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A NOTE ON THE HARDNESS RESULTS
FOR THE LABELED PERFECT MATCHING PROBLEMS

IN BIPARTITE GRAPHS

Jérôme Monnot1

Abstract. In this note, we strengthen the inapproximation bound
of O(log n) for the labeled perfect matching problem established in J.
Monnot, The Labeled perfect matching in bipartite graphs, Informa-
tion Processing Letters 96 (2005) 81–88, using a self improving oper-
ation in some hard instances. It is interesting to note that this self
improving operation does not work for all instances. Moreover, based
on this approach we deduce that the problem does not admit constant
approximation algorithms for connected planar cubic bipartite graphs.
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1. Introduction

A matching M on a graph G = (V, E) is a subset of edges that are pairwise non
adjacent; M is said perfect if it covers the vertex set V of G. In the labeled perfect
matching problem (Labeled Min PM in short), we are given a simple graph G =
(V, E) on |V | = 2n vertices which contains a perfect matching together with a color
(or label) function L : E → {c0, . . . , cq} on the edge set of G. For i = 0, . . . , q, we
denote by Li ⊆ E the set of edges of color ci. The goal of Labeled Min PM is to
find a perfect matching on G that uses a minimum number of colors. Alternatively,
if G[L′] = (V, E′) where E′ = {e ∈ E : L(e) ∈ L′} denotes the subgraph induced
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by the edges of colors L′ ⊆ {c0, . . . , cq}, then Labeled Min PM aims at finding
a subset L′ of minimum size such that G[L′] contains a perfect matching. In [9] a
generalization, called perfect matching under categorization, has been studied. In
this framework, each edge e has also a non-negative weight w(e), and the colors
are called categories (thus, q + 1 indicates the number of categories). The goal is
to find a perfect matching M of E minimizing

∑q
i=0 maxe∈Li∩M w(e). In [9], it

is shown that, on the one hand, the problem is polynomial when the number of
categories (i.e., colors) is fixed, and on the other hand, the problem is NP-hard
when the weights take values 0 or 1 and the graph is a collection of disjoint 4-cycles.
Note that the case w(e) = 1, ∀e ∈ E corresponds to Labeled Min PM . Very
recently, some approximation results are obtained for Labeled Min PM when the
graphs are bipartite 2-regular or complete bipartite Kn,n, [7]. In particular, it is
shown that the 2-regular bipartite case is equivalent to the minimum satisfiability
problem, and that a greedy algorithm picking at each iteration a monocolored
matching of maximum size provides a r+Hr

2 -approximation in complete bipartite
graphs where r is the maximum of times that a color appears in the graph and
Hr is the rth harmonic number. Moreover, it is proved that Labeled Min PM
is not O(log n)-approximable in bipartite complete graphs. In [6], this problem
is motivated by some applications in timetable problems. Several related works
concerning some matching problems on colored graphs can be found in [3–5]

In this note, we prove first that Labeled Min PM is not in APX whenever
the bipartite graphs have a maximum degree of 3. Hence, there is a gap of approx-
imability between graphs of maximum degree 2 and 3 since we can easily deduce
from [7] that Labeled Min PM is 2-approximable in bipartite graphs of maxi-
mum degree 2. Using a weaker complexity hypothesis, we can even obtain that
Labeled Min PM is not 2O(log1−ε n)-approximable in bipartite graphs of maxi-
mum degree 3 on n vertices, unless NP ⊆ DTIME

(
2O(log1/ε n)

)
. Dealing with

the unbounded degree case, this yields to the fact that Labeled Min PM is not
in polyLog-APX, unless P = NP.

In the following, given an instance I, we denote by opt(I) and apx(I) the value of
an optimal and an approximate solution, respectively for Labeled Min PM . We
say that an algorithm A is a ρ-approximation (with ρ ≥ 1) if apx(I) ≤ ρ × opt(I)
for any instance I.

Finally, in order to simplify the proofs exposed in the rest of the paper, the
results concern a variation of Labeled Min PM , where the value of each perfect
matching M is given by val1(M) = val(M)−1. This problem is denoted Labeled
Min PM1 and we have for any instance I, apx1(I) = apx(I) − 1 and opt1(I) =
opt(I)−1. It is important to note that a ρ(n)-approximation of Labeled Min PM
becomes a 2ρ(n)-approximation of Labeled Min PM1, and conversely a ρ(n)-
approximation of Labeled Min PM1 remains a ρ(n)-approximation of Labeled
Min PM . Actually, since Labeled Min PM is simple, [8] (i.e., the restriction
to opt(I) ≤ k is polynomial), we can see that Labeled Min PM and Labeled
Min PM1 are asymptotically equivalent to approximate. Hence, the proposed
results for Labeled Min PM1 also hold for Labeled Min PM .
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2. A self improving operation on some classes of graphs

We now propose a self improving operation for some classes of instances Pk

described as follows. I = (H,L) ∈ Pk where H = (V, E) if and only if the
following properties are satisfied:

(i) H is planar of maximum degree k and connected.
(ii) ∃u, v ∈ V such that [u, u1] and [v, v1] for some u1, v1 ∈ V are the only

edges incident to u and v (the vertices u and v will be called the extreme
vertices of H). Moreover, these two edges have color c0, i.e., L([u, u1]) =
L([v, v1]) = c0.

(iii) H is bipartite and admits a perfect matching (in particular, H has an even
number of vertices).

(iv) H [{c0}] = (V,L0), the subgraph induced by edges of color c0 does not
have any perfect matching and the subgraph H [L(E) \ {c0}] induced by
edges of colors different from c0 is acyclic.

(v) If H ′ = H \ {u, v} denotes the subgraph induced by V \ {u, v}, then
H ′[{c0}] = (V \ {u, v},L0) has a perfect matching denoted by Mc0 .

We have P1 = ∅ and P2 is the set of odd paths from u to v alternating matchings
M and Mc0 where Mc0 is only colored by color c0. Finally, we define the class P∗
by P∗ = ∪kPk.

Restricted label squaring operation. Given an instance I = (H,L) ∈ Pk

of Labeled Min PM , its label squaring instance is I2 = (H2,L2) with H2 =
(V 2, E2), where

1. The graph H2 is created by removing each edge e = [x, y] of H with color
different from c0 and placing instead of it a copy H(e) of H , such that x
and y are now identified with u and v of H(e), respectively.

2. For each copy H(e) of H and for an edge e′ in H(e) with color different
from c0, the new color of e′ is L2(e′) = (L(e),L(e′)). The remaining edges
of copy H(e) keep their color c0, that is if L(e′) = c0, then L2(e′) = c0.

Let us prove that classes Pk are closed under restricted label squaring operation.

Lemma 2.1. If I ∈ Pk, then I2 ∈ Pk.

Proof. Let I ∈ Pk. The proofs of (i) and (ii) are obvious since u and v have
degree 1.

For (iii), since H and H \ {u, v} admit a perfect matching, we deduce that
u ∈ L and v ∈ R where (L, R) is the bipartition of H . Thus, we can extend the
bipartition to H2 by taking for each H(e) a copy of the bipartition. Finally, it
is easy to verify that H2 admits a perfect matching if H does. Actually, given a
perfect matching M of H , a perfect matching M2 of H2 can be constructed as
follows: for any edge e of H with a color different from c0, if e ∈ M , then take
for H(e) a copy of M ; if e /∈ M , then take for H(e) \ {u, v} a copy of a perfect
matching of H \ {u, v} of color c0. Moreover, given any edge e in H with color c0,
then e ∈ M2 iff e ∈ M .
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For (iv) assume on the contrary that is H2[{c0}] admits a perfect matching
M and H [{c0}] does not. By hypothesis, in each copy H([x, y]), the vertices x
and y are not saturated by M because some vertices (in fact, an even positive
number of vertices) of H([x, y]) are not saturated by M (otherwise, the restriction
of M to H([x, y]) is a perfect matching for H), and x and y are the only vertices
of H([x, y]) that do not need to be saturated by M (if other vertices are not
saturated by M in H([x, y]), then M is not a perfect matching for H2). Hence,
the edges of M which do not belong to H(e) form a perfect matching of H [{c0}],
contradiction. Moreover, using Property (ii), it is easy to verify that the subgraph
H2[L2(E2) \ {c0}] is acyclic whenever H [L(E) \ {c0}] is acyclic.

For (v) let Mc0 be a perfect matching of H ′ = H \ {u, v} only using color c0.
We complete Mc0 by taking for each copy H(e) a copy of Mc0 . In this way, we
obtain a perfect matching of H2 \ {u, v} that uses color c0 only. �

We now propose an approximation preserving reduction using the label squaring
operation on Pk.

Theorem 2.2. Let I = (H,L) ∈ Pk. Any solution of I2 with value apx(I2) ≤
ρ opt(I2) for Labeled Min PM1, can be polynomially converted into a solution
of I for Labeled Min PM1 with a value apx(I) ≤ √

ρ opt(I).

Proof. Let M∗ be an optimal perfect matching of I ∈ Pk and let L∗ be the set
of colors used by M∗ (we have opt(I) = |L∗|). We construct a perfect matching
M2 for H2 as follows. For each edge e of H , we do the following. If L(e) �= c0

and e ∈ M∗, then we take for H(e) a copy of M∗ using colors (L(e), l) for l ∈ L∗

and color c0. If L(e) �= c0 and e /∈ M∗, then we take for H(e) \ {u, v} a perfect
matching for H \ {u, v} of color c0. If L(e) = c0, then e ∈ M2 iff e ∈ M . This
matching uses (opt(I) − 1)2 + 1 colors and thus

opt1(I
2) ≤ opt21(I). (1)

Now, consider an approximate perfect matching M2 of H2 with value apx(I2) and
let H(e1), . . . , H(ep) be the copies of H such that the restriction of M2 to H(ei)
is a perfect matching. Hence, we may always assume that M2 \ (∪p

i=1H(ei)) only
uses color c0 because of Property (v) and the fact that, in each copy H(e) with
e /∈ {e1, . . . , ep}, there is an even number of vertices (from Property (iii)) and so
neither u nor v is saturated. Therefore, if we denote L′ = {L(ei) : i = 1, . . . , p}
the set of colors of these edges in H , then for any cj ∈ L′ there exists a perfect
matching Mcj,k ⊆ M2 in copy H(ek) with L(ek) = cj . Let Mcj be one of these
perfect matchings of H , one that minimizes |L(Mcj ,k)| for any cj ∈ L′, where
|L(Mcj,k)| is the number of colors used by Mcj,k and let M0 be a perfect matching
of H containing edges {e1, . . . , ep} and all the other edges having color c0.

The approximate perfect matching M of I will be given by one of the matchings
Mcj or M0 with value apx(I) = min{|L(M0)|, |L(Mcj )| : cj ∈ L′}. Thus, we deduce
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that apx1(I) = apx(I) − 1 = min{|L(M0)| − 1, |L(Mcj)| − 1 : cj ∈ L′} and hence:

apx2
1(I)≤(|L(M0)|−1)min{|L(Mcj )|−1 : cj ∈ L′}≤

∑
cj∈L′

(|L(Mcj )| − 1
)≤apx1(I

2).

(2)
The last inequality is valid because for cj1 �= cj2 , the colors used in Mcj1

are
different (except for c0) from the ones used in Mcj2

. Applying inequality (2) with
an optimal perfect matching M2 of H2, we obtain opt21(I) ≤ opt1(I2). Using
inequality (1), we deduce opt21(I) = opt1(I

2) and the expected result follows. �

3. Inapproximability results

In [7], an inapproximability bound of O(log n) is obtained for Labeled Min PM
in complete bipartite graphs via a reduction from Set Cover. A slight modification
of this reduction allows us to obtain the same result for instances in P∗.

Theorem 3.1. Labeled Min PM1 is not c log n approximable for some constant
c > 0 for instances in P∗ having 2n vertices, unless P = NP.

Proof. Given a family S = {S1, . . . , Sn0} of subsets of a ground set X0 =
{x1, . . . , xm0} (we assume that ∪n0

i=1Si = X0), a set cover of X0 is a sub-family
S′ = {Sf(1), . . . , Sf(p)} ⊆ S such that ∪p

i=1Sf(i) = X0; MinSC is the problem of
determining a minimum-size set cover S∗ = {Sf∗(1), . . . , Sf∗(q)} of X0. Given an
instance I0 = (S, X0) of MinSC, its characteristic graph GI0 = (L0, R0; EI0) is
a bipartite graph with a left set L0 = {l1, . . . , ln0} that represents the members
of the family S and a right set R0 = {r1, . . . , rm0} that represents the elements
of the ground set X ; the edge-set EI0 of the characteristic graph is defined by
EI0 = {[li, rj ] : xj ∈ Si}.

From I0, we construct the instance I = (H,L) of Labeled Min PM1 contain-
ing (n0 + 1) colors {c0, c1, . . . , cn0}, described as follows:

• For each element xj ∈ X0, we build a gadget H(xj) that consists of a
bipartite graph of 2(dGI0

(rj) + 3) vertices and 3dGI0
(rj) + 4 edges, where

dGI0
(rj) denotes the degree of vertex rj ∈ R in GI0 . The graph H(xj) is

illustrated in Figure 1 where the vertices {lf(1), . . . , lf(p)} are the neighbors
of rj in GI0 and p = dGI0

(rj).
• A distinct color is associated to each subset of S. More precisely, assume

that vertices {lf(1), . . . , lf(p)} with p = dGI0
(rj) are the neighbors of rj in

GI0 , then color H(xj) as follows: for any k = 1, . . . , p, L(v3,j , lj,f(k)) =
cf(k) and the other edges receive color c0.

• We complete H = ∪xj∈XH(xj) by adding edges [v2,j , v1,j+1] with color c0

for j = 1, . . . , m0 − 1.
• Finally, we set u = v1,1 and v = v2,m0 .

Clearly, I ∈ P∗ and has 2n = 2
∑

rj∈R(dGI0
(rj) + 3) = 2|EI0 | + 6m0 vertices.

Let S∗ be an optimal set cover on I0. We can associate to each element xj

a subset Sk of S∗ that “covers” xj . Then, we construct a perfect matching M∗
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v4,j

lj,f(2)

lj,f(p)

v2,j

rj,f(p)

v3,j

v1,j

lj,f(1) rj,f(1)

rj,f(2)

Figure 1. The gadget H(xj).

as follows. The restriction of M∗ to gadget H(xj) is a perfect matching Mj:
[lj,f(k), v3,j ] ∈ Mj and [rj,f(k), v4,j ] ∈ Mj (Sk be the subset covering xj); all the
others edges of Mj are of color c0. Thus, the perfect matching M∗ of I = (H,L)
uses exactly (|S∗| + 1) colors. Conversely, let M be a perfect matching on I. We
have the following property: in each gadget H(xj), the edge of this gadget which
is adjacent to v2,j is in M (this is true for H(xm0), and this can easily be proved
by induction for all the other gadgets). This is also the case for the edge of this
gadget which is adjacent to v1,j . This implies that, in each gadget H(xj), there
is exactly one edge of color different from c0 that belongs to M . We include the
subset Sk associated with this edge in the set cover. In conclusion, the subset
S′ = {Sk : ck ∈ L(M)} of S is a set cover of X using (|L(M)| − 1) sets.

Now, it is well known that the set cover problem is NP-hard to approximate
within factor c log n0 for some constant c > 0, [2]. This result also applies to
instances (X,S) when |X | and |S| are polynomially related (i.e., |X |q ≤ |S| ≤ |X |p
for some constants p, q).

Hence, given such an instance I0 = (X,S), from any algorithm A solving La-
beled Min PM1 within a performance ratio ρA(I) ≤ c

q+1 × log(n) for a bipartite
graph on 2n vertices, we can deduce an algorithm for MinSC that guarantees the
performance ratio c 1

q+1 log(n) ≤ c 1
q+1 log(nq+1

0 ) = c log(n0), a contradiction. �

Starting from the APX-completeness result for the vertex cover problem in
cubic graphs [1], we are able to obtain the following result.
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Corollary 3.2. Labeled Min PM1 for instances in P3 is not in PTAS, unless
P = NP.

Proof. Starting from the restriction of set cover where each element xi is covered
by exactly two sets (this case is usually called vertex cover where the sets and
elements can respectively be viewed as vertices and edges), we apply the same
proof as in Theorem 3.1. The instance I becomes an element of P3, and using for
instance the APX-completeness result of [1], the expected result follows. �

By applying the well known method of self improving, we obtain the two fol-
lowing results:

Theorem 3.3. Labeled Min PM1 for instances in P3 is not in APX, unless
P = NP.

Proof. Assume the reverse and let A be a polynomial algorithm solving Labeled
Min PM1 within a constant performance ratio ρ. Let ε > 0 (with ε < ρ− 1) and
choose the smallest integer q such that:

q ≥ − log2 logρ(1 + ε). (3)

Consider now an instance I = (H,L) ∈ P3 and use the restricted label squar-
ing operation on I. We produce the instance I2 = (H2,L2) and by repeat-
ing q times this operation on I2, we obtain thanks to Lemma 2.1 the instance
I2q

= (H2q

,L2q

) ∈ P3, in time P (|I|) for some polynomial P since on the one
hand, I2 is obtained from I in time O(|I|2) (we have |V (H2)| = O(|V (H)|2) and
|L2(E(H2))| = O(|L(E(H))|2)) and on the other hand, we repeat this operation a
constant number of times. Using Theorem 2.2, from the ρ-approximation on I2q

given by A, we obtain a ρ2−q

-approximation on I. Thanks to inequality (3), we
deduce ρ2−q ≤ 1 + ε. Hence, we obtain a polynomial time approximation scheme
for instances in P3, a contradiction with Corollary 3.2. �

Theorem 3.4. For any ε > 0 Labeled Min PM1 is not 2O(log1−ε n)-approximable
for instances in P3 on n vertices, unless NP ⊆ DTIME

(
2O(log1/ε n)

)
.

Proof. Let ε > 0 and I = (H,L) ∈ P3 where H has n vertices. Choose the smallest
integer p such that n2p ≥ 2log1/ε n. Thus, 22p×log n ≥ 2log1/ε n and then,

2p×ε ≥ log1−ε n. (4)

Using the restricted label squaring operation on I, we produce the instance I2 =
(H2,L2). By repeating p times this operation on I2, we obtain the instance
I2p

= (H2p

,L2p

) ∈ P3. Since H has n vertices, we derive that the number n′ of
vertices of H2p

and the number |L2p

(E(H2p

))| of colors of H2p

satisfy:

n′ ≤ n2p

and |L2p

(E(H2p

))| ≤ |L(E(H))|2p

. (5)
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Now, assume that we have a f(n′)-approximation on I2p

where f(n′) ≤ 2c×log1−ε n′

for some c > 0. Using Theorem 2.2, we obtain a f(n′)2
−p

-approximation on I.
Using inequalities (4) and (5), we deduce:

apx1(I) ≤ f(n′)2
−p

opt1(I)

≤ 2c× log1−ε n′
2p opt1(I)

≤ 2c× log1−ε n

2ε×p opt1(I)
≤ 2copt1(I).

By definition of p, n2p−1
< 2log1/ε n, and thus n′ ≤ n2p

< 22 log1/ε n. In conclusion,
using inequality (5), we obtain a constant approximation for I in time poly(n′) =
2O(log1/ε n), and thus, a contradiction to Theorem 3.3. �

It is natural to ask the question whether the problem is easier in cubic bipartite
graphs. Here, we prove that the answer is negative.

Theorem 3.5. Labeled Min PM1 is not in APX in connected planar cubic
bipartite graphs, unless P = NP.

Proof. The proof consists of two steps. First, using a reduction quite similar to
the one of Corollary 3.2, we prove that Theorem 3.4 also holds for the sub-family
P ′

3 of P3 where each vertex has a degree 3, except u and v. Then, we transform
any instance of P ′

3 into a connected planar cubic bipartite graph.
Let us prove the first point. Let G = (V, E) with V = {v1, . . . , vn} and E =

{e1, . . . , en} be an instance of vertex cover. We associate to any edge ej = [x, y]
a gadget H(ej) described in Figure 2. All edges of H(ej), except [v3,j , lj,x] and
[v3,j , lj,y] have color c0. We have L([v3,j , lj,x]) = cx and L([v3,j , lj,y]) = cy. Finally,
H(ej) is linked to H(ej+1) using the graph depicted in Figure 3 where each edge is
colored with c0. We conclude this part of the proof by using arguments similar to
ones given in the proof of Corollary 3.2 (the gadgets considered in both reductions
having the same basic properties). Clearly, Labeled Min PM1 is APX-hard in
class P ′

3. Since the restricted label squaring operation also preserves the member-
ship in P ′

3, we deduce that Labeled Min PM1 is not in APX when the instances
are restricted to P ′

3.
Now, let us prove the second point. Given I ∈ P ′

3 with I = (G,L), we consider
the instance I ′ where G is duplicated 3 times into G1, G2, G3. If ui, vi denote the
extreme vertices of Gi, we shrink vertices u1, u2, u3 into u and v1, v2, v3 into v.
Clearly, this new graph G′ is connected bipartite, planar and cubic. Given any
perfect matching M ′ of G’, the two edges of color c0 adjacent to u and v in M ′

necessarily lie in the same copy of G, because there is an even number of vertices
in each copy. Finally, since we can restrict ourselves to perfect matchings M ′ of
G′ that use only color c0 for exactly two copies of G, the result follows. �

Obviously, a proof similar to the one given in Theorem 3.4 can be applied to
Theorem 3.5 leading to the following conclusion.
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lj,y

v1,j v2,jv3,j

lj,x

cx

cy

Figure 2. The gadget H(ej) for ej = [x, y].

v1,j+1v2,j

Figure 3. The gadget linking H(ej) to H(ej+1).

Corollary 3.6. For any ε > 0 Labeled Min PM1 is not 2O(log1−ε n)-approximable
in connected planar cubic bipartite graphs on n vertices, unless NP ⊆ DTIME(
2O(log1/ε n)

)
.

Dealing with the unbounded degree case (that is instances of P∗), we can deduce
the following stronger result:

Theorem 3.7. Labeled Min PM1 for instances in P∗ is not in polyLog-APX,
unless P = NP.

Proof. Assume on the contrary that Labeled Min PM1 is f(n)-approximable
with f(n) ≤ c logk n for some constants c > 0 and k ≥ 1. Let I = (H,L) ∈ P∗
where H has 2n vertices. Let p = 
log k� + 1. Using as previously 2p times
the restricted label squaring operation on I, we produce in polynomial time the
instance I2p

= (H2p

,L2p

) ∈ P∗. The same arguments as in Theorem 3.4 allow us
to obtain a contradiction with Theorem 3.1 since from Property (iv) of Lemma 2.1,
the inequality (5) also holds. �
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