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AN ALGORITHM FOR MULTIPARAMETRIC MIN MAX
0-1-INTEGER PROGRAMMING PROBLEMS RELATIVE

TO THE OBJECTIVE FUNCTION
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Abstract. The multiparametric min max 0-1-Integer Programming
(0-1-IP) problem relative to the objective function is a family of min
max 0-1-IP problems which are related by having identical constraint
matrix and right-hand-side vector. In this paper we present an algo-
rithm to perform a complete multiparametric analysis relative to the
objective function.

Keywords. 0-1-Integer Programming, multiparametric programming,
Bottleneck problem.

1. Introduction

The need for multiparametric analysis in mathematical programming arises
from the uncertainty in the data. Recently Greenberg [7] published an anno-
tated bibliography for post-solution analysis including parametric Integer Linear
Programming (ILP) problems. Greenberg′s bibliography can be searched on the
World Wide Web (WWW) [8]. Another bibliography available on the WWW
is due to Arsham [1]. Jenkins [9–12] has presented a very simple approach to
solve parametric ILP problems based on Geoffrion and Nauss [6]. His methods
work by solving an appropriate sequence of non-parametric problems and joining
the solutions to complete the parametrical analysis.
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Recently we have used the Jenkins′s approach in order to design algorithms
to solve multiparametric 0-1-ILP problems relative to the right-hand-side vec-
tor (Crema [2]), the objective function (Crema [3]) and the constraint matrix
(Crema [4]).

A theoretical and algorithmic study for parametric 0-1-ILP problems relative
to the objective function, including complexity results, have been written by
Thiongane, Nagih and Plateau [17].

In this paper we present an approach, that can be viewed as a generalization
of [3], to solve min max multiparametric 0-1-Integer Programming (0-1-IP) prob-
lems relative to the objective function.

To the best of our knowledge there are no other algorithms to be applied in the
min max case. Our algorithm may be implemented by using any software capable
of solving Mixed Integer Linear Programming (MILP) problems.

In Section 2 we study the theory that allow us to design the algorithm to be
presented in the same section. Computational experience is presented in Section 3.
A summary and further extensions are given in Section 4.

2. Theoretical results and the algorithm

Let L ∈ R
p, U ∈ R

p with L ≤ U , let D ∈ R
q×p, d ∈ R

q and let Ω = {θ ∈ R
p :

L ≤ θ ≤ U, Dθ ≤ d}, let b ∈ R
m, A ∈ R

m×n and let X = {x : Ax ≤ b, x ∈
{0, 1}n}.

Let us suppose that Ω �= ∅ and X �= ∅.
The multiparametric min max 0-1-IP problem relative to the objective function

is a family of 0-1-IP problems which are related by having identical constraint
matrix and right-hand-side vector. A member of the family is defined as

(P (θ)) min φ(θ, x) s.t. x ∈ X

where φ is a continuous function on Ω for all x ∈ X , θ is the vector of parameters,
θ ∈ Ω ⊆ R

p, x is a vector of 0/1 variables, and X is the set of feasible solutions
which does not depend on the vector θ.

We use the following standard notation: if T is an optimization problem then
F (T ) denotes its set of feasible solutions and v(T ) denotes its optimal value (if it ex-
ists).

Note that since X is a finite set then there exits an optimal solution for P (θ)
for all θ ∈ Ω.

In the min sum case we have p = n and φ(θ, x) = θtx. The min sum case was
studied in a previous work (see Crema [3]). In the min max case we have p = n
and φ(θ, x) = max{θ1x1, · · · , θnxn}. The min max case is presented in this paper.

We say that x(1), · · · , x(r) is a multiparametrical solution if: x(i) ∈ X for all
i = 1, · · · , r and min{φ(θ, x(1)), · · · , φ(θ, x(r))} = v(P (θ)) for all θ ∈ Ω.

Suppose that x(i) ∈ X for all i = 1, · · · , r. Let g(r)(θ) = min{φ(θ, x(1)),
· · · , φ(θ, x(r))}. Note that g(r)(θ) ≥ v(P (θ)) for all θ ∈ Ω and if x(r+1) ∈ X
then g(r+1)(θ) ≤ g(r)(θ) for all θ ∈ Ω.
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Let Q(r) be a problem in (θ, x) defined as:

(
Q(r)

)
max g(r)(θ) − φ(θ, x) s.t. θ ∈ Ω, x ∈ X.

Observe that θ is a vector of decision variables in Q(r).
Note that with Q(r) we are looking for the maximal difference between v(P (θ))

and an upper bound function defined by g(r)(θ). If the maximal difference is zero
then we have found v(P (θ)) for all θ ∈ Ω and the analysis was completed, otherwise
our algorithm finds x(r+1) and θ∗ such that g(r+1)(θ) ≤ g(r)(θ) for all θ ∈ Ω and
g(r+1)(θ∗) < g(r)(θ∗).

Lemma 2.1.

(i) There exists an optimal solution for Q(r).
(ii) v(Q(r)) ≥ 0.
(iii) If v(Q(r)) = 0 then v(P (θ)) = g(r)(θ) for all θ ∈ Ω.
(iv) If (θ∗, x(r+1)) is an optimal solution for Q(r) then x(r+1) is an optimal

solution for P (θ∗).
(v) Let (θ∗, x(r+1)) be an optimal solution for Q(r). If v(Q(r)) > 0 then x(i)

is not an optimal solution for P (θ∗) for all i = 1, · · · , r and g(r+1)(θ∗) <
g(r)(θ∗).

Proof.

(i) Since φ(θ, x) is a continuous function on Ω for all x ∈ X then g(r)(θ) is
a continuous function on Ω. Therefore, since X is a finite set, Q(r) may
be viewed as a finite set of problems with a continuous objective function
and a compact set of feasible solutions and then there exits an optimal
solution.

(ii) Let θ ∈ Ω and s be an index such that:
g(r)(θ) = min {φ(θ, x(1)), · · · , φ(θ, x(r))} = φ(θ, x(s)).
We have that (θ, x(s)) ∈ F (Q(r)) and v(Q(r)) ≥ g(r)(θ) − φ(θ, x(s)) = 0.

(iii) Let θ ∈ Ω. Let x be an optimal solution of P (θ). We have that g(r)(θ) −
φ(θ, x) ≤ v(Q(r)) = 0 and then φ(θ, x) = v(P (θ)) ≤ g(r)(θ) ≤ φ(θ, x).
Therefore v(P (θ)) = g(r)(θ).

(iv) Let x ∈ X . If φ(θ∗, x) < φ(θ∗, x(r+1)) then g(r)(θ∗)−φ(θ∗, x) > g(r)(θ∗)−
φ(θ∗, x(r+1)) = v(Q(r)) and we have a contradiction.

(v) Since 0 < v(Q(r)) = g(r)(θ∗)− φ(θ∗, x(r+1)) it follows that φ(θ∗, x(r+1)) <
g(r)(θ∗). From (iv) we have that v(P (θ∗)) = φ(θ∗, x(r+1)) and then:
v(P (θ∗)) = φ(θ∗, x(r+1)) < g(r)(θ∗) = min{φ(θ∗, x(1)), · · · , φ(θ∗, x(r))}
and x(i) is not an optimal solution for P (θ∗) for all i = 1, · · · , r. Also,
g(r+1)(θ∗) = φ(θ∗, x(r+1)) < g(r)(θ∗). �

Since X is a finite set, Lemma 1 proves that the next algorithm provide us a
complete multiparametrical analysis.
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The multiparametric algorithm

Step-0: Find θ(1) ∈ Ω. Solve P (θ(1)). Let x(1) be an optimal solution.
Step-1: r = 1.
Step-2: Solve Q(r) and let (θ(r+1), x(r+1)) be an optimal solution.
Step-3: If v(Q(r)) = 0 STOP (with v(P (θ)) = g(r)(θ) for all θ ∈ Ω).
Step-4: r = r + 1 and return to step-2.

In order to use the algorithm based on Lemma 1 we need algorithms to solve Q(r)

and P (θ).
In the min sum case P (θ) is a 0-1-ILP problem and Q(r) may be rewritten as a

0-1-MILP problem (see Crema [3]).
In the min max case P (θ) is a bottleneck problem that may be solved by using
known specialized algorithms. Also, P (θ) may be rewritten as a 0-1-MILP prob-
lem. Q(r) may be rewritten as a 0-1-MILP problem by using techniques, based on
Oral and Kettani [16], as you can see below.

Let QL(r) be a 0-1-MILP problem in:

(
θ, x, y, z, δ(1), · · · , δ(r), w(1), · · · , w(r)

)

defined as:

(QL(r)) max y − z s.t.

θ ∈ Ω, x ∈ X

z ≥ Lixi (i = 1, · · · , n)
z ≥ θi − Ui(1 − xi) (i = 1, · · · , n)

y ≤
n∑

i=1

δ
(k)
i x

(k)
i (k = 1, · · · , r)

δ
(k)
i ≤ Uiw

(k)
i (k = 1, · · · , r), (i = 1, · · · , n)

δ
(k)
i ≤ θi − Li(1 − w

(k)
i ) (k = 1, · · · , r), (i = 1, · · · , n)

n∑
i=1

w
(k)
i = 1 (k = 1, · · · , r)

w
(k)
i ∈ {0, 1}, δ

(k)
i ≥ 0 (k = 1, · · · , r), (i = 1, · · · , n)

y ∈ R, z ∈ R.

Lemma 2.2.
(i) F (QL(r)) �= ∅.
(ii) There exists an optimal solution for QL(r).
(iii) If (θ∗, x∗, y∗, z∗, δ(1)∗, · · · , δ(r)∗, w(1)∗, · · · , w(r)∗) is an optimal solution

for QL(r) then (θ∗, x∗) is an optimal solution for Q(r) and v(Q(r)) =
v(QL(r)) = y∗ − z∗.
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Proof. (i) Let θ ∈ Ω and x ∈ X . Let z = max{θ1x1, · · · , θnxn}. By construction
we have:

z ≥ Lixi (i = 1, · · · , n)

z ≥ θi − Ui(1 − xi) (i = 1, · · · , n).

Let y = min
{

max
{
θ1x

(k)
1 , · · · , θnx

(k)
n

}
: k = 1, · · · , r

}
,

let ik such that max
{

θ1x
(k)
1 , · · · , θnx

(k)
n

}
= θik

xik
(k),

let w
(k)
i = 1 if and only if i = ik (k = 1, · · · , r),(i = 1, · · · , n) and let δ

(k)
i =

θiw
(k)
i (k = 1, · · · , r),(i = 1, · · · , n). By construction we have:

δ
(k)
i ≤ Uiw

(k)
i (k = 1, · · · , r), (i = 1, · · · , n)

δ
(k)
i ≤ θi − Li(1 − w

(k)
i ) (k = 1, · · · , r), (i = 1, · · · , n)

n∑
i=1

w
(k)
i = 1 (k = 1, · · · , r)

w
(k)
i ∈ {0, 1}, δ

(k)
i ≥ 0 (k = 1, · · · , r), (i = 1, · · · , n)

y ∈ R, z ∈ R.

Finally, we have:

n∑
i=1

δ
(k)
i x

(k)
i = θik

xk
ik

= max
{
θ1x

(k)
1 , · · · , θnx(k)

n

}

≥ min
{
max

{
θ1x

(k)
1 , · · · , θnx(k)

n

}
: k = 1, · · · , r

}
= y.

(ii) QLr may be viewed as a finite set of linear programming problems. A member
of the set is the problem with x, w1, · · · , wr fixed. By construction of QLr we have
that y − z is bounded and then each linear programming problem has an optimal
solution. Therefore QLr has an optimal solution.
(iii) Let (θ∗, x∗, y∗, z∗, δ(1)∗, · · · , δ(r)∗, w(1)∗, · · · , w(r)∗) be an optimal solution of
QLr. We have that z∗ ≥ Lix

∗
i and z∗ ≥ θ∗i − Ui(1 − x∗

i ) for all i = 1, · · · , n.
Therefore z∗ ≥ θ∗i x∗

i for all i = 1, · · · , r. Since maximization is the optimization
criterion then z∗ = max{θ∗1x∗

1, · · · , θ∗nx∗
n} = φ(θ∗, x∗).

We have that

δ
(k)
i

∗ ≤ Uiw
(k)
i

∗
(k = 1, · · · , r), (i = 1, · · · , n)

δ
(k)
i

∗ ≤ θ∗i − Li(1 − w
(k)
i

∗
) (k = 1, · · · , r), (i = 1, · · · , n)

and then δ
(k)
i

∗ ≤ θ∗i w
(k)
i

∗
for all i = 1, · · · , n and for all k = 1, · · · , r.
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Since
∑n

i=1 w
(k)
i

∗
= 1 and y∗ ≤ ∑n

i=1 δ
(k)
i

∗
x

(k)
i ≤ ∑n

i=1 θ∗i w
(k)
i

∗
x

(k)
i it follows

that y∗ ≤ max{θ∗1x(k)
1 , · · · , θ∗nx

(k)
n } for all k = 1, · · · , r. Since maximization is the

optimization criterion then y∗ = min{max{θ∗1x(k)
1 , · · · , θ∗nx

(k)
n }, k = 1, · · · , r} =

min{φ(θ∗, x(1)), · · · , φ(θ∗, x(r))} = g(r)(θ∗). It follows that QL(r) may be rewrit-
ten as

(
Q(r)

)
max g(r)(θ) − φ(θ, x) s.t. θ ∈ Ω, x ∈ X

and v
(
Q(r)

)
= v(QL(r)) = y∗ − z∗ with (θ∗, x∗) an optimal solution. �

3. Computational experience

Previous computational experience in the min sum case was presented in [3].
The problem considered was the multiconstrained 0-1-Knapsack problem. In that
case the algorithm was implemented in XL-FORTRAN by using the OSL package
of IBM [14] that uses a Branch and Bound algorithm based on linear relaxations
to solve MILP problems.

Now our algorithm for the min max case has been implemented in C++ by
using the new OSL package of IBM [15]. The new experiments were performed on
a PC Pentium IV with 2Ghz and 256 MB of RAM.

The min max problem considered was the bottleneck generalized assignment
(BGA) problem (Martello and Toth [13]). Our experimental results are prelimi-
nary since more problems should be solved before concluding on certain topics.

We follow exactly the paper of Martello and Toth [13] for the formulation of
the BGA problem:

Given n items and m units, the penality, θij , and the resource requirement, rij ,
corresponding to the assignment of item j to unit i (j = 1, · · · , n; i = 1, · · · , m),
and the amount of resource, ai, available at unit i(i = 1, · · · , m), the BGA problem
is to assign each item to one unit so that the total resource requirement for any unit
does not exceed its availability and the maximum penality incurred is minimized.
By introducing binary variables xij with xij = 1 if and only if item j is assigned
to unit i, the problem can be formulated as

min z = max{θijxij : i = 1, · · · , m, j = 1, · · · , n}; s.t.
n∑

j=1

rijxij ≤ ai, i = 1, · · · , m

m∑
i=1

xij = 1, j = 1, · · · , n

xij ∈ {0, 1}, i = 1, · · ·m, j = 1, · · · , n.

The data were generated using procedures analogous to those used by Martello
and Toth, as follows:
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Case 1. The elements rij were drawn from a uniform distribution on [1, rmax]
with rmax > 1, the elements ai were determined by summing the elements rij

and multiplying this sum by α(0 < α < 1). The final rij and ai were obtained
by rounding down the generated data (i = 1, · · ·m, j = 1, · · · , n). Let J ⊆
{1, · · · , m}×{1, · · · , n} be the index set of elements of the objective function that
will be perturbed. Let k be the cardinality of J . The indexes that belong to J
were selected at random. If (i, j) /∈ J then we use θij = Lij = Uij with Lij = Uij

drawn from a uniform distribution on [1, umax] with umax > 1. If (i, j) ∈ J then
we use Lij ≤ θij ≤ Uij with Lij = (1 − β)zij and Uij = (1 + β)zij and zij drawn
from a uniform distribution on [1, umax] and 0 < β < 1. The final Lij and Uij

were obtained by rounding down the generated data (i = 1, · · ·m, j = 1, · · · , n).
Case 2. The elements rij were drawn from a uniform distribution on [1, rmax]

with rmax > 1, the elements ai were determined by summing the elements rij and
multiplying this sum by α = 1/m. The final rij and ai were obtained by rounding
down the generated data (i = 1, · · · , m, j = 1, · · · , n). Let J ⊆ {1, · · · , m} ×
{1, · · · , n} be the index set of elements of the objective function that will be
perturbed. Let k be the cardinality of J . The indexes that belong to J were
selected at random. If (i, j) /∈ J then we use θij = Lij = Uij with Lij = Uij drawn
from a uniform distribution on [1, 1+umax− rij ] with umax ≥ rmax. If (i, j) ∈ J
then we use Lij ≤ θij ≤ Uij with Lij = (1−β)zij and Uij = (1+β)zij and zij drawn
from a uniform distribution on [1, umax−rij ] and 0 < β < 1. The final Lij and Uij

were obtained by rounding down the generated data (i = 1, · · · , m, j = 1, · · · , n).
The experiments were designed in order to evaluate the performance of the

algorithm as m, n, k, α or β vary. The results are reported in Tables 1 (case 1)
and 2 (case 2). The notation used in the tables is as follows: p is an index to
identify the problem, r is the number of QL-problems solved in order to complete
the multiparametrical analysis, Si1 the number of simplex iterations computed to
solve P (θ1) (we use θ1 = L in all the experiments), N1 the number of nodes gener-
ated by the branch and bound algorithm to solve P (θ1), Si the number of simplex
iterations computed to solve P (θ1), QL(1), · · · , QL(r), N the number of nodes gen-
erated by the branch and bound algorithm to solve P (θ1), QL(1), · · · , QL(r) and
t the CPU time in seconds to solve P (θ1), QL(1), · · · , QL(r). Both, Si1 and Si,
include the number of simplex iterations computed to solve the relaxations of
subproblems in the branch and bound algorithm.

4. Summary and further extensions

We designed and implemented an algorithm to solve the multiparametric min
max 0-1-IP problem relative to the objective function. Computational experi-
ence was presented for BGA problems with uncorrelated (case 1) and correlated
(case 2) data. Our algorithm works by choosing an appropriate finite sequence of
non-parametric MILP problems in order to obtain a complete multiparametrical
analysis and this explains that the computer storage was not a problem for our
algorithm, that is: if we can solve the non-parametric P (θ(1)) problem then we
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Table 1. Computational results for problems generated
according to case 1.

p m n k umax rmax α β r Si1 N1 Si N t

1 2 10 10 1000 1000 0.50 0.20 6 40 12 2129 707 1.62
2 25 7 123 50 23595 6236 34.18
3 50 2 236 109 1062 273 0.73
4 100 2 312 104 1901 460 3.01
5 150 1 696 169 1891 536 43.75
6 3 10 10 1000 1000 0.50 0.20 7 73 24 7937 2072 6.96
7 25 7 1556 573 6174 1331 36.71
8 50 4 581 177 7081 1422 48.26
9 100 2 3023 1848 61303 34938 360.04

10 5 10 10 1000 1000 0.50 0.20 6 172 60 4837 1182 4.48
11 25 4 2883 1053 4869 1591 4.77
12 50 1 13197 3692 13856 3884 9.00
13 10 10 10 1000 1000 0.50 0.20 2 3638 755 4354 1015 1.62
14 25 2 14057 2877 15594 3431 10.05
15 2 10 10 1000 1000 0.50 0.05 4 27 3 639 80 0.16
16 0.10 5 49 18 920 166 0.28
17 0.15 7 43 12 15622 3124 8.76
18 0.20 7 38 10 12807 3285 8.34
19 0.25 14 22 54 55101 14101 71.72
20 0.30 15 118 34 54452 12183 186.42
21 2 120 10 100 100 0.50 0.20 2 17513 11112 20158 11841 32.94
22 140 8 1 61996 38116 62826 38260 98.54
23 160 6 2 14037 9701 38342 13436 2112.5
24 2 10 10 1000 1000 0.35 0.20 2 80 32 427 154 0.13
25 0.40 5 59 15 1628 434 0.73
26 0.45 3 111 50 1182 382 0.60
27 0.50 3 56 16 619 192 0.23
28 0.55 10 61 33 118338 21285 89.44
29 0.60 9 116 63 11389 2460 8.65
30 0.65 12 43 15 14232 2238 9.31
31 2 10 10 10 1000 0.50 0.20 3 27 4 540 70 0.13
32 100 5 85 33 2313 583 1.17
33 10000 11 88 13 15911 3805 15.66
34 2 10 10 1000 10 0.50 0.20 5 59 23 1563 306 0.68
35 100 3 29 14 412 78 0.11
36 10000 5 54 17 1565 352 0.67
37 2 25 15 1000 1000 0.50 0.20 3 101 34 1033 257 0.46
38 20 7 8043 5096 84933 21792 102.06
39 25 7 1295 738 37723 11044 54.45

can expect no problems to perform a complete multiparametrical analysis. The
algorithm may be implemented by using any software capable of solving MILP
problems. To the best of our knowledge there are no other implementations of
algorithms to solve the multiparametric min max 0-1-IP problem relative to the
objective function and for this reason we did not compare the performance of our
algorithm with any other.

A generalization of QL(r) may be carefully designed by using analogous lin-
earization techniques used in the min sum and min max cases in such a manner
that the following case may be considered:

φ(θ, x) = max{(F (1)θ)
t
x + d(1)t

θ + c(1)t
x, · · · , (F (k)θ)

t
x + d(k)t

θ + c(k)t
x}

where F (i) ∈ R
n×p , d(i) ∈ R

p , c(i) ∈ R
n (i = 1, · · · , k).

The min sum and min max are particular cases of this general case.
In non-parametric 0-1-IP a significant effort is directed towards the design of

special purpose algorithms for problems with particular structures. It is reasonable
then to think that a next step should be the design of specialized multiparametric
algorithms in order to solve hard problems with higher dimensions. The multipara-
metric algorithm turns out to be, from this point of view, a general methodology
and problems QL(r) would be solved with specialized algorithms associated to the
structure of the problems P (θ).
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Table 2. Computational results for problems generated
according to case 2.

p m n k umax rmax α β r Si1 N1 Si N t

1 2 10 10 1000 1000 0.50 0.20 7 35 11 8548 2071 5.13
2 25 6 151 50 6226 1921 9.35
3 50 2 603 304 3883 2126 8.42
4 100 2 748 243 2463 793 4.64
5 150 1 1560 680 446223 42522 256.43
6 3 10 10 1000 1000 0.33 0.20 3 603 214 1595 497 0.52
7 25 2 25050 5138 27062 5807 7.76
8 50 2 113451 10154 557349 32885 1102.8
9 100 1 310443 43231 640223 145845 1980.1

10 5 10 10 1000 1000 0.20 0.20 2 4085 741 5802 1064 1.21
11 25 3 112527 9356 673418 134873 1167.2
12 50 2 215167 32111 573672 112317 1423.9
13 10 10 10 1000 1000 0.10 0.20 1 205449 52621 619509 164972 319.37
14 25 1 342156 39147 549669 136239 1004.2
15 2 10 10 1000 1000 0.50 0.05 2 68 28 298 91 0.05
16 0.10 2 72 36 311 123 0.09
17 0.15 3 80 33 1049 256 0.29
18 0.20 1 50 14 125 27 0.03
19 0.25 2 54 22 441 160 0.12
20 0.30 5 120 44 7109 2815 5.38
21 2 120 10 100 100 0.50 0.20 2 12923 6142 18222 9755 35.43
22 140 8 2 24521 12281 45168 21311 136.22
23 160 6 2 13182 6112 28513 14623 60.41
24 2 10 10 1000 1000 0.35 0.20 4 46 13 1285 311 0.45
25 0.40 1 55 19 147 36 0.02
26 0.45 2 57 31 341 68 0.04
27 0.50 4 155 94 933 259 0.26
28 0.55 2 112 62 390 144 0.11
29 0.60 5 42 20 1378 345 0.59
30 0.65 5 41 16 3147 683 1.38
31 2 25 15 1000 1000 0.50 0.20 2 65348 41351 65953 41551 525.34
32 20 5 152 50 19648 7613 30.31
33 25 5 171 80 6507 2829 10.79

Recently we have presented (see Crema [5]) a unified approach, that can be
viewed as a generalization of [2–4], to perform a complete multiparametrical anal-
ysis to 0-1-ILP problems with the perturbation of the right-hand-side vector, the
objective function and the constraint matrix simultaneously considered. In a near
future we will intend to develop a unified approach to solve, if possible, the general
min max multiparametric 0-1-IP problem with all the perturbations simultane-
ously considered.
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