Y 2, hence at different times.
This suggests that times at which a new supremum of X̂ is reached by a jump of C accumulate at zero. Indeed, in
Proposition 3.4 we prove that in this case σ = 0 a.s.

3. Proofs, corollaries and examples

At this point we do not make any assumptions about the regularity of 0 for (0,∞). The following lemma was essen-
tially proved in [4].

Lemma 3.1. Let eq be an exponential time with parameter q ∈ (0,∞) independent of Y and C. Then

E

( ∑
0<t≤eq

1
ΔC(t)>SX̂(t−)−X̂(t−)

)
= 1

q

∫ ∞

0
P
(
SX(eq) ≤ x

)
ν(dx).
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Proof. By using the compensation formula we get

E

( ∑
0<t≤eq

1
ΔC(t)>SX̂(t−)−X̂(t−)

)

= E

(∫ eq

0

∫
(0,∞)

1
(SX̂(t−)−X̂(t−),∞)

(ε)ν(dε)dt

)

= E

(∫ eq

0
ν
((

SX̂(t) − X̂(t),∞))
dt

)

= E

(∫ ∞

0
qe−qs

∫ s

0
ν
((

SX̂(t) − X̂(t),∞))
dt ds

)

= E

(∫ ∞

0
e−qt ν

((
SX̂(t) − X̂(t),∞))

dt

)
.

Now by using the fact that SX̂(t) − X̂(t)
d= SX(t), we arrive at

E

( ∑
0<t≤eq

1
ΔC(t)>SX̂(t−)−X̂(t−)

)

=
∫ ∞

0
e−qt

E
(
ν
(
SX(t),∞))

dt = 1

q
E

(
ν
(
SX(eq),∞))

= 1

q
E

∫ ∞

0
1SX(eq )≤xν(dx) = 1

q

∫ ∞

0
P
(
SX(eq) ≤ x

)
ν(dx).

�

Lemma 3.2. It holds that σ > 0 a.s. if and only if∫ ∞

0
P
(
SX(eq) ≤ x

)
ν(dx) < ∞. (3.1)

Proof. For t ≥ 0, let A(t) = {ΔC(t) > SX̂(t−) − X̂(t−)}. Assume that
∫ ∞

0 P(SX(eq) ≤ x)ν(dx) < ∞. Then by
Lemma 3.1, E

∑
0<t≤eq

1A(t) < ∞ and therefore
∑

0<t≤eq
1A(t) < ∞ a.s. This proves that σ > 0 a.s. Conversely, if

σ > 0 a.s., define σ1 = σ , and inductively σn = inf{t > σn−1: ΔC(t) > SX̂(t−) − X̂(t−)} for n ≥ 2. Let p = P(σ <

eq). By the memoryless property of eq and the strong Markov property of X, we have P(σn < eq) = pn, n ≥ 1.
Therefore,

E

∑
0<t≤eq

1A(t) = E

∑
1σn<eq =

∑
n

pn < ∞.

�

Remark 3.3. We record here the fact that P(σ = ∞) < 1. Indeed, if σ = ∞ a.s., then for any q > 0,∑
0<t≤eq

1
ΔC(t)>SX̂(t−)−X̂(t−)

= 0 a.s., implying by Lemma 3.1 that
∫ ∞

0 P(SX(eq) ≤ x)ν(dx) = 0. On the other hand,

since limt↓0 SX(t) = 0 by right continuity, we have P(SX(eq) ≤ x) = ∫ ∞
0 qe−qt

P(SX(t) ≤ x)dt > 0 for every x > 0,
hence

∫ ∞
0 P(SX(eq) ≤ x)ν(dx) > 0.

Proposition 3.4. Assume that 0 is irregular for (0,∞) with respect to X. Then σ = 0 a.s.

Proof. For every x ≥ 0,

P
(
SX(eq) ≤ x

) ≥ P
(
SX(eq) ≤ x, eq < τ0

) = P(eq < τ0) > 0,
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since SX(t) = 0 for t < τ0. Therefore,∫ ∞

0
P
(
SX(eq) ≤ x

)
ν(dx) ≥

∫ ∞

0
P(eq < τ0)ν(dx) = ∞,

and the claim follows from the previous lemma. �

From now on we assume that 0 is regular for (0,∞) for X. We want to express the condition (3.1) in terms of the
renewal function for the ladder height process of X. By Lemma 21 on p. 177 of [1], there exist constants c1 > 0 and
x1 > 0 such that

c1 V X(x) ≤ P
(
SX(eq) ≤ x

) ≤ c−1
1 V X(x) (3.2)

for all x ≤ x1.

Proof of Theorem 2.1: (a) ⇔ (b). Immediately from (3.2) and Lemma 3.2. �

Note that similarly as for (3.2), there exist constants c2 > 0 and x2 > 0 such that

c2 V Y (x) ≤ P
(
SY (eq) ≤ x

) ≤ c−1
2 V Y (x) (3.3)

for all x ≤ x2. Since clearly P(SY (eq) ≤ x) ≤ P(SX(eq) ≤ x), (3.2) and (3.3) imply that

V Y (x) ≤ c3 V X(x), 0 ≤ x ≤ x3, (3.4)

where c3 = c−1
1 c−1

2 and x3 = x1 ∧ x2. We would like to find a condition on Y and C which ensures the validity of the
reverse inequality.

Let MY (respectively MX) denote the random set of times when Y (respectively X) attains its maximum. Suppose
that t ∈ MX . Then X(s) ≤ X(t) for all s ≤ t . This reads Y(s)−C(s) ≤ Y(t)−C(t) for all s ≤ t . Since C is increasing
we obtain that Y(s) ≤ Y(t) for all s ≤ t . Therefore, MX ⊂ MY . From this and the strong Markov property of SX − X

we conclude that MX is regeneratively embedded in MY (see [3]). In particular, there exists a constant k > 0 such that

1t∈MX dLY (t) = k dLX(t). (3.5)

Proposition 3.5. Assume that limt↓0 C(t)/SY (t) = 0 a.s. Then there exist constants c4 > 0 and x4 > 0 such that

V X(x) ≤ c4 V Y (x), 0 ≤ x ≤ x4. (3.6)

Proof. Let τ = inf{t > 0: SX(t) < SY (t)/2}. Then τ is an F -stopping time. We claim that τ > 0 a.s. If not, then
for each ω in a set of positive probability, there exists a decreasing sequence (tn: n ≥ 1) (depending on ω) such that
tn → 0, tn ∈ MX and SX(tn) < SY (tn)/2. Since tn ∈ MX ⊂ MY , we have that Y(tn)/2 > X(tn) = Y(tn) − C(tn).
Hence, SY (tn)/2 = Y(tn)/2 < C(tn) implying that lim supn C(tn)/S

Y (tn) ≥ 1/2 which contradicts the assumption of
the proposition. Therefore, τ > 0 a.s. Hence

SX(t) ≥ 1

2
SY (t), 0 ≤ t < τ. (3.7)

From now on we follow the idea of the proof of Proposition 21, p. 177, of [1]. Let FY (x) = P(SY (eq) ≤ x) denote
the distribution function of SY (eq). By [1], p. 177,

FY (x) = κY (q,0)E

∫ ∞

0
1SY (t)≤xe−qt dLY (t). (3.8)
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Then

FY (x) ≥ κY (q,0)E

∫ τ∧1

0
1SY (t)≤xe−qt dLY (t) ≥ κY (q,0)e−q

E

∫ τ∧1

0
1SX(t)≤x/2 dLY (t)

≥ κY (q,0)e−qkE

∫ τ∧1

0
1SX(t)≤x/2 dLX(t),

where the last inequality follows from (3.5). By use of the previous display we get

V X

(
x

2

)
= E

∫ ∞

0
1SX(t)≤x/2 dLX(t)

= E

∫ τ∧1

0
1SX(t)≤x/2 dLX(t) + E

∫ ∞

τ∧1
1SX(t)≤x/2 dLX(t)

≤ eq

kκY (q,0)
F Y (x) + E

∫ ∞

τ∧1
1SX(t)≤x/2 dLX(t)

≤ eq

kκY (q,0)
F Y (x) + P

(
SX(τ ∧ 1) ≤ x

2

)
V X

(
x

2

)
,

where the last line follows by the strong Markov property. This implies that

V X

(
x

2

)
≤ eq

kκY (q,0)

1

P(SX(τ ∧ 1) > x/2)
F Y (x).

Let x5 > 0 be such that for all x ∈ [0, x5], P(SX(τ ∧ 1) > x/2) > 1/2. Then

V X

(
x

2

)
≤ c5F

Y (x), 0 ≤ x ≤ x5, (3.9)

with c5 = 2eq/κY (q,0). By the subadditivity of V X we have V X(x) ≤ 2V X(x/2). Now (3.9) and (3.4) imply (3.6)
with c4 = c5c

−1
2 and x4 = x2 ∧ x5. �

Proof of Theorem 2.1 (b) ⇔ (c). By (3.4), (b) implies (c). Assume that (c) holds. Recall that V Y denotes the renewal
function of the ladder height process HY = SY (T Y ). By Proposition 2.2, the finiteness of the integral in (c) implies
that lim supt↓0 C(t)/HY (t) = 0 a.s. We discuss separately the case when 0 is regular for (−∞,0) with respect to Y

and the case when 0 is irregular for (−∞,0) with respect to Y .
In the first case, 0 is regular for both (0,∞) and (−∞,0) with respect to Y . This implies that the inverse local

time T Y does not have a drift (see, e.g., [8], Corollary 6.11, p. 153). Therefore, limt↓0 T Y (t)/t = 0 a.s., implying that
lim supt↓0 SY (T Y (t))/SY (t) < ∞ a.s.

In the case when 0 is irregular for (−∞,0) with respect to Y , the inverse local time T Y has a drift (e.g., [8],
Corollary 6.11, p. 153). By appropriately choosing the normalization constant in the definition of the local time LY ,
we could make the drift d of the inverse local time T Y less than 1. Therefore, limt↓0 T Y (t)/t = d < 1, a.s., implying
again that lim supt↓0 SY (T Y (t))/SY (t) < ∞ a.s.

Hence, in both cases we have

lim sup
t↓0

C(t)

SY (t)
= lim sup

t↓0

C(t)

SY (T Y (t))

SY (T Y (t))

SY (t)
= 0 a.s.

By Proposition 3.5, V X(x) ≤ c4 V Y (x) for small x, implying that the integral in (b) is finite. �

Corollary 3.6. Assume that Y is of unbounded variation. Then σ > 0 a.s. if and only if
∫ 1

0 V Y (x)ν(dx) < ∞.
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Example 3.7. Let Y be a strictly α-stable process, α ∈ (0,2), such that |Y | is not a subordinator, and let � =
P(Y (t) ≥ 0) be the positivity parameter. Then � ∈ (0,1) for 0 < α ≤ 1, and � ∈ [1 − 1/α,1/α] for 1 < α < 2.
The ladder height process HY is an α�-stable subordinator, hence V Y is proportional to xα� . Assume that C is a
β-stable subordinator. Its Lévy measure has a density proportional to x−1−β . Hence

∫ 1
0 V Y (x)ν(dx) < ∞ if and only

if
∫ 1

0 xα�x−β−1 dx < ∞. This implies that σ > 0 a.s. if and only if α� > β .

By the proof of Theorem 2.1 we know that
∫ 1

0 V Y (x)ν(dx) < ∞ implies that limt↓0 C(t)/SY (t) = 0 a.s. We now
give examples which show that in general the converse is not true neither in the unbounded variation case nor
in the bounded variation case (but see Corollary 3.9). Let 1 < α < 2. Then by [1], Theorem 6, p. 224, we have
that lim inft↓0 SY (t)/t = +∞ a.s. Since limt↓0 C(t)/t = 0 a.s., it follows that limt↓0 C(t)/SY (t) = 0 a.s. regardless
whether α� > β or not.

Similarly, when 0 < α ≤ 1, choose β < α and γ > 0 such that 1/α + γ < 1/β . By the same result from [1] men-
tioned above, it follows that lim inft↓0 SY (t)/t1/α+γ = +∞ a.s. Further,

∫ 1
0 t−β(1/α+γ ) dt < ∞, which by [1], Propo-

sition 10, p. 87, implies that limt↓0 C(t)/t1/α+γ = 0 a.s. Therefore, limt↓0 C(t)/SY (t) = 0 a.s. If, further, α� ≤ β ,

then
∫ 1

0 V Y (x)ν(dx) = ∞.

Let us denote by μY the Lévy measure of the ladder height process HY . It is known (see [2]) that condition (c)
from Theorem 2.1 is equivalent to

∫ 1

0

xν(dx)∫ x

0 μY (y,∞)dy
< ∞.

On the other hand, in view of the previous example it is unlikely that condition (c) can be expressed in terms of the
tails of Lévy measures ν and Π of given processes C and Y (as is the case for conditions for creeping [9], or regularity
of the half line for bounded variation process [2]).

Example 3.8. Assume that Y is a Lévy process of unbounded variation that creeps upwards (i.e., with positive prob-
ability it crosses every level from below continuously). Then there exists a constant c > 0 such that V Y (x) ≤ cx (see,
e.g., [1], Theorem 19, pp. 174–175). Therefore,

∫ 1
0 V Y (x)ν(dx) < ∞ for any subordinator C, implying σ > 0 a.s. By

noting that every spectrally negative process creeps upwards, we obtain an extension of Theorem 4.1 from [4].

When Y is of bounded variation with no drift and with 0 being irregular for (−∞,0) with respect to Y , we will
give a more explicit condition equivalent to those in Theorem 2.1.

Assume now that Y is of bounded variation with no drift. Then Y = Y 1 − Y 2 where Y 1 and Y 2 are pure jump
subordinators. Let νi , respectively V i , denote the Lévy measure, respectively the renewal function, of Y i , i = 1,2.
If 0 is irregular for (0,∞) with respect to X, then σ = 0 a.s. by Proposition 3.4. So we assume that 0 is regular for
(0,∞) with respect to X, implying that 0 is regular for (0,∞) with respect to Y .

Corollary 3.9. Assume that Y is of bounded variation with no drift, that 0 is regular for (0,∞) with respect to X,
and that 0 is irregular for (−∞,0) with respect to Y . Then the following are equivalent:

(a) σ > 0 a.s.,
(b)

∫ 1
0 V X(x)ν(dx) < ∞,

(c)
∫ 1

0 V Y (x)ν(dx) < ∞,

(d)
∫ 1

0 V 1(x)ν(dx) < ∞,
(e) limt↓0 C(t)/SY (t) = 0 a.s.

Proof. Equivalence of (a), (b) and (c) follows from Theorem 2.1. Consider X̂ = C − Y = C + Y 2 − Y 1. Since 0
is irregular for (0,∞) with respect to −Y , we have that σ > 0 a.s. if and only if 0 is irregular for (0,∞) with re-
spect to X̂. By Proposition 2.2, this last condition is equivalent to

∫ 1
0 V 1(x)(ν(dx) + ν2(dx)) < ∞. The assumption

that 0 is irregular for (0,∞) with respect to −Y implies that
∫ 1

0 V 1(x)ν2(dx) < ∞. Hence, σ > 0 a.s. if and only if
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∫ 1
0 V 1(x)ν(dx) < ∞, proving the equivalence of (a) and (d). That (c) implies (e) was shown in the proof of Theo-

rem 2.1. Finally, assume that (e) holds true. Since Y ≤ Y 1, we have SY ≤ Y 1, and therefore limt↓0 C(t)/Y 1(t) = 0

a.s. By Proposition 2.2, this is equivalent to
∫ 1

0 V 1(x)ν(dx) < ∞, hence (d) holds. �

Finally, we discuss the case when Y is of bounded variation with a drift d : Y(t) = Y 1(t) − Y 2(t) + dt . Recall that
limt↓0 Y(t)/t = d a.s. If d < 0, then the point 0 is irregular for (0,∞) with respect to the process X, hence σ = 0 a.s.
by Lemma 3.4. Assume that d > 0. Note that −Y 2(t) + dt is a spectrally negative process, hence its renewal function
V 2,d (x) = cx for a positive constant c. Since Y(t) ≥ −Y 2(t)+ dt , we have that V Y (x) ≤ cx (with a possibly different
constant c > 0). Hence,

∫ 1
0 V Y (x)ν(dx) < ∞. This proves the following

Corollary 3.10. Assume that Y is of bounded variation with a non-zero drift. When the drift is negative we have σ = 0
a.s. and when the drift is positive we have σ > 0 a.s.

We also note that in the case when Y is of bounded variation with a positive drift it always holds that
limt↓0 C(t)/SY (t) = 0 a.s.

4. Decomposition of the supremum

In this section we assume that limt→∞ X(t) = ∞ a.s., i.e., that X drifts to infinity. This implies that SX̂(+∞) =
supt≥0 X̂(t) < ∞ a.s. Moreover, we also assume that P(σ > 0) = 1. By Theorem 2.1, this is equivalent to∫ 1

0 V X(x)ν(dx) < ∞.

Lemma 4.1. It holds that P(σ < ∞) < 1.

Proof. Assume, on the contrary, that P(σ < ∞) = 1. Recall the notation σ1 = σ and σn = inf{t > σn−1: ΔC(t) >

SX̂(t−) − X̂(t−)} for n ≥ 2. By the strong Markov property, P(σn < ∞) = 1. For n ≥ 1, let Jn = SX̂(σn) −
SX̂(σn−). Again by the strong Markov property, (Jn: n ≥ 1) is a sequence of i.i.d. strictly positive random
variables. Therefore,

∑∞
n=1 Jn = ∞ a.s. Since SX̂(+∞) ≥ ∑∞

n=1 Jn, this clearly contradicts the assumption that

SX̂(+∞) = supt≥0 X̂(t) < ∞ a.s. �

For y > 0, let τ̂y := inf{t > 0: X̂(t) > y} be the entrance time of X̂ in (y,∞), and, similarly, τy := inf{t > 0:

X(t) > y}. Note that SX̂(t−) ≤ y if and only if t ≤ τ̂y . We need the expected occupation time formula for the reflected

process SX̂ − X̂ before σ ∧ τ̂y .

Proposition 4.2. There exists a constant k > 0 such that for x > 0 and y > 0 the following formula is valid:

E

∫ σ∧τ̂y

0
1
(SX̂(t)−X̂(t)≤x)

dt = kP(σ = ∞, τ̂y = ∞)V X(x). (4.1)

Proof. Let us compute the expected occupation time of SX̂ − X̂ below x:

E

∫ ∞

0
1(

SX̂(t)−X̂(t)≤x
) dt =

∫ ∞

0
P
(
SX̂(t) − X̂(t) ≤ x

)
dt

=
∫ ∞

0
P
(
SX(t) ≤ x

)
dt = Eτx = kV X(x), (4.2)

for a positive constant k > 0. Here the last equality follows from Proposition 17(ii) of [1] (see [1], p. 172). The rest of
the proof follows exactly as the proof of Proposition 4.3 from [4]. �
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Let J := (ΔC(σ)− (SX̂(σ−)− X̂(σ−)))1(σ<∞) be the overshoot at time σ . The next proposition is a preliminary

version of the joint distribution of the vector (SX̂(σ−), J, SX̂(σ−) − X̂(σ−)) on {σ < ∞}. We omit the proof which
can be found in [4].

Proposition 4.3. For x, y, z > 0

P
(
SX̂(σ−) ≤ y,J > x,SX̂(σ−) − X̂(σ−) > z,σ < ∞)
= kP(σ = ∞, τ̂y = ∞)

∫ ∞

x+z

ν(u,∞)V X(du). (4.3)

By letting x → 0, z → 0 and y → ∞ in (4.3), we obtain that

P(σ < ∞) = kP(σ = ∞)

∫ ∞

0
ν(u,∞)V X(du) = kP(σ = ∞)

∫ ∞

0
V X(u)ν(du).

By Lemma 4.1, P(σ = ∞) > 0. As a consequence,
∫ ∞

0 V X(u)ν(du) < ∞. We record this fact in the following

Corollary 4.4. Assume that X drifts to ∞ and P(σ > 0) = 1. Then
∫ ∞

0 V X(u)ν(du) < ∞.

Let

ρ = k
∫ ∞

0 V X(u)ν(du)

1 + k
∫ ∞

0 V X(u)ν(du)
.

Then P(σ < ∞) = ρ. By letting z → 0 and y → ∞ in (4.3), it follows that P(J > x,σ < ∞) = kP(σ =
∞)

∫ ∞
x

ν(u,∞)V X(du). Therefore,

P(J > x|σ < ∞) =
∫ ∞
x

ν(u,∞)V X(du)∫ ∞
0 ν(u,∞)V X(du)

= 1 − H(x),

where

H(x) =
∫ x

0 ν(u,∞)V X(du)∫ ∞
0 ν(u,∞)V X(du)

can be thought of as the integrated tail distribution.
By letting x → 0 and z → 0 in (4.3), it easily follows that random variables 1σ<∞ and SX̂(σ−) are independent.

In case σ = ∞, we interpret SX̂(σ−) as SX̂(∞). In particular, P(σ = ∞, τ̂y = ∞) = P(σ = ∞)P(SX̂(σ−) ≤ y). Let

G(x) = P(SX̂(σ−) ≤ x).
Proposition 4.3 can be now improved to

Theorem 4.5. The distribution of the vector (ŜX(σ−), J, SX̂(σ−) − X̂(σ−)) on the set {σ < ∞} is given by

P
(
SX̂(σ−) ≤ y,J > x,SX̂(σ−) − X̂(σ−) > z,σ < ∞)
= P

(
SX̂(σ−) ≤ y

)∫ ∞
x+z

ν(u,∞)V X(du)∫ ∞
0 ν(u,∞)V X(du)

P(σ < ∞). (4.4)

Moreover, SX̂(σ−) and J are conditionally independent given σ < ∞, and

P
(
SX̂(σ−) ≤ y,J > x|σ < ∞) = G(y)

(
1 − H(x)

)
. (4.5)
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It is now possible to write the absolute maximum of X̂ as a random sum of modified ladder heights. Let L0 :=
SX̂(σ1−), J1 := SX̂(σ1) − SX̂(σ1−) and L1 := SX̂(σ2−) − SX̂(σ1) on {σ1 < ∞}, etc.: L0, J1,L1, . . . are called the
modified ladder heights. Let also N := max{n: σn < ∞}. By the strong Markov property of X̂, N has a geometric
distribution with parameter P(σ1 = ∞) = 1 − ρ. Clearly,

SX̂(∞) = L0 + J1 + L1 + · · · + JN + LN. (4.6)

Note that P(L0 ≤ x,N = 0) = P(SX̂(σ−) ≤ x,σ = ∞) = G(x)(1 − ρ). For every n ∈ N, by the strong Markov
property at σn, and by equality (4.5) we have

P(L0 + J1 + L1 + · · · + Jn + Ln ≤ x,N = n) = (1 − ρ)ρn
(
G(n+1)∗ ∗ Hn∗)(x).

This leads to the Pollaczek–Hinchin-type formula for the distribution function of SX̂(∞).

Theorem 4.6. For x ≥ 0,

P
(
SX̂(∞) ≤ x

) = (1 − ρ)

∞∑
n=0

ρn
(
G(n+1)∗ ∗ Hn∗)(x). (4.7)
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