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OPTIMAL TIMES OF PRICE REDUCTIONS FOR AN
INVENTORY MODEL WITH PARTIAL BACKORDER
AND VERTICAL SHIFT DEMAND

PENG-SHENG You!

Abstract. This paper investigates an inventory control problem where
a firm orders and sells an inventory item through discount strategy in
a price sensitive market. From the economic points of view, customers
may expect a further price reduction when a firm uses pricing promo-
tion to stimulate demand, the demand curve may vertically shift down
when a firm reduces the selling price. Taking these phenomena into
account, this paper developed a continuous inventory model for find-
ing the ordering quantity, the number of pricing changing and times
of price changes simultaneously so as to maximize the total profit. A
solution procedure is developed for finding the optimal decision rules.

Keywords. Inventory, backorder, deterministic demand, multiple
discounts.

1. INTRODUCTION

In a conventional economic ordering quantity model, several conditions should
be satisfied. These conditions include (1) demand is price independent, (2) back-
order is not allowed, and (3) the times of price reductions are not under control, and
so on. Such assumptions may not always be true. Because, in reality, demand for
products such as vegetables, medicines, as well as computer hardware can evidently
be affected by sale price, back-orders for products such as electric appliance and
furniture are accepted by many customers, and a firm may choose a suitable time
to cease a promotion plan and the regular sales price is reset after promotion
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season. In this paper, we refer to the length between two successive time points
at which the regular sales price is set as a price cycle. In a price cycle, this paper
allows multiple discounts and multiple inventory replenishments. In addition, this
paper consider the situation in which demands may be influenced by price and
customers may expect a further price reduction when firms provide price discount.

The conventional economic ordering model thus can not be applied to this
problem and need some modifications. The inventory problem has received much
attention in the news vendor problem. The news vendor problem seeks to deter-
mine the stock quantity before the start of the selling period commences under
probability demand. Comprehensive reviews can be found in Khouja [12] and
Petruzzi and Dada [17].

Gerchak and Parlar [8] dealt with a newsboy problem in which a vendor can
alter the demand distribution through costly sales effort. Gallego and Moon [6]
proposed a newsboy model in which the requirement on demand information is
the mean and the variance only. Moon and Choi [16] studied a newsboy problem
in which customers will tend to balk at purchasing when the selection of available
inventory falls below a certain threshold. Moreover, Dave, Fitzpatrick and Baker
[3] investigated a deterministic production lot size inventory model in which de-
mand is a convex function of price. Khouja [10] investigated a variety of newsboy
problems in which an emergency supply can be called upon.

It is observed that the demand in the conventional news vendor literature is
assumed to follow a known distribution function. This assumption implies that
the pricing factors is taken as exogenous variables [20]. However, in many cases,
demand frequently depends on price [9].

Thus, it is important to take into consideration the inventory problems with
price dependent demand. Demand with price dependent can be roughly catego-
rized into two cases: additive demand type and multiplicative demand type [17].
The additive demand types are such as d(p) a — [Bp where a and (3 are re-
spectively a constant intersection and slop of the demand curve function. The
multiplicative demand types are such as d(p) = ap~? where @ and b are constants.

Lau and Lau [15] investigated an inventory model in which price strategy can be
employed to influence demand. Polatoglu [18] developed an inventory model for de-
termining pricing decision and procurement decisions simultaneously. Gallego and
Ryzin [7] discussed the problem of optimizing the timing of selling price changes.
Feng and Gallego [4] investigated the problem of determining the optimal timing
of a single price change for seasonal products. Specially, the above two works
considered a situation in which a single opportunity exists to change the selling
price.

Feng and Xiao [5] discussed the problem of determining the times to change
prices under the condition that the sales prices are predetermined. Wee [21]
studied an inventory model in which demand is price dependent and inventory
deteriorates at a varying rate, and proposed an algorithm for determining the
maximum net profit. Khouja and Mehrez [11] provided an algorithm for solving
a multi-product multi-discount constrained newsboy problem. Their model con-
tains discount prices but not decision parameters. Later, building upon Khouja
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and Mehrez’s work [11], Khouja [13] investigated a newsboy problem in which dis-
count prices are decision variables and discount strategies are used to sell excess
inventory. Urban and Baker [20] investigated a deterministic inventory problem
in which demand is a multivariate function of price, time and inventory level.
Their basic model with a single price is extended to a model with a single price
markdown. Chiu [2] investigated a (Q,r) inventory system in which each item
has fixed liftime. Additionally, Chen and Chu [1] considered a related production
planning problem in which demand can be controlled via pricing strategies during
the selling period. Shinn and Hwang [19] dealt with the problem of determining
the order quantity under the condition that demand is a convex function of price
and the delay in payments is order-size dependent. Khouja [14] studied a newsboy
problem with multiple discounts strategy.

Many researchers have investigated inventory models with additive price de-
pendent demand under the condition that the intersection of demand curve is
independent with retailer’s pricing behavior. However, from the view point of eco-
nomic phenomenon, the demand curve may vertically shift down since customers
may expect a further price reduction when retailers change their selling prices. It is
noted that few works have looked into inventory problems with this phenomenon.

In addition, many models have considered the back-ordering situation. How-
ever, these models have rarely simultaneously considered the situations in which
demand is price dependent, partial back-order is allowed, multiple discounts are
allowed, multiple replenishments are allowed and the times of replenishments are
controllable. By simultaneously taking the above situations into account, this pa-
per addresses the simultaneous determination of ordering quantity, the length of
price cycle, the times of replenishments and the times of price changes.

The following sections of this paper are organized as follows. Section 1 outlines
all assumptions made and formulates the problem as a mathematical model. Sec-
tion 2 then analyzes the model and develops solution procedure to find decision
rules. Section 3 elucidates the features of the proposed model, using a numerical
example. Conclusions are finally drawn in Section 4.

2. ASSUMPTIONS AND FORMULATION

This paper considers the case in which a firm employees a multiple discount
strategy to sell a certain inventory item. The purpose of this firm is to maximize
the unit time profit. We assume that the firm sets the sales price for the item
at regular sales price p initially and then sequentially reduces its sales prices at
a predetermined amount 7 to influence demand. Let k; and p; be respectively
the time and the sales price of the jth price setting. In addition, denote the time
interval between k; and k41 as sales period j. The sales price during sales period j
is then given by p; = p— (j — 1)r. Postulate that the regular sales price p is reset
again immediately after the time of k,11. We refer to the length between k1 = 0
and k,41 as a price cycle and the symbol n be the number of price settings in a
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price cycle. It is noted that no price reduction is made if n = 1 is set and a price
cycle is composed of n sales periods.

Let d(j) be the demand rate during sales period j and assume that it follows a
linear curve of a(j) — Bp; where the values of a(j) and 3 are known and constants,
and respectively represent the intersection and the slop of the demand curve. In
many practice, customers may expect a further price reduction when a firm uses
pricing promotion to stimulate demand. Thus, we assume that the intersection of
the demand curve may vertically move down when the firm reduces the sales price
and is assumed to be the form of a(j) = a — jA.

Assume that the firm divided a sales period into an advance sales period and
a spot sales period. Each sales period starts with an advance sales period and
then a spot sales period. We refer to the advance sales period of sales period j
as advance sales period j and the spot sales period of sales period j as spot
sales period j. Assume that all demand are backordered during an advance sales
period, an advance sales stops when the cumulative backorder demands reach a
prespecified quantity —s and all backordered demands are satisfied exactly at the
ending time of an advance sales period. The arrival time of the replenishments
order in sales period j is assumed to be at the ending time of advance sales period j.
The replenishment order, @ is assumed to be the same for all replenishments.

The probability of customer’s purchasing the item in advance is assumed to be
dependent on the time length between the purchasing time and the delivery time.
The delivery time is assumed to be at the ending time of an advance sales period.

Since the purchasing behavior of customers’ purchasing the item in advance
may be influenced by the waiting time from the time of purchase to the time of
receiving their orders The probability of customer purchasing the item with back-
order is assumed to be the form of d(j)/(1+ (T, —t)) where T} is the arrival time
of a replenishment order of sales period j, ¢ is a positive constant and (T; —t) is
the waiting time from the time of purchase to the time of receiving their orders.

It is noted that the time 7} also represents the ending time of advance sales
period j. Immediately after time T, we can observe that the inventory level
reaches z = Q — s and spot sales of sales period j starts. We assume that there
incur a cost ¢, for each replenishment. Finally, for a sales to be profitable, we
assume that the number of price settings n can not exceed a prespecified number
n. The number 7 also satisfies the condition of pp — ¢, > 0 where ¢, is unit
purchasing cost.

The firm aims to maximize its unit time profit by simultaneously determining
(1) the replenishment order quantity, @, (2) the number of price settings in a price
cycle, n, (3) the times of replenishments, T, and (4) the times of price settings, k.
The notation is summarized in the following.

Notation:
@ = the replenishment order quantity;

n = the number of price settings in a price cycle with n < n;
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FIGURE 1. Behavior of inventory level with time in a price cycle.

r = the discount amount per price reduction;
j = a sales period index, sales period j refers to the time interval [k;, kji1];
d(j)= the unit time demand rate of sales period j with d(j) = o — jA — Bpj;

pj = the sales price of sales period j with p; = p— (j — 1)r where p is the regular
sales price;

s = the predetermining shortage level;

cp, = the unit inventory carrying cost, in unit time;

= the unit purchasing cost;

¢, = the fixed ordering cost incurred with each replenishment;

T; = the arrival time of a replenishment order of sales period j;

k; = the starting time of sales period j at which the jth price setting is made;
z = the maximum inventory level with z = @ — s.

Figure 1 depicts the changes of inventory level with time in a price cycle. Sup-
pose the number of price settings in a cycle is set at n. At the start of advance
sales period j,j7 = 1,2,--- ,n, there is no inventory on hand and all demands are
backordered.

Let I (t) denote the inventory level at time ¢ of advance sales period j. Since
the inventory levels during this time interval decreases at time t at a rate d(j)/(1+
0(T; —t)), we have

qu(t) *d(j)
J — . < < l
dt 1+6(T; —t)’ kjstsT (1)

At time point T at which the cumulative backordered demands reach a prespecified
level —s, the advance sales is stopped, a replenishment ) = z + s arrives, all
backordered demands are satisfied and the inventory level is replenished up to the
level z.
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Let I7 (t) denote the inventory level at time ¢ of spot sales period j. Then,
since the inventory levels at time ¢ of this time interval decreases at a rate d(j) =
a—jh—0(p—(j— 1)r), we have

Iz (t)
dt

= —d(j), Tj <t <kju. (2)

At time k;41, the (j+1)th sales period starts, and the sales price is further reduced
by the amount r and set at p — jr. These process are repeated until the ending
time of sales period n, k,y1. Immediately after the ending time of sales period n,
another price cycle starts and the sales price is set at p again.

Now, we will derive the system inventory level functions I7(¢) and I3 (t). The
inventory reaches —s at the time point 7; and the inventory level is replenished up
to z immediately after the time 7;. Thus, we have I{(7}) = —s and I3(T}) = z.
Using these conditions to solve differential equations (1) and (2), we have

(e = Il 5Tgf WG 3
(1) = 2+ (T; = 1)d(j). (4)

The system inventory level is developed. Now, we will develop the unit time profit
function of this problem. The profit in a price cycle is comprised of the sales
revenues, inventory carrying cost, purchasing cost and ordering cost.
Sales revenues:

Let R(n) be the sales revenue of a price cycle when the number of price settings
is set at n. Then, since the sales amount in each period is () = z + s and the sales
price for period j is p; =p — (j — 1)r, we have

R(n) = > (p— (i — Dr)Q =n(z +s)(p— 0.5(n — 1)r). (5)

Jj=1

Inventory carrying cost:
Let H(n) be the carrying cost of a price cycle when the number of price settings
is set at n. Then,

H(n) =) H;(n) (6)

where H;(n) is the carrying cost of sales period j in a price cycle when the number
of price settings is set at n. It is noted that for sales period j the inventory is
positive only during spot sales period [T}, k;+1], thus we have

Kjt1
Hj(n) = ch/ I (t)dt

J

= cn(kjpr — Tj)z — 0.5¢n (ki1 — Tj)d(j). (7)
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Purchasing cost:
Let C(n) be the total purchasing cost of a price cycle when the number of price
settings is set at n. Then, it is clear that

C(n) = nQcp = n(z+ s)cp. (8)

Ordering cost:
Let O(n) be the total ordering cost of a price cycle when the number of price
settings is set at n. Then, we have

O(n) = ncp. (9)

Objective function

Let F(n,z, T, k) denote the total profit of a price cycle when the number of
pricing settings is set at m, the replenishment amount is set at ¢, the times of
price settings are set at k = (ki, ko, , kp), and the times of replenishments are
set at T = (11,72, -+ ,Ty). Then, from (5) ~ (9) we have

F(n,z,T,k) = R(n) — H(n) — C(n) — O(n). (10)

Since the length of a price cycle is equal to k41, the unit time profit is

Un,z, T.k) = F(n,z,T,k)/kny1. (11)

3. ANALYSIS

This work aims to maximize the unit time profit by determining the number
of price settings n, the maximum inventory level z, the times of price changes k
and the times of replenishments T'. As shown in previous section, the problem is a
mixed-integer nonlinear programming. It is difficult to apply the current software
to solve the problem optimality. Since the objective function contains too many
variables, we will reduce the number of variables by expressing unknown variables
T and k in terms of z and n. First, we will develop the following theorem.

Theorem 3.1. T and k; has the following relationship

1~ exp(sd/d(j))

kj = T+ ; (12)
Proof. Note that I(t) = 0 for ¢ = k;. Thus, from (3) we obtain
In(1 T, — 0k;)d(j

0

Solving the above equation produces (12). Thus, we have completed the proof. O
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Since k1 = 0, it is clear from (12) that

exp(sé/d(1)) —1

T = :

(14)

For j > 2, let ATj; be the difference between 7 and T;_;. Then, for j > 2, T} can

be found by the following theorem.

Theorem 3.2. For n > 2, we have
J
Ty =Y AT +T
i=2

where

ewls/d) s
ATy = 5 dj—=1) 3§

Proof. From the fact that I7(t) = 0 for t = k;11, we obtain from (4)
2+ (Tj — kjra)d(j) = 0

from which we get

z
kjr = Tj + Q)
Combining this and (12) we have
1- 5/d(j
p o e

)
Thus, we have completed the proof.

Substituting (18) into (7), we can rewrite H;(n) as follows

Thus, we can rewrite profit function as follows:

F(n,z) = n(z+s)(p— 0.5(n — 1)r — ¢,) — 0.5¢,2> ‘

n
Jj=

(15)

(16)

(18)

(21)
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By (14), (15) and (16), we can rewrite k; 11 = T; + z/d(j) in (18) as

ki1 = ;ATi‘FTl‘F@
S fexp(s8/di) = 1\ exp(ss/d(1) -1 =
2( 5 +d(z’—1)5)+ 5 RrTE)
n ‘ 1 J exp(sd/d(i
I SN -] )

Thus, the unit time profit function can be rewritten as follows:

n(z+s)(p—0.5(n—1)r —c,) — 0.5¢,2°W — nc,

Uln,2) = —n/8+ W +Y (23)
where
"1
y = S ewles/dld) o

Below, we will develop a heuristic procedure to find the decisions. For any given
number of price settings n, let z(n) be the optimal decisions to attain the optimal
value of max, U(n, z). That is, U(n, z(n)) = max, U(n, z). Then,

maxU(n, z) = max{U(1,2(1)),U(2,2(2)),---,U(n, z(7))}. (26)

n,z

Consequently, if we can find U(n, z(n)) for all n < 7, the optimal decision can be

determined. Note for z(n) to be the z attaining the optimal value of u(n, z), the

following conditions should be satisfied: z(n) is the z attaining the solution of the
2

equation % =0, % < 0 and z(n) > 0. The first derivative of U(n, z)

with respected to z is given by

oU(n,z)  n(p—0.5(n—1)r—c,) —cpzW

0z —n/é+W+Y

(n(z+s)(p— 0.5(n — 1)1 — ¢) — 0.5¢cp22W — nc,) W
B (—n/6 + 2W +Y)? +(@27)
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The second derivative of U(n, z) with respected to z is given by
9*U(n,z) 3 e, W ~2(n(p—05r(n—1) —cp) —cpzW)W
022 —n)i+2WH4Y (—n/§+2W +Y)?2

Jr2(n(z +8)(p— 0.5r(n — 1) — ¢p) — 0.5¢,2°W — nc,)W?
(—n/d+2zW +Y)3

WG
 (n—2W35—-Y¥)3

where
G = —26n(n— Y35+ 0Ws)(p—0.5(n—1)r —c,) + (n — Y8)?cp + 20°Wne,.(29)

For showing that % < 0, we need the following lemmas.

Lemma 3.3. For any given n, n —zW3 —Y§ <0 for z > 0.

Proof. Since Z;.Lzl exp(sd/d(j)) > n, we have n — zW§ —Yd = n — zWé —
>y exp(s6/d(j)) < —zWé < 0 due to W =37 (1/d(j)) > 0. O

Lemma 3.4. For any givenn < n, G > 0.

Proof. Since (n — Y4§)? > 0, 26°Wnc, > 0 and by modeling assumption that
p—0.5(n—1)r—c, > p—(n—1)r—c, > 0, it is clear that G > 0if n—Y 6+ s6W < 0.
Let E(0) = n—Y0+s6W. Then, since dEd((;s) = sZ?Zl((1—exp(s§/d(j)))/d(j)) <0
and E(0) = 0, we have E(J) < 0 for § > 0. Thus, we have completed the proof. [

Lemma 3.5. For any given n < @1, z(n) > 0.

Proof. Let z(n) be the z attaining the solution of the equation % = 0. Then,
we have
n—Yé VM
=-2—_° 30
2(n) W oW (30)
where
M = —2ncpd(n —Yd+ 0Ws)(p—0.5r(n —1) —¢p)
+(n —Y6)2ck 4 2c,0*Wne,. (31)
Since E(0) (n—Y0+0Ws) < 0and p—0.5r(n—1)—c, > 0, we have
n— C2
M > (n—Y6)%c. Thus, we have z(n) > —2Y2 4 (c} ;V(;)Q bo=0. a

Lemma 3.6. For any given n, Bzgig,z) <0.

Proof. Tt is clear from equation (28), Lemma 3.3 and Lemma 3.4. O
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TABLE 1. Parameters.

« I6) A 1) r P s ch  Cp Co M
20.0 0.5 0.05 0.1 0.5 25 200 0.01 5.0 100 15

According to Lemmas 3.5 and 3.6, we have for fixed n, z(n) in (30) is the opti-
mal maximum inventory level. Thus, Q(n) = z(n)+ s is the optimal replenishment
amount. To compute T and k, we first compute AT; by (16) for all j. Then, we
use (15) to compute T. Finally, we compute k by (12). The unit time profit
U(n,z(n)) can be obtained by (23). The optimal number of pricing settings and
related decisions can be searched by the following procedure.

Solution Procedure
Stepl Set n=1,n"=0,k =0,Q*=0and U* =0.
Step 2 While n < 7 do steps 3-5.

Step 3 Calculate z(n) according to (30).

Step 4 Substituting z(n) into (23) to calculate U(n, z(n)).
Step 5 If U(n,z(n)) > U*, then
let n* =n, U* =U(n, z(n)), Q* = z(n) + s,

substitute n* and z* into (16) to compute AT}, and then compute

T and k by (15) and (12), respectively, and
let k* =k and T* =T.
Step 6 Output n*, U*, Q*, k* and T*.

4. NUMERICAL EXAMPLE

In this section, we examine one case to examine our model. The regular sales
price p, the discount amount r, the demand parameters o, A and 3, the maximum
back-order quantity s, unit time inventory carrying cost cp, per unit purchasing
cost ¢p, ordering cost per replenishment ¢, and 7 are assumed and listed in Table 1.

By solution procedure, the values of U(n, z(n))*, k*, T* and Q* can be obtained.
Table 2 shows the results of U(n, z(n)). We see that the profit of 111.173 is optimal
for n* = 9. The value of 2(8) is 3674.33 from which we obtain the optimal order
quantity Q(9) = 3874.33. Substituting n = 9 and Q(9) = 3674.33 into (16), we
can compute ATj. According to the results, we can compute compute T* and k*
by (15) and (12), respectively. The values of k* and T* are shown in Table 3.

Table 3 can be illustrated as follows: the number of price settings should be
set at n* = 9. The firm sets the sales price at 25 at time 0. Then, the firm
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TABLE 2. U(n,Q(n)).

n U(n,z(n)) n U(n,z(n)) n Un,z(n)) n Un,z(n)) n Un,z(n))
1 108.642 4 110.168 7 110987 10 111.164 13 110.753
2 109.234 5 110515 8 111.114 11 111.091 14 110.492
3 109.741 6 110.788 9 111.173 12 110.953 15 110.173

TABLE 3. k* and T*.

J 1 2 3 4 5 6 7 8 9 10
kj 0.0 629.72 1236.61 1822.46 2388.85 2937.16 3468.63 3984.37 4485.37 4972.52
T; 136.52 756.30 1354.39 1932.41 2491.78 3033.80 3559.59 4070.19 4566.52 -

resets its sales prices at times 629.72, 1236.61, 1822.46, 2388.85, 2937.16, 3468.63,
3984.37 and 4485.37 at 24.5, 24, 23.5, 23, 22.5, 22, 21.5, 21, respectively. At time
4972.52, the firm sets its sales price at 25 again. The length of a price cycle is
4972.52. In addition, the firm receives its order quantity, Q* = 3876.33, at times
136.52, 756.30, 1354.39, 1932.41, 2491.78, 3033.80, 3559.59, 4070.19 and 4566.52,
respectively.

5. CONCLUSION

This paper studied the times of pricing settings and ordering problem for an
inventory system under the condition that multiple discounts and back-order are
allowed. Numerous inventory models have addressed the inventory problems.
However, these models have rarely considered a situation in which the intersection
of demand curve may move down, and the length of distinct sales periods in a
price cycle and the times of price change for each sales period are controllable.
Tacking these phenomena into account, this paper developed a continuous-time
model to deal with this problem. The times of price changes, the times of replen-
ishments, the replenishment amount and the price cycle are jointly derived by a
simple heuristic approach studied in this paper.
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