RATRO Operations Research
RAIRO Oper. Res. 41 (2007) 1-18
DOI: 10.1051/r0:20070012

EVALUATING FLEXIBLE SOLUTIONS IN SINGLE
MACHINE SCHEDULING VIA OBJECTIVE FUNCTION
MAXIMIZATION: THE STUDY OF COMPUTATIONAL

COMPLEXITY

MOHAMED ALI ALOULOU!, MIKHAIL Y. KOVALYOV?

AND MARIE-CLAUDE PORTMANN?®

Abstract. We study a deterministic problem of evaluating the worst
case performance of flexible solutions in the single machine scheduling,.
A flexible solution is a set of schedules following a given structure de-
termined by a partial order of jobs and a type of the schedules. In
this paper, the schedules of active and non-delay type are considered.
A flexible solution can be used on-line to absorb the impact of data
disturbances related to, for example, job arrival, tool availability or
machine breakdowns. The performance of a flexible solution includes
the best case and the worst case performances. The best case perfor-
mance is an ideal performance that can be achieved only if the on-line
conditions allow to implement the best schedule of the set of schedules
characterizing the flexible solution. In contrast, the worst case perfor-
mance indicates how poorly the flexible solution may perform when fol-
lowing the given structure in the on-line circumstances. The best-case
and the worst-case performances are usually evaluated by the minimum
and maximum values of the considered objective function, respectively.
We present algorithmic and computational complexity results for some
maximization scheduling problems. In these problems, the jobs to be
scheduled have different release dates and precedence constraints may
be given on the set of jobs.

Keywords. Scheduling, single machine, schedule flexibility, maxi-
mization problems, active and non-delay schedules.

Received January 1st, 2006. Accepted June 15, 2006.
1 LAMSADE — Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775
Paris Cedex 16, France; aloulou@lamsade.dauphine.fr
2 Faculty of Economics, Belarusian State University, and United Institute of Informatics Prob-
lems, National Academy of Sciences of Belarus, Minsk, Belarus; koval@newman.bas-net.by
3 MACSI team of INRIA-Lorraine and LORIA-INPL, Ecole des Mines de Nancy, Parc de
Saurupt, 54042 Nancy Cedex, France; portmann@loria.fr

© EDP Sciences, ROADEF, SMAI 2007

http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/r0:20070012

http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:20070012

2 M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN
1. MOTIVATION

In real-life scheduling applications, it is often the case that processing environ-
ment can change while implementing a schedule because of unexpected machine
breakdowns, processing time uncertainty, changes in the job arrivals, etc. In this
situation, a predictive (off-line) schedule that does not take into account the pres-
ence of perturbations rapidly becomes impracticable and finally yields quite poor
performances, see for example Artigues, Roubellat and Billaut [5], Artigues, Bil-
laut and Esswein [4], Daniels and Kouvelis [9] and Mehta and Uzsoy [14]. Herroleen
and Leus [12] and Wu, Byeon and Storer [18] noticed that introducing flexibility
in the solutions computed off-line allows to increase robustness of a scheduling
system.

On the other hand, a predictive schedule should not be too much flexible be-
cause it is used as a basis for planning external activities such as raw material
procurement, preventive maintenance and delivery of orders to the customers.
Consequently, if an on-line schedule, which is one of the realizations of a flexible
predictive schedule, deviates considerably from the initial schedule, then it may
delay an execution of the related external activities and induce some extra costs
for early procurement of raw materials or late delivery of finished products, see
Aloulou and Portmann [3]. Therefore, a realistic off-line schedule should be suf-
ficiently flexible, follow a structure determined by the technological constraints,
and coordinate with other participants of the considered manufacturing system
and/or supply chain.

The results of this paper are related to the proactive-reactive scheduling ap-
proach developed by Aloulou and Portmann [1,3]. Consider a scheduling problem
to minimize an objective function associated with completion times of the jobs to
be processed in a manufacturing system. In this paper, we concentrate on a single
machine system. Aloulou and Portmann defined a flexible off-line solution as a
partial order (precedence relations) on the set of jobs. They suggested to select a
flexible solution that provides a sufficiently detailed sketch of the schedule to serve
as a basis for planning the related external activities, and that remains enough
flexible to allow changes in job processing when the on-line conditions force to
make them.

The approach of Aloulou and Portmann has two phases: an off-line phase
(proactive algorithm) and an on-line phase (reactive algorithm), see Figure 1.
In the off-line phase, the set of all partial orders (flexible solutions) is explored by
a genetic algorithm that proposes a selection of partial orders to a decision maker.
The decision maker chooses an appropriate partial order for the on-line execution.

A partial order implicitly represents several schedules with the same precedence
constraints between the jobs. The genetic algorithm and the decision maker use
two main criteria to evaluate a particular partial order. First criterion is flexi-
bility, which is characterized by the number of distinct schedules associated with
the partial order. Second criterion is performance, which is characterized by the
objective function values of schedules associated with the partial order. Since the
number of schedules associated with a given partial order can be sufficiently large,

EVALUATING FLEXIBLE SOLUTIONS... 3

Production plan

A 4

OFF-LINE PHASE:
Proactive algorithm D

A partial order
of jobs The partial order
+ in use is infeasible

a type of schedules

A
ON-LINE PHASE:
Reactive algorithm

A
On-line Shop state
decisions Follow-up

A 4
Shop floor

FiGUuRE 1. The proposed proactive-reactive approach.

it is natural to consider only their most important representatives. Aloulou and
Portmann suggested to restrict the set of the considered schedules to those often
used in practice: active, semi-active and non-delay schedules, see Baker [6] and the
following section for definitions. Furthermore, they suggested to use only the best
and the worst case performances to evaluate the performance of a flexible schedule.
The best and the worst case performances are lower and upper bounds, respec-
tively, on the value of the objective function calculated for schedules following the
partial order. They can be obtained by solving corresponding minimization and
maximization problems.

During the on-line phase, whenever a job has to be selected for processing on
a machine, a decision maker is provided with several alternatives that respect the
chosen partial order. He/she can make a choice that satisfies other preferences or
non-modeled constraints. In the presence of disruptions, it is often the case that
one of the schedules associated with the used flexible solution remains feasible and
there is no need to calculate a new solution.

As we already mentioned, one of the reasonable approaches to evaluate the
performance of a flexible solution (partial order) is to solve two deterministic
optimization problems: a minimization problem for the best case performance
and a maximization problem for the worst case performance. Notice that there is
no need to calculate corresponding schedules.

Minimization problems have been abundantly considered in the scheduling lit-
erature. In this paper, we focus on new maximization scheduling problems never

4 M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

considered in the past. Observe that if the jobs are allowed to start arbitrarily late,
then the maximum values of many traditional objective functions can be arbitrar-
ily large. In this case, they cannot be used to evaluate the worst case performance
of any solution. Therefore, the set of feasible schedules must be restricted so that
the jobs do not start too late. We propose in this paper to restrict the schedules
to be active or non-delay. A flexible solution is now characterized by a structure
defined by a partial job order and a type of the schedules.

In the following section, we formulate the problems to be studied, review related
publications and briefly describe the results of this paper.

2. PROBLEM FORMULATION AND LITERATURE REVIEW

We study the following single machine scheduling problem. There is a set
N ={1,...,n} of jobs to be scheduled for processing on a single machine. Each
job j € N has a processing time p; > 0, a release date r; > 0, and it may have a due
date d; > 0, a weight w; > 0, and a non-decreasing function f;(t) associated with
it. The release date is the earliest time when the job processing can start, the due
date is an ideal time for its completion, the weight indicates a relative importance
of the job and the function f;(¢) represents the cost that has to be paid when the
job completes at time ¢. All data are assumed to be integers. Functions f;(t) are
assumed to be integer valued.

Precedence constraints may be given on the set of jobs. If job ¢ precedes job j,
then job j can start its processing only after job i is completed. A schedule is
specified by the sequence of the jobs and their starting times. No preemption of
job processing is allowed.

A schedule is called active if a job cannot be shifted to start earlier without
increasing completion time of another job or violating precedence constraints or
release dates. A schedule is called non-delay if the machine does not stand idle at
any time when there is a job available for processing at this time. If it is given
that only active schedules are considered, then any such schedule is completely
characterized by the corresponding job sequence. The same statement is valid for
non-delay schedules, see Baker [6].

Given a schedule, the job completion times Cj, j = 1,...,n, can be easily
determined. The objective is to find an active or non-delay schedule such that
a regular function F(C1,...,Cy,) non-decreasing in the job completion times is
maximized.

Adapting the traditional three-field notation «|3|y for scheduling problems pro-
posed by Graham et al. [11], we denote the above problem as 1(0)|3|(y — max),
where 6 € {a,nd} indicates the type of schedules to be considered (active and
non-delay, respectively), 8 C {prec,r;} and v € {F, fmax, f5, Cmax, Lmax, Tmax,
> (wy)Cy, Yo (wy)Uj, > (w;)T;}. If the descriptor r; is present in the second field,
then the job release dates are assumed to be arbitrary. Otherwise, they are all
equal to zero. If the descriptor prec is present in the second field, then the prece-
dence constraints are assumed to be represented by an arbitrary acyclic graph.

EVALUATING FLEXIBLE SOLUTIONS... 5

If prec is not present, then the jobs are assumed to be independent and the cor-
responding graph contains no arcs. The third field contains an information about
the criterion, which is to maximize one of the following regular functions:

arbitrary regular function F = F(Cy,...,Cp);

maximum cost function fmax = max{f;(C;)};

total cost function fx =" f;(C;);

maximum completion time (makespan) Cpax = max{C}};

maximum lateness Lmax = max{L;}, L; = C; — d;;

maximum tardiness Tmax = max{7};}, T; = max{0,C; — d;};

total (weighted) completion time > (w;)C};

(weighted) number of late jobs Y (w;)U;; where U; = 0, if C; < d; and
U; =1if C; > dj;

o total (weighted) tardiness) (w;)T}.

Observe that our objective is to find a worst active or non-delay schedule with
respect to the traditional scheduling criteria. To the best of our knowledge, the
only relevant results are due to Posner [15] and our earlier paper [2]. Posner studied
reducibility among single machine weighted completion time scheduling problems
including minimization as well as maximization problems. In these problems, the
jobs may have release dates and deadlines but there are no precedence constraints
between the jobs. Besides, an insertion of idle times between the jobs is allowed.

In [2], we studied maximization problems where semi-active schedules were con-
sidered. For a semi-active schedule, a job cannot be shifted to start earlier without
changing the job sequence or violating the feasibility. This specificity makes the
results of [2] applicable for the problems formulated above only if the release dates
are all equal to zero. For instance, the problem of maximizing fiax is solvable
in O(n?) time, and the problems of maximizing Y w;C; and Y w;U; are equiv-
alent to their minimization counterparts with the inverse precedence constraints.
Therefore, in the sequel, we assume that the release dates are not equal.

Restricting the schedules to be semi-active means that a decision maker can
choose any job to execute on the machine once it follows the given structure. The
machine can stand idle and wait until the chosen job is ready for execution. In the
case of active schedules, an algorithm presents to a decision maker a set of different
actions that keeps the schedule active. Consideration of active schedules instead
of semi-active schedules allows to decrease considerably objective function values.
However, flexibility, in terms of the number of the relevant schedules, decreases in
this case. It is also interesting to consider non-delay schedules. Indeed, a non-delay
schedule is easy to implement and the scheduling strategy is more understandable
by a decision maker who is generally used to keep the machine busy if there is an
available job.

The remainder of this paper is organized as follows. In Section 3, we consider
the case of active schedules. We prove that the problem 1(a)|r;|(Cmax — max) is
NP-hard even if there are only three distinct release dates and that the problem
1(a)|rj](3° w;jCj — max) is NP-hard in the strong sense. It is NP-hard if there are
two distinct release dates. In Section 4, we consider the case of non-delay schedules.

6 M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

We show that the problem 1(nd)|prec, 7;|(Cmax — max) is solvable in O(n?) time
unlike the same problem for active schedules. We further demonstrate that the
problem 1(nd)|prec,r;|(fmax — max) can be solved in O(n?) time. Finally, we
prove that the problem 1(nd)|prec,r;|(F — max) for F € {> w;C;,> w;U;}
reduces to the corresponding minimization problems without job release dates
but with job deadlines. The paper concludes with a comparative exposition of
the complexity of the considered maximization problems, maximization problems
where only semi-active schedules are considered, and minimization counterparts
of all these maximization problems.

Our results mainly concern computational complexity of the considered prob-
lems. It is a necessary first step in an investigation of any real-life problem to be
solved on a computer. There is a comprehensive bibliography on computational
complexity of minimization scheduling problems, see the up-to-date information
maintained by Brucker and Knust [8]. However, there are only the results that we
already mentioned for the maximization scheduling problems.

3. ACTIVE SCHEDULES

In this section, a search for an optimal schedule is restricted to active schedules.
We prove that maximizing Chyax is NP-hard and maximizing Y w;C; is strongly
NP-hard even if there are no precedence constraints. Note that these problems
are polynomially solvable for semi-active schedules, see Aloulou, Kovalyov and
Portmann [2]. In our NP-hardness proofs, we construct reductions from the fol-
lowing problems.

e PARTITION: Given m + 1 positive integers ai,...,a, and A such that
Yoy a; = 2A, is there a set X C M = {1,...,m} such that >3,y a; =
A?

e EQUAL CARDINALITY PARTITION: Given 2m + 1 positive integers aq, ...,
a2m and A such that Z?g a; = 2A, is there aset X C M ={1,...,2m}
such that [X|=m and } ;v a; = A?

e 3-PARTITION: Given 3m + 1 positive integers aq, ..., as, and A such that
A/d<a; <AJ2,j=1,...,3m, and Z?Zl a; = mA, is there a partition of
’lche iet {1,. .7.,3m} into m subsets X, ..., Xy, for which }°, v a; = A,

=1,...,m’

Problems PARTITION and EQUAL CARDINALITY PARTITION are NP-complete and
problem 3-PARTITION is NP-complete in the strong sense (Garey and Johnson [10]).

Theorem 1. The problem 1(a)|r;|(Cmax —max) is NP-hard even if there are only
three distinct release dates.

Proof. We use a polynomial transformation from EQUAL CARDINALITY PARTI-
TION. Given an instance of this problem, construct the following instance of the
problem 1(a)|r;|(Cmax — max).

EVALUATING FLEXIBLE SOLUTIONS... 7

Gmax — 1 B
—~ ——
mB + A | | 1 Iamax | | 1 | mB+ A
I T I 1
0 rsi rs2 Yy

FIGURE 2. Schedule with Chax = ¥.

Calculate amax = maxjen a; and B = A + amax.
There are 2m + 3 jobs. Among them there are

e 2m partition jobs j with zero release dates and processing times p; =
BHa;, j=1,...,2m;

® one amax-job with zero release date and processing time amax; and

e two jobs S1 and S2 with unit processing times and release dates rg; =
(m+1)B—1=mB+ A+ amax — 1 and rga =751 + 1 + amax + B.

We show that EQUAL CARDINALITY PARTITION has a solution if and only if there
exists a solution to the constructed instance of the problem 1(a)|7;|(Cmax — max)
such that Chax > y: =752 + 1+ mB + A.

“Only if”. Assume that set X is a solution to EQUAL CARDINALITY PARTI-
TION. Construct a schedule in which jobs S1 and S2 start at their release dates,
Gmax-job starts just after S1, partition jobs of the set X are scheduled before job
S1 and partition jobs of the set M\ X are scheduled after job S2. A diagram of
such a schedule is given in Figure 2.

Observe that the constructed schedule is active because the length of the first
idle interval is apax — 1 which is less than the minimum processing time of all
available jobs scheduled after it, and the length of the second idle interval is B
which is less than the minimum processing time of all available jobs scheduled
after it. For the constructed schedule, we have Ci.x = y.

“If”. Let there exist an active schedule with value Cy.x > y. For such a
schedule, denote the set of partition jobs completed before rg; as X and denote
Ax = jex -

We first assume that at most m — 2 partition jobs are completed before rg1. In
this case, the total processing time of these jobs is equal to G < (m — 2)B + Ax
and the length of an idle interval before rg; is equal to

rs1—G>3B—Ax —1=2A—Ax — 1+ A+ 3amax > B + 2amax,
which is not less than the total processing time of any partition job and the amax-
job. We obtained a contradiction because the schedule is active.
We now assume that exactly m — 1 partition jobs are completed before rg1, i.e.,
|X | = m — 1. Their total processing time is equal to G’ < (m —1)B + Ax and the
length of the idle interval before rg; is equal to

TSl_G,ZB+A_AX_1+amax:2A_AX_1+2amax>amax-

8 M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

Since the schedule is active and mth partition job cannot appear before rg; by
assumption, the latter inequality implies that the amax-job must be processed
before rg1. Then the length of the idle interval before rg; is at least B+ A—Ax —1.
Denote aﬁ}lX = minjepn x ;- The statement that no partition job can fit into

M\X - B + A — Ax — 1, from where we

min

the above idle interval implies that B + a
obtain

aM N > A Ay (1)
Since the amax-job is processed before g1 and rga — rg1 = B 4+ 1 + amax, job S1
and some partition job from the set M\X must be processed before rgy. Then
the number of the partition jobs scheduled after rgo is equal to m and their total

processing time is equal to

ngB+2A—(AX+aM\X).

min

From Chax > y, we obtain D > mB + A. Therefore, aﬁ}lX < A — Ax. This

inequality and (1) imply Ax + aﬁ}lx = A, ie, X U{j° where j° is the job
from M\ X with processing time B+ aﬁ}lx, is a solution of EQUAL CARDINALITY
PARTITION.

Observe that no more than m partition jobs can be completed by rg; because
rs1 = (m+ 1)B — 1 is less than the total processing time of any m + 1 partition
jobs. Furthermore, at least m partition jobs can be scheduled after rgo because
otherwise

Cmax <rso+1l+amax+(m—1)B+24A—-1<rso+14+mB+A=y.
Therefore, it remains to consider the case where exactly m partition jobs are
scheduled before g1 and exactly m such jobs are scheduled after rgs. In this case,
job S1 and the apax-job must be scheduled between rg; and rgs. Otherwise, a
partition job will be scheduled there. Then the length of the idle interval before
rg1 should not exceed amax — 1. This statement is equivalent to Ax > A. On the
other hand, Cp.x > ¥ is equivalent to Ax < A.

Hence, in the remaining case we obtain that | X| =m and Ax = A, i.e., X is a
solution of EQUAL CARDINALITY PARTITION. O

Corollary 1. The problem 1(a)|r;|(y—max) is NP-hard for v € { fmax, [5: Imax;
Tinax; 22 (w)Uj, > 2(w;)Tj}-
Computational complexity of the problem 1(a)|r;|(Cmax — max) remains open

with respect to the strong NP-hardness and for the case where there are only two
distinct release dates.

Theorem 2. The problem 1(a)|r;|(>_w;C; — max) is NP-hard in the strong
sense.

Proof. A pseudo-polynomial transformation from the strongly NP-complete prob-
lem 3-PARTITION is used.

EVALUATING FLEXIBLE SOLUTIONS... 9

IXl | 14 |X2 | 14 | 1% Xm |1_‘
\)| |

4 "o 4 L2 TL(m—1) A U U+l

FIGURE 3. Schedule with > w;C; > y.

Given an instance of 3-PARTITION, we construct the following instance of the
problem 1(a)|r;|(>-w;C; — max). Calculate amax = maxi<j<smia;},
V =3mamax (mA+m —1)+ 1 and U = (m — 1)V 4+ mA. There are 4m jobs.
Among them there are

e 3m partition jobs j with parameters r; =0, p; = w; = a4, j =1,...,3m;

e m —1 long jobs Ll with parameters rp; = (I— 1)V +1A, pri =V, wr =1,
l=1,...,m—1;

e one heavy job H with parameters rgy = 0, pg = 1, wyg = W, W :=
(rom-1) FU)(m —1+mA).

We show that 3-PARTITION has a solution if and only if there exists a solution to
the constructed instance of the problem 1(a)|r;|(3>_ w;C; —max) such that

S wiC >y = V(A+ Dm(m —1)/2+ (U + 1W.

“Only if”. Assume that Xi,...,X,, is a solution to 3-PARTITION. Construct
a schedule in which long jobs start at their release dates rr;, [= 1,...,m — 1,
heavy job H starts at time U and partition jobs are scheduled before job H in
the remaining time intervals. Jobs of the set X; are sequenced before long job L1,
jobs of the set X, are sequenced between jobs L1 and L2, and so on. A diagram
of such a schedule is given in Figure 3.

Observe that, in the constructed schedule, there is no idle time between the jobs.
For such a schedule, it follows from the definition of the objective function » w;C;
that contribution of any job to this objective function is equal to its processing time
multiplied by the total weight of jobs scheduled after it plus its own weight. Below
we use this statement for calculating contributions of the jobs to the objective
function.

For the constructed schedule, we have Y w;C; = Fy + (U + 1)W, where F;
denotes Y w;C; value for the schedule without heavy job H and (U + 1)W is
the contribution of job H to the original objective function. Furthermore, F; =
Fr+Fp, where Fy, and Fp are contributions of long and partition jobs, respectively,
to the £} value.

Denote A; =) a;, I =1,...,m. We have

JEXy
Fp=ppim—1+4+As+ -+ Ap) +pralm —2+ Az + -+ Ap)
(2)
o A prm-n (1 + Ap) = V(A+)m(m —1)/2

10 M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

and 0 < Fp < 3mamax(mA +m — 1) = V — 1. Therefore, for the constructed
schedule, we have

> w;iCi = V(A+ m(m—1)/2+ U+ HW =y.

“If”. Assume that there exists an active schedule with value >~ w;C; > y. Observe
that the heavy job H cannot be completed after time U + 1 because then there will
be an idle time before it and the schedule will not be active (H can be removed
to start earlier without increasing completion times of the other jobs).

Assume that job H completes at time C'y < U. In this case,

ijC’j < UW + (rpm—1) + total processing time of long and partition jobs)
x (total weight of long and partition jobs) = W (U + 1) < y.

Therefore, Cy = U + 1 and there is no idle time before job H.

Since long jobs have equal processing times and weights, assume without loss
of generality that they are scheduled in the order L1, L2,..., L(m — 1). Denote by
X1, Xo,...,X,, the sets of partition jobs scheduled before job L1, between jobs
L1 and L2, and so on, respectively. Structure of such a schedule is presented in
Figure 3. At this point, however, it is not required that long jobs start exactly at
their release dates.

Similar to part “only if” and keeping the same notations, we have Y w;C; =
Fi+({U+1)W, Fi =Fr+ Fp and Fp <V — 1. From) w;C; >y, we obtain

FL—I—FPZV(A—I—l)m(m—l)/Z (3)

Recall that A; =Y
that

jex, 45 Since release dates of long jobs are observed, we know

A <A, A1+ A, <24, ..., Ag+ As+ -+ A, < (m—1)A.

Notice that value Fj, is maximized if long jobs are scheduled as early as possible,
i.e., when they start at their release dates. In this case, we have equation (2)
satisfied. Assume that A,, < A — 1. In this case, because of the no idle time
assumption, long job L(m — 1) cannot start earlier than at time r1(,,—1) + 1, and
therefore, F, < V(A 4+ 1)m(m — 1)/2 — V. We obtain

FL+Fp<V(A+1D)mm—1)/2-V+V—1<V(A+1)m(m—1)/2,

which contradicts (3). Therefore, A, = A.

By continuing in a similar way, we can show that A,,_1 = A, A,,_2 = A,...,
As = A. Then, since 2111 A; =mA, we get Ay = A. Thus, there exists a solution
to 3-PARTITION, as required. O

With the use of the problem PARTITION, the above proof can easily be adapted
for the following theorem.

EVALUATING FLEXIBLE SOLUTIONS... 11

Theorem 3. The problem 1(a)|r;|(>_ w;C; — max) is NP-hard if there are two
distinct release dates.

The proof of Theorem 3 becomes evident if we consider m partition jobs, one
long and one heavy job, and will look for two sets X; C M and X5 = M\X; of
partition jobs such that X3 is a solution of PARTITION.

Corollary 2. The problem 1(a)|r;|(>_w;T; — max) is strongly NP-hard. It is
NP-hard if there are two distinct release dates.

Computational complexities of the problems 1(a)|r;|(>° C; —max) and 1(a)|r;]|
(>~ Uj —max) remain unknown.

4. NON-DELAY SCHEDULES

In this section, a search for an optimal schedule is restricted to non-delay
schedules. We first state that maximizing) w;C; is strongly NP-hard as it is
in the case of active schedules. Then we suggest a procedure that constructs a
non-delay schedule. An analysis of this procedure shows that all feasible non-
delay schedules have the same Ch,ax value, which is optimal for the minimization
problem 1|prec,7;|Cinax. Therefore, the problem 1(nd)|prec,r;|(Cmax — max)
is polynomially solvable unlike the same problem for active schedules. We fur-
ther prove that the problem 1(nd)|prec,r;|(fmax — max) can be solved in O(n*)
time. We also demonstrate that the problems 1(nd)|prec, r;|(F — max) for F' €
{3 w,;C;,> w;U;} reduce to the corresponding minimization problems without
job release dates but with job deadlines.

Theorem 4. The problem 1(nd)|r;|(>_ w;C; — max) is NP-hard in the strong
sense. It is NP-hard in the ordinary sense if there are two distinct release dates.

Proof. The proof of Theorem 2 for the case of active schedules can be used because
the schedules considered in this proof are non-delay ones. O

Corollary 3. The problem 1(nd)|r;|(>] w;T; — max) is strongly NP-hard. It is
NP-hard if there are two distinct release dates.

It is easy to see that any feasible non-delay schedule can be represented as a
collection of disjoint subsequences of jobs such that jobs of the same subsequence
are processed without idle times between them and the first job of a subsequence
starts at its release date. The first subsequence starts at the minimum release date
of the jobs having no predecessors with respect to prec. The structure of such a
schedule is shown in Figure 4.

Given set X of jobs, denote by X the set of jobs from X that have no prede-
cessors with respect to prec. The following procedure, denoted as ND, constructs
a feasible non-delay schedule. In this procedure, k is the number of the created
sets V] (in which the jobs are scheduled jointly), 7() = (7T§l), ﬂél), .. ’ﬂ-l(ll\azl) is the
processing sequence of the jobs in the set N;, and 7! is the starting time for the
sequence), [=1,..., k. Recall that N = {1,...,n}.

12 M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

N1 N2

j1 | Ji | idle time | Jit1 | Jq | idle time

r(l) :’rjl T(Q) :rji+1
FIGURE 4. Structure of a non-delay schedule.

Procedure ND

Step 1. Set [=0, X = N, i=1 and Z = 0. Re-number the jobs in the
non-decreasing order of their release dates such that ry < ... <r,.

Step 2. Determine set X . Calculate rpi, = min{r;|j € X*}. If Z <
Tmin, then select a job jO € {j|r; = rmin,j € XT}. Set i = 1, re-set
l:=1+1, calculate r = 1y, Z = r® + pjo and 7r§l) = 4% Job j%is
scheduled to start at its release date.

Otherwise, if Z > ruyin, then select a job j° € {j|j € X*,r; < Z}. Re-
set 1 := i + 1, calculate Z = Z + pjo and 7T,§l) = 49, Job 4° is scheduled
immediately after the previous job in 7 without an idle time between
them.

In either case, re-set X := X\{;j°}.

If X # ¢, then repeat Step 2. Otherwise, calculate k = [and stop.

Theorem 5. Procedure ND constructs a feasible non-delay schedule and runs in
O(n?) time.

Proof. Tt is easy to see that procedure ND constructs a feasible non-delay schedule
because as soon as the machine becomes idle at a time Z, the procedure selects for
processing the first available job, which is an arbitrary job j whose predecessors
have already been scheduled and r; < Z, or if there is no such job, then an
arbitrary job with minimum release date among the jobs whose predecessors have
been scheduled. In fact, procedure ND is an algorithmic definition of a non-delay
schedule for the considered problem.

Let us determine the time complexity of procedure ND. Sequencing the jobs in
the non-decreasing order of their release dates requires O(nlogn) time. In Step 2,
computation of X1, the set of jobs that have no predecessors, and selection the
job j° requires O(n) time. Step 2 is repeated at most n times. This gives the
overall time complexity of O(n?). a

We observe that all feasible non-delay schedules can be constructed by pro-
cedure ND if ties in this procedure are settled in all possible ways. A tie in
procedure ND appears if several jobs satisfy the selection conditions of Step 2.
An analysis of procedure ND shows that all such jobs are assigned to the same
sequence 7V . We deduce that all schedules constructed by procedure ND, i.e., all
feasible non-delay schedules, can differ only by the order of jobs in the sequences
7, 1 =1,... k. This observation implies the following corollaries.

EVALUATING FLEXIBLE SOLUTIONS... 13

Corollary 4. A collection of the release dates vV and the sets Nj, | = 1,...,k,
is the same for each feasible non-delay schedule.

Corollary 5. All feasible non-delay schedules have the same Cpax value.

We now observe that procedure ND is, in fact, an optimal algorithm for the
classical minimization problem 1|prec, r;|Cmax, see for example, Tanaev et al. [17].
Therefore, the statement of the previous corollary can be strengthened as follows.

Corollary 6. All feasible non-delay schedules have the same Cyax value, which
is equal to the minimum Crax value for the problem 1|prec, r;|Cmax.

We call the sequence of jobs in the non-decreasing order of their release dates
the Farliest Release Date (ERD) sequence.

Observe that if prec = ¢, then procedure ND can be modified to assign jobs
to the sequences 7, 7(2) .. in the non-decreasing order of their release dates.
In this case, it will actually partition the ERD sequence into subsequences and
will run in O(n) time, provided that the ERD sequence is given. This observation
together with Corollary 6 imply the following corollary.

Corollary 7. The problem 1(nd)|prec,r;|(Cmax — max) can be solved in O(n?)
time and the problem 1(nd)|r;|(Cmax — max) can be solved in O(nlogn) time.

One more useful corollary can be formulated.

Corollary 8. Given) and Ny, | = 1,...,k, the problem 1(nd)|prec,r;|(® —
max), where ® is an arbitrary (not necessarily regular) function, reduces to k
problems 1(noidle)|prec,7;|(® — max) of scheduling jobs of the set N; in the
interval [r®,r® 4+ ZjENL p;] to mazimize ®, I = 1,...,k. Notation “noidle” is
used to specify that no idle time between the jobs is allowed.

Corollary 8 allows to decompose the problem 1(nd)|prec,r;|(® — max) into
several subproblems of smaller dimension. However, it is not clear if this decom-
position provides an easy solution to the original problem. Below we show that in
some cases it does.

Consider the problem 1(nd)|prec, rj|(fmax — max) and prove the following re-
sult.

Theorem 6. The problem 1(noidle)|prec, rj|(fmax — max) and, hence, the prob-
lem 1(nd)|prec, 7j|(fmax —max) can be solved in O(n*) time if each function f; is
computable in O(1) time.

Proof. The following modification of procedure ND, denoted as MND, can be used
to construct a feasible schedule for the problem 1(noidle)|prec, r;|(fmax — max),
if it exists. Let (k1,...,ky,) be the ERD sequence of jobs.
Procedure MND
Step 1. Set ¢ = 0 and X = N. Denote a sequence of jobs to be constructed
as S = (S1,...,5n).
Step 2. Determine set X+ and find job index jO = min{j|k; € XT};
Re-set i := i + 1 and calculate S; = kjo. Re-set X := X\{kjo}. If X # ¢,
then repeat Step 2. Otherwise, go to Step 3.

14 M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

Step 3. Construct a non-delay schedule corresponding to the job se-
quence S. It is the required schedule, if it has no idle time between the
jobs. Otherwise, such a schedule does not exist. Stop.

Observe that the job sequence created in Step 2 of procedure MND does not

depend on the particular values of r;, 7 = 1,...,n, but on their relative values.
In other words, procedure MND will produce the same job sequence for r1,...,7,
and r,...,r ifry <. <rpand)] <o <7l

Let f* be an optimal objective function value for the problem 1(noidle)| prec, r;|
(fmax — max). A feasible schedule is optimal for this problem if and only if there
exists job j* such that f;«(Cj«) = f*, or equivalently

Cj- = R ("), (4)

where Rj«(f*) is such a value that fj-(R;~(f*) —1) < f* and f;-(R;-(f*)) = f*.

Inequality (4) implies that job j* does not start earlier than at time R, (f*) —
pj~. Given value f* and job j* satisfying (4), introduce new release dates:). =
max{r;«, Rj-(f*) — p;+} and v} = r; for i # j*. The problem 1(noidle)| prec,r,]|
(fmax — max) reduces to constructing a job schedule feasible with respect to
the release dates 7";, 7 = 1,...,n, precedence constraints prec, and such that
Chax = ZZL=1 pi, J = 1,...,n. Procedure MND can be used to construct such a
schedule.

Assume without loss of generality that r; < --- < 7, and rj < --- < rén.
Observe that in the sequence (i1,...,4,), only relative position of job j* may
be changed. Furthermore, it can only be shifted to the right comparing with
its relative position in the sequence (1,...,n), i.e., this sequence is of the form
(1,...,5*=1,7*+1,...,i—1,5% 4+ 1,...,n). Clearly, there are n — j* + 1 such
sequences. Consider such a sequence ¢ with job j* in the position i. Apply
procedure MND assuming that ¢(?) is the ERD job sequence. Let the job sequence
S be found in Step 2 of this procedure.

Given j*, we can construct all n — j* + 1 sequences SV, i = j*, ..., n. Among
them, we can choose sequences corresponding to the schedules feasible with re-
spect to the original release dates and having no idle time between the jobs. The
sequence with the largest fiax value among these sequences is an optimal solution
to the problem 1(noidle)|prec, 7;|(fmax — max).

An optimal solution to the problem 1(noidle)|prec,r;|(fmax — max) can be
found by applying the approach described above for each job j* =1,...,n.

Given a job sequence, feasibility with respect to the release dates and the no
idle time condition can be checked in O(n) time. The corresponding fmax value
can be computed in O(n) time if each function f; is computable in O(1) time.
Since we have at most n(n + 1)/2 sequences to consider and procedure MND runs
in O(n?) time, the proposed algorithm requires O(n*) time. |

Since procedure MND runs in O(n) time if there are no precedence constraints,
we obtain the following corollary.

Corollary 9. The problem 1(nd)|r;|(fmax — max) can be solved in O(n®) time.

EVALUATING FLEXIBLE SOLUTIONS... 15

Denote by prec’ precedence constraints that are reversed with respect to prec.
Introduce notation Jj for job deadlines. If descriptor Jj is present in the second
field of the problem notation then in the corresponding problem, the job deadlines
Jj, j=1,...,n, are given, which should not be violated. Set P = Zl<j<n Dj-

Theorem 7. The problem 1(noidle)|prec,r;|(F —max) is equivalent to the min-
imization problem 1|prec, d;|F for F € {3 w;C;,> w;U;}.

Proof. Let 7 be an arbitrary job sequence feasible with respect to r;, j =1,...,n,
and prec. To simplify notation, assume that 7 = (1,2,...,n). Consider the re-
versed sequence 7% = (n,n — 1,...,1). It is clear that 7% is feasible with respect
to precR.

Denote by C;(o) the completion time of job j according to the job sequence o.

We have
Cj(m) :P_Cj(WR)-ij, ji=1,...,n.

From the above equations, we obtain that sequence 7 is feasible with respect to
rj, j =1,...,n, if and only if sequence 7! is feasible with respect to the deadlines
dj:.PfT'j,j:].,...,n.

We have

D wiCi(m) =Y wi(P—C; () +py) =Y w;j(P+p;) = > w;Cy ().

These equations show that 7 is optimal for 1(noidle)|prec,r;| (3 w;C; — max)

if and only if 7 is optimal for the corresponding minimization problem 1|precp”7

dj| > w;Cy.

Introduce due dates df” =P+pj—d;j—1,5 =1,...,n Let job j be on-
time with respect to the sequence 7 and the due date d; : C;(w) < d;. Then
Ci(n®) =P —Cj(r) +p; > P—d; +p; > df, i.e., job j is late with respect to
the sequence 7% and the due date df‘.

Let job j be late with respect to the sequence 7 and the due date d; : C;(7) > d;.
Then Cj(7f) < P —d; + p; and, since P, p; and d; are integer, C;(nft) <
P—dj+p—1= df, i.e., job j is on-time with respect to the sequence 7 and
the due date df.

Denote by X (Xg) the set of jobs which are late with respect to the job sequence
7 and due dates dj, j = 1,...,n (the job sequence 7 and due dates df, =1,
.oyn). We have 30 vwj = wj — > iy, W

The latter equation shows that = is optimal for 1(noidle)|prec,r;|(>_ w;U; —
max) if and only if 7 is optimal for 1|prec®, d;| 3" w;U; with due dates dff,
j=1,...,n. O

It is known that the minimization problem 1|d;| Y C; is solvable in O(nlogn)
time, see Smith [16]. Therefore, the problem 1(nd)|r;|(3>_ C; — max) is solvable in
O(nlogn) time. However, the problem 1|d;| " U; is NP-hard, see Lawler [13], and
consequently, the maximization problem 1(nd)|r;|(>_ U; — max) is also NP-hard.

16

M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

TABLE 1. Complexity of the studied problems.

Problem Complexity Complexity of the
minimization counterpart

1(sa)|prec, 7j|(Cmaz — max) | O(n?) strongly NP-hard
1(sa)|prec, 7i|(fmaz — max) | O(n?) strongly NP-hard
1(sa)|rj|(fmaz — max) O(n) strongly NP-hard
1(sa)|r;|(3- w;Cj — max) O(nlogn) strongly NP-hard
1(sa)|r;|(3- U; — max) O(n?logn) strongly NP-hard
1(sa)|r;| (> w;U; — max) NP-hard strongly NP-hard
1(a)|r;|(Cmax — max) NP-hard O(nlogn)

1(a)|r;|(>- w;C; — max) strongly NP-hard | strongly NP-hard
I(nd)|prec, 7j|(Cmaz — max) | O(n?) strongly NP-hard
1(nd)|prec, 7;|(fmaz — max) | O(n*) strongly NP-hard
1(nd)|7;|(fmax — max) o(n®) strongly NP-hard
1(nd)|r;|(>° Cj — max) O(nlogn) strongly NP-hard
1(nd)|r;|(>- w;C; — max) strongly NP-hard | strongly NP-hard
1(nd)|r;|(>° U; — max) NP-hard strongly NP-hard
1(nd)|prec,r;|(>" Cj—max) | strongly NP-hard | strongly NP-hard
1(nd)|prec,;|(>_ Uj —max) | strongly NP-hard | strongly NP-hard

TABLE 2. Open problems.

Problem

minimal/maximal open

L(sa)|rj|(>_ w;Tj — max)

maximal open

1
1
1

((
(a)[r;| (3 Cj —max)
((
((

a)|r;| (3 Uj — max)

1(a)|r;|(Cmax — max) with 2 distinct release dates

)
a)|r;| (3 w;Cj — max) with 2 distinct release dates
)

minimal open
minimal open
maximal open
minimal open

In this paper, the problem of evaluating the worst case performance of a flex-
ible solution has been studied. A flexible solution is completely characterized by
a schedule type and a partial order of the jobs. Its worst case performance is
characterized by the maximal value of the objective function defined on the set of

5. CONCLUSION

schedules associated with the flexible solution.

As a first investigation step, we considered single machine scheduling problems
where the jobs have different release dates and precedence relations are given on
The objective is to find an active or non-delay schedule that
maximizes a regular objective function. Results obtained in this paper and our
earlier paper [2] are summarized in Table 1. Notation sa indicates that only semi-

the set of jobs.

active schedules are considered.

Table 2 enumerates the problems that remain open and indicates if they are

minimal or maximal open.

EVALUATING FLEXIBLE SOLUTIONS... 17

Minimal open problems are those for which the complexity status is not known,
but all their easier cases are polynomially solvable. Maximal open problems are
those for which the complexity status is not known, but all their harder cases are
NP-hard, see Brucker [7].

In our earlier paper [2], we observed that maximization problems for semi-
active schedules are at least as easy as their minimization counterparts. It is also
the case for non-delay schedules. However, it seems that maximization problems
for active schedules are at least as difficult as their minimization counterparts.
Indeed, the problem of minimizing the makespan is very simple but the corre-
sponding maximization problem is NP-hard. However, we cannot make a general
conclusion because, for example, the problem 1(a)|r;|(3_ C; — max) is open and
the minimization counterpart is strongly NP-hard.

From a practical point of view, the obtained complexity results can suggest that,
in the evaluation phase of the proactive-reactive scheduling approach of Aloulou
and Portmann [1, 3], semi-active or non-delay schedules are more preferable than
active schedules to be considered because their worst-case performances can be
evaluated easier. Furthermore, these schedules are easier to implement on-line.

For future investigations, it is interesting to consider other processing systems
such as flow and job shops. At present, we are working on a generalization of
the proactive-reactive approach [1,3] and the results of this paper for a flow shop
system.

Acknowledgements. We would like to thank a referee who pointed out several places in
the original submission, which needed to be corrected. The research of M.Y. Kovalyov
was supported in part by the International Science and Technology Center under grant
number B-986.

REFERENCES

[1] M.A. Aloulou, On the reactive scheduling design using flexible predictive schedules, in Pro-
ceedings of IEEE SMC’2002, 6 pages in CD—ROM, Hammamet, October 2002.

[2] M.A. Aloulou, M.Y. Kovalyov and M.C. Portmann, Maximization problems in single ma-
chine scheduling. Ann. Oper. Res. 129 (2004) 21-35.

[3] M.A. Aloulou and M.C. Portmann, An efficient proactive reactive approach to hedge against
shop flow disruptions, in Multidisciplinary Scheduling: Thoery and Applications, edited by
G. Kendall, E. Burke, S. Petrovic and M. Gendreau, Springer (2005) 223-246.

[4] C. Artigues, J.-C. Billaut and C. Esswein, Maximization of solution flexibility for robust
shop scheduling. Eur. J. Oper. Res. 165 (2005) 314-328.

[5] C. Artigues, F. Roubellat and J.-C. Billaut, Characterization of a set of schedules in a
resource constrained multi-project scheduling problem with multiple modes. Inter. J. In-
dustrial Eng. Applications Practice 6 (1999) 112-122.

[6] K.R. Baker, Introduction to sequencing and scheduling. John Wiley and Sons (1974).

[7] P. Brucker, Scheduling algorithms. Springer-Verlag (1998).

[8] P. Brucker and S. Knust, Complexity results for scheduling problems.
http://www.mathematik.uni-osnabrueck.de/research/0R/class/ (2003).

[9] R.L. Daniels and P. Kouvelis, Robust scheduling to hedge against processing time uncer-
tainty in single stage production. Manage. Sci. 41 (1995) 363-376.

18

[10]

[11]

M.A. ALOULOU, M.Y. KOVALYOV AND M.-C. PORTMANN

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, edited by W.H. Freeman (1979).

R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and ap-
proximation in deterministic machine scheduling: a survey. Ann. Discrete Math. 5 (1979)
287-326.

W. Herroelen and R. Leus, Project scheduling under uncertainty: survey and research po-
tentials. Fur. J. Oper. Res. 165 (2005) 289-306.

E.L. Lawler, Scheduling a single machine to minimize the number of late jobs. Technical
report, Computer Science Division, University of California, Berkeley, USA (1983).

S.V. Mehta and R. Uzsoy, Predictable scheduling of a single machine subject to breakdowns.
Inter. J. Compu. Integrated Manufacturing 12 (1999) 15-38.

M.E. Posner, Reducibility among weighted completion time scheduling problems. Ann. Oper.
Res. (1990) 91-101.

W.E. Smith, Various optimizers for single-stage production. Naval Research Logistics Quar-
terly 3 (1956) 59-66.

V.S. Tanaev, V.S. Gordon and Y.M. Shafransky, Scheduling Theory. Single-Stage Systems.
Kluwer Academic Publishers (1994).

S.D. Wu, E.S. Byeon and R.H. Storer, A graph-theoretic decomposition of the job shop
scheduling problem to achieve scheduling robustness. Oper. Res. 47 (1999) 113-124.

To access this journal online:
www.edpsciences.org

