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ON THE CONVEX HULL OF PROJECTIVE PLANES ∗

Jean-François Maurras1 and Roumen Nedev2

Abstract. We study the finite projective planes with linear program-
ming models. We give a complete description of the convex hull of
the finite projective planes of order 2. We give some integer linear
programming models whose solution are, either a finite projective (or
affine) plane of order n, or a (n + 2)-arc.
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1. Introduction

A finite projective plane Pn is defined by two sets of n2 + n + 1 elements called
respectively set of points of Pn and set of lines of Pn satisfying the following
properties:

1. a line of Pn is a subset of n + 1 points of Pn;
2. each point of Pn belongs to n + 1 lines of Pn;
3. any pair of points of Pn belong to exactly one line of Pn;
4. there exist four points of Pn such that no three of them belong to the same

line of Pn.

A finite projective plane of order n is a symmetric balanced incomplete block
design (n2 + n + 1, n + 1, 1). The smallest Pn has order 2 and it is the unique
Steiner triple system of order 7.
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For any finite field of order n a projective plane can be constructed. In the
other cases, the Bruck-Ryser theorem [5] eliminates some orders, and the order 10
has been eliminated by Lam [11].

2. The polyhedron of the finite projective planes
of order 2

Let T be the set of triples of the set {1, 2, 3, 4, 5, 6, 7}. For a finite projective
plane each pair of points {u, v} is contained in a line (triple) t ∈ T , thus we have:∑

t∈T,t⊃{u,v} xt = 1. These 21 equations are the unique equations satisfied by any
characteristic vector x ∈ R

35 of a finite projective plane P2 of order 2.
We will identify a finite projective plane P2, with its characteristic vector x

defined on the set of triples. If the triple i belongs to the plane P2, xi = 1, else
xi = 0.

Let us note A the {0/1}-matrix whose entries are the coefficients of the above
21 equations, and 1 = (1, 1, . . . , 1). The rows of A are linearly independent. We
will show in the next section that any incidence matrix of the pairs belonging to
the p-subsets, of a set with E (E ≥ p + 2) elements has a maximal rank.

Thus the finite projective planes of order 2 are the solutions of:

D = {x ∈ R
35|Ax = 1, x ∈ {0, 1}35}.

We will study P = conv(D). We call the space R
35 the natural space of P . Let

C ⊂ T be such that the matrix AC is non-singular, the projection P ′ of P on
R

T\C is full-dimensionned, this space is a proper space of P . If C do not contains
a projective plane, the projection P ′ does not contain the origin of the system of
ccordinates which implies that any projective plane of order 2 contains at least
one line which is indexed by the set of columns T \ C.

Let Q ⊃ P , the set of solutions of:

D′ = {x ∈ R
35|Ax = 1, x ≥ 0}.

The integer vertices of Q are in bijection with the vertices of P . To characterize
the convex hull P we will use a software like cdd [3], lrs [2] or Porta [7], which can
switch between the V -representation (convex hull of extreme points) and the H-
representation (intersection of hyper-planes) of a polyhedron. However, dimension
35 seams to be intractable for these softwares so we need to use a proper space
of P , but we will try to go back to the natural space, in order to have a more
significant representation of P .

Let M ⊂ A, M(21 × 21) be an invertible matrix, the columns of which are
indexed by C ⊂ T . Then we can write:

P = {xC = M−11− M−1AT\IxT\C , x = (xC , xT\C) ∈ {0, 1}35}. (1)
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There are 30 projective planes of order 2, who are easy to enumerate. We can give
to the software either the 30 projections of the vertices of P , or the 35 inequalities
defining the polyhedron Q′ ⊃ Q:

Q′ = {M−1AT\CxT\C ≤ M−11, xT\C ≥ 0}.

In this last case we will have to choose the (30) integer vertices that we will again
give to our software in order to get the representation of P ′ the projection of P in
this R

14. One of the interest of this last method that we dont need to enumerate
the projective planes, the H-representation software will do the enumeration.

We can observe that there are 155 facet-defining inequalities which split into 2
classes:

(C1) 35 inequalities tight (satisfied at equality) for 24 planes. They correspond
to the non negativity constrains.

(C2) 120 inequalities tight for 14 planes.

Using (1) we can reconstruct P in its natural space. However, the representation
in the natural space is not unique. However we have the following nice property:

Remark 1. Any of the 120 inequalities which represent the convex hull of the
finite projective planes of order 2, can be written in R

35 like:
∑

t∈Y xt ≥ 1, where
Y ⊂ T is the set of triples of any two disjoint projective planes of order 2.

In this way we can represent all facets of P . Let us notice that:

Remark 2. There are no more than 2 disjoint projective planes of order 2.

The result claimed in Remark 1 was obtained after an analysis of the (recon-
structed) characteristic tight vectors of a given facet. We have thus observed that
there were 14 triples containing exactly one triple of the tight characteristic tight
vectors.

This result looks mainly as a negative one. It expresses the convex hull of the
finite projective planes of order 2 in terms of the finite projective planes of order 2.
If he is generalized, he will say nothing on the existence of such a plane. Of course,
solving the corresponding integer programming model will give such an answer.

3. The linear variety of finite projective planes
of order n

Let C be the set of the (n + 1)-uples of a set of n2 + n + 1 elements, and L
the set of pairs of the same set. Let ALC be the incidence matrix of the pairs
belonging to each (n+1) subset, thus Alc = 1 if the pair l belongs to the n-uple c,
else Alc = 0. The projective planes of order n, if such planes exist, are represented
by the integer solutions of the following system:

Pn = {xC ∈ R
C |ALCxC = 1}. (2)
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We will show that ALC has maximal rank, and more generally, if M = {1, . . . , m}
is a set with m elements, and B is the incidence matrix of the pairs of M in the
p-uples of M , then we have:

Proposition 1. The rank of B is C2
m, the number of its rows.

Proof. Let us consider first the case when m = p + 2. In this case we can index
the p-uple c ⊂ M by the pair c′ = M \ c. Thus BLL is a square matrix with rows
and columns indexed by the same set L of pairs of M . This matrix is symmetric.
Bij , the element indexed in row by the pair i and in column by the pair j which
corresponds to the p-uple M \ j, equal 1 if the pairs i and j are disjoint and 0 else.
Let call JLL the matrix with all entries equal to 1 and ILL the identity matrix.
Let n0 be the number of common elements of two rows of BLL indexed by two
disjoint pairs, n1 the one of two rows indexed by two pairs having one element in
common and n2 the number of elements of one row. We have:

B2
LL = (n2 − n1)ILL + n1JLL + (n1 − n0)BLL,

BLLJLL = n0JLL,

BLLILL = BLL. (3)

Expressing the inverse B′
LL of BLL as a linear combination of these three matrices,

B′
LL = αBLL + βJLL + γILL, we can calculate the three coefficients α, β and γ,

proving thus the existence of B′
LL.

We will now study the case when m > p + 2 with a proof in the spirit of the
results given in this paper.

For doing so let us consider the transposed matrix Bt
LC of BLC . This matrix

can be seen as the edge-incidence matrix of the p-cliques of the complete graph
Km. The rows of this matrix are the characteristic vectors of the p-cliques, these
characteristic vectors satisfy obviously the equality

∑
l∈L xl = p(p−1)

2 . We will
show that there is no other equality satisfied by all the cliques.

Suppose that it is not true and that all the cliques satisfy also:
∑

l∈L

αlxl = β.

We can choose a set V of k+2 vertices from Km and then we consider the k-cliques
C with vertices in V ; let E be the edge set of C. We note BLL the corresponding
edge-incidence matrix and as before BLL is invertible, thus the coefficients αe for
e ∈ E are all equal to β

|E| . Using the equation, we can fixe one αe to 0, thus all the
αe are equal to 0 and also β. Any procedure which allows us to cover the edge set
of Km by an ordered sequence C1, C2, ... of k-cliques, beginning by C, such that
for i ≥ 1, Ci and Ci+1 have an edge (at least one) in common, allows to show that
the coefficients αe of the edges of each consecutive k-clique are also zero. This
shows that such an equation doesn’t exist.

We can also proof this result, in the general case, as in the first part. We can
consider, for n > k + 2, the product BLCBt

LC instead of BLL, where Bt
LC is the

transposed matrix of BLC . �
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