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ON-LINE MODELS AND ALGORITHMS FOR MAX
INDEPENDENT SET

BRUNO ESCOFFIER! AND VANGELIS TH. PASCHOS!

Abstract. In on-line computation, the instance of the problem dealt
is not entirely known from the beginning of the solution process, but it
is revealed step-by-step. In this paper we deal with on-line independent
set. On-line models studied until now for this problem suppose that
the input graph is initially empty and revealed either vertex-by-vertex,
or cluster-by-cluster. Here we present a new on-line model quite dif-
ferent to the ones already studied. It assumes that a superset of the
final graph is initially present (in our case the complete graph on the
order n of the final graph) and edges are progressively removed until
the achievement of the final graph. Next, we revisit the model intro-
duced in [Demange, Paradon and Paschos, Lect. Notes Comput. Sci.
1963 (2000) 326-334] and study relaxations assuming that some paying
backtracking is allowed.
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1. INTRODUCTION

1.1. ON-LINE COMPUTATION

On-line algorithms have been introduced to tackle situations where problem’s
solution is planned under uncertainty concerning the final instance of the problem
dealt. This kind of situations appears frequently when we have to efficiently solve
a problem in real time. In such situations we need to start problem’s resolution
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before the whole instance is completely known. They lead to what is called on-line
combinatorial optimization problems. Models for such problems are usually based
upon the following two constitutive hypotheses:

(1) instance of the problem is revealed step-by-step;
(2) decision makers make choices once a part of the instance is revealed, these
choices being definite and irrevocable.

Starting from these hypotheses, one can build different models depending on how
instance is precisely revealed and what are the rights of the decision maker (on-line
algorithm) for constructing the final solution.

Since about twenty years, many combinatorial optimization problems have been
studied in on-line versions. For example, [1] studies on-line models for TRAVELLING
SALESMAN, [3,9] study models for on-line MAX INDEPENDENT SET, etc. Also,
an interesting survey about on-line combinatorial optimization problems can be
found in [10]. In fact, we can easily understand from all these papers that on-line-
computation is a natural extension of approximation theory.

Given an on-line problem II, an on-line algorithm for IT provides, for any in-
stance x (and following to the rules of the on-line model describing IT) a feasible
solution y for x. The quality of y is measured by the so-called competitive ra-
tio m(z,y)/opt(x), where m(x,y) is the value of y and opt(z) the value of the
optimal off-line solution for z. We will say that an on-line algorithm A guarantees
competitive ratio f(z), if f is a function such that, for any instance x of II the
competitive ratio of solution y computed by A is better (greater than, or equal
to, if we deal with a maximization problem, less than, or equal to, if the problem
dealt is a minimization one) than f(x).

1.2. ON-LINE MODELS FOR MAX INDEPENDENT SET

Given a graph G(V, E), an independent set is a subset V/ C V such that when-
ever {v;,v;} C V', vjv; ¢ E, and MAX INDEPENDENT SET consists in finding an
independent set of maximum size. In weighted MAX INDEPENDENT SET we con-
sider that vertices are provided with positive weights and the objective becomes
to determine an independent set of maximum total weight.

For MAX INDEPENDENT SET, the most natural on-line model seems to be the
following one: the initial graph is empty and vertices are revealed one-by-one;
together with a “new” vertex all edges linking it with “old” ones are simultaneously
revealed. Once a new vertex arrives an algorithm for this model has to decide if
this vertex will be included in the solution under construction or not. Such a model
is however quite restrictive since no on-line algorithm can guarantee competitive
ratio (strictly) better than 1/(n — 1), where n is the order of the final graph
(while any on-line algorithm trivially achieves this ratio). In [3] a relaxation of
this model is proposed. There, instead of vertex-by-vertex, G is revealed within
t < n clusters. Any time a new cluster arrives all edges linking its vertices with
the ones of the older clusters are also revealed. Any on-line algorithm has then
to decide which among the vertices of this new cluster have to be integrated in
the independent set under construction. It is proved there that, if ¢ clusters are
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needed to reveal the whole graph, there exists a polynomial time on-line algorithm
achieving competitive ratio Q(logn/(nv't)). Two other kinds of relaxations of the
basic model are studied in [9]. There, it is assumed that the algorithm can maintain
a collection of n* independent sets (for some constant k) and at the end of the
game it can choose the best of the solutions maintained. Under this assumption a
competitive ratio £2(logn/n) is achieved. In the second model of [9], the algorithm
is allowed to copy intermediate solutions and to extend the copied solutions in
different ways. The so-obtained competitive ratio is, once again, Q(logn/n).
Recall that the best known approximation ratios for MAX INDEPENDENT SET
and WEIGHTED MAX INDEPENDENT SET are:
e (asymptotical) k/A [4], for any k > 0, and 3/(A + 2) [7], respectively;
e Q(log?n/n) [8] (for both versions);
e min{Q(logn/(Aloglogn)),n=*/%} [5] (for both versions also), where A is
the maximum degree of the graph.

In this paper we first study (Sect. 2) the following on-line MAX INDEPENDENT SET-
model: the initial graph is a clique on n vertices and in each step some (one or
more) of its edges are removed; any time edges are removed, the on-line algorithm is
allowed to add to the independent set under construction vertices adjacent to some
of these edges. Next, in Section 3, we revisit the on-line model already studied
in [3] and we relax it by ignoring irrevocability requirement, assuming instead
that any time a decision is changed, this change is charged by some non-negative
cost. Note that relaxations dealing with decisions irrevocability also appears in [9],
where algorithm is allowed to maintain at each step several solutions in order to
finally return the best among them.

In what follows, we denote by n the order of the input-graph G, by A its
maximum degree and by «(G) the cardinality of a maximum independent set
for G (commonly called stability or independence number [2]).

2. ON-LINE EDGE REMOVAL

As we have already mentioned, the model studied in this section consists of
starting from a complete graph on n vertices (this is also the order of the final
graph) and of supposing that edges disappear step-by-step; at each step, one or
more edges are removed. Upon the removal of a set of edges, algorithm has to
irrevocably decide which of the vertices adjacent to them are included to the
independent set under construction.

We first suppose that the number of steps (iterations) needed to reveal the
whole graph is not known in advance to the algorithm (Sect. 2.1). In this case we
propose a natural greedy on-line algorithm and show that it is strongly competitive.
Next, we suppose that the number of iterations needed for fixing the final graph
is known in advance. For this case, we devise an on-line algorithm achieving non-
trivial competitive ratio in particular when the final graph is revealed within a
small number of iterations. For any of the cases dealt we also prove upper bounds
to the corresponding competitive ratios.
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2.1. THE NUMBER OF ITERATIONS IS NOT KNOWN IN ADVANCE

Denote by GA the natural greedy MAX INDEPENDENT SET algorithm (see, for
example [11] for more details about its approximability). The on-line algorithm
considered here is the following, denoted by OLGA:

e at step i, determine the subgraph H;, induced by the vertices that are
adjacent to the edges just removed but non-adjacent to the vertices already
included in the independent set S under construction;

e compute GA(H;);

e solution at step ¢ becomes S = S U GA(H;).

Proposition 2.1. The competitive ratio achieved by OLGA is bounded below by
2/(n —1), if the parameter dealt for the analysis is the order n of the input graph,
or 1/A, if the parameter dealt is the mazimum graph-degree A.

Proof. Assume first that the parameter for the analysis of competitiveness is n.
We distinguish two cases, namely, a(G) = n and «a(G) < n. For the former
one, the final graph is simply a set of isolated vertices and there OLGA trivially
determines an independent set of cardinality n, achieving so a competitive ratio
1> 2/(n—1). For the latter case, obviously the final graph contains at least one
edge; so, a(G) < n— 1. Here, OLGA will determine an independent set containing
at least the endpoints of a removed edge, i.e., an independent set of cardinality at
least 2. The claimed ratio is so proved.

Assume now that the parameter for the analysis of competitiveness is A and
note that OLGA always computes an independent set maximal for the inclusion.
Such an independent set S always guarantees |S|/a(G) > 1/A [11]. O

Theorem 2.2. No on-line algorithm can achieve competitive ratio strictly greater
than 2/(n — 1) or 1/A (under the on-line model assumed) for MAX INDEPENDENT
SET.

Proof. Denote by A an on-line algorithm for MAX INDEPENDENT SET constructing
an independent set S and run it on the following instance:

during the first iteration, edge (v1,v2) is removed;

if A does not choose any of v; or vs, the game is over;

otherwise, A has chosen at least one vertex among v; and v, say v1;
then, the second iteration consists of removing all edges in the subgraph
of G induced by vertex-set {va,...,v,}.

In the case where A has not made any choice among v; and v, we have |S| = 0
and a(G) = 2. In the case where at least v; has been introduced in S, no vertex
in {vs,...,vn} can complete it (since all these vertices are linked to v1). Hence,
|S] < 2, while the maximum independent set is {va,...,v,} of cardinality n — 1.
In both cases, |S|/a(G) < 2/(n— 1), and the proof of the first statement of the
theorem is complete.

Fix now a A > 2. We will build a graph G of maximum degree A and of order
n = k(A +1) (for any k > 2). Group the n vertices vy, vs,...,v, in k groups of
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FIGURE 1. A=5k=5,1=3.

A+1 vertices per group (assuming that vy, va, ..., va41 are in the first group, ...,
V(k—1)(A4+1)+1s - - -+ Uk(a+1) are in the kth (last) group).

The first iteration consists of removing all edges linking two vertices not in the
same group. We so obtain a non-connected graph on k connected components
G1,Go,...,Gy, each of these components being a complete subgraph on A + 1
vertices. Here A can choose at most one vertex per graph G;, i =1,...,k to add
it in S. Suppose that it chooses a vertex in each of the graphs G1,Go,...,Gy,
0 < I < k, and no vertex in the rest of the components. In the second and last
iteration we remove in GGy, . .., G; any edge non-incident to the vertex chosen by A.
The form of the graph is as shown in Figure 1, assuming A =5, k=5,1=3, as
well as that white vertices have been added in S.

In this case, no vertex can be added in S, since all vertices incident to the edges
just removed are linked to the vertex added previously; hence, |[S| = I. On the
other hand, there exists an independent set S* with [S*| = IA+ (k — 1) in G
containing

e the A vertices linked to the vertex chosen by A in any of G1,Gs,...,Gy;

e one vertex per graph Giiq,...,Gy.
So, |S]/a(G) < 1/(IA+k—1) < 1/A, which completes the proof of the second
statement and of the theorem. O

Proposition 2.1 and Theorem 2.2 immediately lead to the following corollary.

Corollary 2.3. The algorithm OLGA is optimally competitive for MAX INDEPEN-
DENT SET (under the model dealt).

With very similar arguments the following upper bounds can be proved for the
case where the final graph is connected.

Theorem 2.4. Assuming that the final graph is connected,

e no on-line algorithm can achieve competitive ratio better than 2/(n — 2),
for any graph of order n > 4;
e no on-line algorithm can achieve competitive ratio better than 1/(A —1).

Proof. For the first item, proceed as previously (as in Th. 2.2), up to the last
(fourth) item. This last step consists now to remove all edges in the subgraph
induced by {vs,---,v,}. The final graph is now connected, and the size of the
largest independent set is n — 2.

For the second item, consider any A > 1. We reveal a graph on 2A vertices
{v1,-+- ,v2a} in the following way: in the first step we remove all edges between
a vertex in V4 = {v1, - ,va} and a vertex in Vo = {vat1, - ,v2a} excepted
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F1GURE 2. The three steps for revealing G.

(vi,va + i), fori=1,--- JA. If A does not chose any vertex, the game is over. If
A chooses a vertex, say v, then remove in step 2 all edges between two vertices
in V4 \ v1, and all edges (v;,va+;) for j > 2. If vy is the only vertex chosen by A,
the game is over. If not, A has chosen a vertex v; in V5. In the third (and last)
step, remove all edges linking two vertices in V5 \ vj. The final graph is connected
and of maximal degree A. We easily see that in any case the performance ratio of
the algorithm A is bounded by 1/(A —1). O

Furthermore, one can easily prove that OLGA achieves competitive ratios 2/(n —
2) and 1/A on connected graphs, but not 1/(A — 1).

2.2. THE NUMBER OF ITERATIONS IS KNOWN IN ADVANCE

We assume in this section that the number of steps, denoted by ¢, needed to
reveal the graph is known in advance, i.e., it is, in some sense, part of the instance
of the on-line MAX INDEPENDENT SET. We also use the following notations: G;
denotes the graph at the end of iteration i; hence, G; = G and, since in any
iteration we remove some edges, G is a partial subgraph of G; for any i < t; I’
denotes the set of vertices adjacent to the set of edges removed during iteration 4,
i.e., the set of vertices that can be added to the solution under construction in
iteration i. Moreover, if V' is a subset of the vertex-set V of G, G;[V’] denotes the
subgraph of G; induced by V’. For example, G;[I'] corresponds to the subgraph
of Gy = (G induced by the vertices one could add in the solution during the first
iteration.

Let us consider, for example, Figure 2. The final graph contains 5 vertices
{1,2,...,5} and is revealed in three steps. During the first iteration, edges (1,4)
and (2,3) disappear; so, I' = {1,2,3,4}. During the second iteration edges (2,5)
and (3,4) are further removed, and I? = {2,3,4,5}. Finally, during the third
(last) iteration, edges (1,3) is also removed; hence, I? = {1,3}. In Figure 3,
graphs G1[I'], G2[I'] and G5[I?] are illustrated.

The following lemma gives an upper bound for «a(G) linking it to quanti-
ties a(G;[T7)).

Lemma 2.5. o(G) < Z§=1 a(G;[I'), and this independently on the way G is
revealed.
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G,1'] G,II'] G;[IP]
FIGURE 3. Graphs G;[I], Ga[I'], and G3[I?].

Proof. Let J* be the subset of I' that does not belong to any I*, k > i; J*
corresponds to the vertices that one can choose to put in the solution for the last
time during iteration i (obviously, J* can be empty). For example, in Figure 2,
Jt=10,J? ={2,4,5} and J3 = {1, 3}.

Let S* be a maximum independent set of G. Remark that the vertices of G
that do not belong to any J* are exactly those that are not adjacent to any
edge removed; hence they are linked to any other vertex of G and, consequently,
they cannot belong to S*. So, sets $* N J*, 1 < i < t, form a partition of S*
(note that some of these sets may be empty). On the other hand, set S* N J*
is an independent set of G and is included in I' (because J* C I%). Note also
that an independent set of G included in I’ is not mandatorily an independent
set of G;[I']. In fact, no reason forbids that edges linking two vertices of I* are
removed during an iteration subsequent to iteration 7; for example, in figure 2,
set {1,3} is an independent set of G but not of G1[I']. But under the definition
of J* just above, S* N J¢ is indeed an independent set for G;[I*]. So, we obtain:
o(G) =|87| = 21y 18" N J'| < Xiey a(Gill). 0

Consider now the following algorithm for on-line MAX INDEPENDENT SET, de-
noted by OLTA calling as subroutine an approximation MAX INDEPENDENT SET-
algorithm AA achieving approximation ratio p(n) (r(n,t) is a threshold to be pre-
cised later and p(n) decreases with n):

e set 1 =1;
e while [AA(G;[I'])| < r(n,t) and i < t, set i =i+ 1;
e output S = AA(G;[I7]).
Theorem 2.6. Algorithm OLTA achieves competitive ratio /p(n)/(nt) for on-line

MAX INDEPENDENT SET (under the model considered). Moreover, it is polynomial
if AA is so.

Proof. If OLTA outputs a solution before iteration ¢, then the size of this solution
is |AA(G;[I'])| = r(n,t) and the competitive ratio thus achieved is at least

. 1
a(Q) n ()
Otherwise, for all ¢ € {1,2,--- ,t},

|AA (G, [I'])| < r(n,t). (2)
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Since AA is assumed to guarantee approximation ratio p,

CAIN

Gy 2 e (1) = e, (3)

Using (2), (3) and Lemma 2.5, we get:

AA r(n,t , )t
G) <) a(Gi[r Z‘ ) <M ( ;(n))

i=1 P p(n

and consequently,
OTAG L 1 ) "
a(Q) al(G) 7 r(n,t)t
Ratio in (1) is increasing with r(n, t), while the one in (4) is decreasing with r(n, t).

Equality of them holds for r(n,t) = 4/ %(”) and, in this case, ratio achieved is as
claimed. g

Corollary 2.7. Dealing with an optimal off-line algorithm AA, competitive ratio
implied by Theorem 2.6 is 1/v/nt. 1If, on the other hand, AA is the polynomial
time approzimation algorithm of [8], then the competitive ratio achieved by OLTA
is bounded below by Q(logn/(nv/t)). In particular, when t is fized, then this ratio
is Q(logn/n).

Theorem 2.8. No on-line algorithm can achieve, for the on-line MAX INDEPEN-
DENT SET-model considered, competitive ratio strictly better than 1/(1/n/2 —1)
(form = 3), even if t = 2.

Proof. Consider an on-line algorithm A, an integer n > 3 and set p = L\/%J
(p < n). Assume that first step of graph revealing consists of removing edges in
such a way that set V' = {v1,va,...,vp} becomes an independent set; assume also
that only such edges are removed during this first step. For the second step we
distinguish the two following cases:

(1) if, during first iteration, A has chosen at least a vertex (vertices chosen
belong to V'), then, in the second step, we remove all edges non-incident
to any vertex in V’; in such a case A cannot extend the independent set
previously constructed while there exists in G an independent set of size
n — p composed by all vertices in V' \ V’; so, the competitive ratio of A is,
in this case, at most p/(n — p);

(2) otherwise, in second step we remove only one edge, say (vi,v), where v
can be any vertex not in V’; in this case, the independent set built by A
contains at most two vertices (v; and v), while set V’ is an independent
set for G of size p; consequently, the competitive ratio achieved by A is at
most 2/p.

The combination of the ratios of Cases 1 and 2, together with the fact that p <
V2n < p+1, results in a competitive ratio for A bounded above by 1/(y/n/2 — 1).
a
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3. RELAXED MODELS AND CHARGES

As we have already mentioned, we study in this section two further relaxations
of the on-line model introduced in [3]. Recall that in this model:

e the graph is revealed by clusters;

e an on-line algorithm builds its solution irrevocably choosing at each iter-
ation which among vertices of the cluster just arrived will be included in
the solution under construction.

Relaxations considered for this model are based upon weakening irrevocability
constraints. We will assume that the algorithm can, during iteration ¢, include in
the solution also vertices revealed during iterations j < i. Such a relaxation can,
of course, be very weak (permissive) since, if no additional assumption is made,
algorithm can wait until the whole of graph is revealed before making any choice
of the solution; in this case, on-line MAX INDEPENDENT SET-model becomes the
classical off-line MAX INDEPENDENT SET. To avoid such situation, we introduce
charges penalizing freedom: a delayed choice of a vertex will be charged in such
a way that its contribution in the final independent set will be smaller than 1;
furthermore, the later a vertex chosen, the smaller its contribution in the final
solution. More precisely, we will assume that if a vertex revealed during iteration j
is included in the solution during iteration ¢ > j, then its real value in this solution
is 1/k*~7 (where k > 1 is a real number). Under this assumption, one can consider
that, in iteration ¢, algorithm has to run on a vertex-weighted graph, where weights
are as follows:

e vertices just arrived (i.e., arrived in iteration ) receive weight 1;

e vertices arrived in iteration ¢ — 1 are weighted by 1/k;

e ...

e vertices arrived in iteration 1 are weighted by 1/k*~1.

Following this model, the real objective for an on-line algorithm A is to compute
not really a maximum-size independent set but rather a maximum-weight one.
The competitive ratio associated with this model is valy(S’)/a(G), where S’ is the
independent set computed by A and valy(S’) its total weight.

In Section 3.1 we will assume that inclusion of a vertex in the solution un-
der construction is irrevocable. Next, in Section 3.2, we further relax our model
assuming that the algorithm can backtrack, i.e., that it can even remove from
current solution a vertex previously introduced. Note that charge-system makes
that even this further relaxation remains interesting to be studied. Note finally
that analogous charging-models can be assumed for the on-line model of Section 2.
As it is shown in [6], the results obtained are completely similar.

In what follows, we denote by ¢ the number of steps needed to reveal the whole
graph, by n the order of the final graph G, by G; the ith cluster, by n; the order
of GG; and by H; the part of G known at step i, i.e., the subgraph of G induced
by vertices arrived during steps 1,...,7 (H; = G). If A is an on-line algorithm,
then A(H;) will denote the solution built by A up to ith iteration.
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3.1. FIRST IRREVOCABILITY RELAXATION

As previously in Section 2.2, we will use a threshold algorithm. Such a use
is due to the “blindness” of the algorithm entailed by the fact that choices are
irrevocable, at least dealing with inclusions of vertices in the solution. This means
that, once on-line algorithm A makes a choice, this choice can be fatal since the
way the rest of the graph is revealed can forbid it from making any other extension
of the solution under construction.

We have already mentioned that, with the charge-system we have considered,
the graph on which A works can be assumed weighted as previously described.
Consider then an off-line algorithm A solving (the off-line version of) WEIGHTED
MAX INDEPENDENT SET and the following on-line algorithm, denoted by WOLTA,
where the threshold r(n,t, k) will be precisely specified later:

e set i =1;
e while ¢ < t and val(A(H;)) < r(n,t, k), set i =i+ 1;
e if 4 <t output A(H;), else output a vertex of Gy.

Proposition 3.1. If 4 achieves approzimation ratio p(n) for WEIGHTED MAX
INDEPENDENT SET, then WOLTA achieves (under the model assumed) competitive
ratio bounded below by:

Proof. If WOLTA outputs a solution before iteration ¢ of the revelation process, then
it guarantees competitive ratio

val(WOLTA(G)) _ r(n,t, k)
a(Q) > n (5)

Otherwise, for any iteration, val(WOLTA(H;)) < r(n,t, k). Since A guarantees ap-
proximation ratio p(n),

= p(|Hil) = p(n) (6)

where a,,(H;) denotes the weighted stability number (i.e., the cardinality of a
maximum-weight independent set) of H;.

Let S* be a maximum independent set of G (|S*| = a(G)) and consider the
integer sequence a; = |S* N V(G;)|; obviously, S* N V(H;) is an independent
set of H;, i.e., a feasible solution of WEIGHTED MAX INDEPENDENT SET on H;.
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The value of this solution is at most the optimal one, i.c., a; + (a;—1/k) + ...+
(a1/k"1) < ay(H;). Hence we get, for all i:

r(n,t, k) > val(A(Hi)) p(n)aw, (Hi)

Z
Qg — a
> p(n)(ai+ 1k1+...+ki—i1>

ai_lJr . a r(n,t,kz).

a; + L .. i1 NS p(n) (7)

From inequalities of (7) we can show that:

t—1 t,k
a(G)=a+a1+...+a1 < (t—)m

F ) o) ®)

(the proof of (8) is given just after the end of the current proof). Using (6), we
get from (8) a competitive ratio:

val(WOLTA(G)) p(n)

a(@) “(t- ) r(n,t, k) ©)

Ratio given by 5 is increasing with r(n, ¢, k), while the one given by 9 is decreasing
with r(n,t, k). Equality of both ratios holds for

np(n)
r(n,t, k) = -
t= %
In this case, the competitive ratio achieved by WOLTA is as claimed. O

We now prove inequality in (8). Using (7), we will show that Vj € {0,1,...,t—1}:

t—j—1\ r(n,t k)
k ) p(n)

a; A a .
artar 4. +aj+2+-Lp < <tg - (10)

ko k2 ki
Inequality in (10) is true for j = ¢ — 1; it is indeed inequality (7) taking i = ¢.

Suppose (10) true for j > 0; take also (7) for i = j and multiply it by 1 — 1/k;
sum the result of the operation on (7) with (10). Then,

1 1
ar+ag—1+ -+ a1 +aj (—+1——>

k k
1 1 1\ 1 1 1 1 1
T\t U Tr) e T \m U TR e
r(n,t, k) o t—5-—1 1
<222 t—j——2— 1=
o) ( TR T J

that is exactly (10) in range j — 1; hence, this inequality is true for any j. We
get (8) taking j = 0 and the proof is complete. Note that the competitive ratio
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obtained in Proposition 3.1 is slightly better than the ratio \/p(n)/(nt) obtained
(without any relaxation) in [3]. However, both ratios remain of the same order.

Remark also that the algorithm consisting of waiting until the whole of graph
is revealed before running A on it trivially guarantees competitive ratio p(n)/k!~1
since vertex-weights are at least equal to 1/k‘~!. Since n, k and t are known in ad-
vance, one has just, before running any algorithm, to compute values of p(n)/kt~!
and of the ratio claimed by Proposition 3.1 and to run the algorithm associated
to the best of these two values. Consequently, the following corollary holds and
concludes the section.

Corollary 3.2. If A is an off-line approximation algorithm for WEIGHTED MAX
INDEPENDENT SET, achieving approzimation ratio p(n), then there exists an on-
line algorithm for the model considered achieving competitive ratio at least

. {pm) p(n) }
N )

3.2. FURTHER RELAXATION

In Section 3.1, we have relaxed irrevocability, allowing the algorithm to add
in the solution under construction vertices arrived during previous iterations. In
this section, we further can also remove from the current solution vertices chosen
during former iterations. The charge-system considered here remains the same as
in Section 3.1. In what follows, we still use notations introduced previously.

Consider the following algorithm, denoted by BOLA and using an off-line algo-
rithm A solving WEIGHTED MAX INDEPENDENT SET:

e set r = 0;
e for i =1 to t: if r < val(A(H;)), then set: S = A(H;), r = val(A(H;)) and
1 =141
e output S.
In fact the work of BOLA amounts in determining an independent set for any H;
and in returning the best among them, i.e.,

val (A (H,)) val (A (Ht))} ,
o©) T a0)

val(BOLA(G)) = max{

Let S* be a maximum independent set of G. Set a; = |[S* N V(G;)| and let b;
be the value of S* N V(_Hi) in the weighted graph H;; then, b; = a; + (a;—1/k) +
(ai,g/kQ) + ...+ (al/k“l).

Theorem 3.3. If A achieves approximation ratio p(n) for WEIGHTED MAX INDE-
PENDENT SET, then BOLA achieves competitive ratio p(n)/(t — ((t — 1)k)).

Proof. For any ¢ € {1,2,...,t}:

> p(|Hil) = p(n). (11)
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Obviously, S* NV (H;) is a feasible solution of WEIGHTED MAX INDEPENDENT SET
on H;; so:

ay (Hy) 2 val (S* NV (Hy)) = b;. (12)
Using (11) and (12) and the way the final solution is built by BOLA, we get:

val(BOLA(G)) > val (A (H;)) > p(n)b; = p(n) (ai + ai; TR %) - (13)
Using (13) and the same arguments as for the proof of inequality in (8), one
immediately reaches:

(t - %) val(BOLA(G)) = p(n) (a1 + az + ...+ az) = p(n)a(G)

that directly leads to the result claimed. O

From Theorem 3.3, one easily sees that the relaxation admitted in this section
improves largely the result of Proposition 3.1. For instance, if ¢ is a fixed con-
stant, BOLA reaches, despite of charges, competitive ratio of the same order as the
approximation ratio of the off-line algorithm A used as a sub-routine.

Proposition 3.4. Ifn > t(t + 1)/2, then no on-line algorithm can achieve com-
petitive ratio (for the model dealt) better than 1/t(1 — (1/k)).

Proof. Let A be any on-line algorithm. Consider the following way of revealing G:

e in the first iteration, one reveals a clique on t vertices, in the second one
a clique of size t — 1 and so on until the (¢ — 1)th iteration where a clique
of size 2 is revealed; the tth cluster will be a clique on the n — (¢(t —1)/2)
remaining vertices;
e in iteration i, we link vertices of A(H;—1) (i.e., the ones chosen by A in
iteration ¢ — 1) to all of the vertices of the clique revealed in step i.
We show that, in any iteration i, val(A(H;)) < 14+1/k+...4+1/k*~1. Indeed, A(H;)
contains at most one vertex in any cluster since these clusters are cliques. Further-
more, upon the arrival of cluster i, any vertex in A(H;_1) is linked with V(G;).
So, if A chooses a vertex in V(G;), then A(H;—1) NA(H;) = 0. Since the vertices
of the jth cluster have weight 1/k°~7, we deduce the relation claimed. So,

val(A(G)) < 1+ % .o+ (14)

Now, it suffices to note that

alG) =t (15)
Indeed, the cluster (the clique) arrived in iteration 4 has size t + 1 — ¢, and we link
at most one vertex of cluster ¢ to any vertex of clusters j > ¢. So, in any cluster,
there exists at least one vertex v not linked to vertices of the subsequent clusters.

The set of all these vertices v forms an independent set of cardinality ¢ and (15)
is true. Combining (14) and (15) we get: val(A(G))/a(G) < 1/(t(1 — (1/k))). O
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From Theorem 3.3 and Proposition 3.4, one can see that BOLA, although simple,
is quite competitive since, considering an optimal off-line algorithm instead of A,
its competitive ratio becomes 1/(t(1 — (1/k)) 4+ 1/k) that is very close to upper
bound given by Proposition 3.4.

4. CONCLUSION

We have presented new models for on-line MAX INDEPENDENT SET. In addition
to results themselves, methods used are interesting per se since they exhibit how
on-line computation can be seen as extension of polynomial approximation theory.
In particular,

e algorithms devised are, for most of them, very competitive, since their
competitive ratios match upper bounds provided for the models dealt;

e competitive analysis take advantage of existing approximation results and
hence, they can be seen as reductions from approximation to on-line frame-
work.

Two major open directions that studies as the ones of the paper address are: first,
the development of opposite-sense reductions, i.e. reductions from the on-line to
the usual off-line approximation framework and, second, the development of re-
ductions between on-line models for the same or, mainly, for distinct combinatorial
optimization problems.
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