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Abstract. Given any finite or countable collection of real numbers Tj , j ∈ J , we find all solutions F to the stochastic fixed point
equation

W
d= inf

j∈J
TjWj ,

where W and the Wj , j ∈ J , are independent real-valued random variables with distribution F and
d= means equality in distribution.

The bulk of the necessary analysis is spent on the case when |J | ≥ 2 and all Tj are (strictly) positive. Nontrivial solutions are then
concentrated on either the positive or negative half line. In the most interesting (and difficult) situation T has a characteristic
exponent α given by

∑
j∈J T α

j
= 1 and the set of solutions depends on the closed multiplicative subgroup of R

> = (0,∞)

generated by the Tj which is either {1}, R
> itself or rZ = {rn: n ∈ Z} for some r > 1. The first case being trivial, the nontrivial fixed

points in the second case are either Weibull distributions or their reciprocal reflections to the negative half line (when represented
by random variables), while in the third case further periodic solutions arise. Our analysis builds on the observation that the
logarithmic survival function of any fixed point is harmonic with respect to Λ = ∑

j≥1 δTj
, i.e. Γ = Γ � Λ, where � means

multiplicative convolution. This will enable us to apply the powerful Choquet–Deny theorem.

Résumé. Étant donné un ensemble fini ou dénombrable de nombres réel Tj , j ∈ J , nous trouvons l’ensemble des solutions F de
l’équation fonctionelle

W
d= inf

j∈J
TjWj ,

où W et les Wj , j ∈ J , sont des variables aléatoires mutuellement indépendantes ayant la loi F et
d= signifie identité en loi.

L’essentiel de ce travail concerne le cas où |J | ≥ 2 et tous les Tj sont (strictement) positifs. Dans ce cas, toutes les solutions sont
concentrées soit sur (0,∞) soit sur (−∞,0). Dans la situation la plus intéressante (et plus difficile) T a un exposant charactéristique
α donné par

∑
j∈J T α

j
= 1, et l’ensemble des solutions dépend du sous-groupe multiplicatif de R

> = (0,∞) généré par les Tj ,

qui est {1},R
> lui-meme, ou rZ = {rn: n ∈ Z} pour quelque r > 1. Le premier cas etant trivial, les points fixes non-triviaux dans le

second cas sont ou bien les lois de Weibull ou bien leurs images réciproques sur (−∞,0) (si elles sont représentées par des variables
aléatoires). Dans le troisième cas, il y a des solutions périodiques supplémentaires. Notre analyse est basée sur l’observation que
le logarithme de la fonction de survie de chaque point fixe est harmonique relatif à Λ = ∑

j≥1 δTj
, c’est-à-dire Γ = Γ � Λ, où �

dénote la convolution multiplicative. Cela nous permettrons l’utilisation du theorème puissant de Choquet et Deny.
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1. Introduction

Given a finite or infinite sequence T = (Tj )j∈J of real numbers (thus J = {1, . . . , n} or J = N), consider the stochastic
fixed point equations

W
d= inf

j∈J
TjWj (1.1)

and

W
d= sup

j∈J

TjWj , (1.2)

for i.i.d. real-valued random variables W,W1,W2, . . . . The general goal is to determine the collections Fmin
T and Fmax

T

of all (distributional) fixed points of these equations, that is all distributions of W such that (1.1), respectively (1.2)
holds true. For the more general situation of random weights Tj , these equations are discussed in some detail by Jagers
and the second author [6], while Neininger and Rüschendorf [7] provide examples from the asymptotic analysis of
recursive algorithms and data structures where solutions of equations of this type emerge as limiting distributions.
More examples from various areas of applied probability which are related to max- or min-type fixed point equations
appear in a recent long survey paper by Aldous and Bandyopadhyay [1]. These include, for instance, the extinction
time of Galton–Watson processes (= height of Galton–Watson trees) and the extremal positions in as well as the range
of branching random walks.

To our best knowledge the problem of providing all fixed points of (1.1) or (1.2) for general random Tj is a
completely open one, and the present article contributes to it by giving a complete answer for the simpler case of
deterministic Tj . Our main motivation for a detailed analysis of this special case, though of interest in its own right,
is to learn about how to tackle the general situation. Work in progress gives rise to the conjecture that the solutions
of (1.1) or (1.2) for random Tj may be described as suitable mixtures of those for deterministic Tj where the mixing
distribution is itself a solution to a related fixed point equation. We refer to a future publication.

The trivial equivalence

L(W) ∈ F
max
T ⇐⇒ L(−W) ∈ F

min
T (1.3)

shows that we must only analyze (1.1). Here L(X) denotes the distribution of a random variable X. It further suffices
to consider the case where all weights Tj , j ∈ J , are nonzero because then the fixed points of the equation

W
d= 0 ∧ inf

j∈J
TjWj , (1.4)

that is of (1.1) extended by a zero weight, are just those of (1.1) concentrated on (−∞,0]. Direct inspection shows
that only F = δ0, the Dirac measure at 0, solves (1.4) if all Tj are negative. Hence the nontrivial analysis of (1.1)
reduces to the following three cases:

(C1) all Tj , j ∈ J , are positive (> 0);
(C2) all Tj , j ∈ J , are negative;

(C3) both, J> def= {j ∈ J : Tj > 0} and J< def= {j ∈ J : Tj < 0} are nonempty.

Cases (C2) and (C3) will be dealt with rather shortly in the final section, the latter by drawing on the results for (C1) in
an appropriate manner. As for (C2), we will obtain that FT = {δ0} if J = N, while for finite J our result only provides
a characterization of the solutions which relates them to another stochastic fixed point equation of minimax-type (see
(5.1) and (5.3)). In a special case, namely T1 = · · · = Tn = c < −1, this minimax-type equation also shows up in the
context of randomized game tree evaluation for which Khan, Devroye and Neininger [2] could show that a nontrivial
fixed point exists. Recent work of the first author with Meiners [3] on the very same equation but for general Tj even
shows that the solution set can be quite large. However, his methods are very different from those employed here. For
now we are thus left with the case (C1) and therefore assume until further notice that all Tj are positive.
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In the following we will always write FT instead of Fmin
T . For our convenience, it is also stipulated as quite common

in probability theory that the same symbol F is used for a distribution on R as well as for its left continuous distribution
function, so F(t) means the same as F((−∞, t)). In order to gain further insight into the posed problem and to provide
an outline of the necessary analysis we begin with some basic observations the simplest one being that FT always
contains the trivial solution δ0. If |J | = 1 there is clearly no other fixed point unless T1 = 1. In the latter case Eq. (1.1)
becomes trivial and FT consists in fact of all distributions on R. We hence make the standing assumption:

|J | ≥ 2

hereafter. A fixed point is called nontrivial if it is not a Dirac measure δc for some c ∈ R.
A good starting point made upon direct inspection is that the exponential distributions Exp(c), c > 0, are nontrivial

fixed points whenever
∑

j∈J T −1
j = 1. We will show in Section 4 of this article that they are then indeed the only

ones if the multiplicative group generated by the Tj (denoted as GΛ below) is R
> def= (0,∞), whereas further periodic

solutions exist otherwise. They will also be defined there. With this result at hand the situation where∑
j∈J

T −α
j = 1 (1.5)

for some (necessarily unique) α > 0 is also settled because (1.1) is equivalent to

Wα d= inf
j∈J

T α
j Wα

j (1.6)

for any α > 0, thus

FT = (FT α )1/α def= {
L(W): L

(
Wα

) ∈ FT α

}
(1.7)

for any α > 0, where T α def= (T α
j )j∈J . As in [4], the unique −α solving (1.5) will be called the characteristic exponent

of T . Note that L(W) = Weib(c,α), the Weibull distribution with distribution function (1 − exp(−ctα))1(0,∞)(t), if
L(Wα) = Exp(c).

Equation (1.1) with positive Tj may be rewritten in terms of the distribution function F(t)
def= P(W < t) as

1 − F(t) = P(TjWj ≥ t for all j ∈ J ) =
∏
j∈J

(
1 − F

(
t

Tj

))
, t ∈ R. (1.8)

Choosing t = 0 and using |J | ≥ 2, we arrive at the basic conclusion that

1 − F(0) ≤ (
1 − F(0)

)2

that is F(0) ∈ {0,1}. Since furthermore

1 − F(t+) ≤ P(TjWj > t for all j ∈ J ) =
∏
j∈J

(
1 − F

((
t

Tj

)
+

))
, t ∈ R, (1.9)

we also infer F(0+) ∈ {0,1} and thus F(0+)−F(0) ∈ {0,1}. Any fixed point F 	= δ0 is hence necessarily continuous

at 0 and concentrated on either R
> (positive solution) or R

< def= (−∞,0) (negative solution). Denote by F
+
T and F

−
T

the set of, respectively, positive and negative solutions to (1.1) and notice that the trivial fixed point δ0 is contained

in neither of these two sets. An application of the idempotent transformation t 
→ − 1
t

from R∗ def= R \ {0} to R∗
immediately shows that L(W) 	= δ0 is a solution to (1.1) iff L(−1/W) is a solution to the very same equation with
weight vector T −1 instead of T , i.e.

FT \ {δ0} =
{

L
(

− 1

W

)
: L(W) ∈ FT −1 \ {δ0}

}
. (1.10)
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Moreover, a negative solution F ∈ FT always corresponds to a positive one in FT −1 , so

F
−
T =

{
L

(
− 1

W

)
: L(W) ∈ F

+
T −1

}
. (1.11)

It therefore suffices to determine the positive solutions to (1.1) for arbitrary positive weight vector T .
The further organization of this article is as follows. Section 2 is mainly devoted to a discussion of all those cases

where F
+
T is fairly simply identified. At the end of Section 2 we will be left with only two cases, namely when

infj∈J Tj > 1 and

either |J | < ∞ or J = N, lim
j→∞Tj = ∞, (1.12)

which require indeed a deeper analysis given in Section 3. Its main result, Proposition 3.3, provides us with the crucial
information that under (1.12) the characteristic exponent of T necessarily exists and is negative unless F

+
T is empty.

The analysis further shows that any F ∈ F
+
T must have unbounded support which indeed forms its most intricate part.

We thus conclude that νF (t)
def= − log(1 − F(t)) defines a Radon measure on R

> which, by (1.8), satisfies

νF (t) =
∑
j∈J

νF

(
t

Tj

)
= νF � Λ(t), t ∈ R

>, (1.13)

and is hence Λ-harmonic, where Λ
def= ∑

j∈J δTj
and � means multiplicative convolution. This crucial observation will

bring Choquet theory into play in a very similar manner as in [4] for another type of stochastic fixed point equation,
namely

W
d=

∑
j∈J

TjWj (1.14)

for a sequence T = (Tj )j∈J of nonzero real-valued numbers. The powerful Choquet–Deny theorem [5] will enable us
to obtain very explicit information on the possible form of νF and thus F which is subsequently converted into a full
description of F

+
T which can be found in Section 4. Having solved the case (C1) completely, the final section provides

the results for the simpler cases (C2) and (C3).

2. Basic results and simple cases

As already announced in the Introduction, the present section will collect some basic results about solutions to (1.1)
including a discussion of those cases where F

+
T , or even FT , is easily determined. Of course, |J | ≥ 2 will always be

in force throughout without further mention.
Given a distribution F on R

>, we always use the same symbol for its left continuous distribution function and put

further F(t)
def= 1 − F(t) and

νF (t)
def= − logF(t) (2.1)

for t ∈ R. Notice that νF (t) is finite, nondecreasing and left continuous on [0, uF ) and positive on (lF , uF ), where

lF
def= sup{t ≥ 0: F(t) = 0} and uF

def= inf{t ≥ 0: F(t) = 1}. Moreover, limt↓lF νF (t) = 0 and limt↑uF
νF (t) = ∞.

Consequently, νF defines a Radon measure on (0, uF ).

Defining L(v)
def= ∏n

j=1 Tvj
for v = (v1, . . . , vn) ∈ Jn and n ≥ 1, an iteration of (1.1) leads to

W
d= min

v∈Jn
L(v)W(v), (2.2)

for each n ≥ 1, where the W(v) are i.i.d. copies of W . This is the weighted branching representation of L(W) because
the L(v) may be interpreted as the total weight of the branch ∅ → (v1) → (v1, v2) → ·· · → v = (v1, . . . , vn) in the
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Ulam–Harris tree
⋃

n≥0 Jn, where J 0 def= {∅}. An edge from v to (v, j), j ∈ J , carries the weight Tj , and the total
weight of a branch is obtained by multiplication. The corresponding equation for the distribution function F of W

takes the form (compare (1.8))

F(t) =
∏
v∈Jn

F

(
t

L(v)

)
, t ∈ R. (2.3)

Our first lemma shows that infj∈J Tj ≥ 1 forms a necessary condition for the existence of positive solutions to
(1.1).

Lemma 2.1. If infj∈J Tj < 1 then F
+
T = ∅.

Proof. W.l.o.g. suppose T1 < 1. Given any F ∈ FT , (2.3) implies

F(t) =
∏
v∈Jn

F

(
t

L(v)

)
≤ F

(
t

T n
1

)

for all n ≥ 1 and t > 0, whence

F(t) ≤ lim
n→∞F

(
t

T n
1

)
= 0

for all t > 0, i.e. F(0+) = 1. �

By combining Lemma 2.1 with (1.11), we see that supj∈J Tj > 1 implies F
−
T = ∅, and with this observation the

following corollary is immediate.

Corollary 2.2. Suppose infj∈J Tj ≥ 1. Then FT = {δc: c ∈ R}, if Tj = 1 for all j ∈ J , while FT = {δ0} ∪ F
+
T , other-

wise.

In view of the previous results it is clear that positive solutions to (1.1) can only occur if infj∈J Tj ≥ 1 which is
therefore assumed hereafter unless stated otherwise. A further analysis requires the distinction of several subcases
listed as (A1)–(A6) below:

(A1) |{j ∈ J : Tj = 1}| ≥ 2.
(A2) J = N, |{j ∈ J : Tj = 1}| ≤ 1 and lim infj→∞ Tj = 1.

(A3) |{j ∈ J : Tj = 1}| = 1 and infj∈J ∗ Tj > 1, where J ∗ def= {j ∈ J : Tj 	= 1}.
(A4) J = N, infj∈J Tj > 1 and lim infj→∞ Tj < ∞.
(A5) |J | < ∞ and infj∈J Tj > 1.
(A6) J = N, infj∈J Tj > 1 and limj→∞ Tj = ∞.

Plainly, (A1)–(A3) are subcases of infj∈J Tj = 1, while (A4)–(A6) are subcases of infj∈J Tj > 1. As for
(A1)–(A4), a complete description of F

+
T is rather easily obtained and stated in the following proposition. The charac-

teristic exponent of T and the use of Choquet theory enter for the remaining cases (A5) and (A6), the last case being
the most difficult one as involving harmonic analysis on trees. The latter will be provided in Section 3 followed by the
description of F

+
T in Section 4.

Proposition 2.3. Suppose infj∈J Tj ≥ 1.

(a) If (A1) or (A2) holds true, then F
+
T = {δc: c > 0}.

(b) If (A3) holds true, then F
+
T consists of all distributions F with 0 < lF ≤ uF < ∞ such that infj∈J ∗ Tj ≥ uF /lF

(and thus includes {δc: c > 0}).
(c) If (A4) holds true, then F

+
T is empty.
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Proof. (a) Given (A1), we infer from (1.8) for any F ∈ F
+
T that

F(t) ≤ F(t)2

and thus F(t) ∈ {0,1} for all t > 0, that is F = δc for some c > 0. If (A2) holds true then F ∈ F
+
T still satisfies the

slightly weaker inequality

F(t) ≤ F(t − ε)2

for all t > 0 and ε > 0 which leads to the same conclusion upon letting ε tend to 0 and using the left continuity of F .

(b) W.l.o.g. let T1 = 1 and put c
def= infj≥2 Tj . If F is any distribution with 0 < lF ≤ uF < ∞ such that c ≥ uF /lF

and if W1,W2, . . . are i.i.d. with distribution F then we obviously have

inf
j≥2

TjWj ≥ clF ≥ uF ≥ W1 = T1W1 a.s.

and thus

inf
j≥1

TjWj
d= W1,

i.e. F ∈ F
+
T . Conversely, given any positive fixed point F , Eq. (1.8) yields for each 0 < t < uF (⇒ F(t) > 0)

F (t) = F(t)
∏
j≥2

F

(
t

Tj

)

and thereby (recalling the left continuity of F )

1 =
∏
j≥2

F

(
t

Tj

)
≤ inf

j≥2
F

(
t

Tj

)
= F

(
t

c

)
,

hence 0 < uF < ∞ and lF ≥ uF /c > 0.

(c) Suppose there is a positive fixed point F . Put c1
def= infj≥1 Tj , c2

def= lim infj→∞ Tj (finite by assumption) and

Jε
def= {j ≥ 1: Tj ≥ c2 − ε} for any ε ∈ (0, c2 − 1). As F 	= δ0 there must be a t > 0 with F(t) > 0. Using |Jε| = ∞

we infer from (1.8)

0 < F(t) ≤
∏
j∈Jε

F

(
t

Tj

)
≤ F

(
t

c2 − ε

)n

for every n ≥ 1 and thus F( t
c2−ε

) = 1, which in turn entails lF > 0. On the other hand we may then pick η > 0 such

that lF +η
c1

≤ lF and are thus led to the contradiction

1 > F(lF + η) =
∏
j≥1

F

(
lF + η

Tj

)
≥

∏
j≥1

F

(
lF + η

c1

)
= 1.

Hence a positive fixed point cannot exist. �

Let us finally mention that in each of the four considered cases (A1)–(A4) the characteristic exponent of T does
obviously not exist.
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3. The characteristic exponent of T

The present section deals with the most interesting cases (A5) and (A6) and provides the necessary results needed
to determine F

+
T to be done in Section 4. Recall from the Introduction that Λ = ∑

j∈J δTj
, νF (t) = − logF(t) and

that, by (1.13), νF is Λ-harmonic. Further note that infj∈J Tj > 1 implies that any positive solution is necessarily
nontrivial. The following lemma further shows that it must carry mass in any neighborhood of 0.

Lemma 3.1. If (A5) or (A6) holds then any F ∈ F
+
T satisfies lF = 0. Moreover, (A5) also implies uF = ∞.

Proof. Put c
def= infj∈J Tj . Equation (1.1) with W,W1,W2, . . .

d= F , the definition of lF and

P(W ≥ clF ) = P

(
inf
j∈J

TjWj ≥ clF

)
= 1

together imply lF ≥ clF and thus lF = 0 because c > 1.
If (A5) and thus |J | < ∞ holds true then furthermore, by (2.3),

F(t) =
∏
v∈Jn

F

(
t

L(v)

)
≥ F

(
t

cn

)|J |n

for all t > 0 and n ≥ 1. As lF = 0 we can choose n = n(t) so large that F(t/cn) > 0 and thus F(t) > 0. This proves
uF = ∞. �

That under (A6) any F ∈ F
+
T satisfies uF = ∞, too, is more difficult to verify and in fact derived in Proposition 3.3

below proved by harmonic analysis. The importance of uF = ∞ stems from the fact that only then the Λ-harmonic
νF defines a Radon measure on R

> which in turn forms a crucial requirement for the use of Choquet theory needed
to identify the form of νF and thus F .

Define the function m : R → (0,∞] by

m(β)
def=

∑
j∈J

T
β
j . (3.1)

Note that m is continuous and, as all Tj are > 1, strictly increasing on {β: m(β) < ∞} with m(0) = |J | ≥ 2. Hence
the characteristic exponent of T , if it exists, is necessarily unique and negative because m(0) > 1. If (A5) holds, m is
everywhere finite with limβ→−∞ m(β) = 0 and limβ→∞ m(β) = ∞. Consequently, the characteristic exponent of T

exists. Turning to (A6), the latter may fail but Proposition 3.3 shows that then F
+
T is empty.

With view to the subsequent applications of the Choquet–Deny theorem [5] we continue with the collection of some
necessary facts. Let GΛ denote the closed multiplicative subgroup of R

> generated by Λ. Our standing assumption
|J | ≥ 2 excludes the trivial subgroup {1} so that either

GΛ = R
> (continuous case),

or

GΛ = rZ for some r > 1, where rZ def= {
rz: z ∈ Z

}
(r-geometric case).

The Haar measure (unique up to multiplicative constants), denoted as λλGΛ
hereafter, equals |u|−1 du in the continuous

case and counting measure in the r-geometric one. Let E(GΛ) be the set of characters of GΛ, that is the set of all
continuous positive functions e : GΛ → R> satisfying e(xy) = e(x)e(y) for all x, y ∈ GΛ. Of particular interest for
our purposes is the subset

E1(Λ)
def=

{
e ∈ E(GΛ):

∫
e(x−1)Λ(dx) = 1

}
.
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It is not difficult to check that in both cases the characters are given by the functions eβ(x)
def= |x|−β , β ∈ R, so

E(GΛ) = E is independent of Λ. Moreover, we see upon noting
∫

eβ(x−1)Λ(dx) = ∑
j≥1 T

β
j = m(β) that E1(Λ)

is either void or consists of the single element e−α , −α < 0 the characteristic exponent of T . Hence, E1(Λ) = {e−α}
always holds true in the case (A5), whereas E1(Λ) = ∅ may happen under (A6).

Now consider a Radon measure μ on R
> and suppose that μ is Λ-harmonic, defined by μ = μ � Λ. Here � means

multiplicative convolution, that is∫
f (x)μ � Λ(dx)

def=
∫ ∫

f (xy)μ(dx)Λ(dy)

for any measurable f : GΛ → [0,∞). The set of all Λ-harmonic measures is a convex cone. By the Choquet–Deny
theorem [5] we infer that any nonzero Λ-harmonic μ has a unique integral representation

μ =
∫

μe(y
−1·)μ(de,dy),

where μe(dx)
def= e(x)λλGΛ

(dx) for e ∈ E and μ is a finite measure on E1(Λ) × R
>/GΛ endowed with the Baire

σ -field. If E1(Λ) = ∅ there is no Λ-harmonic measure. Otherwise, E1(Λ) = {e−α} so that μ must equal c(δe−α ⊗ μ)

for some probability measure μ on the factor group R
>/GΛ and a c > 0. This means that

μ(dx) =
∫

R>/GΛ

c

(
x

y

)α

λλyGΛ
(dx)μ(dy). (3.2)

Of course, if GΛ = R
> then R

>/GΛ = {1}, μ = δ1 and thus

μ(dx) = cxα−11R>(x)dx (3.3)

for some c > 0. In the discrete case where GΛ = rZ and R
>/GΛ = [1, r) for some r > 1 it follows that

μ(dx) = c

∫
[1,r)

∑
n∈Z

rnαδyrn(dx)μ(dy) (3.4)

for some c > 0 and a probability measure μ on [1, r).
The next lemma is stated for later reference and provides us with the general form of νF in the simpler case (A5).

Lemma 3.2. If (A5) holds, then the characteristic exponent −α < 0 of T exists and νF is of the form (3.3) or (3.4),
i.e.

νF (dx) =
{

c1(0,∞)(x) xα−1 dx if GΛ = R
>,∫

[1,r)

∑
n∈Z

crnαδyrn(dx)F̂ (dy) if GΛ = rZ for r > 1,
(3.5)

for some c > 0 (and a probability measure F̂ on [1, r) in the discrete case).

Proof. We already noted above that T possesses a unique negative characteristic exponent −α because m(0) =
|J | ≥ 2 and J is finite. Hence (3.5) is a direct consequence of (3.3) and (3.4) recalling once more that νF is a
Λ-harmonic Radon measure. �

Proposition 3.3. If (A6) holds and F
+
T is not empty, then the characteristic exponent of T exists and any F ∈ F

+
T

satisfies uF = ∞.

Proof. Since, by assumption, limj→∞ Tj = ∞ it is no loss of generality to assume that 1 < T1 ≤ T2 ≤ · · · . Let
F ∈ F

+
T . Then lF = 0, by Lemma 3.1, and uF > 0. For t ∈ (0, uF ) and λ ≥ 0 put

g(λ, t)
def= logF(λt)

logF(t)
= νF (λt)

νF (t)
(3.6)
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and note that g(λ, t) = ∞ if uF < ∞ and λ ≥ uF /t . To show that uF = ∞ and thus g(λ, t) is always finite will be
one of the difficult tasks of this proof. By definition of lF and uF , for each t ∈ (0, uF ):

(1) g(0, t) = 0, g(1, t) = 1 and 0 < g(λ, t) ≤ 1 for 0 < λ < 1.
(2) g(·, t) is left continuous and nondecreasing on [0, uF /t).

The fixed point Eq. (1.8) (or (1.13)) implies for all t ∈ (0, uF ) and λ ≥ 0

g(λ, t) =
∑
j≥1

g

(
λ

Tj

, t

)
=

∑
j≥1

g

(
λ,

t

Tj

)
g

(
1

Tj

, t

)
(3.7)

as well as

∑
j≥1

g

(
1

Tj

, t

)
= 1. (3.8)

More generally, we have upon iteration and using the weighted branching representation described in Section 2,

g(λ, t) =
∑
|v|=n

g

(
λ

L(v)
, t

)
=

∑
|v|=n

g

(
λ,

t

L(v)

)
g

(
1

L(v)
, t

)
(3.9)

and

∑
|v|=n

g

(
1

L(v)
, t

)
= 1 (3.10)

for every n ≥ 1, where |v| denotes the length of the vector v ∈ V
def= {∅} ∪ ⋃

n≥1 N
n. We further use vj and vw as

shorthand notation for (v, j) and (v,w) if j ≥ 1 and v,w ∈ V.
Fix any t ∈ (0, uF ) and let M = (Mn)n≥0 be a Markov chain on a probability space (Ω,U,P) with state space V

and 1-step transition kernel P = Pt defined by

P
(
v, {vj}) = g

(
1

Tj

,
t

L(v)

)
, j ≥ 1, v ∈ V. (3.11)

One can easily check that the n-step transition kernel P n satisfies

P n
(
v, {vw}) = g

(
1

L(w)
,

t

L(v)

)
, j ≥ 1, v,w ∈ V, |w| = n. (3.12)

Let P be such that P(M0 = v) > 0 for all v ∈ V and put Pv
def= P(·|M0 = v). Since, for any v ∈ V and λ ∈

[0, uF L(v)/t),

Evg

(
λ,

t

L(M1)

)
=

∑
j≥1

g

(
λ,

t

L(v)Tj

)
g

(
1

Tj

,
t

L(v)

)
= g

(
λ,

t

L(v)

)
, (3.13)

and since L(w) ≥ T
|w|
1 → ∞ as |w| → ∞, we see that (g(λ, t/L(Mn)))n≥n(λ) forms a (bounded) Pv-martingale for

each v ∈ V and λ ≥ 0, where n(λ) is chosen so large that λ < uF T
n(λ)
1 /t ≤ uF L(Mn(λ))/t . Denote by Y(λ) its a.s.

and L1-limit under P. Notice that

EvY (λ) = g

(
λ,

t

L(v)

)
(3.14)
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for every v ∈ V and λ ∈ [0, uF L(v)/t). By using the monotonicity and left continuity of g(·, t), it is not difficult to
verify that outside a P-null set N

lim
n→∞g

(
λ,

t

L(Mn)

)
= Y(λ) P-a.s.

holds simultaneously for all λ ≥ 0, and Y is a finite, nondecreasing, left continuous random function on N c satisfying
Y(0) = 0 and Y(1) = 1. We claim that this in combination with (3.7) and (3.14) implies

Y(λ) =
∑
j≥1

Y

(
λ

Tj

)
P-a.s. (3.15)

for all λ ≥ 0. Indeed, we have by (3.7) and Fatou’s lemma

∑
j≥1

Y

(
λ

Tj

)
≤ lim

n→∞
∑
j≥1

g

(
λ

Tj

,
t

L(Mn)

)
= lim

n→∞g

(
λ,

t

L(Mn)

)
= Y(λ) P-a.s.

(since t
L(Mn)

∈ (0, uF ) and λ ∈ [0,
uF L(Mn)

t
) for all n large enough), while (3.14) and (3.7) give

∑
j≥1

EvY

(
λ

Tj

)
=

∑
j≥1

g

(
λ

Tj

,
t

L(v)

)
= g

(
λ,

t

L(v)

)
= EvY (λ)

for all (v,λ) ∈ V × [0,∞) having λ < L(v)/t . We infer

Pv

(
Y(λ) =

∑
j≥1

Y

(
λ

Tj

))
= 1

for all such v and λ. In order to obtain the very same for all (v,λ) ∈ V × [0,∞) (i.e. (3.15)), use that L(v) → ∞ as
|v| → ∞ and that, by (3.12), the càglàd process Y = (Y (λ)λ≥0 satisfies

Pv(Y ∈ ·) =
∑

|w|=n

P n
(
v, {vw})Pvw(Y ∈ ·) =

∑
|w|=n

g

(
1

L(w)
,

t

L(v)

)
Pvw(Y ∈ ·),

where g( 1
L(w)

, t
L(v)

) > 0 for all v,w ∈ V. Consequently, fixing any v ∈ V and λ ≥ 0, we conclude upon choosing n so
large that λ < L(vw)/t for all w with |w| ≥ n

Pv

(
Y(λ) =

∑
j≥1

Y

(
λ

Tj

))
=

∑
|w|=n

g

(
1

L(w)
,

t

L(v)

)
Pvw

(
Y(λ) =

∑
j≥1

Y

(
λ

Tj

))
= 1.

We must still prove that Y(λ) > 0 P-a.s. for all λ > 0. But

1 = Y(1) =
∑
j≥1

Y

(
1

Tj

)
a.s.

together with Y(1/T1) = supj≥1 Y(1/Tj ) P-a.s. implies Y(1/T1) > 0 and thus Y(λ) > 0 P-a.s. for all λ ≥ 1/T1.
Repeating the above argument with Y(1/T1) instead of Y(1) gives Y(1/T 2

1 ) > 0 and thus Y(λ) > 0 P-a.s. for all
λ ≥ 1/T 2

1 . Continuing this way the assertion easily follows.
The main conclusion from the previous analysis is that for P

M almost every infinite path x = v1v2 · · · ∈ ∂V we

have upon setting Ln(x)
def= L(v1 · · ·vn) for n ≥ 1 and L0(x)

def= 1 that

G(λ,x)
def= lim

n→∞g

(
λ,

t

Ln(x)

)
(3.16)
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exists for all λ ≥ 0, is nondecreasing, left continuous with G(0, x) = 0, G(1, x) = 1 and 0 < G(λ,x) < ∞ for all
λ > 0. Moreover, it satisfies

G(λ,x) =
∑
j≥1

G

(
λ

Tj

, x

)
= G(·, x) � Λ(λ)

for all λ ≥ 0 which means that G(·, x), viewed as a Radon measure on R
>, is Λ-harmonic. Hence an application of

the Choquet–Deny theorem ensures that the characteristic exponent −α of T exists and that G(·, x) is of the form
described in (3.3) or (3.4). This means that

G(λ,x) = c(x)λα,

if GΛ = R
>, and

G(λ,x) = h(λ, x)λα,

if GΛ = rZ for some r > 1. Here h(·, x) : R> → [0,∞) denotes a multiplicatively r-periodic, left continuous function
such that h(λ, x)λα is nondecreasing in λ (see at the beginning of Section 4 for details). The normalization G(1, x) = 1
implies c(x) ≡ 1 if GΛ = R

> and h(1, x) ≡ 1 if GΛ = rZ. Use the L1-convergence of g(λ, t/L(Mn)) to Y(λ) for
each 0 ≤ λ < uF /t to infer

g(λ, t) = lim
n→∞ E∅g

(
λ,

t

L(Mn)

)
= E∅Y(λ) =

{
λα if GΛ = R>,
h(λ)λα if GΛ = rZ,

(3.17)

where h(λ)
def= E∅h(λ, t/L(M∞)) and M∞

def= limn→∞ Mn in the usual topology on V ∪ ∂V. It is now an easy step to
show that (3.17) actually holds for all λ ≥ 0. We do so only for the case GΛ = R

> because the modifications in the
discrete case are very similar. By the first equality in (3.6),

g(λT1, t) =
∑
j≥1

g

(
λT1

Tj

, t

)
=

∑
j≥1

(
λT1

Tj

)α

= (λT1)
α
∑
j≥1

T −α
j = (λT1)

α,

for all 0 ≤ λ < uF /t , where we have used that T1 = minj Tj and
∑

j T −α
j = 1. So g(λ, t) satisfies (3.17) for all

0 ≤ λ < uF T1/t . An inductive argument yields (3.17) for all 0 ≤ λ < uF T n
1 /t and n ≥ 1 and thus for all λ ≥ 0.

A particular consequence is that νF (λt) < ∞ for all λ ≥ 0 and therefore uF = ∞. The proof is herewith com-
plete. �

We finally note as a consequence of the previous proof that νF is again of the form (3.5) in the case (A6).

4. Case (C1): Results in the nontrivial subcases

In order to state our result for the remaining cases (A5) and (A6) we must briefly introduce a class of distributions
which turn up there in cases where GΛ = rZ for some r > 1. A function h : R> → [0,∞) is called multiplicatively
r-periodic for r > 1 if h(rt) = h(t) for all t > 0. Let H(r,α) be the class of all left continuous functions of this type
such that h(t)tα is nondecreasing.

Definition 4.1. Let r > 1, α > 0 and h ∈ H(r,α). The distribution F on R> with survival function

F(t) = exp
(−h(t)tα

)
, t > 0, (4.1)

is called r-periodic Weibull distribution with parameters h and α, in short r-Weib(h,α). In case α = 1 it is also called
r-periodic exponential distribution with parameter h, in short r-Exp(h).
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These distributions may be viewed as periodic variants of their familiar continuous counterparts on R>. The par-
ticular choice h ∈ H(r,α), defined by

h(t)
def= c

(
1 + (r − 1)1(y,r)(t)

)
t−α, c > 0, t ∈ [1, r), (4.2)

for any y ∈ [1, r) leads to the discrete Weibull distribution on yrZ with parameters c and α and survival function

F
(
yrn

) = exp
(−crnα

)
, n ∈ Z.

But the ordinary continuous Weibull distribution Weib(c,α) is also covered by the above definition because h ≡ c is
an element of H(r,α). Let us finally note that

L(W) = r-Weib(h,α) ⇐⇒ L
(
Wα

) = rα- Exp(h) (4.3)

for all r,α and h ∈ H(r,α), where h1/α(t)
def= h(t1/α) ∈ H(rα,1).

We are now ready to give all positive solutions to (1.1) if T possesses a characteristic exponent, i.e. under (A5) or
(A6). For convenience we put

Exp(c) = Weib(c,α) = r- Exp(h) = r-Weib(h,α)
def= δ0

if c = 0, respectively h ≡ 0.

Theorem 4.2. Let |J | ≥ 2, infj∈J Tj > 1 and suppose that T has the characteristic exponent −α < 0, i.e.∑
j∈J T −α

j = 1.

(a) If GΛ = R
>, then

F
+
T = {

Weib(c,α): c > 0
} [= {

Exp(c): c > 0
}

if α = 1
]
.

(b) If GΛ = rZ for some r > 1, then

F
+
T = {

r-Weib(h,α): h ∈ H(r,α)
} [= r-Exp(h) if α = 1

]
for some h ∈ H(r,α).

Proof. Note first that, for any β > 0, T β has characteristic exponent −βα, and FT = (FT β )1/β (see (1.7)). Therefore
we can assume without loss of generality that T has characteristic exponent −1. Let F be any nontrivial fixed point.
It then follows from Lemma 3.2 or Proposition 3.3 that, for some c > 0,

νF (dx) =
{

c1(0,∞)(x)dx if GΛ = R
>,∫

[1,r)

∑
n∈Z

crnδyrn(dx)F̂ (dy) if GΛ = rZ for r > 1,

see (3.5), and thus

νF (t) =
{

ct if GΛ = R
>,∫

[1,r)

∑
n: rn<t/y crnF̂ (dy) if GΛ = rZ for r > 1,

for all t > 0. Since F(t) = exp(−νF (t)) we infer F = Exp(c) if GΛ = R
>. In the discrete case GΛ = rZ write

t = rm+β and y = rγ , where m ∈ Z and β,γ ∈ [0,1). So m = �logr t� and β = logr t − �logr t�. Then

νF (t) =
∫

[1,r)

∑
n<m+β−γ

crnF̂ (dy) = c

(∫
[1,rβ )

∑
n≤m

rnF̂ (dy) +
∫

[rβ ,r)

∑
n<m

rnF̂ (dy)

)

= crmF̂
([

1, rβ
)) + crm

r − 1
= h(t),
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where

h(t)
def= cr−β

(
F̂

([
1, rβ

)) + 1

r − 1

)
, t > 0,

is obviously an element of H(r,1). Consequently, F = r-Exp(h). Conversely, it is immediately checked that any
r-periodic exponential distribution with parameter h ∈ H(r,1) is indeed a solution to (1.1). This finishes the proof of
the theorem. �

5. Solutions for the cases (C2) and (C3)

As announced in the Introduction we will finally treat the problem of finding the solutions of Eq. (1.1) for a vector T

containing only negative components Tj (case (C2)), or positive as well as negative ones (case (C3)). In the latter case
this is easily accomplished by an appropriate use of the results in the case of positive Tj , see Theorem 5.2. However,
we begin with a result in the case (C2).

Theorem 5.1. Suppose all Tj , j ∈ J , be negative.

(a) If J = {1, . . . , n} for some n ≥ 1, let α be the unique solution of α + αn = 1 in (0,1). Then FT \ {δ0} consists of
all αG + αn

UT G where G is any distribution on R
< satisfying

1 − αG(t) =
n∏

i=1

(
1 −

n∏
j=1

αG

(
t

TiTj

))
(5.1)

for t ≤ 0 and the distribution UT G on R
> is defined by

UT G(t)
def= 1 −

n∏
j=1

G

(
t

Tj

+
)

, t > 0. (5.2)

(b) If J = N, then FT = {δ0}.

Given i.i.d. random variables W,W(1,1),W(1,2), . . . ,W(n,n) with common distribution H
def= αG+ (1−α)δ0 =

αG + αnδ0, it is easily verified that Eq. (5.1) corresponds to the stochastic fixed point equation

W
d= min

1≤i≤n
max

1≤j≤n
TiTjW(i, j). (5.3)

As a consequence, an analysis of Eq. (1.1) with negative Tj is very different from that for the case where all Tj are
positive. In support of this statement we wish to point out that Theorem 5.1(a), though providing a characterization
of the solutions in the case (C2) if J is finite, leaves open the question whether such solutions do exist at all. An
answer does indeed require very different techniques from those used here and can be found in the recent article
[3]. However, as already mentioned in the Introduction, for the special case J = {1, . . . , n} for some n ≥ 2 and
T1 = · · · = Tn = c < −1, Khan, Devroye and Neininger [2] could show in the context of randomized game tree
evaluation that a nontrivial fixed point exists.

Proof of Theorem 5.1. Given negative Tj , Eq. (1.1) in terms of the distribution function F(t)
def= P(W < t) takes the

form

F(t) = P(TjWj ≥ t for all j ∈ J )

= P

(
Wj ≤ t

Tj

for all j ∈ J

)
=

∏
j∈J

F

(
t

Tj

+
)

, t ∈ R. (5.4)
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If J is finite, then also

F(t+) = P

(
Wj <

t

Tj

for all j ∈ J

)
=

∏
j∈J

F

(
t

Tj

)
, t ∈ R. (5.5)

Choosing t = 0 in (5.4), we see that

F(0) = F(0+)|J | (5.6)

under the usual convention in case |J | = ∞ that the right hand side equals 1, if F(0+) = 1, and 0, otherwise.

(a) Suppose J = {1, . . . , n} and δ0 	= F ∈ FT . Put α
def= F(0), β

def= F(0+) and γ
def= F(0+) − F(0) = F({0}), so

α + β + γ = 1. By (5.5), β = αn, while β + γ = (α + γ )n follows from (5.6). Both equations combined give γ = 0.
Consequently, α + β = 1 and β = 1 − α = αn which shows that α = P(W < 0) is the unique solution of α + αn = 1
in (0,1).

Next use (5.5) to see that

P(W ≥ t |W > 0) = F(t)

β
=

n∏
j=1

F((t/Tj )+)

α
=

n∏
j=1

P

(
W ≤ t

Tj

∣∣∣ W < 0

)

for all t ≥ 0. Setting G
def= P(W ∈ · |W < 0), we thus have P(W ∈ · |W > 0) = UT G and therefore

F = αP(W ∈ · |W < 0) + βP(W ∈ · |W > 0) = αG + αn
UT G

as claimed. Next we must prove that G solves Eq. (5.1) for t ≤ 0. Since F(t) = αG(t) for t < 0, we infer from (5.4)

1 − αG(t) = F(t) =
n∏

i=1

F

(
t

Ti

+
)

=
n∏

i=1

(
α + αn

UT G

(
t

Ti

+
))

=
n∏

i=1

(
α + αn

(
1 −

n∏
j=1

G

(
t

TiTj

)))
=

n∏
i=1

(
1 −

n∏
j=1

αG

(
t

TiTj

))

for all t < 0 and thus also for t = 0 by left continuity. This shows (5.1).
Conversely, one can easily check that any F of this form with G and α as stated solves Eq. (1.1).
(b) If J = N, it suffices to recall that any F ∈ FT must satisfy (5.6), now with |J | = ∞, which in turn can only

hold if F = δ0 as one can easily check. �

Our final result provides the set of fixed points of (1.1) in the case (C3) where the vector T contains positive as
well as negative components Tj .

Theorem 5.2. Let T = (Tj )j∈J be a finite or countable family of real numbers such that J> def= {j : Tj > 0} and

J< def= {j : Tj < 0} are both nonempty. Then F 	= δ0 is a solution to Eq. (1.1) i.f.f. F(0) = 1 and F solves the very

same equation with T > def= (Tj )j∈J> instead of T .

Proof. Let F ∈ FT > and F(0) = 1. Let W and Wj , j ∈ J , be independent random variables with distribution F . Then
Wj < 0 a.s. implies

inf
j∈J

TjWj = inf
j∈J>

TjWj
d= W

and thus F ∈ FT .
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For the reverse conclusion, we must only show that any F ∈ FT \{δ0} satisfies F(0) = 1. But (1.1) implies

F(0) = P(W ≥ 0) ≤
∏

j∈J>

P(Wj ≥ 0)
∏

j∈J<

P(Wj ≤ 0) = F(0)|J>|F(0+)|J<|, (5.7)

which in view of |J<| ≥ 1 can only hold if F(0) = 0, or F(0) > 0 and F(0+) = 1. To exclude the latter possibility
note first that F(0) = 1 and F(0+) = 1 would give F = δ0. Left with the case 0 < F(0) < 1 and F(0+) = 1, we then
have 0 < F({0}) = F(0) < 1. Similar to Eq. (2.3) we have here

F(t) =
∏

j∈J>
n

F

(
t

L(v)

) ∏
j∈J<

n

F

((
t

L(v)

)
+

)

for all t ∈ R and n ≥ 1, where J>
n

def= {v ∈ Jn: L(v) > 0} and J<
n is defined accordingly. Use this equation with n = 2

to infer in the same way as in (5.7)

F(0) ≤ F(0)|J>
2 |F(0+)|J<

2 | ≤ F(0)|J>
2 |.

But |J>
2 | = |J> × J>| + |J< × J<| ≥ 2 whence the previous inequality yields the contradiction F({0}) = 0. �
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