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Abstract. We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here
by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we
consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax
framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.

Résumé. Cet article a pour but d’étudier le problème d’estimation non-paramétrique de singularités d’un signal à partir des ob-
servations indirectes et bruitées. Les singularités que nous considérons ici sont des points de discontinuité (points de rupture) du
signal ou de ses derivées. Nous étudions le modèle où l’on dispose d’observations indirectes d’une transformée linéaire du signal
dans le bruit blanc gaussien. Le problème de l’estimation est analysé dans un cadre minimax. Nous obtenons des minorations du
risque minimax et nous proposons des estimateurs qui sont optimaux en vitesse de convergence.
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1. Introduction

Let us start with three estimation problems which motivate our study.

Problem 1 (Estimation of a change-point in derivatives). Consider the Gaussian white noise model

dY(t) = f (t)dt + ε dW(t), t ∈ [0,1], (1)

where f is an unknown periodic function on [0,1], ε > 0, and W is the standard Wiener process. Assume that f is α

times differentiable, and f (α) is smooth apart from a single discontinuity of the first kind at the point θ ∈ [0,1]. We
are interested in estimating the change-point θ , and the amplitude a of the jump. When α is not an integer, then f (α)

is understood as the Weyl fractional derivative of f . Let m = �α� (here �α� stands for the integer part of α). We say
that f (m) has a cusp of the order α − m at θ .
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Problem 2 (Change-point estimation in the convolution white model). The white noise convolution model is given
by the equation

dY(t) = (Kf )(t)dt + ε dW(t), t ∈ [0,1], (2)

where f is a periodic function on [0,1], ε > 0, W is the standard Wiener process, and the operator K is that of the
periodic convolution on [0,1]:

(Kf )(t) =
∫ 1

0
K(t − s)f (s)ds.

The function f is assumed to be smooth apart from a single discontinuity at θ ∈ [0,1]. The goal here is to estimate
the change-point θ and the jump amplitude a.

Note that the derivative change-point estimation is a special case of Problem 2. Indeed, assume without loss of
generality that f has zero mean value. Then for any α > 0, the operation of Weyl’s fractional integration is expressed
in terms of convolution:

f (−α)(t) = (Kf )(t) =
∫ 1

0
Kα(t − s)f (s)ds, Kα(t) ≡

∞∑
k=−∞,k �=0

e−2πikt

(−2πik)α
.

In this case estimating a change-point in f from observations (2) amounts to estimating a change-point in f (α)

from observations (1). For more details on fractional derivatives and integrals of periodic functions, we refer to [20],
Section 19.

Problem 3 (Delay and amplitude estimation). Let S be a known periodic signal. Assume that we observe the trajec-
tory Y = (Y (t)), t ∈ [0,1] where

dY(t) = [
aS(t − θ) + q(t)

]
dt + ε dW(t), t ∈ [0,1], (3)

a ∈ R\ {0} is unknown nuisance parameter, θ ∈ [0,1], q is an unknown smooth periodic nuisance function, ε > 0, and
W is the standard Wiener process. We are interested in estimation of the delay parameter θ and the signal amplitude a.
To ensure that θ is identifiable in this setup, some additional conditions on q should be imposed. For instance, one
can require that function q is smoother, in a certain sense, than S.

Change-point estimation and detection is one of most important tasks of statistics and as such it retained much
attention of statistical and signal processing community (cf. the books [2,11], and the references therein). This prob-
lem is also well represented in the literature on nonparametric regression estimation (cf. the works of Korostelev
[12], Yin [24], Müller [14], Wang [23], Raimondo [18], Gijbels, Hall and Kneip [5], Antoniadis and Gijbels [1],
among many others). Certainly, among the estimation problems, presented above, it is Problem 1 that was treated
most extensively. For instance, Korostelev [12] considered minimax estimation of the change-point in f from direct
observations (α = 0). A remarkable result in [12] states that the minimax risk over the class of functions having a
single change-point and satisfying the Lipschitz condition away from the change-point is ε2, while the minimax rate
for the sequential (Markov) estimator is ε2 ln ε−1. In the problems of sequential estimation of a change-point in the
signal (α = 0), or in its derivative (α = 1), precise asymptotic expressions for the minimax risk have been obtained in
[4]. It has been proved there that minimax rate of sequential estimation of the change-point in the derivative (α = 1)
from observations (1) is (ε2 ln ε−1)1/3. The problem of minimax estimation of cusps and change-points in deriva-
tives (α > 0) is much less studied. For instance, Raimondo [18] has developed a suboptimal wavelet estimator; some
suboptimal change-point estimators were proposed recently by Huh and Carriere [10] and Park and Kim [16].

A problem of change-point estimation closely related to Problem 2 has been studied by Neumann [15]. In particular,
the minimax rates of convergence for change-point estimation in the density convolution model are derived in that
paper. Namely, for the class of probability densities which are Lipschitz-continuous away from the change-point,
Neumann [15] shows that the minimax rate of estimation of the change-point is min{n−2/(2β+3), n−1/(2β+1)} where
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n is the size of the observation sample, and β is the ill-posedness index of the convolution. With usual calibration
n−1/2 = ε this result can be translated to the white noise convolution model. Recently, Goldenshluger, Tsybakov and
Zeevi [6] have studied the problem of change-point estimation in the convolution model (2). They have extended the
results of Neumann [15] to the classes functions which are smooth, except at the point of discontinuity and provided
a number of minimax results for this problem.

In the statistical literature, Problem 3 is mainly studied under parametric assumptions, i.e., when q(t) = 0 (see,
e.g., [11], Section 7.2, [13]). For some related models, we refer also to [8] and [3].

In this paper, we propose a unified framework to study Problems 1–3. We show that estimation of the change-
point θ and the jump amplitude a in Problems 1–3 can be reduced to the problem of recovering the frequency and
the amplitude of a complex harmonic oscillation in the presence of random noise and a deterministic nuisance. To be
more precise, consider the following sequence space model

yk = a exp(2πikθ) + gk + εσkξk, k ∈ N,

where g = (gk) ∈ CN is an unknown nuisance sequence, σ = (σk) ∈ CN is a given sequence, and ξ = (ξk) ∈ CN is
a sequence of independent standard complex-valued normal random variables.We demonstrate below that this model
includes the aforementioned Problems 1–3 as special cases. Then we concentrate on the study of theoretical accuracy
limitations in estimating θ and a, and develop corresponding rate-optimal procedures. Our frequency domain estima-
tion technique is closely related to spectral analysis of time series and frequency estimation. There is vast literature on
estimation of complex harmonic signals from noisy observations (see, e.g., [9,19], and the recent book [17] for further
references). In the forthcoming second part of this paper [7], we develop adaptive estimators of θ and a that do not
require prior knowledge of regularity of the nuisance sequence (gk).

The rest of the paper is organized as follows. In Section 2, we formulate the estimation problem in the sequence
space and establish its relationship to Problems 1–3. We define the estimator of the jump amplitude and study its
properties in Section 3.2. Finally, Section 3.3 is devoted to the change-point estimation. Proofs of main results are
given in Section 4, auxiliary results are relegated to the Appendix.

2. Sequence space problem formulation

Consider the following model in the space of sequences

yk = a exp(2πikθ) + gk + εσkξk, k ∈ N, (4)

where a ∈ R, θ ∈ [0,1] are unknown constants, g = (gk) ∈ CN is an unknown nuisance sequence, σ = (σk) ∈ CN

is a given sequence, and ξ = (ξk) ∈ CN is the sequence of independent standard complex-valued Gaussian random
variables: (�ξk,	ξk) ∼ N (0, I ). The goal is to estimate θ and a using observations yk , k ∈ N.

For a real-valued function f ∈ L2[0,1], we denote (fk) the sequence of Fourier coefficients of f :

fk ≡
∫ 1

0
f (t)e2πikt dt, k ∈ Z.

Note that as f (t) is real, f−k = f̄k (here x̄ is the complex conjugate of x). This is why, in what follows, we only
consider the part of the sequence (fk) for k ≥ 0.

We will assume that the nuisance sequence (gk) belongs to the Sobolev ellipsoid Gs(L), s > − 1
2 , 0 < L < ∞,

Gs(L) =
{

g ∈ CN
∣∣∣ ∞∑

k=1

|gk|2k2s ≤ L2

}
.

We will refer to the function f to belong to the ellipsoid Gs(L) if the sequence of its Fourier coefficients is in Gs(L).
The sequence (σk) is assumed to satisfy the following assumption:

Assumption A. For some β > 1/2 and 0 < σ ≤ σ

σkβ ≤ |σk| ≤ σkβ, ∀k ∈ N. (5)



790 A. Goldenshluger et al.

The general scheme that we develop in this paper can be applied to a variety of cases, including the setup of
infinitely smooth nuisance functions and/or severely ill-posed problems when |σk| grows exponentially with k. These
extensions do not introduce major conceptual difficulties and require only a technical care. They are left beyond the
scope of our work.

Let us show that Problems 1–3, formulated in Section 1, can be expressed in terms of the observation model (4).

Problem 1. If f (α) has a single discontinuity of size a at θ ∈ [0,1], then it can be uniquely represented as

f (α)(t) = aV (t − θ) + q(t), t ∈ [0,1], (6)

where V (t) = 1/2 − t − �t� is the “saw-tooth” function, and q ∈ Gs(L), s > 1
2 . We note that (6) is the standard way

of representation of discontinuous functions in the theory of Fourier series (see, e.g., [25], p. 9). Then the model (1)
is equivalent to the sequence-space model (4) where

g ∈ Gs−1(2πL), σ 2
k = (2πk)2α+2. (7)

Indeed, as

Vk =
{

(2πik)−1, k = 1,2, . . . ,

0, k = 0,

and, due the periodicity of f , g0 = 0, the Fourier coefficients of the function f (α) in (6) are

f
(α)
k = a(2πik)−1e2πikθ + qk, k ∈ N+, and f

(α)
0 = 0.

On the other hand, the model (1) is clearly equivalent to

zk = fk + εηk, k = 0,1,2, . . . ,

where zk = ∫ 1
0 e2πikt dY(t), and ηk are i.i.d. standard complex-valued Gaussian random variables. Note that

f
(α)
k = (−2πik)αfk, k ∈ N+.

Thus we obtain for yk = (−1)α(2πik)α+1zk , gk = (2πik)qk and ξk = (−1)αiα+1ηk ,

yk = ae2πikθ + gk + σkεξk, k ∈ N+,

with (σk) and (gk) which satisfy (7).

Note that the problem of estimating the change-point in f from observations (1) (as in Korostelev [12]) corresponds
to the model (4) with σk = 2πk, i.e., β = 1.

Problem 2. Suppose as above that the decomposition f (t) = aV (t − θ) + q(t) hold, and q ∈ Gs(L). Assume that
the Fourier coefficients (Kk) of the kernel K do not vanish, moreover, let for some α > 1/2 and 0 < c ≤ C < ∞ the
kernel K satisfy:

ckα ≤ ∣∣(Kk)
−1
∣∣≤ Ckα.

When using the same arguments as above we conclude that the model (2) can be equivalently rewritten in the form (4)
with

σk = 2πk
∣∣(Kk)

−1
∣∣, k ∈ N+, g ∈ Gs−1(2πL).

Observe that the relation (5) holds with β = α + 1 and σ = 2πc and σ = 2πC.
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Problem 3. Suppose that in the model (3) g ∈ Gs(L) and for some 1
2 < α < s and 0 < c ≤ C < ∞

ckα ≤ ∣∣S−1
k

∣∣≤ Ckα, k ∈ N+.

Obviously, the model (3) is equivalent to (4) with

σk = ∣∣S−1
k

∣∣, k ∈ N+, g ∈ Gs−α(CL),

with ckα ≤ σk ≤ Ckα .

3. Main results

Our objective in this section is to bound the minimax complexity of the problem of estimating parameters a and θ in
the model (4). With some terminology abuse we will refer to θ and |a| as change-point and jump amplitude. Let us
first introduce some notation.

3.1. Preliminaries

Complexity measures
Let θ̂ be an estimator of θ based on observations (yk), as in (4). We measure the accuracy of θ̂ with the maximal risk

Rθ

[
θ̂;Gs(L)

]≡ sup
g∈Gs(L),θ∈[0,1]

(
E(θ̂ − θ)2)1/2

(here E(·) = Eθ,g(·) stands for the expectation with respect to the distribution of (ξk)). The minimax complexity
R∗

θ [Gs(L)] of the estimation problem (the minimax risk) is defined by

R∗
θ

[
Gs(L)

]≡ inf
θ̂

Rθ

[
θ̂;Gs(L)

]
,

where the infimum is taken over all estimators θ̂ (i.e., measurable functions of observations). Note that the minimax
risks of θ -estimation depend on |a|, but we do not indicate this explicitly to alleviate the notation. Similarly, in the
problem of estimating the jump amplitude |a|, we define

Ra

[̂
a;Gs(L)

]≡ sup
g∈Gs(L),θ∈[0,1],a∈R

(
E
(̂
a − |a|)2)1/2

, R∗
a

[
Gs(L)

]≡ inf
â

Ra

[̂
a;Gs(L)

]
.

The following construction underlies the estimator design:

Contrast functions
Let N be a positive integer number, a design parameter to be chosen. Consider the following random functions:

ĴN (t) ≡
∣∣∣∣∣

2N∑
k=N+1

yke−2πikt

∣∣∣∣∣
2

, t ∈ [0,1], (8)

ĤN(t) ≡ 2πi
2N∑

k=N+1

2N∑
j=N+1

(k − j)ykȳj e−2πi(k−j)t , t ∈ [0,1]. (9)

In fact, ĴN is nothing but the rescaled periodogram of the data yk confined to the spectral window {N + 1, . . . ,2N}.
Observe also that ĤN(t) = −Ĵ ′

N(t). We denote

JN(t) ≡ a2

∣∣∣∣∣
2N∑

k=N+1

exp
(−2πik(t − θ)

)∣∣∣∣∣
2

,
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HN(t) ≡ 2πia2
2N∑

k=N+1

2N∑
j=N+1

(k − j) exp
(−2πi(k − j)(t − θ)

)
.

Note that JN and HN correspond to the functions, defined in (8) and (9), when yk = a exp(2πikθ). Let

FN(t) ≡
∣∣∣∣∣

2N∑
k=N+1

e−2πikt

∣∣∣∣∣
2

=
(

sinπtN

sinπt

)2

, UN(t) ≡ −F ′
N(t); (10)

FN(·) is the standard Fejer summability kernel up to a normalization [25]. It is easily seen that

JN(t) = a2FN(t − θ) and HN(t) = a2UN(t − θ).

The parameters θ and a admit useful characterization in terms of functions JN and HN . In particular, θ is the unique
global maximizer of JN , and the corresponding maximal value is a2N2. Furthermore, let θ− and θ+ be, respectively,
the (unique) global maximizer and the unique global minimizer of HN . Then θ is the unique zero of HN on the
segment with the endpoints at θ− and θ+ (it is also the midpoint of this segment). Further, as we show in Section 4.1,
the functions ĴN and ĤN converge to JN and HN uniformly on [0,1].

Construction of our estimates for a and θ is based on statistics ĴN (t) and ĤN(t) and exploits the aforementioned
properties of their “ideal counterparts”, JN(t) and HN(t).

3.2. Jump amplitude estimation

Now we turn to the problem of the jump amplitude estimation. We set

âN ≡ N−1 max
t∈[0,1]

√
ĴN (t).

Theorem 1. Suppose that Assumption A holds true. Let â∗ be the estimate, associated with

N = Na ≡ min

{
N : ε

√
ln ε−1σw(N) ≥

(√
3

2

)
LN−s+1/2

}
, (11)

where σw(N) ≡ 2
∑2N

k=N+1 σ 2
k . Denote

ϕε ≡ L(2β−1)/(2β+2s)
(
σε
√

ln ε−1
)(2s+1)/(2β+2s)

. (12)

Then there exists a constant C = C(β, s) such that for all 0 < ε < 1

Ra

[̂
a∗;Gs(L)

]≤ Cϕε for any a ∈ R. (13)

Our next result is the lower bound on the minimax risk.

Theorem 2. Suppose that Assumption A holds. Denote

φε = L(2β−1)/(2β+2s)
(
σε
√

ln ε−1
)(2s+1)/(2β+2s)

. (14)

Then there is c = c(β, s) > 0 such that for any ε small enough the minimax risk satisfy

R∗
a

[
Gs(L)

]≥ cφε.
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Remarks:
1. When comparing the bounds of Theorems 1 and 2 we conclude that the estimator â∗ of |a| is rate minimax.

This result comes without much surprise. Consider, for instance, the problem of recovering the amplitude of the
discontinuity in the derivative f (α). In this case, the rates ϕε and φε , coincide, up to a constant, with the minimax
rate of estimating the function f (α) in the uniform norm from observations (1) or (4).

2. The derived minimax rate of convergence follows from the fact that in our definition of the minimax risk the
supremum is taken over all a ∈ R. In particular, the lower bound of Theorem 2 is achieved on worst-case signals
with jump amplitude a tending to zero as ε → 0. If in the definition of the minimax risk, the supremum is taken
over all |a| separated away from zero by a given constant, then the minimax rate of convergence is faster by the
logarithmic factor.

3. In the case when an estimate of the sign of a is also required the corresponding estimator can be easily constructed.
To this end, let us consider the random function

M̂Na (t) ≡ �
( 2Na∑

k=Na+1

yke−2πikt

)
,

and set the estimator ŝ of signa as follows: ŝ = sign(M̂Na (̂τ )), where τ̂ is a global maximizer of ĴNa (t). Note that
M̂Na is a perturbed version of the “ideal” function

MNa(t) = a�
( 2Na∑

k=Na+1

yk exp
(−2πik(t − θ)

))= a
sinπNa(t − θ)

sinπ(t − θ)
cos

[
(3Na + 1)π(t − θ)

]
.

One can show that P( ŝ �= signa) converges to zero exponentially as ε goes to zero.
The aggregate M̂Na can be of interest on its own. It can be proved that the estimator

â′ = N−1
a max

t∈[0,1]
∣∣M̂Na (t)

∣∣
obeys the bound of Theorem 1. This study is, however, beyond the scope of the present paper.

3.3. Change-point estimation

Estimator construction
The proposed estimation procedure is based on the representation of θ as the unique zero-crossing of the function HN

on the segment delimited by the global minimizer and the global maximizer of HN . Therefore, the estimation algo-
rithm is two-staged: at the first stage, a localization for the “active segment” of HN is computed using the global
extrema of the empirical function ĤN ; then θ̂ is taken as a zero of ĤN on the localizer.

Let

θ̂− = arg min
t∈[0,1]

ĤN(t), θ̂+ = arg max
t∈[0,1]

ĤN(t). (15)

Consider the localizer Iε = [min(θ̂−, θ̂+),max(θ̂−, θ̂+)]. The estimator θ̂N is defined as a root of the equation
ĤN(θ̂N ) = 0 in the interval Iε:

θ̂N ∈ Iε : ĤN(θ̂N ) = 0.

If ĤN(·) has several roots on Iε we pick any one of them, if there are none, we set θ̂ = θ̂+.

Risk bounds for θ̂N

We present here the upper bounds for the maximal risk of θ̂N . We split the admissible range β > 1/2 of Assumption A
into two zones: 1/2 ≤ β ≤ 3/2 and β > 3/2. According to the argument in Section 2, the first zone corresponds to
estimation of a change-point or a cusp of the order less than or equal to 1/2 from direct observations, while the second
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one covers the problems of estimating change-points in derivatives. The choice of the window parameter (the value
of N ) and the rate of convergence of θ̂N are quite different in those zones. The next two theorems state the upper
bounds on the maximal risks separately for these two cases. Let us denote

σ 2
u = σ 2

u (N) = N4
2N∑

k=N+1

σ 2
k + N2

2N∑
k=N+1

k2σ 2
k . (16)

Due to Assumption A, one can easily verify that for some Cu < ∞, σu ≤ CuσNβ+5/2.

Theorem 3. Let Assumption A hold with β > 3/2 and let θ̂∗ denote the change-point estimate θ̂N associated with

N = Nθ ≡ min
{
N : εσu(N) ≥ 2LN−s+5/2}, (17)

where σu is given in (16). Let ε ≤ 6−(β+s)L(Cuσ)−1 and

|a| ≥ cL(2β−1)/(2s+2β)(σε)(2s+1)/(2s+2β)
√

ln ε−1 (18)

for some constant c which depends only on β, s. Then there exists a positive constant C = C(β, s) such that

Rθ

[
θ̂∗;Gs(L)

]≤ C|a|−1L(2β−3)/(2β+2s)(σε)(2s+3)/(2β+2s). (19)

Theorem 4. Let Assumption A hold with β ∈ (1/2,3/2]. Assume that

|a| ≥ cL(2β−1)/(2s+2β)
(
σε
√

ln ε−1
)(2s+1)/(2s+2β) (20)

and

|a| ≥ c′σε
√

ln ε−1

for some constants c = c(β) and c′ = c′(β). Let CN = CN(β) be a certain positive constant (it is specified explicitly
in the proof of the theorem), and let â∗ be the estimator of |a| defined in Section 3.2. Consider the estimator θ̂∗,
associated with

N̂∗ =
⌊
CN

(
â∗

σε
√

ln ε−1

)2/(2β−1)⌋
.

Then

Rθ

[
θ̂∗;Gs(L)

]≤ C

(
σε

|a|
)2/(2β−1)(

ln ε−1)(3−2β)/(2(2β−1))
, (21)

where C depends on β only.

Lower bounds
We present here two minorations of the minimax risk. The first one states that if the amplitude of the jump is less than
a specific threshold, namely, the minimax rate of estimation of |a|, then consistent estimation of θ is impossible.

Theorem 5. Let

φε = L(2β−1)/(2s+2β)
(
σε
√

ln ε−1
)(2s+1)/(2s+2β)

(cf. also (14)). Then there is c = c(β, s) > 0 such that for any 0 < |a| ≤ cφε one holds:

R∗
θ

[
Gs(L)

]≥ c.
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The following bounds remain valid for “large” values of |a|:

Theorem 6. Let Assumption A hold. If β > 3/2 then for some c = c(β, s),

R∗
θ

[
Gs(L)

]≥ c|a|−1L(2β−3)/(2β+2s)(σε)(2s+3)/(2s+2β).

If 1/2 < β ≤ 3/2 then for some c′ = c′(β),

R∗
θ

[
Gs(L)

]≥ c′|a|−1
{

σε(ln ε−1)−1/2, β = 3/2,

(σε)2/(2β−1), 1/2 < β < 3/2.

Remarks:
1. Let us consider the result of Theorem 4 along with the lower bounds in Theorems 5 and 6. We observe that in

the zone 1/2 < β ≤ 3/2, the risk of the estimator θ̂∗ differs from the corresponding lower bound by a logarithmic
factor. We are almost certain that there is no logarithmic factor in minimax rate (cf. the result of Korostelev [12]
for the case β = 1). In fact, one can show the rate with the iterated logarithm. However, we do not know if the
estimator θ̂N can be modified to attain the minimax rate.

It is worth to mention that in the case 1/2 < β ≤ 3/2, the preliminary estimates θ̂− and θ̂+ attain the rate
of convergence O([ε√ln ε−1]2/(2β−1)) which differs only by the factor

√
ln ε−1 from the rate given in (21) of

Theorem 4.
2. As far as the zone β > 3/2 is concerned, we observe that the upper and the lower bounds (Theorems 3 and 6) are

the same up to a constant, at least in the case when |a| ≥ cφε(ln ε−1)(2β−1)/(2(2β+2s)) (see also [6]). On the other
hand, we have seen (cf. Theorem 5) that in the case |a| ≤ c′φε the consistent estimation of θ is impossible. It can
be shown (and it can be readily seen from the proof of Theorem 3) that for “intermediate” values of |a|, i.e., for
cφε < |a| ≤ cφε(ln ε−1)(2β−1)/(2(2β+2s)), the consistent estimation is possible, though the maximal risk in this case
is larger than that in (19) by a logarithmic factor.

3. Let τ̂ ≡ arg maxt∈[0,1] ĴNθ (t) (see the proof of Theorem 1). One can choose τ̂ as an estimator of the change-point
θ . It can be shown, however, that this estimator is suboptimal. In particular, the maximal risk of this estimator
converges to zero at the rate ε(2s+5)/(4β+4s), which is worse than the minimax rate ε(2s+3)/(2β+2s). On the other
hand, the estimator τ̂ can be used on the preliminary stage of θ̂∗ to provide a “good” localizer [̂τ − 1

Nθ
, τ̂ + 1

Nθ
] for

the active segment of HNθ (·).

3.4. Application to derivative change-point estimation

Let us see how the main results in the previous section apply to Problem 1 from the Introduction.
Suppose that the derivative f (α) admits the representation

f (α)(t) = aV (t − θ) + q(t), t ∈ [0,1],
where V is the saw-tooth function, and q ∈ Gs(L) with some s > 1/2. The argument in Section 2 implies that the
model (1) transcribes into the sequence space model (4) with the parameters (cf. (7))

g ∈ Gs−1(2πL), σ 2
k = (2πk)2α+2.

Thus, the results above apply with the substitutions s �→ s − 1, β = α + 1, σ = σ = (2π)α+1.
Assume, for instance, that our objective is to estimate the change-point in the first derivative of f (i.e., α = 1),

and that the nuisance regular component g belongs to Gs(L). The results of the previous section (for β = 2) imply
that the minimax risk of the amplitude estimation is of the order [ε√ln ε−1](2s−1)/(2s+2), the same as the “critical”
amplitude (which bounds the zone where the consistent estimation of the change-point is impossible). The minimax
risk of estimating θ is ε(2s+1)/(2s+2) as soon as |a| ≥ O(ε(2s−1)/(2s+2)

√
ln ε−1). In particular, for s = 1, we have the

rates (ε
√

ln ε−1)1/4 and ε3/4 , respectively.
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If we wish to estimate the cusp of the order, say α = 1/2, then β = α+1 = 3/2 and the minimax rate of estimating θ

is ε (up to the factor
√

ln ε−1) independently of the smoothness of the deterministic nuisance component q . At the same
time, the jump amplitude can be estimated with the accuracy [ε√ln ε−1](2s−1)/(2s+1) that depends on smoothness of q .
The case of direct observations (cf. [12]) corresponds to α = 0, β = 1. The accuracy of the change-point estimator,
proposed here, is ε2

√
ln ε−1, while the jump amplitude is estimated with the rate (ε

√
ln ε−1)(2s−1)/(2s).

4. Proofs of main results

In what follows, Ci and ci stand for positive constants, which can depend only on β and s, and which values are of no
importance.

We start with some technical statements which will be used in the sequel.

4.1. Preliminary results

Now we are to establish uniform bounds on deviation of ĴN (t) and ĤN(t) from JN(t) and HN(t), which are in the
basis of all further developments. For this purpose, we introduce the following notation. For N ≥ 1 let {wN(t), t ∈
[0,1]} and {vN(t), t ∈ [0,1]} be given by

wN(t) =
2N∑

k=N+1

σkξke−2πikt , vN(t) =
2N∑

k=N+1

kσkξke−2πikt . (22)

Clearly, {wN(t)} and {vN(t)} are zero mean complex-valued stationary Gaussian processes with variances

σ 2
w ≡ σ 2

w(N) = 2
2N∑

k=N+1

σ 2
k , σ 2

v ≡ σ 2
v (N) = 2

2N∑
k=N+1

k2σ 2
k . (23)

Let λ ≥ 1, B be a subinterval of [0,1], B ⊆ [0,1], we define

AJ (λ;N,B) ≡
{
ω ∈ Ω: sup

t∈B

∣∣wN(t)
∣∣≤ 2λσw

}
, (24)

AH (λ;N,B) ≡ AJ (λ;N,B) ∩
{
ω ∈ Ω: sup

t∈B

∣∣vN(t)
∣∣≤ 2λσv

}
. (25)

In all what follows, we write AJ (λ;N) and AH (λ;N) for AJ (λ;N, [0,1]) and AH (λ;N, [0,1]), respectively. The
probability of events AJ (λ;N,B) and AH (λ;N,B) are easily controlled; see Lemma 6 in the Appendix.

The next two statements establish upper bounds on estimation accuracy of ĴN (t) and ĤN(t) when these events
occur.

Proposition 1. Assume that g ∈ Gs(L). If ω ∈ AJ (λ;N,B) then

sup
t∈B

∣∣ĴN (t) − JN(t)
∣∣≤ ρJ (N) + 8ε2λ2σ 2

w + 4ελ|a|Nσw,

where

ρJ (N) ≡ 2

(
2N∑

k=N+1

|gk|
)2

+ 2|a|N
2N∑

k=N+1

|gk|

≤ 6L2N−2s+1 + 2
√

3|a|LN−s+3/2. (26)
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Proof. By definition of ĴN (t) and in view of (4) we have

ĴN (t) = a2
2N∑

k=N+1

2N∑
j=N+1

exp
{−2πi(k − j)(t − θ)

}+
2N∑

k=N+1

2N∑
j=N+1

gkḡj exp
{−2πi(k − j)t

}

+ ε2
2N∑

k=N+1

2N∑
j=N+1

σkξkσ̄j ξ̄j exp
{−2πi(k − j)t

}

+ 2�
(

2N∑
k=N+1

2N∑
j=N+1

ae2πikθ ḡj exp
{−2πi(k − j)t

})

+ 2�
(

2N∑
k=N+1

2N∑
j=N+1

ae2πikθ εσ̄j ξ̄j exp
{−2πi(k − j)t

})

+ 2�
(

2N∑
k=N+1

2N∑
j=N+1

εgkσ̄j ξ̄j exp
{−2πi(k − j)t

})

= JN(t) +
5∑

l=1

I
(l)
J (t),

and now we derive upper bounds on the terms I
(l)
J (t), l = 1, . . . ,5.

It is immediately seen that

∣∣I (1)
J (t)

∣∣≤ (
2N∑

k=N+1

|gk|
)2

,
∣∣I (3)

J (t)
∣∣≤ 2|a|N

2N∑
k=N+1

|gk|.

On the set AJ (λ;N,B)

I
(2)
J (t) = ε2

∣∣wN(t)
∣∣2 ≤ 4ε2λ2σ 2

w,
∣∣I (4)

J (t)
∣∣≤ 2ε|a|N ∣∣wN(t)

∣∣≤ 4|a|ελσw.

Furthermore, noticing that |I (5)
J (t)| ≤ |I (1)

J (t)| + |I (2)
J (t)|, we finally obtain that

∣∣ĴN (t) − JN(t)
∣∣ ≤ 2

(
2N∑

k=N+1

|gk|
)2

+ 8ε2λ2σ 2
w + 2|a|N

2N∑
k=N+1

|gk| + 4|a|ελσw

= ρJ (N) + 8ε2λ2σ 2
w + 4|a|ελσw,

as claimed. Inequality (26) is a straightforward consequence of Lemma 7 in the Appendix. �

Proposition 2. Assume that g ∈ Gs(L). If ω ∈ AH (λ;N,B) then

sup
t∈B

∣∣ĤN(t) − HN(t)
∣∣≤ ρH (N) + 32πε2λ2σwσv + 16π|a|ελσu, (27)

where σu ≡ σu(N) = N2σw + Nσv , and

ρH (N) ≡ 8π

2N∑
k=N+1

k|gk|
2N∑

j=N+1

|gj | + 16π|a|N2
2N∑

j=N+1

|gj |.

≤ 32πL2N−2s+2 + 32πL|a|N−s+5/2. (28)
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Proof. By definition of ĤN(t), we have

ĤN(t) = 2πia2
2N∑

k=N+1

2N∑
j=N+1

(k − j) exp
(−2πi(k − j)(t − θ)

)

+ 2πi
2N∑

k=N+1

2N∑
j=N+1

(k − j)gkḡj exp
(−2πi(k − j)t

)

+ 2πiε2
2N∑

k=N+1

2N∑
j=N+1

(k − j)σkσ̄j ξkξ̄j exp
(−2πi(k − j)t

)

+ 4π	
(

2N∑
k=N+1

2N∑
j=N+1

(k − j)a exp(2πikθ)ḡj exp
(−2πi(k − j)t

))

+ 4πε	
(

2N∑
k=N+1

2N∑
j=N+1

(k − j)a exp(2πikθ)σ̄j ξ̄j exp
(−2πi(k − j)t

))

+ 4πε	
(

2N∑
k=N+1

2N∑
j=N+1

(k − j)gkσ̄j ξ̄j exp
(−2πi(k − j)t

))

≡ HN(t) +
5∑

l=1

I
(l)
H (t),

and we bound I
(l)
H (t), l = 1, . . . ,5 from above.

First we note that

∣∣I (1)
H (t)

∣∣ ≤ 4π

2N∑
k=N+1

k|gk|
2N∑

j=N+1

|gj |

∣∣I (3)
H (t)

∣∣ ≤ 4π|a|
2N∑

k=N+1

k

2N∑
j=N+1

|gj | + 4π|a|N
2N∑

j=N+1

j |gj |

≤ 2π|a|N
[
(3N + 1)

2N∑
j=N+1

|gj | + 2
2N∑

j=N+1

j |gj |
]

≤ 16π|a|N2
2N∑

j=N+1

|gj |.

Furthermore, |I (5)
H (t)| ≤ |I (1)

H (t)| + |I (2)
H (t)| and on the set AH (λ;N,B)∣∣I (2)

H (t)
∣∣ ≤ 4πε2

∣∣wN(t)
∣∣∣∣vN(t)

∣∣≤ 16πε2λ2σ 2
v σ 2

w∣∣I (4)
H (t)

∣∣ ≤ 4πε|a|
(∣∣wN(t)

∣∣ 2N∑
k=N+1

k + N
∣∣vN(t)

∣∣)

≤ 16πελ|a|(N2σw + Nσv

)= 16πελ|a|σu.

Combining all these inequalities we obtain (27). Inequality (28) is an immediate consequence of Lemma 8. �

Under Assumption A, σ 2
w(N), σ 2

v (N) and σ 2
u (N) admit the following bounds in terms of N

c2
wσ 2N2β+1 ≤ σ 2

w(N) ≤ C2
wσ 2N2β+1, (29)
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c2
vσ

2N2β+3 ≤ σ 2
v (N) ≤ C2

vσ 2N2β+3, (30)

c2
uσ

2N2β+5 ≤ σ 2
u (N) ≤ C2

uσ 2N2β+5. (31)

Here the constants cw,Cw, cv,Cv, cu,Cu depend on β only and can be easily computed explicitly. In what follows,
all these constants are regarded as known because the sequence (σk) is given.

The next proposition establishes a bound on the accuracy of preliminary estimators θ̂+ and θ̂− (see (15)).

Proposition 3. Let

ΔH (λ;N) ≡ ρH (N) + 16π|a|ελσu + 32πε2λ2σwσv,

where ρH (N) is given in (28). Let N ≥ 6 and λ ≥ 1 be such that

ΔH (λ;N) <
a2N3

4
. (32)

Then for all ω ∈ AH (λ;N)

θ ≤ θ̂+ ≤ θ + 4

5N
and θ − 4

5N
≤ θ̂− ≤ θ.

Proof. Assume that AH (λ;N) holds; then by Proposition 2

sup
t∈[0,1]

∣∣ĤN(t) − HN(t)
∣∣≤ ΔH (λ;N). (33)

We prove the statement of the proposition by contradiction. Define

t+ = arg max
t∈[0,1]

HN(t), t− = arg min
t∈[0,1]

HN(t).

By Lemma 8 in the Appendix, t+ ∈ [θ, θ + 1
N

] and t− ∈ [θ − 1
N

, θ ]. It is sufficient to prove the statement of the
proposition for θ̂+; the proof for θ̂− is identical in every detail.

First, assume that θ + 1
N

< θ̂+ < θ + 1 − 1
N

. We have

ĤN(t+) ≤ ĤN(θ̂+) ≤ HN(θ̂+) + ΔH (λ;N) = HN(t+) + ΔH (λ;N) + [
HN(θ̂+) − HN(t+)

]
,

where the first inequality follows from definition of θ̂+, and the second one is a consequence of (33). Now we observe
that by Lemma 8(iv) and by the origin of UN(t)

HN(t+) − max
1/N<t−θ<1−(1/N)

HN(t) = a2
[
UN(t+) − max

1/N<t<1−(1/N)
UN(t)

]
≥ 1

2
a2N3

so that

ĤN(t+) ≤ HN(t+) + ΔH (λ;N) − 1

2
a2N3 < HN(t+) − 1

4
a2N3, (34)

where the last inequality is in view of (32). Thus, we have that

∣∣ĤN(t+) − HN(t+)
∣∣> 1

4
a2N3, ∀ω ∈ AH (λ;N),

which contradicts (33) and (32). Hence, θ̂+ /∈ (θ + 1/N, θ + 1 − 1/N) whenever AH (λ;N) holds.
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Now assume that θ̂+ ∈ [θ + (1 − η)/N, θ + 1/N]. In this case, by the same reasoning and by Lemma 8(iv) with
choice η = 1/5, we obtain that

HN(t+) − max
t∈[θ+(1−η)N−1,θ+N−1]

HN(t) ≥ a2
[
UN(t+) − max

t∈[4/(5N),1/N ]
UN(t)

]
≥ a2

(
3

2
N3 − N3

)
= 1

2
a2N3;

recall that UN(·) is defined in (10). Therefore, the same inequality (34) leads to the contradiction. It is shown similarly
that on the set AH (λ;N), θ̂+ cannot lie in the interval (θ − 1

N
, θ); here we use the fact that

HN(t+) − max
t∈[θ−1/N,θ]

HN(t) = HN(t+) ≥ 3a2N3

because maxt∈[θ−1/N,θ] HN(t) = 0. �

The bound of Proposition 3 indicates that on the set AH (λ;N) the preliminary estimates θ̂+ and θ̂− are within
distance 4/(5N) from the target value θ . In other words, the preliminary estimates localize properly the target value
when AH (λ;N) occurs. Choosing λ in an appropriate way, we will ensure that the event AH (λ;N) will be of “large”
probability. This will allow to control the probability of “proper localization”:

P

{
|θ̂− − θ | ∨ |θ̂+ − θ | > 4

5N

}
≤ P

{
Ac

H (λ;N)
}
, ∀1 ≤ λ ≤ λmax(N),

where

λmax(N) ≡ max

{
λ ≥ 1

∣∣∣ΔH (λ;N) ≤ 1

4
a2N3

}
.

4.2. Proof of Theorem 1

Let τ̂ ≡ arg maxt∈[0,1] ĴNa (t); then∣∣̂a2∗ − a2
∣∣= N−2

a

∣∣ĴNa (̂τ ) − JNa (θ)
∣∣. (35)

The following bounds on Na follows from (11) and (29)(√
3(2Cwσ)−1 L

ε
√

ln ε−1

)1/(β+s)

≤ Na ≤
(√

3(2cwσ)−1 L

ε
√

ln ε−1

)1/(β+s)

+ 1. (36)

For any λ ≥ 1, we have on the set AJ (λ;Na)

ĴNa (̂τ ) ≥ ĴNa (θ) ≥ JNa (θ) − ΔJ (λ;Na), (37)

JNa (θ) ≥ JNa (̂τ ) ≥ ĴNa (̂τ ) − ΔJ (λ;Na), (38)

where

ΔJ (λ;Na) ≡ ρJ (Na) + 8ε2λ2σ 2
w(Na) + 4ελ|a|Naσw(Na). (39)

These inequalities follow from definition of τ̂ , Proposition 1, and properties of function JNa [see Lemma 8(ii)]. We
obtain from (37) and (38) that for all λ ≥ 1∣∣ĴNa (̂τ ) − JNa (θ)

∣∣≤ ΔJ (λ;Na), ∀ω ∈ AJ (λ;Na). (40)

Therefore

E
∣∣ĴNa (̂τ ) − JNa (θ)

∣∣2 = E
∣∣ĴNa (̂τ ) − JNa (θ)

∣∣21
{

AJ (λ;Na)
}+ E

∣∣ĴNa (̂τ ) − JNa (θ)
∣∣21

{
Ac

J (λ;Na)
}

≡ P1 + P2,
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where as shown above, P1 ≤ Δ2
J (λ;Na).

Our current goal is to bound P2. Using the fact that θ is the point of global maximum of function JNa (·), we have

ĴNa (̂τ ) − JNa (θ) = ĴNa (̂τ ) − JNa (̂τ ) + JNa (̂τ ) − JNa (θ) ≤ ĴNa (̂τ ) − JNa (̂τ ).

On the other hand, by definition of τ̂ we have

ĴNa (̂τ ) − JNa (θ) = ĴNa (̂τ ) − ĴNa (θ) + ĴNa (θ) − JNa (θ) ≥ ĴNa (θ) − JNa (θ).

Combining two last inequalities we obtain∣∣ĴNa (̂τ ) − JNa (θ)
∣∣≤ ∣∣ĴNa (̂τ ) − JNa (̂τ )

∣∣∨ ∣∣ĴNa (θ) − JNa (θ)
∣∣≤ sup

t∈[0,1]

∣∣ĴNa (t) − JNa (t)
∣∣.

Therefore,

P2 ≤ 4E sup
t∈[0,1]

∣∣ĴNa (t) − JNa (t)
∣∣21

{
Ac

J (λ;Na)
}
.

Using the same reasoning as in the proof of Proposition 1, we can write

sup
t∈[0,1]

∣∣ĴNa (t) − JNa (t)
∣∣≤ 2ρJ (Na) + 2ε2 sup

t∈[0,1]

∣∣wNa(t)
∣∣2 + 2ε|a|Na sup

t∈[0,1]

∣∣wNa(t)
∣∣.

Denote ζ = supt∈[0,1] |wNa(t)|; then

E sup
t∈[0,1]

∣∣ĴNa (t) − JNa (t)
∣∣21

{
Ac

J (λ;Na)
}

≤ 16ρ2
J (Na)P

{
Ac

J (λ;Na)
}+ 16ε4E

[
ζ 41

{
Ac

J (λ;Na)
}]+ 8ε2|a|2N2

a E
[
ζ 21

{
Ac

J (λ;Na)
}]

≡ P3 + P4 + P5.

By Lemma 6 in the Appendix, and by definition of Na, we obtain

P3 ≤ 16Δ2
J (λ;Na)P

{
Ac

J (λ;Na)
}≤ c1Δ

2
J (λ;Na)λNa exp

{−2λ2}.
Furthermore,

P4 = 16ε4E
[
ζ 41{ζ > 2λσw}]= 8ε4

∫ ∞

(2λσw)4
P
{
ζ 4 > t

}
dt

= 64ε4(2λσw)4
∫ ∞

1
t3P {ζ > 2λσwt}dt ≤ c2ε

4(λσw)4λNa

∫ ∞

1
t4 exp

{−2λ2t2}dt

= c3ε
4σ 4

wNa

∫ ∞

λ

t4e−2t2
dt ≤ c4ε

4σ 4
wNaλ

3 exp
{−2λ2},

and

P5 ≤ 8ε2|a|2N2
a

∫ ∞

(2λσw)2
P
{
ζ 2 > t

}
dt

= 16ε2|a|2N2
a (2λσw)2

∫ ∞

1
tP {ζ > 2λσwt}dt ≤ c4ε

2|a|2N3
a (λσw)2λ

∫ ∞

1
t2 exp

{−2λ2t2}dt

≤ c5ε
2|a|2N3

a σ 2
w

∫ ∞

λ

t2e−2t2
dt ≤ c6ε

2|a|2N3
a σ 2

wλ exp
{−2λ2}.
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Thus we get

P2 ≤
5∑

i=3

Pi

≤ c7λ exp
(−2λ2)(NaΔ

2
J (λ;Na) + ε4Naσ

4
wλ2 + ε2|a|2N3

a σ 2
w

)
≤ c8λ exp

{−2λ2}(NaΔ
2
J (λ;Na) + ε4N4β+3

a λ2 + ε2|a|2N2β+4
a

)
,

where the last inequality is a consequence of (29). Choosing λ = λ∗ ≡√
c9 ln ε−1 with sufficiently large constant c9

depending on β , s, and combining the above inequalities, we obtain{
E
∣∣̂a2∗ − a2

∣∣2}1/2 ≤ N−2
a

{
E
∣∣ĴNa (̂τ ) − JNa (θ)

∣∣2}1/2

≤ N−2
a

[
Δ2

J (λ∗;Na) + P2
]1/2 ≤ c10

(|a|ϕε + ϕ2
ε

)
,

where ϕε is defined in (12). The last inequality follows from the fact that by choice of c9, Δ2
J (λ∗;Na) dominates P2,

and in view of (39), (26) and definitions of Na and ϕε

ΔJ (λ∗;Na) ≤ c11
(
ε2λ2∗σ 2

w(Na) + ελ∗|a|Naσw(Na)
)= c12

(
ϕ2

ε + |a|ϕε

)
.

To get (13), we use the elementary inequality
√|x − y| ≥ |√|x| − √|y|| and the fact that |̂a2∗ − a2| ≥ |̂a∗ − |a|| · |a|,

thus coming to

Ra

[̂
a∗;Gs(L)

]≤ c13
[
ϕε + (|a|−1ϕ2

ε

)∧ (|a|ϕε

)1/2]≤ c14ϕε.

4.3. Proof of Theorem 2

Let for 0 < κ ≤ 1 ψ = κφ and

N = max
{
N ∈ N: φ2N2s+1 ≤ L2}, (41)

so that(
L2

σ 2ε2 ln ε−1

)1/(β+2s)

− 1 < N ≤
(

L2

σ 2ε2 ln ε−1

)1/(β+2s)

.

Consider the observations

yk = s
(j)
k + εσkξk, (42)

where (ξk), k = 0,1, . . . , are standard complex valued i.i.d. random variables (i.e., (�ξk,	ξk)
T ∼ N(0, I )). Here

N + 1 signals s(j), j = 0, . . . ,N are defined as follows:

s
(j)
k = ψe2πikθj 1(k ≥ N + 1) = ψe2πikθj − g

(j)
k , k = 0,1, . . . , for j = 1, . . . ,N,

where θj = j/N , and s(0) ≡ 0.

Note first that the sequences (g
(j)
k ),

g
(j)
k = ψe2πikθj 1(0 ≤ k ≤ N), j = 1, . . . ,N,

all belongs to Gs(L). Indeed,

∞∑
k=0

∣∣g(j)
k

∣∣2k2s = ψ2
N∑

k=0

k2s ≤ ψ2N2s+1 ≤ L2
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by (41).
Let now Pj , j = 1, . . . ,N stand for the distributions of observations (42) which correspond to signals from

the family S = {s(j), j = 1, . . . ,N}, and let π be the uniform prior probability on S: πj = 1
N

. Let now Pπ denote

the Bayes measure for the prior π: Pπ = 1
N

∑N
j=1 Pj . We also denote Zj = dPj

dP0
, j = 1, . . . ,N and Zπ = dPπ

dP0
the

corresponding likelihood ratios. Now consider the minimax risk Rε of a (N + 1)-point estimation problem:

Rε = sup
j=0,...,N

Ej (ψj − ψ̂)2,

where ψj = ψ , j = 1, . . . ,N and ψ0 = 0.

Lemma 1. Rε ≥ ψ2

4 (1 − E(Zπ−1)2

2 ).

The proof of the lemma is presented in the Appendix. Now the result of Theorem 2 is an immediate consequence
of the following statement:

Proposition 4. Let κ > 0 be a small enough absolute constant. Then

E0(Zπ − 1)2 → 0 as ε → 0.

Proof. Note that the likelihood ratio

Zj = exp

(
−

∞∑
k=N+1

|yk − s
(j)
k |2 − |yk|2
2ε2σ 2

k

)

= exp

( ∞∑
k=N+1

s
(j)
k ξk + s

(j)
k ξk

2εσk

− |s(j)|2
2ε2σ 2

k

)

= exp

( ∞∑
k=N+1

ψ(ηk cos 2πkθj + ζk sin 2πkθj )

εσk

− ψ2

2ε2σ 2
k

)
,

where (ηk) and (ζk) are the sequences of i.i.d. standard gaussian random variables, (ηk, ζk)
T ∼ N(0, I ). Then

Zπ = 1

N

N∑
j=1

Zj .

For obvious reason E0Zπ = 1. Let us compute E0(Z
2
π ). We have

E0
(
Z2

π

) = 1

N2

N∑
j=1

N∑
�=1

E exp

( ∞∑
k=N+1

ψ

εσk

[
ηk(cos 2πkθj + cos 2πkθ�) + ζk(sin 2πkθj + sin 2πkθ�)

]− ψ2

ε2σ 2
k

)

= 1

N2

N∑
j=1

N∑
�=1

exp

( ∞∑
k=N+1

ψ2

ε2σ 2
k

cos 2πk(θj − θ�)

)

= 1

N2

N∑
j=1

N∑
�=1

exp

( ∞∑
k=N+1

ψ2

ε2σ 2
k

cos
2πk(j − �)

N

)

= 1

N

N−1∑
j=0

exp

( ∞∑
k=N+1

ψ2

ε2σ 2
k

cos
2πkj

N

)
,
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by defintion of θj . �

Lemma 2. Let 0 ≤ x ≤ n/9. Then ex ≤∑n−1
j=0

xj

j ! + e−n√
2πn

.

The proof is postponed until the Appendix.

Using the result of Lemma 2 we obtain for n ≥ 9ψ2

ε2

∑∞
k=N+1 σ−2

k the bound:

E(Zπ)2 ≤ 1 + 1

N

N−1∑
j=0

n−1∑
�=1

1

�!

[ ∞∑
k=N+1

ψ2

ε2σ 2
k

cos
2πkj

N

]�

+ e−n

√
2πn

≡ 1 + e−n

√
2πn

+
n−1∑
�=1

I
(�)
ε

�! . (43)

Note that

I (1)
ε = ψ2

Nε2

∞∑
k=N+1

σ−2
k

N−1∑
j=0

cos
2πkj

N
.

However, for k �= rN , r ∈ Z,
∑N−1

j=0 cos 2πkj
N

= 0. Indeed,

2 sin
πk

N

N−1∑
j=0

cos
2πkj

N
= sin

2πk(N − 1/2)

N
+ sin

πk

N
= 0.

Thus

I (1)
ε ≤ ψ2

ε2

∑
k≥N+1,k=rN,r∈Z

σ−2
k ≤ ψ2

σ 2ε2

∞∑
k=1

(N + kN)−2β

≤ ψ2

σ 2ε2N2β

∞∑
k=1

(1 + k)−2β ≤ ψ2

σ 2ε2N2β
(2β − 1)−1.

The treatment of the generic term I
(�)
ε is a bit more involved. We have

I (�)
ε = 1

N

N−1∑
j=0

∑
k≥N+1

(
ψ2

ε2

)� cos (2πk1j)/N

σ 2
k1

· · · cos (2πk�j)/N

σ 2
k�

,

where k = (k1, . . . , k�) is the multi-index. Observe that

�∏
l=1

cos
2πklj

N
= 2−�

∑
e∈{−1,1}�

cos
2πeTkj

N
.

Now we have for any k such that eTk �= rN , r ∈ Z:

N−1∑
j=0

�∏
l=1

cos
2πklj

N
= 2−�

∑
e∈{−1,1}�

N−1∑
j=0

cos
2πeTkj

N
= 0.
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In other words, the nonvanishing terms correspond to such k that

�∑
l=1

elkl + rN = 0, r ∈ Z.

Therefore, the sum for I
(�)
ε can be rewritten as follows:

I (�)
ε = 1

N

N−1∑
j=0

∑
k≥N+1

(
ψ2

ε2

)� �∏
l=1

σ−2
kl

2−�
∑

e∈{−1,1}�
cos

2πeTkj

N

≤ 2−�

(
ψ2

ε2

)� ∑
e∈{−1,1}�

∑
k≥N+1,r∈Z

eTk=rN

�∏
l=1

σ−2
kl

≤ 2−�

(
ψ2

ε2σ 2

)� ∑
e∈{−1,1}�

∑
k≥N+1,r∈Z,eTk=rN

�∏
l=1

k
−2β
l . (44)

We approximate the last sum in the RHS of (44) with an integral: note that

∞∑
k1=N+1

. . .

∞∑
k�=N+1

�∏
l=1

kl
−2β1

{
eTk = rN

}

= N−2β�
∞∑

k1=1

. . .

∞∑
k�=1

�∏
l=1

(
1 + kl

N

)−2β

1

{
eTk
N

= r − �

}

≤ C
N�−1

N2β�
√

�

∫ ∞

0
. . .

∫ ∞

0

dx1

(1 + x1)2β
· · · dx�

(1 + x�)2β
δ
(
eTx − r + �

)
,

where x = (x1, . . . , x�)
T (we have used the fact that the unit volume of the hyperplane eTx = a contains O( N√

�
)

points). We conclude that

I (�)
ε ≤ C

N

(
ψ2

ε2N2β−1σ 2

)�

2−�
∑

e∈{−1,1}�
J�(e), (45)

where

J�(e) = 1√
�

∞∑
m=−∞

∫ ∞

0
. . .

∫ ∞

0

dx1

(1 + x1)2β
· · · dx�

(1 + x�)2β
δ
(
eTx − m

)
.

Lemma 3. There is C(β) < ∞ such that J�(e) ≤ C�(β).

The proof is given in the Appendix.
When substituting the result of Lemma 3 into (45) we obtain for I

(�)
ε the bound

I (�)
ε ≤ 1

N

(
C(β)ψ2

ε2N2β−1σ 2

)�

. (46)
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Putting (46) into (43) results in

E
(
Z2

π

)≤ 1 + e−n

√
2πn

+
n−1∑
�=1

1

N�!
(

C(β)ψ2

σ 2ε2N2β−1

)�

≤ 1 + e−n

√
2πn

+ N−1 exp

(
C(β)ψ2

σ 2ε2N2β−1

)
. (47)

By the choice of φ = φε in (14) and (41),

ψ2

σ 2ε2N2β−1
= κ

2 ψ2

σ 2ε2N2β−1
≤ κ

2 ln ε−1 ≤ C(s,β)κ2 lnN

for ε small enough. Now the bound (47) implies that

E(Zπ − EZπ)2 = EZ2
π − 1 ≤ e−n

√
2πn

+ N−1
[

exp

(
C(β)ψ2

σ 2ε2N2β−1

)
− 1

]
≤ e−n

√
2πn

+ exp(C′(s, β)κ2 lnN) − 1

N
→ 0

as ε → 0 if κ
2C′(s, β) < 1, what implies the proposition.

4.4. Proof of Theorem 3

Step 1
The following bounds on Nθ defined in (17) are easily derived using (31):[

2(Cuσ)−1 L

ε

]1/(β+s)

≤ Nθ ≤
[

2(cuσ )−1 L

ε

]1/(β+s)

+ 1. (48)

Let

λ∗ = c1|a|ε−1N
−β+1/2
θ , (49)

where c1 = c1(β, s, σ , σ ) is a fixed constant. We note that λ∗ ≥ 1 due to (18) with appropriate constant c. We have

E|θ̂∗ − θ |2 = E|θ̂∗ − θ |21
{

AH (λ∗;Nθ)
}+ E|θ̂∗ − θ |21

{
Ac

H (λ∗;Nθ)
}
, (50)

and our current goal is to bound the two terms on the RHS. From (48), (49) and Lemma 6 we obtain

E|θ̂∗ − θ |21{Ac
H (λ∗;Nθ)}

≤ P
{

Ac
H (λ∗;Nθ)

}≤ c2λ∗Nθ exp
{−2λ2∗

}
≤ c3|a|L−(2β−3)/(2β+2s)ε−(2s+3)/(2β+2s) exp

{−c4a
2ε−(2s+1)/(β+s)L−(2β−1)/(β+s)

}
. (51)

Step 2
Now our goal is to bound E|θ̂∗ − θ |21{AH (λ∗;Nθ)} from above. By definition of Nθ , and due to (48), (18) and (49),
one can choose constants c in (18) and c1 in (49) depending on s, β,σ , and σ only so that

16π|a|εσu(Nθ ) ≥ 32πL|a|N−s+5/2
θ ,

32πε2λ2∗σw(Nθ)σv(Nθ ) ≥ 32πL2N−2s+2
θ ,

16π|a|ελ∗σu(Nθ ) ≥ 32πε2λ2∗σw(Nθ)σv(Nθ ).

Therefore, Proposition 2 implies that on the set AH (λ∗;Nθ), we have

sup
t∈[0,1]

∣∣ĤNθ (t) − HNθ (t)
∣∣≤ ΔH (λ∗;Nθ) ≤ 64π|a|ελ∗σu(Nθ ). (52)
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Furthermore,

64π|a|ελ∗σu(Nθ ) ≤ 64πCuσc1a
2N3

θ <
1

4
a2N3

θ , (53)

where the last inequality is ensured by choice of the constant c1. The condition ε ≤ 6−(β+s)L(Cuσ)−1 guarantees
that Nθ ≥ 6. Therefore, Proposition 3 can be applied. Using (52) and (53), we obtain by Proposition 3 that |θ̂∗ − θ | ≤
4/(5Nθ) whenever AH (λ∗;Nθ) holds.

Now we argue that on the set AH (λ∗;Nθ) function ĤNθ (·) necessarily has a zero in Iε . Indeed,

AH (λ∗;Nθ) ⊆
{
ω : sup

t∈[0,1]
∣∣ĤNθ (t) − HNθ (t)

∣∣≤ 64π|a|ελ∗σu(Nθ )
}
. (54)

On the other hand, if D denotes the event that ĤNθ (·) has no zeros in Iε , then

D ⊆
{
ω : sup

t∈[0,1]

∣∣ĤNθ (t) − HNθ (t)
∣∣≥ max

t∈[0,1]
∣∣HNθ (t)

∣∣}. (55)

By Lemma 8(iv), maxt∈[0,1] |HNθ (t)| ≥ 3
2a2N3

θ , while 64π|a|ελ∗σu(Nθ ) < a2N3
θ /4. This shows that the sets on the

right-hand side of (54) and (55) are disjoint, so that ĤNθ (·) must vanish in Iε if AH (λ∗;Nθ) occurs. Thus on the set
AH (λ∗;Nθ), we have∣∣HNθ (θ̂∗)

∣∣≤ 64π|a|ελ∗σu(Nθ ) (56)

because ĤNθ (θ̂∗) = 0, and in view of (52). Furthermore, (31) and (49) imply that

64π|a|ελ∗σu(Nθ )

(
5

4
a2N4

θ

)−1

≤ 1

5Nθ

.

This along with (56) and Lemma 8(v) leads to the inequality |θ̂∗ − θ | ≤ 1/(5Nθ).
Let δ ∈ (0,1/(5Nθ)); then

E|θ̂∗ − θ |21
{

AH (λ∗;Nθ)
}≤ δ2 +

l0∑
l=1

δ222lP
{(

δ2l−1 ≤ |θ̂∗ − θ | ≤ δ2l
)∩ AH (λ∗;Nθ)

}
, (57)

where l0 = min{l : δ2l > 1/(5Nθ)}. Let Bl ≡ {t : δ2l−1 ≤ |t − θ | ≤ δ2l}, l = 1, . . . , l0; then

P
{(

δ2l−1 ≤ |θ̂∗ − θ | ≤ δ2l
)∩ AH (λ∗;Nθ)

}
≤ P

{(∣∣HNθ (θ̂∗)
∣∣≥ 5

4
a2N4

θ δ2l−1
)

∩ AH (λ∗;Nθ)

}
≤ P

{(
sup
t∈Bl

∣∣HNθ (t) − ĤNθ (t)
∣∣≥ 5

4
a2N4

θ δ2l−1
)

∩ AH (λ∗;Nθ)

}
= P

{(
sup
t∈Bl

∣∣HNθ (t) − ĤNθ (t)
∣∣≥ 64π|a|εσu(Nθ )λl

)
∩ AH (λ∗;Nθ)

}
,

where the first inequality follows from the properties of HNθ and because ĤNθ (θ̂ ) = 0, and

λl ≡ 5/4a2N4
θ δ2l−1[64π|a|εσu(Nθ )

]−1
, l = 1,2, . . . , l0. (58)

Choosing

δ = δ∗ ≡ 64π|a|εσu(Nθ )

5/4a2N4
θ

= c6|a|−1εN
β−3/2
θ = c7|a|−1L(2β−3)/(2β+2s)ε(2s+3)/(2β+2s)
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and taking into account that 2l0−1 ≤ (5Nθδ∗)−1, we get that λl ≤ λ∗, ∀l = 1, . . . , l0. This along with the lemma implies
that

P
{

sup
Bl

∣∣HNθ (t) − ĤNθ (t)
∣∣≥ 64π|a|εσu(Nθ )λl

}
≤ P

{
Ac

H (λl;Nθ,Bl)
}

≤ c8λl |Bl |Nθ exp
{−2λ2

l

}
.

Hence

l0∑
l=1

δ222lP
{(

δ2l−1 ≤ |θ̂Nθ − θ | ≤ δ2l
)∩ AH (λ∗;Nθ)

} ≤ δ2
l0∑

l=1

22lλl |Bl |Nθ exp
{−2λ2

l

}

≤ δ2(δNθ )

l0∑
l=1

23l−1 exp
{−22l−1}≤ c9δ

2.

Combining the last inequality with (57) we finally obtain

E|θ̂∗ − θ |21
{

AH (λ∗;Nθ)
}≤ c10δ

2. (59)

We complete the proof using (59), (58), (51), and (50) and taking into account (18).

4.5. Proof of Theorem 4

We start with the following statement:

Step 1
Let â∗ be the estimate of |a| defined in Section 3.2. Under conditions of Theorem 1 for any λ ≥ 1, one has

P

{∣∣̂a∗ − |a|∣∣≥ ΔJ (λ;Na)

|a|N2
a

}
≤ c1λNa exp

{−2λ2}, (60)

where ΔJ (λ;N) is defined in (39), and c1 is a constant that may depend on β , σ and σ only. Indeed, the inequality
(60) follows immediately from the proof of Theorem 1 (cf. (35) and (40)), and the lemma.

Step 2
Let λ∗ =√

η ln ε−1 where η ≥ 4/(2β − 1). Define

K ≡ min
{(

32πCwCvσ
2)−1/(2β−1)

, (16πCuσ)−2/(2β−1)
}
,

and let

N∗ =
⌊
K

( |a|
64ελ∗

)2/(2β−1)⌋
.

First, we show that ΔH (λ∗;N∗) < a2N3∗/16, provided that (20) is valid with appropriate constant c. Indeed, by
definition of N∗ we have

32π(ελ∗)2σw(N∗)σv(N∗) ≤ 32π(ελ∗)2CwCvσ
2N

2β+2∗ ≤ a2N3∗
64

,

where the last inequality follows by choice of K . Similarly, we verify that

16π|a|ελ∗σu(N∗) ≤ 16π|a|ελ∗CuσN
β+5/2∗ ≤ a2N3∗

64
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again in view of our choice of K . The inequalities

32πL2N−2s+2∗ ≤ a2N3∗
64

, 32πL|a|N−s+5/2∗ ≤ a2N3∗
64

are implied by the condition (20) with appropriate constant c. Combining these bounds we obtain that ΔH (λ∗;N∗) <

a2N3∗/16 as claimed. This means that if N∗ could be taken as the window parameter of the change-point estimate
then all conditions of Proposition 3 would be fulfilled. However, this choice of the window parameter is not feasible
because |a| is unknown.

Step 3
Let â∗ be the estimate of |a| defined in Section 3.2. Recall that the estimate â∗ is associated with the window parameter
Na given in (11). We set

N̂∗ =
⌊
K

(
â∗

64ελ∗

)2/(2β−1)⌋
.

Now assume that ω ∈ AJ (λ∗;Na). In view of (60),∣∣∣∣ |̂a∗|
|a| − 1

∣∣∣∣≤ γ ≡ ΔJ (λ∗;Na)

|a|2N2
a

, ∀ω ∈ AJ (λ∗;Na).

Using (39), (36) and (20), we obtain that

γ ≤ c2
ελ∗|a|Nβ+3/2

a

a2N2
a

= c3(ελ∗)|a|−1N
β−1/2
a ≤ c4|a|−1L(2β−1)/(2β+2s)(ελ∗)(2s+1)/(2s+2β) ≤ 1

2
,

where the last inequality follows from (20) with appropriate constant c. Further, because

1

64
â∗(ελ∗)−1 = 1

64
|a|(ελ∗)−1

[
1 +

(
â∗
|a| − 1

)]
we have that N∗(1 − γ )2/(2β−1) ≤ N̂∗ ≤ N∗(1 + γ )2/(2β−1) on the set AJ (λ∗;Na), which, in turn, implies that(

1

2

)2/(2β−1)

N∗ ≤ N̂∗ ≤
(

3

2

)2/(2β−1)

N∗, ∀ω ∈ AJ (λ∗;Na).

Therefore, by the same computation as for ΔH (λ∗,N∗), we obtain that

ΔH (λ∗; N̂∗) <
a2N̂3∗

8
, ∀ω ∈ AJ (λ∗;Na).

Let N0 ≡ (1/2)2/(2β−1)N∗, N1 ≡ (3/2)2/(2β−1)N∗, and define

B ≡ BH (λ∗) ∩ AJ (λ∗;Na), BH (λ∗) ≡
N1⋂

n=N0

A(λ∗;N).

We have

P
{

Bc
} ≤ P

{
Bc

H (λ∗)
}+ P

{
Ac

J (λ;Na)
}

≤
N1∑

N=N0

P
{

Ac
H (λ∗;N)

}+ P
{

Ac
J (λ;Na)

}≤ c5λ∗
(
N2∗ + Na

)
exp

{−2λ2},
where the last inequality follows from definition of N0, N1 and from the lemma.

The further proof goes along the same lines as the proof of Theorem 3 with the event B playing the role of
AH (λ∗;Nθ). Any η ≥ 4/(2β − 1) guarantees that the contribution of the error on the set B to the risk will be small.
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4.6. Proof of Theorem 5

We provide the proof of the theorem for the particular case σ 2
k = (2πk)2β , β ∈ N+. The proof for the general case is

much more technical and is based on the same ideas as that of Theorem 2.
Consider the operation of multiple integration, i.e., for β ∈ N+

f (−β)(t) =
∫ t

0
f (−β+1)(s)ds = 1

β!
∫ t

0
(t − s)β−1f (s)ds.

Note that f
(−β)
k = (−2πik)−βfk for any periodic function f ∈ L2[0,1].

Now, consider the following construction: let � = �s� + 1 (here �a� stands for the largest integer ≤ a). Consider a
function φ : [0,1] → R which is � times continuously differentiable and ‖φ(�)‖∞ ≤ C. Furthermore, we require∫

φ(t)dt = 1,

∫
tkφ(t)dt = 0, k = 1,2, . . . , β.

Now, consider for some ψ > 0, N ∈ N, N > 1 the function gN(t) = ψ[Nφ(Nt) − 1].
Let

sN(t) = ψ
[
δ(t) − 1

]− gN(t) = ψ
[
δ(t) − Nφ(Nt)

]
.

We start with the technical result:

Lemma 4. The signal sN possesses the following properties:

(1) there is c0 > 0 such that for any N ≥ 1, gN ∈ G(s,L) if ψ ≤ c0LN−s+1/2;
(2) sN has β + 1 vanishing moments:∫ 1/N

0
tksN (t)dt = 0, k = 0, . . . , β.

We leave to the reader the proof of this simple statement.
Let S be the family of translations of signal sN :

s(j)(t) = sN

(
t − j

N

)
, j = 1, . . . ,N − 1.

With some abuse of notations, we denote s
(j)
k , k ≥ 0 the Fourier coefficients of s(j). Note that

s
(j)
k = ψe2πikθj − g

(j)
k , k = 1,2, . . . , for j = 1, . . . ,N

where θj = j/N .
We consider the problem of estimation of the shift parameter θj of the signal s(j) from the noisy observations (yk),

k = 0,1,2, . . . of its Fourier coefficients as in (42). Recall that

yk = s
(j)
k + εσkξk,

where (ξk), k = 0,1, . . . , are standard complex valued i.i.d. random variables (i.e., (�ξk,	ξk)
T ∼ N(0, I )), σ 2

k =
(2πk)2β,β ∈ N+.

Let as above, Pj , j = 0, . . . ,N − 1 stand for the distributions of observations (42) which correspond to signals
from the family S = {s(j), j = 1, . . . ,N}, and let π be the uniform prior probability on S. We denote Pπ the Bayes
measure for the prior π , Zj = dPj

dP0
, j = 1, . . . ,N and Zπ = dPπ

dP0
.

Now consider the minimax risk Rε of a N-point estimation problem:

Rε = sup
j=1,...,N

Ej (θj − θ̂ )2.
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Lemma 5. For any 0 < δ < 1,

Rε ≥ 1

3
P0(Zπ ≥ 1 − δ) − δ − E0(

∑N
j=1 jZj )

2

N4(1 − δ)
.

The proof of this result is put in the Appendix.
Now the statement of the theorem follows from the following result:

Proposition 5. Let

N =
(

L2

ε2 ln ε−1

)1/(2β+2s)

,

and let ψ = cφε , c > 0 being a small enough absolute constant, where φε is defined in (14). Then

E0(Zπ − 1)2 → 0 as ε → 0; (61)

N−4E0

(
N∑

j=1

jZj

)2

− 1

4
→ 0 as ε → 0. (62)

Proof. Observe that the observation model (42) is equivalent to the following white-noise model:

dYt = f (−β)(t)dt + ε dWt, t ∈ [0,1],
where Wt is a complex-valued Wiener process. Recall that by (2) of the lemma, all moments of sN (and those of s(j))
are vanishing up to the order β . If we denote u(j)(t) = Ks(j)(t), then suppu(j) ⊆ [ j

N
,

j+1
N

], and u(j) and u(�) have
disjoint supports. Furthermore, by construction of s(j), u(j)(t) ≤ CψN−β+1, and∥∥u(j)

∥∥2
2 ≤ C2ψ2N−2β+1. (63)

The likelihood ratio

Zj = exp

(
ε−1

∫ 1

0
u(j)(t)dWt −

∫ 1
0 (u(j))2(t)dt

2ε2

)
= exp

(
ε−1μηj − μ2

2ε2

)
,

where ηj , j = 1, . . . ,N are i.i.d. normal random variables, Eη1 = 0, Eη2
1 = 1 and μ = ‖u(1)‖2. Note that the likeli-

hood ratios Zj and Zj ′ are independent when j �= j ′.
Now

E(Zπ − 1)2 = 1

N2

(
N∑

j=1

Zj − EZj

)2

= 1

N
E
(
Z2

1 − E(Z1)
2)= 1

N
eμ2ε−2 → 0

when, for instance, μ2ε−2 < lnN
2 . Further,

E

(
N∑

j=1

jZj

)2

=
(

N∑
j=1

j

)2

+ E

(
N∑

j=1

j (Zj − 1)

)2

= N2(N + 1)2

4
+

N∑
j=1

j2eμ2ε−2 = N4

4

(
1 + o(1)

)
if μ2ε−2 < lnN

2 . When taking into account the bound (63), we conclude that the relations (61) and (62) of Proposi-
tion 5 hold true when

ψ2 = c2N2β−1ε2 lnN,
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for some absolute constant c > 0. �

4.7. Proof of Theorem 6

Consider the following 2-point testing problem: given observations yk = fk + εσkξk, we would like to discriminate
between two hypotheses

H0: fk = f
(0)
k ≡ a, ∀k ∈ N+ and

H1: fk = f
(1)
k ≡ ae2πikh + g

(1)
k , ∀k ∈ N+,

where h > 0, and

g
(1)
k ≡

{
a
(
1 − e2πikh

)
, 0 < k ≤ n,

0, k > n,

for some integer n to be chosen in the sequel. The hypotheses correspond to the model (4) with a(0) = a(1) = a,
θ(0) = 0, θ(1) = h, g

(0)
k = 0,∀k ∈ N+, and g

(1)
k as defined above.

We will select n in such a way that (g
(1)
k ) belongs to Gs(L). We have

∞∑
k=1

∣∣g(1)
k

∣∣2k2s ≤ a2
n∑

k=1

∣∣1 − e2πikh
∣∣2k2s ≤ c1a

2 min
{
h2n2s+3, n2s+1},

where c1 depends on s only. Choosing

n = n∗ ≡ c2
(
L|a|−1h−1)2/(2s+3) (64)

we obtain that (g
(1)
k ) ∈ Gs(L), provided that n∗ ≤ h−1.

Let P0 and P1 denote the probability measures associated with observations (yk) in model (4) with (fk) = (f
(0)
k )

and (fk) = (f
(1)
k ), respectively. The Kullback–Leibler divergence between these measures is

K(P0,P1) =
∞∑

k=1

1

2ε2σ 2
k

∣∣f (0)
k − f

(1)
k

∣∣2
≤ a2

ε2σ 2
min

∞∑
k>n∗

k−2β
∣∣1 − e2πikh

∣∣2

≤ 8a2

σ 2ε2

(
π2h2

�(1/πh)�∑
k=n∗+1

k−2β+2 +
∞∑

k=�(1/πh)�+1

k−2β

)
. (65)

First assume that β > 3/2. Choosing

h = c3ε
2a−2n

2β−3∗ ⇐⇒ h = c4|a|−1L(2β−3)/(2s+2β)ε(2s+3)/(2s+2β)

we see that n∗ ≤ h−1 in view of (65), and

K(P0,P1) ≤ c5
a2

ε2

[
h2n

−2β+3∗ + h2β−1]≤ c6 < ∞

for ε small enough. On the other hand, |θ(0) − θ(1)| = h; hence by the standard argument (see, e.g., [21], Theorem 2.2)
supg∈Gs(L) E|θ̂ − θ |2 ≥ c7h. This completes the proof for the case β > 3/2.
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If β = 3/2, then we have from (65) that K(P0,P1) ≤ c8a
2ε−2h2 lnh−1; hence the choice h = c9|a|−1ε(ln ε−1)−1/2

implies that n∗ ≤ h−1 and guarantees the boundedness of K(P0,P1). This leads to the announced result. If 1/2 < β <

3/2, then instead of (64), we can choose n∗ = c10(L/|a|)2/(2s + 1) and the second term on the right-hand size of
(65) is dominant. Thus, K(P0,P1) ≤ c11a

2ε−2h2β−1 and choosing h = c11|a|−1ε2/(2β−1), we complete the proof of
the theorem.

Appendix

Lemma 6. Let B ⊆ [0,1] be a subinterval of [0,1], and |B| its Lebesgue measure. Then there exists constants C1 and
C2 depending on β , σ and σ only such that

P
{

sup
t∈B

∣∣vN(t)
∣∣≥ λ

}
≤ C1|B|Nβ+5/2λσ−2

v exp

{
− λ2

(2σ 2
v )

}
, ∀λ ≥ 2σv, (66)

P
{

sup
t∈B

∣∣wN(t)
∣∣≥ λ

}
≤ C2|B|Nβ+3/2λσ−2

w exp

{ −λ2

(2σ 2
w)

}
, ∀λ ≥ 2σw. (67)

Here {wN(t), t ∈ [0,1]}, {vN(t), t ∈ [0,1]}, σw and σv are defined in (22) and (23), respectively. Moreover, for all
N ≥ 1 and λ ≥ 1, one has

P
{

Ac
H (λ;N,B)

}≤ C3λ|B|N exp
{−2λ2},

P
{

Ac
J (λ;N,B)

}≤ C4λ|B|N exp
{−2λ2},

where events AJ (λ;N,B) and AH (λ;N,B) are defined in (24) and (25).

Proof. In the proof, c1, c2, . . . stand for positive constants that may depend on β , σ and σ only. We use the general
exponential inequality of Talagrand; see, e.g., [22], Proposition A.2.2. Clearly, E|vN(t)|2 ≤ σ 2

v , and E|wN(t)|2 ≤ σ 2
w .

Further, for t, s ∈ [0,1]

r2(s, t) ≡ E
∣∣vN(t) − vN(s)

∣∣2 = E

∣∣∣∣∣
2N∑

k=N+1

kσkξk

(
e−2πikt − e−2πiks

)∣∣∣∣∣
2

≤ 4π2
2N∑

k=N+1

k4|σk|2|t − s|2 ≤ c1|t − s|2N2β+5.

Then the minimal number of balls of radius ν in the seminorm r(·, ·) covering the index set B ⊆ [0,1] does not
exceed c2|B|Nβ+5/2ν−1. Therefore applying Proposition A.2.2 from [22] [in their notation, we put K ∼ |B|Nβ+5/2,
ε0 = σv ∼ Nβ+3/2] we obtain for any λ ≥ 2σv that

P
{

sup
t∈B

∣∣vN(t)
∣∣≥ λ

}
≤ c3λ|B|Nβ+5/2σ−2

v exp

{
− λ2

(2σ 2
v )

}
.

Similarly, for {wN(t); t ∈ [0,1]} we have for λ ≥ 2σw

P
{

sup
t∈B

∣∣wN(t)
∣∣≥ λ

}
≤ c4λ|B|Nβ+3/2σ−2

w exp

{
− λ2

(2σ 2
w)

}
.

It follows from (66), (67) and (29), (30) that for any λ ≥ 1

P
{

sup
t∈B

∣∣vN(t)
∣∣≥ 2λσv

}
≤ c5λ|B|N exp

(−2λ2),
P
{

sup
t∈B

∣∣wN(t)
∣∣≥ 2λσw

}
≤ c6λ|B|N exp

(−2λ2). �



814 A. Goldenshluger et al.

Lemma 7. Let N ≥ 1. If g ∈ Gs(L), s > −1/2 then

2N∑
k=N+1

|gk| ≤
√

3LN−s+1/2,

2N∑
k=N+1

k|gk| ≤ 2LN−s+3/2. (68)

Proof. By the Cauchy–Schwarz inequality

2N∑
k=N+1

|gk| ≤
[ ∞∑

k=N+1

|gk|2k2s

]1/2[ 2N∑
k=N+1

k−2s

]1/2

≤ L

[
2N∑

k=N+1

k−2s

]1/2

.

We obtain

2N∑
k=N+1

k−2s =
2N∑
k=1

k−2s −
N∑

k=1

k−2s ≤ 2N1−2s 21−2s − 1

1 − 2s
≤ 3N1−2s

for all s ∈ (−1/2,1/2),
∑2N

k=N+1 k−1 ≤ 2 ln 2, and

2N∑
k=N+1

k−2s =
∞∑

k=N+1

k−2s −
∞∑

k=2N+1

k−2s

≤ 2(N + 1)−2s+1 1

2s − 1

[
1 −

(
1

2

)2s−1]
≤ 2 ln 2(N + 1)−2s+1.

for all s > 1/2. Thus,
∑2N

k=N+1 |gk| ≤
√

3LN−s+1/2, ∀s > −1/2 as claimed in the first inequality in (68). Similarly,

2N∑
k=N+1

k|gk| ≤
[ ∞∑

k=N+1

|gk|2k2s

]1/2[ 2N∑
k=N+1

k−2s+2

]1/2

≤ L

[
2N∑

k=N+1

k−2s+2

]1/2

,

and
∑2N

k=N+1 k−2s+2 ≤ 4N−2s+3 for all s > −1/2 so that the second inequality in (68) follows. �

We establish some useful properties of functions JN and HN .

Lemma 8. (i) Function FN(·) is periodic on [−1/2,1/2], FN(t) = FN(−t).

(ii) FN(0) = N2 is the global maximum of FN . Moreover, FN is decreasing when 0 < t ≤ 1/N , and for N ≥ 4

max
|t |≥1/(5N)

FN(t) ≤ N2

3
. (69)

(iii) Function UN(·) is periodic on [−1/2,1/2], UN(t) = −UN(−t), UN(0) = UN(1/N) = 0, and for all N ≥ 2,
UN(t) > 0, for 0 < t < 1

N
.

(iv) For all N ≥ 6

max
t∈[0,1/N ]

UN(t) ≥ 3

2
N3 and max

t∈[1/N,1/2]
∣∣UN(t)

∣∣≤ N3.

(v) U ′
N(0) > 0, U ′

N(1/N) < 0, U ′
N(·) has a unique zero in (0,1/N), and for all N ≥ 6, we have

UN(t) ≥ 5

4
N4t, t ∈

[
0,

1

2N

]
, (70)

UN(t) ≥ 1

3
N4

(
1

N
− t

)
, t ∈

[
1

2N
,

1

N

]
.
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(vi) Let 0 < η < 1/2; then for all N ≥ 6

max
t∈[(1−η)/N,1/N ]

UN(t) ≤ 5ηN3.

Proof. (ii) We prove (69). For 0 ≤ t ≤ 1/6, sinπt ≥ 3t ; hence

max
1/(5N)≤|t |≤1/6

FN(t) ≤ max
1/(5N)≤|t |≤1/6

1

9π2t2
≤ 25N2

9π2
≤ N2

3
.

For 1
6 ≤ t ≤ 1/2, sinπt ≥ 1/2 hence

max
1/6≤t≤1/2

FN(t) ≤ 4 ≤ N2

3
.

(iii) The proof of this statement is immediate.
(iv) Differentiating, we have the following explicit formula for UN(·):

UN(t) = −2π
sinπtN

sinπt

[
N

cosπtN

sinπt
− sinπtN

sin2 πt
cosπt

]
(71)

= 2π
sinπtN

sin3 πt
[sinπtN cosπt − N cosπtN sinπt]. (72)

Another useful representation of UN(·) is easily obtained from the definition:

UN(t) = 2πi
2N∑

k=N+1

2N∑
j=N+1

(k − j) exp
[−2πi(k − j)t

]

= 2π

2N∑
k=N+1

2N∑
j=N+1

(k − j) sin
[
2π(k − j)t

]

= 4π

N−1∑
k=1

k(N − k) sin(2πkt). (73)

We have from (72)

max
t∈[0,1/N ]

UN(t) ≥ UN

(
1

2N

)
= 2π

1

sin3 π/(2N)
cosπ/(2N) ≥ 16

π2
N3 cos

π

12
≥ 3

2
N3.

For 0 ≤ t ≤ 1
6 , sinπt ≥ 3t , so that

max
1/N≤t≤1/6

|UN(t)| ≤ 2π max
1/N≤t≤1/6

1

sin2 πt

[
1

sinπt
+ N

]
≤ 2π

9
N2

(
N + N

3

)
= 8π

27
N3 ≤ N3, ∀ 1

N
≤ t ≤ 1

6
.

If 1
6 ≤ t ≤ 1

2 then sinπt ≥ 1/2; hence we obtain from (72)

max
t∈[1/6,1/2]

∣∣UN(t)
∣∣≤ 8π(N + 2) ≤ N3.

Combining these bounds we complete the proof of (iv).
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(v) The mentioned properties of U ′
N(·) follow from standard properties of the Fejer kernel. To prove (70) we use

(73). Note that sin(2πtk) > 0 for all k = 1, . . . ,N − 1 whenever t ∈ [0,1/(2N)]. Assume for simplicity that N is
even. Then

UN(t) ≥ 4π

N/2∑
k=1

k(N − k) sin(2πkt) ≥ 16πt

N/2∑
k=1

k2(N − k)

= 16πt

[
N2

24
(N + 2)(N + 1) − N2

64
(N + 2)2

]
≥ 5

12
πN4t,

as claimed.
Define RN(t) ≡ sinπtN cosπt − N cosπtN sinπt ; then by (71)

UN(t) = 2π
sinπtN

sin3 πt
RN(t).

Using the fact that sinα ≥ −(2/π)α + 2 for α ∈ [π/2,π] we obtain for t ∈ (1/(2N),1/N)

sinπtN

sinπt
≥ −(2/π)πtN + 2

sinπt
≥ 1

sin(π/N)
2N

(
1

N
− t

)
≥ 2

π
N2

(
1

N
− t

)
.

Note that RN(t) > 0, ∀t ∈ ( 1
2N

, 1
N

); in addition,

R′
N(t) = π(N2 − 1) sinπtN sinπt > 0, ∀ 1

2N
< t <

1

N
.

Thus RN(t) is monotone increasing in (1/(2N),1/N) so that

UN(t) ≥ 4N2
(

1

N
− t

)
RN(1/2N)

sin2(π/N)
≥ 4

π2
N4

(
1

N
− t

)
cos

π

12
≥ 1

3
N4

(
1

N
− t

)
,

as claimed.
(vi) We have from (73) for all t ∈ [− 1

2 , 1
2 ]

∣∣U ′
N(t)

∣∣ = 8π2
N−1∑
k=1

k2(N − k) cos(2πkt) ≤ 8π2

[
N

N−1∑
k=1

k2 −
N−1∑
k=1

k3

]
= 2

3
π2N2(N − 1)2.

Then because UN(1/N) = 0 and N ≥ 6

max
(1−η)/N≤t≤1/N

UN(t) ≤ 2

3
π2N2(N − 1)2 η

N
≤ 2

3
π2
(

5

6

)2

ηN3 ≤ 5ηN3.

This completes the proof of the lemma. �

Proof of Lemma 1. Clearly, Rε is minorated with the Bayesian risk rε , which corresponds to the prior distribution
P(j = 0) = P(1 ≤ j ≤ N) = 1/2:

rε = inf
ψ̂

[
1

2
E0ψ̂

2 + 1

2
Eπ(ψ − ψ̂)2

]
= inf

ψ̂

1

2
E0
[
ψ̂2 + Zπ(ψ − ψ̂)2]. (74)

Observe that ψ̄ = ψZπ

1+Zπ
is the minimizer of (74), so that

rε = ψ2

2
E0

[
Zπ

1 + Zπ

]
= ψ2

2
E0

[
Zπ

2 + (Zπ − 1)

]
≥ ψ2

4

(
1 − E0

(Zπ − 1)2

2

)
,
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as 1
1+x

≥ 1 − x for x > −1. �

Proof of Lemma 2. Indeed,

ex =
∞∑

j=0

xj

j ! ≤
n−1∑
j=0

xj

j ! + gn(x),

where gn(x) = xn

n! ex . By the Stirling formula,

gn(x) ≤ 1√
2πn

(
x

n

)n

en+x ≤ e−n

√
2πn

for 0 ≤ x ≤ n/9. �

Proof of Lemma 3. Let, for the sake of definiteness, e = (1, . . . ,1)T. We have

J�(e) = 1√
�

∞∑
m=−∞

∫ ∞

0
· · ·

∫ ∞

0

dx1

(1 + x1)2β
· · · dx�

(1 + x�)2β
δ(eTx − m)

= 1√
�

∞∑
m=0

m−1∑
j=0

∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
�−1

dx1

(1 + x1)2β
· · · dx�−1

(1 + x�−1)2β

∫ j+1

j

dx�

(1 + x�)2β
δ
(
eTx − m

)

≤
∞∑

m=0

m−1∑
j=0

1

(1 + j)2β

∫ ∞

0

dx1

(1 + x1)2β
· · ·

∫ ∞

0

dx�−1

(1 + x�−1)2β
1(m − j − 1 ≤ x1 + · · · + x�−1 ≤ m − j)

≤
∞∑

m=0

m−1∑
j=0

1

(1 + j)2β

∫ ∞

0

dx1

(1 + x1)2β
· · ·

∫ ∞

0

dx�−1

(1 + x�−1)2β
1(m ≤ x1 + · · · + x�−1 ≤ m + 1)

≤ (
1 + (2β − 1)−1)∫ ∞

0

dx1

(1 + x1)2β
· · ·

∫ ∞

0

dx�−1

(1 + x�−1)2β
≤ 2β

(2β − 1)�
. �

Proof of Lemma 5. Again, Rε is minorated with the Bayesian risk rε , which corresponds to the prior distribution
P(0 ≤ j ≤ N − 1) = 1/N :

rε = N−1 inf
θ̂

[
N∑

j=1

E(θj − θ̂ )2

]
= N−1 inf

θ̂
E0

[
N∑

j=1

Zj (θj − θ̂ )2

]
. (75)

Observe that θ̄ =
∑N

j=1 θj Zj∑N
j=1 Zj

is the minimizer of (75), and

rε = N−1E0

[
N∑

j=1

θ2
j Zj − (

∑N
j=1 θjZj )

2∑N
j=1 Zj

]
= N−3E0

[
N∑

j=1

j2Zj − (
∑N

j=1 jZj )
2∑N

j=1 Zj

]
.

Let now A = {ω ∈ Ω | Zπ ≥ 1 − δ}. By the Cauchy inequality,

rε ≥ N−3E0

[(
N∑

j=1

j2Zj − (
∑N

j=1 jZj )
2∑N

j=1 Zj

)
1(A)

]
.
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Note that

E0

N∑
j=1

j2Zj 1(A) =
N∑

j=1

j2P(A) − E0

N∑
j=1

j2(1 − Zj )1(A)

≥ N3

3
P(A) − N2E0

N∑
j=1

(1 − Zj )1(A) ≥ N3

3
P(A) − N3δ.

On the other hand,

E0
(
∑N

j=1 jZj )
2∑N

j=1 Zj

1(A) ≤ E0(
∑N

j=1 jZj )
2

N(1 − δ)
.

�
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