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A REGULARIZATION METHOD FOR ILL-POSED
BILEVEL OPTIMIZATION PROBLEMS

Maitine Bergounioux
1

and Mounir Haddou
1

Abstract. We present a regularization method to approach a solu-
tion of the pessimistic formulation of ill-posed bilevel problems. This
allows to overcome the difficulty arising from the non uniqueness of
the lower level problems solutions and responses. We prove existence
of approximated solutions, give convergence result using Hoffman-like
assumptions. We end with objective value error estimates.

1. Introduction

Bilevel programming problems are of growing interest both from theoretical and
practical points of view. These models are used in various applications, such as
economic planning, network design, and so on... This large class of important and
strategic economic problems can be viewed as static noncooperative asymmetric
games. Two players seek to optimize their individual objective functions. The first
player (the leader) must take into account the reaction (or any possible reaction
when non unique) of the second player (the follower). Such a problem can be
ill posed since the lower level (follower’s problem) may have many solutions and
responses for every (or some) fixed leader’s variables. In the so-called “optimistic
case”, many optimal reactions of the follower are possible and the follower is as-
sumed to choose in favor of the leader. In this case, the upper level problem can be
modelled using a bilevel formulation. These programs are quite difficult nonconvex
optimization problems. Several theoretical results and heuristics or approximation
techniques can be found in the recent literature [5–7,10–12,14]. In some of these
works, strong assumptions are made to simplify the model. The solution of the
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lower level is supposed to be unique or if they are many, they provide the same
(unique) upper level objective value.

The lower level is replaced by the equivalent first order optimality conditions and
can be viewed as an equilibrium problem. Most of time, the complementarity part
of these optimality conditions is smoothed or penalized using different techniques.
In our approach we consider the realistic situation where different reactions of the
follower are possible. There are multiple responses and we consider the so-called
“pessimistic” formulation of the asymmetric game. This can be interpreted as a
kind of non-cooperative asymmetric game.

Throughout this paper, we shall consider the general bi-level problem:

(P)
{

max f(y, x)
y ∈ K , x ∈ S(y) ,

where K and C are non empty convex, closed, bounded subsets of R
n and

S(y) = argmin { h(y, z) |z ∈ C }, (1.1)

f and h are smooth functions from R
n × R

m to R. Moreover, for every y ∈ K,
f(y, ·) and h(y, ·) are convex and f takes only positive values (assumptions will be
made more precise later).

Remark 1.1. Since the upper-level objective function f has to be maximized,
one can suppose it (without loss of generality) to be positive. Indeed, f can be
replaced by (max{f − f(y0, x0), 0})2 for some y0 ∈ K and x0 ∈ S(y0).

As mentionned before, the main difficulty comes from the fact that the cost
“function” f(y, x) , x ∈ S(y) can be a multivalued application whenever the
lower level set is not unique and distinct solutions yield distinct upper-level ob-
jective function values. In addition, it is not clear that f(y, x) = f(y, x̃) for any
x, x̃ ∈ S(y). Therefore, it is difficult to compute the solutions (if there are any).

The remaining of the paper is organized as follows. We introduce the regular-
ization method and give an existence result in next section. Section 3 is devoted
to an asymptotic analysis: we prove that the cluster points of solutions to the
penalized problems are solutions of a three-level limit problem corresponding to
the “pessimistic” formulation of the considered ill-posed bilevel problems. We give
some error estimates in the last section.

2. The penalized problem

We would like to let the upper level objective function single valued. So we are
going to use a penalization process that allow to compute approximate solutions
more easily. More precisely, ε > 0 being given, we consider the following penalized
problem

(Pε)
{

max f(y, x)
y ∈ K , x ∈ Sε(y),
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where

Sε(y) = argmin { hε(y, z) |z ∈ C }, (2.1)

where

hε(y) = h(y, z) + εf2(y, z). (2.2)

For each nonnegative ε, the bi-level problem (Pε) is well posed. Furthermore,
under some general and non restrictive assumptions on f and h we will prove that
the upper level function is single valued and continuous with respect to the leader
variables y.

This regularization technique makes some selection property on the solutions of
the lower level problem which is easy to characterize and have an explicit and sim-
ple economic interpretation. In almost all other regularization methods, the lower
level is replaced by its optimality conditions. The bi-level problem is then consid-
ered as a mathematical program with equilibrium constraints. The “hard” part of
these constraints (namely the complementarity conditions) is then smoothed or pe-
nalized. In fact these methods make also some selection (the generated sequences
converge to the analytic center when using smoothing methods or the least norm
center) on the solution set of the lower level but these selections do not have any
economic interpretation since they have no link to the objective function of the
upper level. Moreover, convergence results need more restrictive assumptions.

For convenience of the reader, we first give or recall some direct and classical
results. These results will be useful for forthcoming developpements.

Lemma 2.1. For any ε > 0, the lower-level problem

Qε,y =
{

min hε(y, z)
z ∈ C,

admits (at least) a solution so that Sε(y) �= ∅. Moreover, there exists a constant
κy ∈ R such that

∀x ∈ Sε(y) f(y, x) = κy.

Proof. The existence of a solution to Qε,y is obvious since C is bounded and f, h
are continuous. Moreover Qε,y may be written as follows:

Q∗
ε,y

⎧⎨⎩
min h(y, z) + εt2

f(y, z)− t = 0,
z ∈ C.

Since f takes only positive values, the equality constraint can be obviously replaced
by an inequality in this minimization problem:

Q∗
ε,y

⎧⎨⎩
min h(y, z) + εt2

f(y, z)− t ≤ 0,
z ∈ C.
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Q∗
ε,y is a convex problem and the cost function is strictly convex with respect to t.

This simple observation proves that the optimal value of t is unique and completes
the proof. �

Lemma 2.2. Let be ε > 0 fixed. The multi-application Sε is lower semi-continuous
in the following sense: if yk → y and xk ∈ Sε(yk) then xk → x ∈ Sε(y) (up to a
subsequence).

Proof. Let be xk ∈ Sε(yk) ⊂ C. As C is bounded, then (xk) is bounded as well
and converges to some x (up to a subsequence). As xk ∈ Sε(yk) we get

∀z ∈ C h(yk, xk) + εf2(yk, xk) ≤ h(yk, z) + εf2(yk, z).

As f and h are continuous with respect to y and x we obtain

∀z ∈ C h(y, x) + εf2(y, x) ≤ h(y, z) + εf2(y, z),

that is x ∈ Sε(y). �

Lemma 2.3. Let be ε > 0 fixed. The cost function

vε : y �→ {f(y, x) | x ∈ Sε(y) }

is single-valued and continuous.

Proof. We see that the function vε is single valued, with Lemma 2.1. Let us
prove the continuity: let be (yk) a sequence that converges to some y. Then
vε(yk) = f(yk, xk) where xk ∈ Sε(yk). Lemma 2.2 yields that xk converges (up to
a subsequence) to x ∈ Sε(y). As f is continuous with respect to y and x we get

vε(yk) = f(yk, xk) → f(y, x) = vε(y).

�
We may now give an existence result:

Theorem 2.1. For any ε > 0, problem (Pε) admits at least an optimal solution yε.

Proof. As vε is continuous and K is bounded, the result follows. �

3. Asymptotic results

3.1. A convergence result for the solutions of (Pε)

In this subsection, we study the behaviour of solutions of (Pε) as ε goes to 0.
First, we introduce some notations:

S̃(y) = argmin{f2(y, z) |z ∈ S(y) }, (3.1)



ILL-POSED BILEVEL OPTIMIZATION PROBLEMS 23

where S(y) is given by (1.1) and

(P̃)
{

max f(y, x)
y ∈ K , x ∈ S̃(y).

(3.2)

Note that problem (P̃) is a three-level problem that can be written in an extended
way as follows:

(P̃)

⎧⎨⎩
max f(y, x)
y ∈ K
x ∈ argmin

{
f2(y, z) |z ∈ argmin { h(y, w) |w ∈ C }} .

Lemma 3.1. x ∈ S̃(y) is equivalent to

x ∈ S(y) and ∀z ∈ C such that h(y, z) = h(y, x), f2(y, z) ≥ f2(y, x).

Proof. Assume that z satisfies h(y, z) = h(y, x) with x ∈ argmin { h(y, t) | t ∈ C }.
Then z ∈ argmin { h(y, t) | t ∈ C }. �

Lemma 3.2. Let y be fixed. If xε ∈ Sε converges to some x̄, then x̄ ∈ S̃(y).

Proof. Assume xε ∈ Sε and xε → x̄ as ε → 0. For every z ∈ C we get

h(y, xε) + εf2(y, xε) ≤ h(y, z) + εf2(y, z).

When ε → 0, as the functions are continuous we obtain

∀z ∈ C h(y, x̄) ≤ h(y, z),

that is x̄ ∈ S(y).
Let be x̃ ∈ C such that h(y, x̃) = h(y, x̄). Then

h(y, xε) + εf2(y, xε) ≤ h(y, x̃) + εf2(y, x̃) since x̃ ∈ C
≤ h(y, x̄) + εf2(y, x̃) since h(y, x̃) = h(y, x̄)
≤ h(y, xε) + εf2(y, x̃) since xε ∈ C and x̄ ∈ S(y).

Therefore

∀x̃ ∈ C such that h(y, x̃) = h(y, x̄), f2(y, xε) ≤ f2(y, x̃).

Passing to the limit with the continuity of f gives

∀x̃ ∈ C such that h(y, x̃) = h(y, x̄), f2(y, x̄) ≤ f2(y, x̃).

With Lemma 3.1 we conclude that x ∈ S̃(y). �
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To establish the main convergence result of this work, we will use some technical
but not so very restrictive assumption.
Let us set

αε = h(yε, xε) + o(ε), (3.3)

and
Λε = { x ∈ C |h(yε, x) ≤ αε }. (3.4)

Assume we can find σo > 0 and εo > 0 such that

∀ε ≤ εo inf
h(yε,x)=αε

|∇xh(yε, x)| ≥ σo. (3.5)

This assumption does not seem quite natural at a first glimpse. In fact it a
Hoffman- inequality type assumption which is more or less standard in this context.
The proof of next theorem, and especially the proof of Lemma 3.3 below will make
this hypothesis clear.

Theorem 3.1. Assume condition (3.5) is verified and let yε an optimal solution
to (Pε). Then yε converges to some ȳ (up to a subsequence) and ȳ is an optimal
solution to (P̃).

Proof. Let yε an optimal solution to (Pε). Then yε ∈ K which is bounded. So
(extracting a subsequence) we may assert that yε converges to ȳ. As K is closed
then ȳ ∈ K. As yε is an optimal solution to (Pε) we have

∀ỹ ∈ K , ∀x̃ε ∈ Sε(ỹ) f(yε, xε) ≥ f(ỹ, x̃ε) (3.6)

where xε ∈ Sε(yε). Note that x̃ε ∈ Sε(ỹ) implies that x̃ε ∈ C. So x̃ε is bounded
and converges to x̃ (up to a subsequence) with x̃ ∈ S̃(ỹ) (Lem. 3.2).
Passing to the limit in (3.6) gives

∀ỹ ∈ K , ∃x̃ ∈ S̃(ỹ) such that f(ȳ, x̄) ≥ f(ỹ, x̃),

where x̄ is the limit (of a subsequence) of xε. Now we need the following result to
achieve the proof:

Lemma 3.3. Assume that (3.5) is satisfied and let (yε, xε ∈ Sε(yε)) converging to
(ȳ, x̄). Then x̄ ∈ S̃(ȳ).

Thanks to the definition of S̃(ỹ) we note that f(ỹ, ·) is constant on S̃(ỹ), namely

∀z ∈ S̃(ỹ) f(ỹ, z) = f(ỹ, x̃).

Finally
∀ỹ ∈ K, ∀x̃ ∈ S̃(ỹ) f(ȳ, x̄) ≥ f(ỹ, x̃),

with x̄ ∈ S̃(ȳ). This means that ȳ is an optimal solution to (P̃).
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• It remains to prove Lemma 3.3.
Let yε converging to ȳ and xε ∈ Sε(yε). As xε ∈ C (bounded) one may extract

a subsequence converging to x̄. We are going to prove that x̄ ∈ S̃(ȳ).

We first prove that x̄ ∈ S(ȳ). As xε ∈ Sε(yε) we have

∀z ∈ C h(yε, xε) + ε f2(yε, xε) ≤ h(yε, z) + ε f2(yε, z); (3.7)

as f and g are continuous, passing to the limit gives

∀z ∈ C h(ȳ, x̄) ≤ h(ȳ, z),

that is x̄ ∈ S(ȳ).
Let x̃ ∈ S(ȳ). Suppose for a while that ∃ε̃ such that

∀ε ≤ ε̃ x̃ ∈ Λε. (3.8)

We get
h(yε, x̃) ≤ h(yε, xε) + o(ε);

with relation (3.7) this gives

∀z ∈ C h(yε, x̃) + ε f2(yε, xε) ≤ h(yε, z) + ε f2(yε, z) + o(ε). (3.9)

As x̃ ∈ C relation (3.7) yields as well

h(yε, xε) + ε f2(yε, xε) ≤ h(yε, x̃) + ε f2(yε, x̃).

Adding these two relations gives

∀z ∈ C h(yε, xε)+2ε f2(yε, xε) ≤ h(yε, z)+ε f2(yε, z)+ε f2(yε, x̃)+o(ε); (3.10)

the choice of z = xε implies

ε f2(yε, xε) ≤ ε f2(yε, x̃) + o(ε),

that is

f2(yε, xε) ≤ f2(yε, x̃) +
o(ε)
ε

·
Passing to the limit gives finally

∀x̃ ∈ S(ȳ) f2(ȳ, x̄) ≤ f2(ȳ, x̃).

This means that x̄ ∈ S̃(ȳ).
Unfortunately, there is no reason for “assumption” (3.8) to be satisfied and we

must get rid of it. We are going to adapt the previous proof (we gave the main
ideas). If x̃ /∈ Λε then we perform a projection: we call x̃ε the projection of x̃ on
Λε. We are going to show that x̃ε converges to x̃.
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As x̃ /∈ Λε we get αε < h(yε, x̃). Let us call σαε(h) the following real number

σαε(h) = inf
x∈[αε<h(yε,·)]

h(yε, x) − αε

d(x, Λε)
, (3.11)

where d(x, Λε) is the distance between x and Λε and

[αε < h(yε, ·)] = { x ∈ R
n | αε < h(yε, x)}.

This so called Hoffman constant can be defined following for instance Azé and
Corvellec [2]. Therefore

h(yε, x̃) − αε ≥ d(x̃, Λε)σαε(h).

As d(x̃, Λε) = d(x̃, x̃ε) we obtain

d(x̃, x̃ε) ≤ h(yε, x̃) − αε

σαε(h)
·

We have to estimate σαε(h). In particular we look for σo > 0 such that

∀ε σαε(h) ≥ σo.

In [2], it is shown that

σαε(h) ≥ inf
h(yε,x)=αε

|∇xh(yε, x)|,

where |∇xh(yε, x)| stands for the strong slope of h at (yε, x) with respect
to x ([2]); the strong-slope of a function ϕ at x is defined as

|∇ϕ(x)| :=

⎧⎨⎩
0 if x is a local minimum of ϕ,

lim sup
y→x

ϕ(x) − ϕ(y)
d(x, y)

otherwise.

Using (3.5), we have

d(x̃, x̃ε) ≤ h(yε, x̃) − αε

σo
=

h(yε, x̃) − h(yε, xε) + o(ε)
σo

→ 0.

Indeed yε → ȳ, xε → x̄, h is continuous and h(ȳ, x̄) = h(ȳ, x̃).
We may now end the proof. We can use relation (3.10) with x̃ε instead of x̃ so

that

∀z ∈ C h(yε, xε) + 2ε f2(yε, xε) ≤ h(yε, z) + ε f2(yε, z) + ε f2(yε, x̃ε) + o(ε);

we choose z = xε once again to get

f2(yε, xε) ≤ f2(yε, x̃ε) +
o(ε)
ε

·
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Passing to the limit as ε → 0 gives (for every x̃ ∈ S(ȳ)

f2(ȳ, x̄) ≤ f2(ȳ, x̃).

This means that x̄ ∈ S̃(ȳ). �

Remark 3.1. It is clear that assumption (3.5) is satisfied if h is linear (“linear”
case). Next problem is to find simple conditions for (ȳ, x̄) to get (3.5) when h is
not linear. One hint is to assume that h is C1 and that ‖∇xh(ȳ, x̄‖ �= 0; then the
strong slope |∇xh(yε, x)| coincides with the norm ‖∇xh(yε, x)‖ of the gradient of h
with respect to x. With the convergence of (yε, xε) to (ȳ, x̄) (up to a subsequence),
there exist εo and η > 0 such that

∀ε ≤ εo ‖∇xh(yε, xε)‖ ≥ η > 0;

next we have to prove that ‖∇xh(yε, x)‖ ≥ η for any x such that h(yε, x) = αε.
A good tool could be an “local inversion theorem” for the multivalued case but
it is not obvious. The problem is still open. We have the same challenge in next
section.

3.2. Comparison of (P) and (P̃)

Now, it is clear that a solution of the penalized problem (Pε) is a good approx-
imation of a solution of (P̃). Anyway, it is not a solution (a priori) of the problem
in consideration (P). So we have to compare (P) and (P̃).

The second level of (P̃) clearly disappears when the initial problem lower level
solutions set corresponds to the same revenue for each value of y (or are unique). In
this case (P) and (P̃) are equivalent. In other cases, the solution of (P̃) corresponds
to some “optimal worst” case solution.

This solution is still important for the decision makers of the upper level prob-
lem.

Remark 3.2. Using the same regularization technique, if we replace εf2(y, z) by
−εf2(y, z) in the definition of hε, we will obtain (at the limit) an optimal solution
of (P) which corresponds to an optimal best case solution of our asymmetric game.

4. Error estimates

The purpose of this section is to study the behavior of f(y∗, x∗) − f(yε, xε) as
ε → 0 and provide (if possible) some error estimates. Since the penalized problems
are nonconvex, we can not use any classical perturbation result. We proceed in
two steps: we first prove some monotonicity results for the upper level objective
function values and then consider classical perturbation analysis results for some
auxilliary convex problems.
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4.1. Preliminary results

Lemma 4.1. Let be ε > ε′ > 0 and y ∈ K. Let be xε ∈ Sε(y) and x̃ ∈ Sε′(y).
Then we get

f2(y, xε) ≤ f2(y, x̃).

Proof. Let us fix ε > ε′ > 0 and choose some y ∈ K. Let be xε ∈ Sε(y) and
x̃ ∈ Sε′(y). Assume that

f2(y, x̃) < f2(y, xε). (4.1)
As x̃ ∈ Sε′(y) and xε ∈ C, we have

h(y, x̃) + ε′f2(y, x̃) ≤ h(y, xε) + ε′f2(y, xε),

h(y, x̃) + ε′f2(y, x̃) + (ε − ε′)f2(y, x̃) ≤ h(y, xε) + ε′f2(y, xε) + (ε − ε′)f2(y, x̃).
With (4.1) and ε > ε′ > 0, we obtain

h(y, x̃)+εf2(y, x̃) < h(y, xε)+ε′f2(y, xε)+(ε−ε′)f2(y, xε) <= h(y, xε)+εf2(y, xε).

So
h(y, x̃) + εf2(y, x̃) < min { h(y, x) + εf2(y, x), x ∈ C}

and we get a contradiction. �
Lemma 4.2. Let be ε > ε′ > 0 and yε (respectively yε′) a solution to (Pε)
(respectively (Pε′)). Let be xε ∈ Sε(yε) and xε′ ∈ Sε′(yε′). Then

f2(yε, xε) ≤ f2(yε′ , xε′ ) ≤ f2(y∗, x∗),

where y∗ is a solution to (P̃) with x∗ ∈ S(y∗).

Proof. Using Lemma 4.1 with y = yε and xε ∈ Sε(yε) gives

∀x̃ ∈ Sε′(yε) f2(yε, xε) ≤ f2(yε, x̃). (4.2)

As yε′ is a solution of (Pε′) we get

∀y ∈ K, ∀x ∈ Sε′(y) f(yε′ , xε′) ≥ f(y, x).

We may choose in particular y = yε and x = x̃ ∈ Sε′ (yε) to get

∀x̃ ∈ Sε′(yε) f(yε′ , xε′ ) ≥ f(yε, x̃). (4.3)

As f is assumed to be nonnegative we finally obtain

f(yε, xε) ≤ f(yε, x̃) ≤ f(yε′ , xε′).

Therefore the family (f(yε, xε) is increasing). The convergence of f(yε, xε) to
f(y∗, x∗) (f is continuous) achieves the proof since f(y∗, x∗) is the limit and the
upper bound of the family (f(yε, xε)). �
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Lemma 4.3. Let be ε > 0 and x̃ε ∈ Sε(y∗) where y∗ is a solution to (P̃). Then

∀xε ∈ Sε(yε) f(y∗, x̃ε) ≤ f(yε, xε) ≤ f(y∗, x∗). (4.4)

Proof. This is a direct consequence of Lemma 4.2: the relation f(yε, xε) ≤ f(y∗, x∗)
is obvious and the relation f(y∗, x̃ε) ≤ f(yε, xε) comes from the fact that yε is a
solution to (Pε). �
Remark 4.1. The previous lemmas show that it is sufficient to study f(y∗, x∗)−
f(y∗, x̃ε) for some x̃ε ∈ Sε(y∗).

For a large class of realistic problems, the lower level is linearly constrained.
moreover, we use for our analysis some local error bounds and these bounds are
very complicated in case of nonlinear constraints. So, we assume from now on that
C is polyhedral:

C = { x ∈ R
n | Ax = b, x ≥ 0 },

where A is a m × n real matrix and b ∈ R
m.

In the sequel y∗ is a solution to (P̃) (which existence is given by Th. 3.1) and
x∗ ∈ S̃(y∗) (see (3.1)) so that

x∗ ∈ argmin { f2(y∗, z) | z ∈ argmin {h(y∗, ζ) , ζ ∈ C} }.

Let us denote
α∗ = h(y∗, x∗) and β∗ = f(y∗, x∗). (4.5)

Note that β∗ is the optimal value for (P̃) (the upper level) so that we may assume
that β∗ �= 0 (otherwise the problem is trivial). We set

C∗ = { x ∈ C | h(y∗, x) ≤ α∗ and f(y∗, x) ≤ β∗ }. (4.6)

Let us give an important property of C∗:

Proposition 4.1. Assume y∗ is a solution to (P̃) and C∗ is defined with (4.6),
then

C∗ = { x ∈ C | h(y∗, x) = α∗ and f(y∗, x) = β∗ }
and

C∗ = { x ∈ C | h(y∗, x) + f(y∗, x) ≤ σ∗ def
:= α∗ + β∗ }.

Proof. Note that it impossible to get h(y∗, x) ≤ α∗, if x ∈ C∗. Indeed, as
x∗ ∈ S̃(y∗) then x∗ ∈ S(y∗) = argmin {h(y∗, ζ) , ζ ∈ C}. Therefore:

∀ζ ∈ C h(y∗, x∗) ≤ h(y∗, ζ). (4.7)

Setting ζ = x ∈ C∗ gives

α∗ = h(y∗, x∗) ≤ h(y∗, x) ≤ α∗.

So
∀x ∈ C∗ h(y∗, x) = α∗.
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The same remark holds for β∗ so that

C∗ = { x ∈ C | h(y∗, x) = α∗ and f(y∗, x) = β∗ }. (4.8)

Let us call
C′ = { x ∈ C | h(y∗, x) + f(y∗, x) ≤ σ∗ }.

It is obvious that C∗ ⊂ C′. Conversely, let be x ∈ C′. Relation (4.7) yields
α∗ ≤ h(y∗, x) so that

α∗ + f(y∗, x) ≤ α∗ + β∗.

This gives f(y∗, x) ≤ β∗. Similarly, we get h(y∗, x) ≤ α∗ and x ∈ C∗. �
The main point is now to estimate (roughly speaking) the distance between the
solution x∗ and Sε(y∗). As x∗ ∈ C∗ and C∗ is defined with inequalities, we first
assume a Hoffman-type condition.

4.2. Error estimates under an Hoffman hypothesis

Following Azé and Corvellec [2] we know that

inf
[σ∗<f(y∗,·)+h(y∗,·)]

|∇x (f(y∗, ·) + h(y∗, ·)) | ≤

inf
x∈[σ∗<f(y∗,·)+h(y∗,·)]

f(y∗, x) + h(y∗, x) − σ∗

d(x, [f(y∗, ·) + h(y∗, ·) ≤ σ∗]
·

The notation [σ∗ < f(y∗, ·) + h(y∗, ·)] stands for the set

{x ∈ R
n | σ∗ < f(y∗, x) + h(y∗, x) }.

We note that [f(y∗, ·) + h(y∗, ·) ≤ σ∗] = C∗. In this subsection, we assume the
following:

(H1) γ∗ := inf
[σ∗<f(y∗,·)+h(y∗,·)]

|∇x (f(y∗, ·) + h(y∗, ·)) | > 0.

Let us call γ =
1
γ∗ : assumption (H1) implies that

∀ε > 0, ∀x̃ε ∈ Sε(y∗) ∃x∗
ε ∈ C∗ s.t. ‖x̃ε −x∗

ε‖ ≤ γ [f(y∗, x̃ε) + h(y∗, x̃ε)−α∗−β∗] .
(4.9)

Note also that relation (4.4) of Lemma 4.3 yields that

∀x̃ε ∈ Sε(y∗) f(y∗, x̃ε) ≤ β∗

and
h(y∗, x̃ε) ≤ α∗ + εβ∗
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because of the definition of Sε(y∗). Therefore

∀x̃ε ∈ Sε(y∗) f(y∗, x̃ε) + h(y∗, x̃ε) − α∗ − β∗ ≤ ε

and
∀ε > 0, ∀x̃ε ∈ Sε(y∗) ∃x∗

ε ∈ C∗ s.t. ‖x̃ε − x∗
ε‖ ≤ γε. (4.10)

The existence of such Lipschitzian error bound for convex or general inequalities is,
itself, an interesting domain of research. It is strongly related to metric regularity
properties. A large number of conditions and characterizations can be found in
[2, 3, 8, 9, 13, 15, 16]. This list of references constitutes a small but significant part
of the existent literature.

Remark 4.2. 1. Assumption (H1) is fulfilled if the functions f and h are linear
with respect to x. Indeed they cannot be identically equal to 0 and the strong
slope coincides with the norm of gradient which is a positive constant.
2. x∗

ε is the projection of x̃ε on C∗.

Lemma 4.4. Both x̃ε ∈ Sε(y∗) and x∗
ε given by (4.10) converge to x∗ ∈ S(y∗) as

ε → 0.

Proof. We know that x̃ε → x∗ (with the previous results). Let us set dε =
x̃ε − x∗

ε

ε
.

As dε is bounded (by γ) it clear that x∗
ε and x̃ε have the same limit point

(namely x∗). �
In what follows x̃ε is an element of Sε(y∗) and x∗

ε is the associated element
given by (4.10).
Let us define

I(x∗) = {i ∈ {1, · · · , n} | x∗
i = 0 } , and C̃ = { d ∈ R

n | Ad = 0 , d|I(x∗) ≥ 0 }.

Let d be in C̃.
Then, there exists εd > 0 such that ∀ε < εo, x∗

ε + εd ∈ C. Indeed:
• A(x∗

ε + εd) = A(x∗
ε) + εAd = A(x∗

ε) = b.
• If i ∈ I(x∗), then (x∗

ε + εd)i ≥ x∗
ε,i ≥ 0.

• If i /∈ I(x∗), then x∗
i > 0. As x∗

ε → x∗, ∃εi such that x∗
ε,i > 0 forall ε ≤ εi.

Then we choose η = inf
i/∈I(x∗)

{εi} so that

∀ε ≤ η x∗
ε,i > 0.

Now choosing εd ≤ η small enough we get (x∗
ε + εd)i ≥ 0 for any ε ≤ εo.

As x̃ε ∈ Sε(y∗) and x∗
ε + εd ∈ C we have

h(y∗, x̃ε) + εf2(y∗, x̃ε) ≤ h(y∗, x∗
ε + εd) + εf2(y∗, x∗

ε + εd),

h(y∗, x̃ε) − h(y∗, x∗
ε + εd) + ε

[
f2(y∗, x̃ε) − f2(y∗, x∗

ε + εd)
] ≤ 0.



32 M. BERGOUNIOUX

As the functions are C1, we have

h(y∗, x̃ε) = h(y∗, x∗
ε) + ∇xh(y∗, x∗

ε) · (x̃ε − x∗
ε) + (x̃ε − x∗

ε)o(x̃ε − x∗
ε)

h(y∗, x̃ε) = h(y∗, x∗
ε) + ε∇xh(y∗, x∗

ε) · dε + εdε o(εdε), (4.11)

and
h(y∗, x∗

ε + εd) = h(y∗, x∗
ε) + ε∇xh(y∗, x∗

ε) · d + εd o(εd), (4.12)

where ∇xh stands for the derivative of h with respect to x. As x∗
ε ∈ C∗ and x̃ε ∈ C

then
h(y∗, x∗

ε) = α∗ = h(y∗, x∗) ≤ h(y∗, x̃ε).

With relation (4.11) this gives

∇xh(y∗, x∗
ε) · dε + dε o(εdε) =

h(y∗, x̃ε) − h(y∗, x∗
ε)

ε
≥ 0.

As dε is bounded (by γ), there exist cluster points; passing to the limit gives

∇xh(y∗, x∗) · d̃ = lim
ε→0

∇xh(y∗, x∗
ε) · dε ≥ 0, (4.13)

for any cluster point d̃ of the family dε.
In addition, we obtain with (4.11) and (4.12)

ε∇xh(y∗, x∗
ε) · dε + εdε o(εdε) − ε∇xh(y∗, x∗

ε) · d − εd o(εd)

+ ε
[
f2(y∗, x̃ε) − f2(y∗, x∗

ε + εd)
] ≤ 0,

that is

∇xh(y∗, x∗
ε) · (dε − d) + dε o(εdε) − d o(εd) +

[
f2(y∗, x̃ε) − f2(y∗, x∗

ε + εd)
] ≤ 0.

Passing to the limit (with Lem. 4.4) we obtain

∇xh(y∗, x∗) · (d̃ − d) ≤ 0, (4.14)

where d̃ is a cluster point of the sequence dε and any d ∈ C̃. As d = 0 belongs to
C̃, we get

∇xh(y∗, x∗) · d̃ ≤ 0.

Finally, we obtain with (4.13)

∇xh(y∗, x∗) · d̃ = lim
ε→0

∇xh(y∗, x∗
ε) ·

x̃ε − x∗
ε

ε
= 0. (4.15)

This means that
∇xh(y∗, x∗

ε) · (x̃ε − x∗
ε) = o(ε).
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As

h(y∗, x̃ε) = h(y∗, x∗
ε) −∇xh(y∗, x∗

ε) · (x∗
ε − x̃ε) + (x∗

ε − x̃ε) o(x∗
ε − x̃ε)

we get
h(y∗, x̃ε) − h(y∗, x∗

ε) = o(ε) − εdε o(εdε) = o(ε).
As x∗

ε ∈ C∗ then h(y∗, x∗
ε) = α∗ and

∀x̃ε ∈ Sε(y∗) h(y∗, x̃ε) = h(y∗, x∗) + o(ε). (4.16)

As h and f2 play similar roles we have the same result for f2. More precisely

∀x̃ε ∈ Sε(y∗) f2(y∗, x̃ε) − f2(y∗, x∗) = o(ε). (4.17)

We just proved the following result

Theorem 4.1. Assume that (H1) is satisfied; let yε be a solution to (Pε) and
x̃ε ∈ Sε(y∗). Then

h(y∗, x̃ε) − h(y∗, x∗) = o(ε) and f2(y∗, x̃ε) − f2(y∗, x∗) = o(ε) as ε → 0.

Moreover

∀xε ∈ Sε(yε) f(y∗, x∗) − f(yε, xε) = o(ε) as ε → 0.

Proof. The first assertion has been proved: relations (4.16) and (4.17). We use
relation (4.4) and the previous result to claim that

f2(y∗, x∗) − f2(yε, xε) = o(ε).

As f2(y∗, x∗) − f2(yε, xε) = [f(y∗, x∗) + f(yε, xε)] [f(y∗, x∗) − f(yε, xε)] and
f(y∗, x∗) + f(yε, xε) → 2f(y∗, x∗) = 2β∗ we get the result since β∗ �= 0. �

With a bootstrapping technique we obtain the following corollary:

Corollary 4.1. Under the assumptions and notations of the previous theorem, we
get ∀xε ∈ Sε(yε)

∀n ∈ N f(y∗, x∗) − f(yε, xε) = o(εn)

and ∀x̃ε ∈ Sε(y∗)
h(y∗, x̃ε) − h(y∗, x∗) = o(εn).

Proof. Using relations (4.16) and (4.17) in assumption (H1) we see that relation
(4.10) becomes

∀ε > 0, ∀x̃ε ∈ Sε(y∗) ∃x∗
ε ∈ C∗ s.t. ‖x̃ε − x∗

ε‖ ≤ γo(ε). (4.18)

Using the same technique leads to relations (4.16) and (4.17) with ε2 instead of ε
and so on. �
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Remark 4.3. These error estimates are still valid (with the same proofs) when
the penalized problems are approximatively solved.

4.3. Error estimates under a “second-order” assumption

If assumption (H1) is not ensured, one may, however, give estimates using the
following hypothesis

(H2)

{ ∃εo > 0 , ∃δ > 0, such that ∀x ∈ C∗ + B(0, εo)
∃x̃ ∈ C∗ such that ‖x − x̃‖2 ≤ δ

[
(h(y∗, x) − α∗)+ + (f(y∗, x) − β∗)+

]
.

Remark 4.4. (H2) means that C∗ is H-metrically regular (of the second order).
(See the definition of this regularity property for example in [1] Def. 4.3.2.) (H2)
also corresponds to a quadratic growth condition [4] Definition 3.1.
This assumption is significantly weaker than (H1) and covers a large class of prob-
lems since it is satisfied when h(y∗, .) + f(y∗, .) is linear or quadratic.

We have a rather similar result which proof is the the same as in the previous
subsection (so that we do not detail it):

Theorem 4.2. Assume that (H2) is satisfied ; let yε be a solution to (Pε) and
xε ∈ Sε(yε). Then

f(y∗, x∗) − f(yε, xε) = o(
√

ε) as ε → 0 , so that

∀τ > 0 f(y∗, x∗) − f(yε, xε) = o(ε1−τ ).
Moreover, ∀x̃ε ∈ Sε(y∗)

∀τ > 0 h(y∗, x̃ε) − h(y∗, x∗) = o(ε1−τ ).

5. Conclusion

With this new penalization approach, the pessimistic formulation of general bi-
level problems becomes, in some way, tractable. Indeed, instead of the complicated
limit problem, we only need to solve approximately the penalized one for a small
value of the parameter ε. We have given error estimates that prove that this
approximation is reasonable even when Hoffman’s assumption is not satisfied.
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