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A NOTE ON MINTY TYPE VECTOR VARIATIONAL
INEQUALITIES

Giovanni P. Crespi1, Ivan Ginchev2 and Matteo Rocca3

Abstract. The existence of solutions to a scalar Minty variational in-
equality of differential type is usually related to monotonicity property
of the primitive function. On the other hand, solutions of the varia-
tional inequality are global minimizers for the primitive function. The
present paper generalizes these results to vector variational inequalities
putting the Increasing Along Rays (IAR) property into the center of
the discussion. To achieve that infinite elements in the image space
Y are introduced. Under quasiconvexity assumptions we show that
solutions of generalized variational inequality and of the primitive op-
timization problem are equivalent. Finally, we discuss the possibility
to generalize the scheme of this paper to get further applications in
vector optimization.
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Introduction

Variational inequalities (for short, VI) provide suitable mathematical models for
a range of practical problems, see e.g. [1] or [11]. Vector VI were introduced first
in [6] and thereafter studied intensively (for a survey and some recent results we
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refer to [7,13]). Two alternative formulations, known as Stampacchia VI [20] and
Minty VI [16], are widely studied. In both cases some interest comes from differ-
ential VI, where the operator involved defines some directional derivative. Under
this setting, Minty VI, compared to Stampacchia VI, characterize more qualified
equilibria, that is when a Minty VI admits a solution, then the primitive function
has some regularity properties. In [4] we observe that such is the increasing-along-
rays (IAR) property. The aim of the present paper is to generalize this result to
vector Minty VI.

In [4] we studied the inequality

f ′
−(x, x∗ − x) ≤ 0, x ∈ K , (1)

where f : K → R and K is a subset of the linear space X . Here f ′
−(x, u) denotes

the lower Dini directional derivative of f in direction u ∈ X defined for x ∈ dom f
as an element of R = R ∪ {−∞} ∪ {+∞} by

f ′
−(x, u) = lim inf

t→0+

1
t
(f(x + tu) − f(x)) .

We proved the following properties are related:

(1) x∗ is a solution of the scalar variational inequality;
(2) f is increasing along rays starting at x∗;
(3) x∗ is a global solution of the optimization problem min f(x), x ∈ K.

In this paper we focus on the IAR property and establishes similar relations for a
vector Minty VI. The development of the argument requires, in analogy with [4],
to introduce infinite elements in the image space Y . The construction proves to
be consistent with the VI and applies to the study of both the VI and the related
vector optimization problem. In the literature, while infinite elements are widely
used in scalar optimization, this is not the case in vector optimization.

As a whole, like in [17], we base our investigation on methods of nonsmooth
analysis. By showing that the IAR property is into the nature of the problem, in
fact we relate the paper to [2,15,21,22], where VI are investigated in the framework
of generalized monotonicity and generalized convexity.

1. Preliminaries

In the sequel X denotes a real linear space and K is a subset of X . Further Y
is a real topological vector space and C ⊂ Y is a proper closed convex cone with
nonempty interior. Proper means ∅ �= C �= Y . Occasionally, we deal with the
case of Y finite-dimensional, when we do so, we set Y = Rm with some positive
integer m.

For a given function f : U → Y , where K ⊂ U ⊂ Y , we consider the vector VI

f ′(x, x∗ − x) ∩ (−C) �= ∅, x ∈ K (2)
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where f ′(x, u) is the Dini (directional) derivative (for short, the adjective direc-
tional will be omitted) of f at x in the direction u, defined as the set

f ′(x, u) = Limsup
t → 0+

1
t
(f(x + tu) − f(x)) (3)

with the Painlevée-Kuratowski limit. In other words y ∈ f ′(x, u) if y ∈ Y and
there exists a sequence tk → 0+ such that

y = lim
k

1
tk

(f(x + tku) − f(x)) .

The usefulness of the Dini derivative (3) has been proved in [9], where it is applied
to derive optimality conditions for C0,1 vector minimization problems, i.e. for
problems with locally Lipschitz data.

A solution of (2) is any point x∗ ∈ K such that f ′(x, x∗ − x)∩ (−C) �= ∅ for all
x ∈ K. We recall that, for a given set K ⊂ X , the kernel of K (kerK) is the set
of all x∗ ∈ K, such that [x∗, x] ⊂ K for all x ∈ K. Obviously kerK is convex. A
nonempty set K is star-shaped if kerK �= ∅. It is convenient also to consider the
empty set as a star-shaped set. For a survey on star-shaped analysis we refer to
[18].

If we look for solutions x∗ of (2), such that x∗ ∈ kerK, then we may assume
that f is defined on K, since the Dini derivatives in (2) do not depend on the
values of f outside K.

Together with the vector VI we consider the optimization problem

minCf(x), x ∈ K . (4)

Solutions of (4) are intended as global optima. Following [14] we introduce the
following type of solutions. A point x∗ ∈ K is said to be a w-minimizer (weakly
efficient point) if f(K) ∩ (f(x∗) − intC) = ∅. A point x∗ ∈ K is said to be an
e-minimizer (efficient point) if f(K)∩ (f(x∗)− (C \ {0})) = ∅. A point x∗ ∈ K is
said to be an a-minimizer (absolute or ideal efficient point) if f(K) ⊂ f(x∗) + C.

For scalar functions f : K → R we say that f is increasing-along-rays starting
at x∗ ∈ kerK, we write f ∈ IAR(K, x∗), when for any x ∈ K the function
ϕ : [0, 1] → R, ϕ(t) = f((1 − t)x∗ + tx) is increasing. We say also that f obeys
the IAR property.

In [4] we establish under assumption of radially lower semicontinuity of f , that
x∗ ∈ kerK is a solution of the scalar VI (1) if and only if f ∈ IAR(K, x∗). The
main purpose of the present paper is to generalize results from [4] to a vector
VI. For this purpose we have to define first the IAR property for vector-valued
functions. In fact we propose two definitions.

Let x(t) = (1 − t)x∗ + tx for given x∗. We say that f : K → Y is increasing-
along-rays (minus) starting at x∗ ∈ kerK, and write f ∈ IAR−(K, x∗), if for each
x ∈ K and 0 ≤ t1 < t2 ≤ 1 it holds f(x(t2)) /∈ f(x(t1)) − intC. We say that f is
increasing-along-rays (plus) starting at x∗ ∈ kerK, and write f ∈ IAR+(K, x∗),
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if for each x ∈ K and 0 ≤ t1 < t2 ≤ 1 it holds f(x(t2)) ∈ f(x(t1)) + C. When
f : K → R both IAR− and IAR+ properties coincide with the IAR property of f .
Clearly IAR+ implies IAR−.

By means of the cone C we can introduce lower semicontinuity of f : T →
Y , where T is a topological space (further we use the abbreviation lsc for lower
semicontinuous). We say that f : T → Y is lsc at x0 if for each y0 ∈ Y such that
f(x0) /∈ y0−C there exists a neighborhood U of x0 such that f(U)∩ (y0−C) = ∅.
The function f : T → Y is lsc if it is lsc at each point x0 ∈ T . To underline the
dependence on C, we write also C-lsc instead of lsc.

Let f : K → Y and x∗ ∈ kerK. We say that f is radially lsc along rays starting
at x∗, and write f ∈ RLSC(K, x∗), if for all x ∈ K the function ϕ : [0, 1] → Y ,
ϕ(t) = f(x(t)), is lsc.

2. The Weierstrass theorem for lsc vector functions

Theorem 2 in this section establishes a relation between the existence of solu-
tions of the vector VI (2) and the IAR− property. For this purpose we need the
following variant of the Weierstrass Theorem for lsc vector functions.

Theorem 1. Let T be a compact topological space, C ⊂ Y be a closed convex cone
with nonempty interior, and f : T → Y be a lsc function. Then f possesses an
e-minimizer in T .

Proof. We base the proof on Theorem 3.3, Chapter 2 in [14], according to which
it suffices to show that f(T ) is C-complete set (Def. 3.2, Chapter 2 in [14]), to
prove f possesses an e-minimizer in T , i.e. f(T ) possesses no covering of the form
{(yα) − C)c | α ∈ I} with {yα} being a decreasing net in f(T ). Suppose to the
contrary, that there is a decreasing net {f(xα) | α ∈ I}, for which the family
{Vα | α ∈ I} with Vα = (f(xα) − C)c is a covering of f(T ). Since f is lsc, the
family {f−1(Vα) | α ∈ I} is an open covering of T . As T is compact, we may
extract a finite subcovering {f−1(Vα) | i = 1, . . . , n}, whence {Vαi | i = 1, . . . , n}
is a subcovering of f(T ). By choosing α > αi for i = 1, . . . , n, we deduce that
f(xα) belongs to no Vαi , i = 1, . . . , n, a contradiction. �

Theorem 2. Let f : K → Y , x∗ ∈ kerK, and f ∈ RLSC(K, x∗). If x∗ is a
solution of the vector VI (2), then f ∈ IAR−(K, x∗) and x∗ is a w-minimizer of
problem (4).

Proof. Fix x ∈ K and denote x(t) = (1 − t)x∗ + tx, 0 ≤ t ≤ 1. Observe that for
0 < t ≤ 1 it holds f ′(x(t), x∗ − x) ∩ (−C) �= ∅. Indeed,

f ′(x(t), x∗ − x(t)) = f ′(x(t), t (x∗ − x)) = t f ′(x(t), x∗ − x) .

Here we apply positive homogeneity of the Dini derivative, which follows from (3).
Since f ′(x(t), x∗ − x(t)) ∩ (−C) �= ∅, we get f ′(x(t), x∗ − x) ∩ (−C) �= ∅.
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We prove now that f ∈ IAR−(K, x∗). Let 0 ≤ t1 < t2 ≤ 1. Define the function
ϕ : [t1, t2] → R by

ϕ(t) = f(x(t)) − t2 − t

t2 − t1
f(x(t1)) − t − t1

t2 − t1
f(x(t2)) .

Since ϕ is lsc, according to Theorem 1 there exists a point t̂ ∈ [t1, t2] such that t̂ is
an e-minimizer, hence also a w-minimizer of ϕ. We may assume that t̂ �= t1 (hence
0 ≤ t1 < t̂ ≤ t2 ≤ 1). Indeed, we have ϕ(t1) = ϕ(t2) = 0. Therefore, if t = t1 is a
w-minimizer of ϕ, also t̂ = t2 is a w-minimizer of ϕ. From the definition of t̂ for
0 < s < t̂ − t1 we have ϕ(t̂ − s) /∈ ϕ(t̂ ) − intC, whence ϕ′(t̂, −1) ∩ (−intC) = ∅.
Put x̂ = x(t̂ ). The Dini derivative is

ϕ′(t̂, −1) = Limsup
s → 0+

1
s

(
ϕ(t̂ − s) − ϕ(t̂ )

)
= Limsup

s → 0+

1
s

(f(x̂ + s(x∗ − x)) − f(x̂)) − 1
t2 − t1

f(x(t1)) +
1

t2 − t1
f(x(t2))

= f ′(x̂, x∗ − x) − 1
t2 − t1

f(x(t1)) +
1

t2 − t1
f(x(t2)) ⊂ (−intC)c .

For ŷ ∈ f ′(x(t̂ ), x∗ − x) ∩ (−C) we have

f(x(t2)) ∈ f(x(t1)) − (t2 − t1)ŷ + (−intC)c

⊂ f(x(t1)) + C + (−intC)c ⊂ f(x(t1)) + (−intC)c .

To see this we apply the inclusion C + (−intC)c ⊂ (−intC)c. This holds true
since, by contradiction c1 + c2 = c0 ∈ −intC for some c1 ∈ C and c2 ∈ (−intC)c

implies c2 = c0 − c1 ∈ −intC − C ⊂ −intC, which is a contradiction. Thus
f(x(t2)) ∈ f(x(t1))+(−intC)c, which shows that f ∈ IAR−(K, x∗). In particular
for t1 = 0, t2 = 1 we obtain f(x) /∈ f(x∗) − intC for all x ∈ K. Therefore x∗ is a
w-minimizer for problem (4). �

The next corollary is the one-dimensional case of Theorem 2 for the scalar VI

f ′(x, x∗ − x) ∩ (−R+) �= ∅ , x ∈ K . (5)

Let us underline that, while IAR− reduces to IAR, (5) and (1) are not equivalent.
Later we discuss this matter in details.

Corollary 1. Let f : K → R, x∗ ∈ kerK and f ∈ RLSC(K, x∗). Suppose that
x∗ is a solution of the scalar VI (5). Then f ∈ IAR(K, x∗) and x∗ is a minimizer
of the associated optimization problem (4).

The next example shows that without the assumption of lsc type, Theorem 2
does not hold.
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Example 1. Let X = R, K = [0, 1], Y = R, C = R+ and f : K → Y be given by

f(x) =
{

x , 0 ≤ x ≤ 1/2 ,
x − 1/2 , 1/2 < x ≤ 1 .

Then x∗ = 0 is a solution of the scalar VI (5) but f /∈ IAR(K, x∗).

Like in [4], we would expect any definition of IAR property associated with
vector functions to be necessary and sufficient condition for x∗ to solve 2. Unfor-
tunately this is not the case with IAR− property as Example 2 shows. This leads
us to investigate also IAR+ property.

Example 2. Let X = R, K = X , Y = R2, C = R2
+, and f : K → Y be

given by f(x) = (x, −x). Then for any x∗ ∈ K we have f ∈ IAR−(K, x∗).
At the same time x∗ is not a solution of the vector VI (2). In fact we have
f ′(x, x∗ − x) = (x∗ − x, −(x∗ − x)) /∈ −C for x �= x∗.

3. The vector VI and the IAR+ property

In this section we show that Theorem 2 can be strengthened. Namely, we show
that the assumptions imply the stronger IAR+ property.

Denote by Y ′ the dual space of the topological vector space Y and by

C′ = {ξ ∈ Y ′ | 〈ξ, y〉 ≥ 0 for all y ∈ C}

the positive polar cone of C. By assumption C is a proper closed convex cone with
nonempty interior. Due to the Separation Theorem for topological vector spaces,
see Theorem 9.1 in [19], we have C = {y ∈ Y | 〈ξ, y〉 ≥ 0 for all ξ ∈ C′} . The
following Lemma is straightforward.

Lemma 1. Let x∗ ∈ kerK and f : K → Y . Then f ∈ IAR+(K, x∗) if and only
if 〈ξ, f〉 ∈ IAR(K, x∗) for all ξ ∈ C′.

Further we replace the assumption f ∈ RLSC(K, x∗) with the stronger 〈ξ, f〉 ∈
RLSC(K, x∗) for all ξ ∈ C′. Here lower semicontinuity is in the usual sense. In
other words 〈ξ, f〉 ∈ RLSC(K, x∗) means that 〈ξ, f〉 : K → R is radially lsc along
rays starting at x∗ with regard to the cone R+ in R. The next lemma relates the
two notions of lower semicontinuity.

Lemma 2. Let x∗ ∈ kerK, f : K → Y and 〈ξ, f〉 ∈ RLSC(K, x∗) for all ξ ∈ C′.
Then f ∈ RLSC(K, x∗).

Proof. Let x ∈ X and y∗ ∈ Y be such that f(x) /∈ (y∗ − C). Then f(x) − y∗ /∈
−C. Therefore, there exists ξ ∈ C′ such that 〈ξ, f(x) − y∗〉 > 0 or, equivalently,
〈ξ, f(x)〉 > 〈ξ, y∗〉. Since 〈ξ, f〉 ∈ RLSC(K, x∗), there exists a neighborhood U of
x, such that 〈ξ, f(U)〉∩(〈ξ, y∗〉−intR+) = ∅. Now obviously f(U) ⊂ (y∗−intC)c,
which shows that f ∈ RLSC(K, x∗). �

The following example shows Lemma 2 cannot be reverted.
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Example 3. Let X = R, K = [0, 1], Y = R2, C = R2
+ and f : K → Y is

given by

f(x) =
{

(1/(1 − x) , −1) , 0 ≤ x < 1 ,
(0, 0) , x = 1 .

Then for x∗ = 1 f ∈ RLSC(K, x∗) holds, but it is not true that 〈ξ, f〉 ∈
RLSC(K, x∗) for all ξ ∈ C′. If ξ = (0, 1) then 〈ξ, f〉 fails to be lsc at x∗ = 1.

Together with the vector VI (2) we study the scalarized VI

(〈ξ, f〉)′(x, x∗ − x) ∩ (−R+) �= ∅ , x ∈ K , for all ξ ∈ C′ . (6)

Let us mention that

〈ξ, f ′(x, x∗ − x)〉 ⊆ (〈ξ, f〉)′(x, x∗ − x)

but, in general, these two sets are different.

Lemma 3. If x∗ ∈ K is a solution of the vector VI (2), then x∗ is also a solution
of the scalarized VI (6).

Proof. Let x∗ be a solution of the vector VI (2) and x ∈ K. Then there exists
y∗ ∈ f ′(x, x∗ − x) such that y∗ ∈ −C. The latter means that 〈ξ, y∗〉 ≤ 0 for all
ξ ∈ C′. Since obviously also 〈ξ, y∗〉 ∈ 〈ξ, f ′(x, x∗ − x)〉 ⊂ (〈ξ, f〉)′(x, x∗ − x), we
see that x∗ is a solution also of (6). �

The next theorem gives a relation between existence of solutions of the vector
VI (2) and the IAR+ property.

Theorem 3. Let f : K → Y , x∗ ∈ kerK, and 〈ξ, f〉 ∈ RLSC(K, x∗) for all
ξ ∈ C′. Suppose that x∗ is a solution of the vector VI (2). Then f ∈ IAR+(K, x∗)
and x∗ is an a-minimizer of the associated optimization problem (4).

Proof. According to Lemma 3 the point x∗ is a solution of the scalarized VI (6).
Fix ξ ∈ C′. We see that the hypotheses of Corollary 1 are satisfied. The conclusion
gives 〈ξ, f〉 ∈ IAR(K, x∗). From Lemma 1 we get f ∈ IAR+(K, x∗). �

The assumptions 〈ξ, f〉 ∈ RLSC(K, x∗) for all ξ ∈ C′, is stronger than f ∈
RLSC(K, x∗) in Theorem 2. We leave, as an open question, whether Theorem
3 and the forthcoming results for vector functions remain true under the weaker
assumption f ∈ RLSC(K, x∗).

4. Infinite elements and the extended VI

As we did for IAR− property, we try now to work out a reversal of Theorem 3.
Some negative answer to the attempt to have a straightforward result are in the
next example.
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Example 4. Let X = R, K = [0, 1], Y = R2, C = R2
+. Let f : K → Y be

defined by f(x) = (ϕ(x), ϕ(x)), where ϕ : [0, 1] → R is any monotonic increasing
singular function, for instance let ϕ be the well known Cantor scale function [12].
Recall that ϕ is continuous and defines a measure on [0, 1], whose support is a
set C = suppϕ ⊂ [0, 1] with Lebesgue measure zero. Then [0, 1] \ C =

⋃∞
i=1 Ii,

where Ii are mutually disjoint open intervals. Put x∗ = 0. For x ∈ Ii, for x a
right end of the closure of an interval Ii, and for x = 0, we have ϕ′(x, x∗ − x) = 0
and f ′(x, x∗ − x) = (0, 0). For all the other points in C the Dini derivative
ϕ′(x, x∗ − x) is empty (but the lower Dini derivative is ϕ′

−(x, x∗ −x) = −∞) and
f ′(x, x∗ − x) = ∅. Consequently, x∗ is not a solution of the vector VI (2), in spite
that f ∈ IAR+(K, x∗).

This situation can be observed also in the scalar case.

Example 5. Let X = R, K = [0, 1], Y = R, C = R+. Let f = ϕ, where ϕ is
the singular function from Example 4. Put x∗ = 0. Then f ∈ IAR(K, x∗). The
point x∗ is a solution of the VI (1), but x∗ does not solve the scalar VI (5).

In view of Example 5, let us underline that while the scalar VI (1) implies
infinities, (5) does not. From this point of view (1) is in some sense an extension
of (5) with infinite elements. The usage of infinities is the main difference, which
causes the different behavior occurring in Example 5. Actually, in [4] we claimed
that f ∈ IAR(K, x∗) implies that x∗ is a solution of (1), the extended VI. In order
to observe a similar situation in the vector case, we have first to extend Y with
infinite elements, and thereafter to extend the vector VI (2).

We introduce the set of infinite elements Y∞ = {v∞ | v ∈ Y \{0}}. The element
v∞ will be interpreted as infinite element in direction v. We accept that v1

∞ = v2
∞

if and only if v2 = λv1 for some λ > 0. We put Ỹ = Y ∪ Y∞.
A topology on Ỹ can be introduced in terms of local bases of neighborhoods. If

y ∈ Y and B(y) is a local base of neighborhoods of y in Y , we accept that B(y) is
also a local base of neighborhoods of y in Ỹ . The family B(v∞) = {(y+W )∪W∞ |
y ∈ Y, v ∈ W, W open cone in Y } is a local base of neighborhoods of v∞. Here
W∞ = {w∞ | w ∈ W \ {0}}. By saying that W is an open cone in Y , we mean
that W is an open set in Y such that λW ⊂ W for all λ > 0.

The extended topological space Ỹ has the following important property.

Proposition 1. When Y = Rm the space Ỹ is compact.

We omit the details and give only a sketch of the proof. Consider open covering
of Ỹ consisting of sets from the base described. Then there is a finite subfamily of
the covering {(yi + W i)∪W i

∞ | i = 1, . . . , k}, where W i are open cones, such that
Y∞ is a subset of the union of these sets. To see this, it is enough to choose W i,
i = 1, . . . , k, so that their union covers the unit sphere in Y . To finish the proof
we observe that the set Y \ ∪i(yi + W i) is compact.

Since Ỹ is a topological space, we can apply topological operations on Ỹ . Ob-
viously cl C = C̃ := C ∪ C∞, where C∞ = {v∞ | v ∈ C \ {0}}. We have also
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int C̃ = intC ∪ C◦
∞, where C◦

∞ = {v∞ | v ∈ intC}. In general topological opera-
tions in Y lead to different results than those in Ỹ , e.g. in Y cl C = C holds. To
avoid ambiguity, we will highlight when topological operations in Ỹ are applied.

For a function f : X → Ỹ the domain dom f is defined by dom f = {x ∈ X |
f(x) ∈ Y }.

For a function f : X → Ỹ we extend the Dini derivative f ′(x, u) for x ∈ dom f

and u ∈ X by (3), where the Limsup is calculated in Ỹ .
Introducing the Dini derivative in Ỹ we get the opportunity to extend in a

natural way the vector VI (2) to

f ′(x, x∗ − x) ∩ (−C̃) �= ∅, x ∈ K . (7)

Here, as in (2), f : U → Y , where K ⊂ U ⊂ Y and U is a neighborhood of K. A
solution of (7) is said to be any point x∗ ∈ K such that f ′(x, x∗ − x) ∩ (−C̃) �= ∅
for all x ∈ K. If we are looking for a solution x∗ ∈ kerK of (2), then we may
assume that f is defined on K.

Remark 1. Each solution of (2) is a solution of (7), but Example 4 shows that the
reverse is not true. Indeed if we calculate in Ỹ the Dini derivatives f ′(x, x∗ − x),
we have f ′(x, x∗ − x) = (0, 0) ∈ −C̃ for x ∈ Ii,j , for x a right end of the closure
of an interval Ii,j , or for x = 0. For any other point in C it holds f ′(x, x∗ − x) =
−(1, 1)∞ ∈ −C̃. Therefore f ∈ IAR+(K, x∗) and x∗ solves the extended vector
VI (7). Hence (7) is a generalization of (2). When Y = R the sets of the solutions
of (7) and (1) coincide, while, in general, this is not the case if we compare (2)
and (1). This has been the main motivation to extend Y to Ỹ and the vector VI
(2) to (7).

Theorem 4. Let Y = Rm, f : K → Y , and x∗ ∈ kerK. Suppose that f ∈
IAR+(K, x∗). Then x∗ is a solution of the extended vector VI (7).

Proof. Fix x ∈ K and let x(t) = (1 − t)x∗ + tx, 0 ≤ t ≤ 1. For 0 < t < 1 we have

1
t

(f(x + t(x∗ − x)) − f(x)) =
1
t

(f(x(1 − t)) − f(x(1))) ∈ −C .

Since cl C = C̃ (the closure in Ỹ ), from (3) we get f ′(x, x∗ − x) ⊂ −C̃. To assure
that x∗ is a solution of the extended VI (7) it remains to show that f ′(x, x∗−x) �=
∅. This is however a consequence of the compactness of Ỹ (in a compact topological
space every sequence has a cluster point). �

Let us underline that Theorem 4 does not require lsc type assumption, as it did
in Theorem 3.

Since the conclusion of Theorem 4 concerns the extended vector VI (7), we now
study Theorem 3 with this formulation of the vector VI.

Remark 2. The class of functions f , for which the extended vector VI (7) has a
solution is obviously larger than the class of functions for which the vector VI (2)
has a solution.
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Theorem 5. Let f : K → Y , x∗ ∈ kerK and 〈ξ, f〉 ∈ RLSC(K, x∗) for all
ξ ∈ C′. Suppose that x∗ is a solution of the extended vector VI (7) such that x∗

satisfies f ′(x, x∗ − x) ∩ (−int C̃) �= ∅ (the interior is taken in Ỹ ) at the points
where f ′(x, x∗−x)∩ (−C) = ∅. Then f ∈ IAR+(K, x∗) and x∗ is an a-minimizer
of the associated optimization problem (4).

Proof. Fix x ∈ K and denote x(t) = (1 − t)x∗ + tx, 0 ≤ t ≤ 1. The positive
homogeneity of the Dini derivative (in Ỹ ) gives f ′(x(t), x∗ − x(t)) = t f ′(x(t),
x∗ − x). Since x∗ satisfies the hypotheses, we get that for 0 < t ≤ 1 f ′(x(t),
x∗ − x) ∩ (−int C̃) �= ∅ holds at the points where f ′(x(t), x∗ − x) ∩ C = ∅.

Fix ξ ∈ C′ and let 0 ≤ t1 < t2 ≤ 1. We define the function ϕ : [t1, t2] → R by

ϕ(t) = 〈ξ, f(x(t))〉 − t2 − t

t2 − t1
〈ξ, f(x(t1))〉 − t − t1

t2 − t1
〈ξ, f(x(t2))〉 .

Since ϕ is lsc, there exists a point t̂ ∈ [t1, t2] such that ϕ(t̂ ) = min{ϕ(t) | t1 ≤ t ≤
t2}. We may assume that 0 ≤ t1 < t̂ ≤ t2 ≤ 1 (if ϕ attains minimum at t1, due to
ϕ(t1) = ϕ(t2) it attains minimum also at t2). Put x̂ = x(t̂) and

ŷ = lim
k

1
sk

(f(x̂ + sk(x∗ − x)) − f(x̂)) ∈ f ′(x̂, x∗ − x) ,

where sk → 0+. We may assume that 0 < sk < t̂ − t1 for all k. The minimal
property of t̂ gives ϕ(t̂ − sk) ≥ ϕ(t̂ ), which can be written in the form

〈
ξ,

1
sk

(f(x̂ + sk(x∗ − x)) − f(x̂))
〉

+
〈

ξ,
1

t2 − t1
(f(x(t2)) − f(x(t1)))

〉
≥ 0 .

(8)
As we have seen above ŷ ∈ f ′(x̂, x∗ − x) can be chosen in such a way that the
following alternative has place:

10. ŷ ∈ −C,
20. ŷ = v̂∞ ∈ −int C̃.
Assume that 10 holds. Then passing to a limit in (8) and applying 〈ξ, ŷ〉 ≤ 0

we get 〈ξ, f(x(t2)) − f(x(t1))〉 ≥ 0.
Let assume now that 20 holds. Then there exists an open cone W ⊂ C, such

that v̂ ∈ −W ⊂ −C. From the definition of convergence in Ỹ , for sufficiently large
k, we have (1/sk) (f(x̂ + sk(x∗ − x)) − f(x̂)) ∈ −W ⊂ −C. Therefore

〈ξ, f(x(t2)) − f(x(t1))〉 ≥ −(t2 − t1)
〈

ξ,
1
sk

(f(x̂ + sk(x∗ − x)) − f(x̂))
〉

≥ 0 .

Thus, we have shown that 〈ξ, f(x(t2)) − f(x(t1))〉 ≥ 0 for all ξ ∈ C′. This implies
that f(x(t2)) − f(x(t1)) ∈ C and therefore f ∈ IAR+(K, x∗). Putting t1 = 0
and t2 = 1 we get f(x) − f(x∗) ∈ C for arbitrary x ∈ K. Therefore x∗ is an
a-minimizer of f on K. �
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When Y = R and C = R+, the extended space is Ỹ = R = [−∞, +∞] and
C̃ = R+ = [0, +∞]. In this case the extended VI (7)

f ′(x, x∗ − x) ∩ (−R+) �= ∅ , x ∈ K (9)

is equivalent to (1). Therefore also (1) can be regarded as the extension of the
scalar VI (5), although we shall consider (9) as the most appropriate formulation.
In this setting R+ = intR+ ∪{0}, which simplifies the formulation of Theorem 5.
As a corollary, we get the following, which is exactly the result established in [4].

Corollary 2. Let f : K → R, x∗ ∈ kerK, and f ∈ RLSC(K, x∗). Suppose that
x∗ is a solution of the scalar VI (1). Then f ∈ IAR(K, x∗) and x∗ is a global
solution of the optimization problem min f(x), x ∈ K.

In Theorem 4 we get, as a conclusion, that the extended vector VI (7) has a
solution x∗. Therefore we would expect a reversal quoting “x∗ is a solution of (7)”
among the assumptions. Instead Theorem 5 involves the VI

f ′(x, x∗ − x) ∩ (−int C̃) �= ∅ .

The next example shows that in general in Theorem 5 the assumptions concerning
the infinite elements in the derivative f ′(x, x∗ − x) cannot be simplified.

Example 6. Let X = R, K = [0, 1], Y = R2, C = {(y1, y2) ∈ Y | y2 ≥ 0}. Let
f : K → Y be defined by

f(x) =
{

(x/(1 − x), x) , 0 ≤ x < 1 ,
(0, 0) , x = 1 .

Let x∗ = 0. Then x∗ ∈ kerK, 〈ξ, f〉 ∈ RLSC(K, x∗) for all ξ ∈ C′, and x∗ is a
solution of the extended vector VI (7). In fact

f ′(x, x∗ − x) =
{ − (

x/(1 − x)2, x
)

, 0 ≤ x < 1 ,
(1, 0)∞ , x = 1 .

At the same time f /∈ IAR+(K, x∗).

Recall that the general assumption for C is that C is a proper closed convex
cone with nonempty interior. We leave as an open question, whether an example
like Example 6 can be constructed with C pointed, i.e. C ∩ (−C) = {0}.

5. The optimization problem with infinite elements

The attempt to revert Theorem 3 motivated the definition of Ỹ . A topology on
Ỹ was needed to consider convergence in Ỹ .

When Y = R, Ỹ = R, a classical tool for nonsmooth analysis is to replace
problem

min f(x), x ∈ K ,
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by the equivalent (unconstrained)

min f̃(x), x ∈ X ,

where f̃ : X → R is the extension of f by f̃(x) = +∞ when x ∈ X \ K. In
this section we discuss the possibility for a similar transformation of the vector
optimization problem (4) with the help of infinite elements of Ỹ .

Recall that C is a proper closed convex cone with nonempty interior. Proper
means that C �= Y and implies intC ∩ (−intC) = ∅. Therefore, we can fix
v0 ∈ intC and we have −v0 /∈ intC. The elements v0 and −v0 define the infinite
elements v0

∞ and −v0
∞ := (−v0)∞. We will set Ỹ0 = Y ∪ {−v0

∞} ∪ {v0
∞} and

C̃0 = C ∪ {v0∞}.
We relate to vector optimization problem (4) the equivalent optimization prob-

lem
minC f̃(x), x ∈ X , (10)

where f̃ : X → Ỹ0 is defined by

f̃(x) =
{

f(x), x ∈ K,

v0
∞, x ∈ X \ K.

(11)

For problem (10) with arbitrary function f̃ : X → Ỹ0 we define the solutions
x∗ ∈ dom f̃ formally in the same way as those for the finite problem (4). The
point x∗ ∈ dom f̃ is a w-minimizer if f(X) ∩ (f(x∗) − int0 C̃0) = ∅, it is an e-
minimizer if f(X)∩ (f(x∗)− (C̃0 \ {0})) = ∅. We say that the point x∗ ∈ dom f̃ is
an a-minimizer if f(X) ⊂ f(x∗) + C̃0. In order to give sense to these notions we
introduce the following definitions. We set int0 C̃0 = intC ∪ {v0

∞}. The subscript
in int0 is to remind that this operation should not be confused with the interior
in Ỹ , which is in fact int C̃0 = intC. Furthermore for y ∈ Y we put

y − int0 C̃0 = (y − intC) ∪ {−v0
∞} ,

y − (C̃0 \ {0}) = (y − (C \ {0}) ∪ {−v0
∞} ,

y + C̃0 = (y + C) ∪ {v0
∞} .

Now it is clear that for the optimization problem (10) with f̃ defined by (11)
dom f̃ = K and x∗ ∈ dom f̃ is a w-minimizer, e-minimizer or a-minimizer for
problem (10) if and only if x∗ verifies the same statement for problem (4).

Remark 3. The two-point extension of Y to Ỹ0 is in fact identical to the two-
point extension YC = Y ∪ {+∞C} ∪ {−∞C} of Y suggested in [8]. Though in [8]
+∞C and −∞C are abstract elements, in fact they can be identified with v0

∞ and
(−v)0∞ from the above definitions.

If we extend the algebraic operations and the order relations defined by C from
Y to Ỹ , the definitions we used can be derived from these extensions. Besides,
we gain the possibility to treat more general optimization problems (10) with
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functions f̃ : X → Ỹ . However we will refrain from discussing this extension in
the present paper.

In the previous sections we developed the idea that IAR+ property may be
more fitting with vector Minty VI than IAR− is. However the setting used in
Theorems 3 and 4 refrains us from studying solutions outside kerK. We try to
consider this problem with the aid of f̃ .

First we generalize the IAR− and IAR+ properties for the function (11). Let
x∗ ∈ dom f̃ . We write f̃ ∈ IAR−(X, x∗) or f̃ ∈ IAR+(X, x∗) if for each x ∈
dom f̃ it holds [x∗, x] ⊂ dom f̃ and, respectively, ϕ ∈ IAR−([0, 1], 0) or ϕ ∈
IAR+([0, 1], 0). Where ϕ : [0, 1] → Y , ϕ(t) = f(x(t)), where x(t) = (1−t)x∗+tx.

The next example underlines that the property f̃ ∈ IAR+(X, x∗) has deeper
implications than just to say that f̃ increases along the segments starting at x∗

and contained in dom f̃ .

Example 7. Let X = R2, K = [(0, 0), (1, 0)] ∪ [(0, 0), (0, 1)], Y = R, C = R+.
Consider the function (11), where f : K → Y is defined by

f(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

0,
x2 = 0, 0 ≤ x1 ≤ 1/2 or
x1 = 0, 0 ≤ x2 ≤ 1/2 ,

−2x1 + 1, x2 = 0, 1/2 ≤ x1 ≤ 1 ,
−2x2 + 1, x1 = 0, 1/2 ≤ x2 ≤ 1 .

Then f̃ increases along each segment in dom f̃ starting at (0, 1) or (1, 0). At the
same time f̃ /∈ IAR+(X, x∗) for arbitrary x∗ ∈ kerK.

For a function f̃ : X → Y ∪{v0
∞} we denote by A(f̃ ) the set of all a-minimizers

x∗ ∈ dom f̃ and by S(f̃) the set of all x∗ ∈ dom f̃ such that f̃ ∈ IAR+(X, x∗).
We show that S(f̃) has a simple structure.

Theorem 6. Let f̃ : X → Y ∪ {v0
∞} and K = dom f̃ . Then it holds S(f̃) ⊂

kerK ∩ A(f̃) and the set S(f̃) is convex. If the cone C is pointed, then f takes
the same value for all x ∈ S(f̃).

Proof. Let x∗ ∈ S(f̃), that is f̃ ∈ IAR+(X, x∗). By the definition of IAR+

property, if x ∈ K then [x∗, x] ⊂ K. That is x∗ ⊂ kerK. Further ϕ(1) ⊂ ϕ(0)+C,
where ϕ : [0, 1] → Y , ϕ(t) = f(x(t)) with x(t) = (1 − t)x∗ + tx. This inclusion
can be written as f(x) ∈ f(x∗) + C for arbitrary x ∈ K. Therefore x∗ is an
a-minimizer of problem (10).

Now we prove that the set S(f̃) is convex. Let x0, x1 ∈ S(f̃) and let x̄ =
(1 − t̄)x0 + t̄x1 with 0 < t̄ < 1. For 0 ≤ t ≤ 1 consider the functions

x̄(t) = (1 − t)x̄ + tx = (1 − t)(1 − t̄)x0 + (1 − t)t̄x1 + tx ,

x0(t) = (1 − t)x0 + tx , x1(t) = (1 − t)x1 + tx .

It is easy to derive the identities

x̄(t) = (1 − α0)x0 + α0x
1(β0),
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where

α0 = t + t̄ − tt̄ = t + (1 − t)t̄ , β0 =
t

α0
=

t

t + (1 − t)t̄
, (12)

and
x̄(t) = (1 − α1)x1 + α1x

0(β1),

where

α0 = 1 − t̄ + tt̄ = (1 − t̄)t + tt̄ , β1 =
t

α1
=

t

1 − t̄ + tt̄
· (13)

In particular the first identity gives x̄(t) ∈ K on the base of the following reasoning.
Since x ∈ K and f̃ ∈ IAR+(X, x1), we have x1(β0) ∈ K. Since x1(β0) ∈ K and
f̃ ∈ IAR+(X, x0), we have x̄(t) ∈ K.

Now we prove that f̃ ∈ IAR+(X, x̄). Fix 0 ≤ t0 < t1 ≤ 1. We must show that
f̃(x̄(t2)) ∈ f̃(x̄(t1)) + C. It is easy to check the identity

(1 − γ0)x0 + γ0x
1(β0) = (1 − γ1)x1 + γ1x

0(β1)

where

γ0 =
β1

β0 + β1 − β0β1
, γ1 =

β0

β0 + β1 − β0β1
·

We apply this identity for

β0 = t0/α0 , α0 = t0 + (1 − t0)t̄ ,

β1 = t1/α1 , α1 = (1 − t̄) + t1 t̄ .

In fact α0, β0 are calculated from (12) for t = t0 and α1, β1 are calculated from (13)
for t = t1.

We get easily

γ0 − α0 = α0
(t1 − t0)(1 − t̄)
t0 + (t1 − t0)t̄

> 0 ,

α1 − γ1 = α1
(t1 − t0)t̄

t0 + (t1 − t0)t̄
> 0 .

Now it remains to apply the IAR+ property. From f̃ ∈ IAR+(X, x0) and f̃ ∈
IAR+(X, x1) we get respectively

f̃((1 − γ0)x0 + γ0x
1(β0)) − f̃(x̄(t0)) ∈ C ,

f̃(x̄(t1)) − f̃((1 − γ1)x1 + γ1x
0(β1)) ∈ C .

Adding the two inclusions we obtain

f̃(x̄(t1)) − f̃(x̄(t0)) ∈ C + C = C ,

which shows that f̃ ∈ IAR+(X, x̄). This proves that the set S(f̃) is convex.
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Finally, let C be pointed and x0, x1 ∈ S(f̃). From f̃ ∈ IAR+(X, x0) and
f̃ ∈ IAR+(X, x1) we get respectively f̃(x1) − f̃(x0) ∈ C and f̃(x0) − f̃(x1) ∈ C.
Therefore

f̃(x1) − f̃(x0) ∈ C ∩ (−C) = {0} ,

whence f̃(x1) = f̃(x0). �

The next example shows that a VI can have a solution outside kerK.

Example 8. Let X = R2, K = [(0, 0), (1, 0)]∪ [(0, 0), (0, 1)], U = R2 \ {(t, t) | t ≥
1/3}, Y = R, C = R+. Consider the function f : U → R defined by

f(x1, x2) =

⎧⎨
⎩

0 , x1 + 2x2 ≤ 1, 2x1 + x2 ≤ 1 ,
−2a + 1 , x1 − x2 < 0, ax1 + x2 = a, a ≥ 1/2 ,
−2a + 1 , x1 − x2 > 0, x1 + ax2 = a, a ≥ 1/2 .

Then kerK = {(0, 0)} and both (1, 0) and (0, 1) solve the VI (2).

Usually one expects that in the extended VI (7) the function f : K → Y is de-
fined only on K. When x∗ /∈ kerK values of f outside K should be given in order
to calculate the derivatives in outer directions. Example 8 makes clear that the
given values influence the solution. The “greater” the given value, the “smaller”
is its influence.

To eliminate that influence, it seems natural to extend f as v0∞ outside K.
Furthermore, as in the optimization problem, we generalize the VI to the whole
space X . With a similar approach in [4], we obtained a (scalar)generalized VI,
which preserves the solutions in kerK and has no solutions outside it. Let us
underline, for instance, that the function in Example 8 is an extension of that in
Example 7. If we would extend the same function with value +∞ outside K the
generalized VI will have no solutions.

Now we try to describe a similar approach to vector VI. Let us start from the
extended VI (7) with f : K → Y . From the extended function f̃ : X → Ỹ0 in (11)
we get the generalized VI

f̃ ′(x, x∗ − x) ∩ (−C̃) �= ∅ , x ∈ X , (14)

and look for solutions x∗ ∈ dom f̃ = K. In (14) we extend the Dini derivative to
the function (11), f̃ ′(x, u). We define again f ′(x, u) by (3), where the convergence
is in Ỹ . For any operation with infinities which may occur, we set for λ > 0,
λv0

∞ = v0
∞ and λ(−v0

∞) = −v0
∞. Further for y ∈ Y we put v0

∞ − y = v0
∞,

y − v0
∞ = −v0

∞, v0
∞ − v0

∞ = Ỹ0.
A complete extension of the algebraic operations from Y to Ỹ is beyond the task

of this paper. In order to define the Dini derivative of (11) the above definitions
are enough. Only the last equality is a bit controversial (related to R this means
to accept (+∞)− (+∞) = R, while people usually prefer to give no sense to that
difference), but anyway it is not contradictory and it is convenient for our purpose.
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In fact, if f̃(x) = v0
∞ and if f̃(x + tk(x∗ − x)) = v0

∞ for a sequence tk → 0+, we
get f̃(x, x∗ − x) = Ỹ0. Therefore, at such a point x, condition (14) is satisfied.

Next we relate vector VI (7) to IAR+ property of f̃ . The result, in some sense,
is a repetition of Theorem 4. The proof follows along the same lines and it is
omitted.

Theorem 7. Let Y = Rm and let f̃ : X → Ỹ0 be given by (11). Suppose that
f̃ ∈ IAR+(X, x∗) for some x∗ ∈ K := dom f̃ . Then x∗ is a solution of the
generalized vector VI (14).

Since f̃ : X → Ỹ0 ⊂ Ỹ and Ỹ is a topological space, we can define the RLSC
property of f̃ as in Section 1. Namely, f̃ ∈ RLSC(X, x∗) if for all x ∈ K the
function ϕ : [0, 1] → Ỹ , ϕ(t) = f(x(t)), is lsc, where x(t) = (1 − t)x∗ + tx. In a
similar way we understand the notation 〈ξ, f̃〉 ∈ RLSC(X, x∗).

Now we show that Theorem 5 can be stated for the generalized vector VI (14).

Theorem 8. Let f̃ : X → Ỹ0 be given by (11), x∗ ∈ K = dom f̃ , and 〈ξ, f̃〉 ∈
RLSC(X, x∗) for all ξ ∈ C′. Suppose that x∗ is a solution of the generalized
VI (14) such that x∗ satisfies f̃ ′(x, x∗ − x) ∩ (−int C̃) �= ∅ (the interior is taken
in Ỹ ) at the points x ∈ dom f̃ where f̃ ′(x, x∗ − x) ∩ (−C) = ∅. Then f̃ ∈
IAR+(X, x∗). Further x∗ ∈ kerK, and x∗ is an a-minimizer of the associated
optimization problem (10).

Proof. Fix x ∈ K and put x(t) = (1 − t)x∗ + tx. Let 0 ≤ t1 < t2 ≤ 1. We
must show that both f̃(x(t1)) and f̃(x(t2)) belong to Y , i.e. they are finite, and
f̃(x(t2)) ⊂ f̃(x(t1)) + C.

A. First let us show that if both f̃(x(t1)) and f̃(x(t2)) belong to Y , then
f̃(x(t2)) ⊂ f̃(x(t1)) + C. In fact, this statement is exactly what has been proved
in Theorem 5. Following again the proof of Theorem 5, we face the following
situation. While in Theorem 5 we have ϕ(t) ∈ R for t1 < t < t2, where ϕ is the
defined there function, now we have ϕ(t) ∈ R ∪ {+∞}. This difference however
does not spoil the proof.

B. By contradiction, assume now that f̃(x(t1)) = v0∞, f̃(x(t2)) ∈ Y .
From v0 ∈ intC there exists λ0 > 0 such that v0 − (1/λ0)f̃(x(t2)) ∈ intC, or

equivalently λ0v
0 ∈ f̃(x(t2)) + intC.

Fix ξ ∈ C′ and define the function ϕ : [t1, t2] → R ∪ {+∞} by

ϕ(t) =
〈
ξ, f̃(x(t))

〉
− λ0

t2 − t

t2 − t1

〈
ξ, v0

〉 − t − t1
t2 − t1

〈
ξ, f̃(x(t2))

〉
.

Since ϕ is lsc, there exists a point̂t∈ [t1, t2] such that ϕ(t̂ ) = min{ϕ(t) |t1≤ t≤ t2}.
We have ϕ(t̂) ≤ ϕ(t2) < +∞. This property implies f̃(x(t̂ )) ∈ Y .

Since 〈ξ, f̃(x(t1))〉 =
〈
ξ, v0∞

〉
(here we make use of v0 ∈ intC), we have 0 ≤

t1 < t̂ ≤ t2 ≤ 1 . Set x̂ = x(t̂) and

ŷ = lim
k

1
sk

(
f̃(x̂ + sk(x∗ − x)) − f̃(x̂)

)
∈ f̃ ′(x̂, x∗ − x)
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(the convergence is in Ỹ ). We may assume that 0 < sk < t̂ − t1 for all k. The
minimal property of t̂ gives ϕ(t̂ − sk) ≥ ϕ(t̂ ), which can be written in the form

〈
ξ,

1
sk

(
f̃(x̂ + sk(x∗ − x)) − f̃(x̂)

)〉
+

1
t2 − t1

〈
ξ,

(
f̃(x(t2)) − λ0v

0
)〉

≥ 0 .

(15)
We have x̂ ∈ dom f̃ . From the hypotheses, like in the proof of Theorem 5, we see
that ŷ ∈ f̃ ′(x̂, x∗ − x) can be chosen in such a way that the following alternative
takes place:

10. ŷ ∈ −C;
20. ŷ = v̂∞ ∈ −int C̃.

Assume that 10 holds. Then passing to a limit in (15) and applying 〈ξ, ŷ〉 ≤ 0 we
get

〈
ξ, f̃(x(t2)) − λ0v

0
〉
≥ 0, which is a contradiction to f̃(x(t2))−λ0v

0 ∈ −intC.

Assume now that 20 holds. Then there exists an open cone W ⊂ C, such that
v̂ ∈ −W ⊂ −C. From the definition of the convergence in Ỹ , for sufficiently large
k we have (1/sk)

(
f̃(x̂ + sk(x∗ − x)) − f̃(x̂)

)
∈ −W ⊂ −C. Therefore

〈
ξ, f̃(x(t2)) − λ0v

0
〉
≥ −(t2 − t1)

〈
ξ,

1
sk

(
f̃(x̂ + sk(x∗ − x)) − f̃(x̂)

)〉
≥ 0 .

Thus, we have shown that
〈
ξ, f̃(x(t2)) − λ0v

0
〉
≥ 0 for all ξ ∈ C′. This implies

that f̃(x(t2)) − λ0v
0 ∈ C. With the account of the choice of λ0 we get λ0v

0 −
f̃(x(t2)) ∈ (−C) ∩ intC = ∅, a contradiction.

C. Now we show that also the assumption f̃(x(t2)) = v0
∞ leads to a contra-

diction. Indeed, if we assume that f̃(x(t2)) = v0∞, we face the situation when on
the left end of the interval [t2, 1] we have f̃(x(t2)) = v0

∞, while on the right end
f̃(x(1)) = f̃(x) ∈ Y . However in point B we have shown that this case does not
occur.

Thus, for arbitrary x ∈ K, and for arbitrary 0 ≤ t1 < t2 ≤ 1, we have shown
that both f̃(x(t1)) and f̃(x(t2)) belong to Y , whence [x∗, x] ⊂ K. Moreover,
we have seen that f̃(x(t2)) ⊂ f̃(x(t1)) + C. Therefore f̃ ∈ IAR+(X, x∗). Now
Theorem 6 gives also that x∗ ∈ kerK, and x∗ is an a-minimizer of the associated
optimization problem (10). �

When Y = R and C = R+ the generalized vector VI (14) turns into the
generalized scalar VI

f̃ ′(x, x∗ − x) ∩ (−R+) �= ∅ , x ∈ X . (16)

For this equation, we get the following corollary:

Corollary 3. Let f̃ : X → R ∪ {+∞}, x∗ ∈ K = dom f̃ , and f̃ ∈ RLSC(X, x∗).
Suppose that x∗ ∈ K is a solution of the generalized scalar VI (16). Then f̃ ∈
IAR+(X, x∗). Further x∗ ∈ kerK, and x∗ is an a-minimizer of the optimization
problem min f̃ , x ∈ X.
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Remark 4. In [4] we proved Corollary 3 under the additional assumption that
dom f̃ is radially closed along the rays starting at x∗. This means, that for all
u ∈ X the set {t ∈ R+ | x∗ + tu ∈ dom f̃} is closed. Here we see that this
hypothesis is superfluous.

6. Quasiconvex functions

We have seen that each solution x∗ of the extended VI (7) is an a-minimizer.
The reverse in general is not true. For instance, in Example 7 the points (0, 1) and
(1, 0) are a-minimizers, but not solutions of (7). Here we show, that the reverse is
still true, when the function f : K → Y is quasiconvex and Y = Rm.

We say that the function f : K → Y is quasiconvex (with respect to the cone
C) if the set K is convex and for each y ∈ Y the set {x ∈ K | f(x) ∈ y − C} is
convex.

Theorem 9. Let Y = Rm and f : K → Y be quasiconvex. Suppose that x∗ is an
a-minimizer of (4). Then x∗ is a solution of the extended VI (7).

Proof. Since K is convex, the kernel of K coincides with K and in particular
x∗ ∈ kerK. Let x ∈ K, x(t) = (1 − t)x∗ + tx and 0 ≤ t1 < t2 ≤ 1. Since x∗ is
an a-minimizer we have f(x∗) = f(x(0)) ∈ f(x(t2))−C. Therefore both x(0) and
x(t2) belong to the set {x ∈ K | f(x) ∈ f(x(t2)) − C}. Since f is quasiconvex,
x(t1) ∈ [x(0), x(t2)] belongs to this set, in other words f(x(t1)) ∈ f(x(t2)) − C.
Therefore f ∈ IAR+(K, x∗). Now Theorem 4 gives that x∗ is a solution of the
extended vector VI (7). �

7. Final remarks

Most of the proofs in this paper were based on the following scheme. Instead
of considering directly the extended vector VI (7), we deal with the system of
scalar VI

φ′(x, x∗ − x) ≤ 0 , x ∈ K , for all φ ∈ Φ(Ξ, x∗) , (17)

where Φ(Ξ, x∗) is the set of functions φ : K →R defined by φ(x) = 〈ξ, f(x)−f(x∗)〉,
ξ ∈ Ξ := C′. Then f ∈ IAR+(K, x∗) if and only if φ ∈ IAR(K, x∗) for all
φ ∈ Φ(Ξ, x∗). The point x∗ is an a-minimizer of f if and only if x∗ is a global
minimizer of φ for all φ ∈ Φ(Ξ, x∗).

This situation can be generalized. Let Ξ be a set of functions ξ : Y → R.
For x∗ ∈ ker f define the set Φ(Ξ, x∗) of all functions φ : K → R, such that
φ(x) = ξ(f(x)−f(x∗)) for some ξ ∈ Ξ. Now we say that f is increasing-along-rays
(IAR) with respect to Ξ ( Ξ-IAR ) starting at x∗ in K, if φ ∈ IAR(K, x∗) for
all φ ∈ Φ(Ξ, x∗). We say that x∗ is a minimizer of f with respect to Ξ if x∗ is
a minimizer of φ for all φ ∈ Φ(Ξ, x∗). Now we can consider the system of scalar
VI (17). One can try for (17) to establish relations between the properties: x∗ is
a solution of (17) in the sense that x∗ satisfies each equation of the system; f is
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IAR with respect to Ξ at x∗ in K; x∗ is a minimizer of f with respect to Ξ. One
expects results similar to those from the present paper.

The attempt to define a class Ξ such that a result analogous to that of Section 6
holds, may however produce some obstacles. At first glance one thinks to define
quasiconvexity with respect to Ξ and x∗ to be quasiconvexity of all the functions
φ ∈ Φ(Ξ, x∗) as real-valued functions. However one sees easily, that if Ξ contains
nonlinear functions the generalization of Theorem 9 is not so straightforward.

The system of scalar VI (17) with arbitrary set Ξ can be used to stress new
features of the vector optimization problem (4). For instance, we have seen that the
solutions of the considered vector VI are a-minimizers. If the vector optimization
problem (4) possesses a-minimizers we will certainly wish to distinguish them,
since they represent a rather nice property. Roughly speaking, the a-minimizer
is “better” than any other point, while the w-minimizer is “not worse” than any
other point. Unfortunately, often a-minimizers do not exist and when solving the
vector optimization problem we will be satisfied to find some point of efficiency
of other type. Besides w-minimizers and e-minimizers, in the literature numerous
types of points of efficiently are known and for their description often scalarization
technique is applied, for a survey see [23]. If

min ξ0(f(x) − f(x∗)) , x ∈ K , (18)

is a scalarization associated with the point x∗, then we may consider (17) in which
Ξ = {ξ0} is a singleton. Now (17) transforms into a single scalar variational
inequality. If we consider this single variational inequality under lsc assumptions,
then x∗ is its solution if and only if x∗ is a point of efficiency of the considered
type for the vector optimization problem.

For instance, suppose we deal with the case Y = Rm endowed with the norm
‖ · ‖ (recall that any two norms in Rm are equivalent) and we wish to study w-
minimizers. Naturally, we would not be satisfied from the approach in Section 2,
since, as Example 2 showed, Theorem 2 cannot be reverted. Instead, we can apply
as in [3] a scalarization (18) in which

ξ0(y) = max{〈ξ, y〉 | ξ ∈ C′, ‖ξ‖ = 1} . (19)

In fact ξ0(y) represents the Hiriart-Urruty oriented distance [10] from the point y to
the cone −C. Pay attention that ξ0 is a nonlinear function. The corresponding VI
appears in [5], where it is illustrated that such a particular VI poses new problems
in relation to the vector optimization problem. For instance, by definition, we
see that the notion of a w-minimizer of f or the property of f to be quasiconvex
(with respect to C) is norm-independent, while the property of f to be IAR with
respect to Ξ at x∗, and the property of f to be quasiconvex with respect to Ξ and
x∗ happen to be norm-dependent (here we speak for the case when Ξ = {ξ0} and ξ0

is given by (19)). This circumstance rises the question, under which conditions, for
any given w-minimizer x∗ there exists a norm in Y such that f is IAR with respect
to Ξ at x∗. We can also list some other related problems: if f is quasiconvex (with
respect to C), then the question is when one can choose the norm in Y in such
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a way that f is also quasiconvex with respect to Ξ. Moreover, since the function
ξ0 is not linear, the question is, under the assumption that f is quasiconvex with
respect to Ξ and that x∗ is a minimizer with respect to Ξ of f , whether there
exists a norm in Y , such that f is IAR with respect to Ξ at x∗.
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