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MODELING AND SOLUTION OF MAXIMAL COVERING PROBLEM

CONSIDERING GRADUAL COVERAGE WITH VARIABLE RADIUS

OVER MULTI-PERIODS

Alireza Eydi1,* and Javad Mohebi2

Abstract. Facility location is a critical component of strategic planning for public and private firms.
Due to high cost of facility location, making decisions for such a problem has become an important
issue which have gained a large deal of attention from researchers. This study examined the gradual
maximal covering location problem with variable radius over multiple time periods. In gradual covering
location problem, it is assumed that full coverage is replaced by a coverage function, so that increasing
the distance from the facility decreases the amount of demand coverage. In variable radius covering
problems, however, each facility is considered to have a fixed cost along with a variable cost which has
a direct impact on the coverage radius. In real-world problems, since demand may change over time,
necessitating relocation of the facilities, the problem can be formulated over multiple time periods.
In this study, a mixed integer programming model was presented in which not only facility capacity
was considered, but also two objectives were followed: coverage maximization and relocation cost
minimization. A metaheuristic algorithm was presented to solve the maximal covering location problem.
A simulated annealing algorithm was proposed, with its results presented. Computational results and
comparisons demonstrated good performance of the simulated annealing algorithm.
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1. Introduction

Covering problem is one of the most popular facility location models. While covering models is not any
new, they have always been very attractive for researchers. This is due to their real-world applications such as
determining the number and locations of public schools, police stations, libraries, hospitals, public buildings, post
offices, parks, military bases, radar installations, branch banks, shopping centers and waste-disposal facilities.
Covering models deal with covering demands. In most covering models, demand is said to be covered once
it reaches and maintained within a predefined standard distance from at least one facility. According to the
literature, facility location covering problem was first proposed by Toregas et al. as the location set covering
problem (LSCP) [13]. The LSCP is a mandatory covering model with its objective being to find the minimum
number of facilities to cover all demand points. However, full coverage is hard to achieve in reality due to limited
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resources. For a demand point far away from other points, it is probably not possible to be covered within the
predefined distance standard. A few years later, the first maximum deterministic covering problem was proposed
by Church and ReVelle who termed it the maximal covering location problem (MCLP) given a limited number
of facilities [12]. This model aims to maximize the demand coverage. The coverage objective makes three main
assumptions implicitly, as follows:

A1: Either complete coverage or nothing covered. Each and any demand point within the coverage radius of
a facility is completely covered (i.e., the full demand existing at this point is satisfied as per the objective),
while the demand points outside the coverage radius are not covered at all.
A2: Individual coverage. Whether a certain demand point is covered or not is determined by its proximity
to a single (individual) facility; namely the closest one. The next closest facility has no bearing on the
coverage.
A3: Fixed coverage radius. The coverage radius R (i.e., the maximum travel distance which determines
whether a customer is covered or not) is specified exogenously and is not a decisive variable.

The gradual cover models seek to relax the “all or nothing” assumption A1 by replacing it with a general
coverage function which represents the proportion of covered demand at a certain distance from the facility.

Variable radius problem is primarily designed to relax the “fixed coverage radius” assumption A3, making
the coverage radius an endogenously determined function of the facility cost. Thus, instead of locating a certain
pre-determined number of facilities, the decision-maker has a certain budget to be used to construct facilities
of different types, with the more expensive facilities having larger coverage radii. Therefore, the model adds a
design aspect (what type(s) of facility to build?) to the typical question of location asking where the facilities
should be sited.

The set covering location problem was first introduced by Hakimi. The model aimed to determine the min-
imum number of police officers needed to cover strategic nodes on a network of highways [17]. Megiddo et al.
proved that the maximal covering location problem is NP-Hard [21]. The original paper on gradual coverage
problems seems to be presented by Church and Roberts [8] who described a discrete model with a step-coverage
function. Berman and Krass [5] discussed network version again with the step-coverage function and provided
efficient formulations and heuristic approaches. Berman et al. [6] offered a more general form of the gradual cov-
erage function on a network. Their model combined the p-median problem and covering problem. Karasakal and
Karasakal [19] presented a model with partial coverage. They presented a Lagrangian-based solution approach.
Drezner et al. [10] considered gradual coverage problem with coverage functions on a plane. In the plane model,
a facility could be located anywhere across a given plane. Eiselt and Marianov [11] considered gradual coverage
in the form of a set covering problem. In their model, service quality was considered as a measure which was
divided into several classes.

Rahim [23] presented a variable neighborhood search approach for the combination of gradual covering
problem with traveling salesman problem. Orbay [22] suggested an evolutionary algorithm for solving the bi-
objective relocation problem, including the concept of partial coverage. The first objective maximized the
covered demand while the second one worked to minimize the number of facilities. Toreyen [26] presented the
hierarchical maximal covering location problem considering the partial coverage. He also presented an integer
formulation for this problem, and designed a genetic algorithm to achieve a near optimal solution.

Berman et al. [4] studied a variable radius covering problem. They sought finding optimal radius along
with optimum number and location of facilities. The objective function introduced in the model by these
authors minimized the cost of facility location while assuring the coverage of all demand points. They presented
discrete and continuous problems and approaches for solving the discrete case, whereas heuristic approaches
were presented to solve large-scale problems on the plane.

Ballou was the first to publish a paper on limited application of static and deterministic location problems [3].
Attempting to locate a single warehouse in such a way to maximize profit over a finite planning horizon, Ballou
used a series of static deterministic optimal solutions to solve the dynamic problem. For each period in the
specified horizon, he solved for the optimal warehouse location, establishing a set of potential “good” location
sites. Dynamic programming was then used to determine the best schedule for selecting a subset of these sites as
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an “optimal” location and relocation strategy for the planning period. Albareda-Sambola et al. [2] introduced
the multi-period incremental service facility location problem whose goal was to set a number of new facilities
over a finite time horizon in such a way to dynamically cover a given set of customers’ demand. They proposed
a solving approach that would provide both lower and upper bounds by combining sub-gradient optimization
to solve a Lagrangian dual with an ad hoc heuristic wherein the information obtained from the Lagrangian
sub-problem was used to generate corresponding feasible solutions. Canel et al. [7] developed an algorithm to
solve capacitated, multi-commodity, multi-period, multi-stage facility location problem. The proposed algorithm
had two parts. In the first part, branch and bound method was used to generate a list of candidate solutions
for each period and then dynamic programming was used to find optimal sequence of configurations over the
multi-period planning horizon. The proposed algorithm was particularly effective when the facility reopening
and closing costs were relatively significant in a multi-period problem. Wesolowsky and Trucott [27] extended
the analysis of multi-period node location-allocation problems, allowing facilities to be relocated in response to
predicted changes in demand. An integer programming model was presented, with a constraint restricting the
number of location changes in each period. A dynamic programming formulation was also presented. Gendreau
et al. proposed a model they termed the maximal expected coverage relocation problem (MECRP), and provided
a dynamic relocation strategy for idle emergency medical service (EMS) facilities siting in low demand areas
[16]. The objective was to maximize the expected demand coverage with the number of relocated facilities
not exceeding a predefined value. Zarandi et al. [28] considered MCLP over several time periods and used a
simulated annealing algorithm which was capable of solving problems with up to 2500 nodes and 200 facilities.

Rashidi and Jafari [24] offered a nonlinear model for solving the MCLP considering partial coverage constraint
and facility capacity. Jabal Ameli and Bankian Tabrizi [18] further considered the MCLP with gradual coverage
and variable radius coverage.

As was defined above, facility location is among the strategic issues for governmental agencies as well as private
sectors. Covering problems are among the most common and useful discussions on the facility location. Although
many researches have worked on covering problems, still many subjects have remained to be investigated to
expand the knowledge of coverage problems. Hence, the present paper tries to formulate real-world situations
in the form of a model by combining some of the covering models, among which the followings are notable:

Sometimes, service facilities have a limited capacity for service delivery. Coverage radii are different depending
on the size and type of the facilities. Since the demand may change over time, it is necessary to formulate the
problem within a multi time period framework. This change in demand may occur as people migrate from one
point to another. Also in the case of emergency services such as ambulance services, in warm seasons when
people are used to travel to places with more moderate climates, there will be a rise in the rate of accidents,
resulting in an increased need for emergency facilities. In other words, the number of demand points increases.
This is also the case for police officers allocation in such an area. In this special case, some clear and predictable
changes in demand are assumed. However, a covering problem is NP-Hard, so that one may try to solve the
model by a simulated annealing algorithm which is to be applied within a reasonable time.

The present paper deals with an important logistic problem that combines facility location management
problems. A large number of variations in maximal covering problems were previously considered in different
works. The present work, however, aims to present a generalization of the previous models considering a vast
number of real-world cases. The paper addresses a new version of the maximal covering problem considering
gradual coverage, variable radius, multi-periods and capacitated facilities.

Research findings can be outlined as follows:

– Providing a formulation for research questions with the following features: facility relocation within
different periods is considered in the gradual coverage model with variable radius.

– Due to the computational complexity of the maximal covering location problems as well as their derivative
problems, a simulated annealing algorithm for solving the problem will be studied.

The rest of the paper is organized as follows. A mathematical model is defined in Section 2. The simulated
annealing algorithm is presented in Section 3 while the computational results are brought in Section 4. Some
recommendations for future research are suggested in Section 5.



1248 A. EYDI AND J. MOHEBI

2. Problem formulation

The following assumptions are made in this study:

– The problem is a maximal covering location problem.
– There are a number of demand points.
– The demand is specified at each point but may vary over time.
– There are a number of potential locations where facility can be constructed.
– There are a number of facilities to be deployed in potential locations.
– With increasing the distance between facility and demand point, the covered demand decreases.
– The facilitator deals with a fixed cost as well as a variable cost for constructing the facility, with the

variable cost having direct influence on the coverage radius.
– There is a limited budget available for facility location in the first period.
– Services provided by each facility cannot exceed the facility capacity.
– Facility relocation occurs at discrete points of time.
– The problem is formulated over multiple time periods and number of facility relocations in each period is

limited.

In this section, the proposed model is formulated. The main purpose of this model is to consider real-world
situations. The notations (indexes, parameters and variables) used to express the mathematical form of the
problem are introduced below.

(a) Indexes:
i: Set of demand points, i = 1, 2, . . . , I.
j: Set of potential sites for facility construction, j = 1, 2, . . . , J .
t: Set of time periods, t = 1, 2, . . . , T .

(b) Data of the problem:
wit: Weight of demand point i over time period t.
B: The maximum budget available for facility construction over the first time period.
P : The maximum number of facilities that can be built over any time period.
dij : The minimum distance between the demand point i and the facility j. This distance is calculated
as an Euclidian distance.
Fjt: Net present value (NPV) of the fixed cost of facility construction for facility j over time period t.
Kjt: Coverage capacity of the facility j over time period t.
mt: Maximum number of facility location changes over time period t.
cjt: NPV of the destruction cost of the facility j over time period t.

(c) Decision variables:

xjt:

{
1 If facility j is to be existed in time period t
0 Otherwise

.

zjt:

{
1 If facility j is to be removed in time period t
0 Otherwise

.

z′jt:

{
1 If facility j is to be constructed in time period t
0 Otherwise

.

yijt:

{
1 If demand point i is to be covered by facility j in time period t
0 Otherwise

.

rjt: The coverage radius of facility j over time period t, rjt = maxi=1,2,...,I(dijyijt).
lijt: Fraction of demand point i to be covered by facility j over time period t.
qjt(rjt): NPV of the variable cost of facility construction for facility j in time period t.
c′jt: NPV of the facility construction cost for facility j in time period t.
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Figure 1. An example of the coverage function.

cijt: Coverage function

{
witfi (dij) If 0 ≤ dij ≤ rjt
0 Otherwise

, where fi (dij) is a function of dij with its value

falling within [0, 1].

In this problem, the coverage, as a quantity, is defined as a function of the distance between demand point i
and facility j, as follows [6]:

fi (dij) =

{
1− dij/rjt dij ≤ rjt
0 Otherwise

.

The value of rjt is determined during the optimization process. The coverage function is shown in Figure 1
where rjt = 20.

The problem formulation can be presented as follows:

Max z1 =

I∑
i=1

J∑
j=1

T∑
t=1

(witlijt), (2.1)

Min z2 =
J∑

j=1

T∑
t=2

(c′jtz
′
jt + cjtzjt), (2.2)

S.T.
J∑

j=1

xjt ≤ P , t = 1, . . . , T , (2.3)

J∑
j=1

yijt = 1, i = 1, . . . , I; t = 1, . . . , T , (2.4)

yijt = xjt, i = 1, . . . , I; j = 1, . . . , J ; t = 1, . . . , T , (2.5)

lijt = yijt, i = 1, . . . , I; j = 1, . . . , J ; t = 1, . . . , T , (2.6)

lijtwit ≤ cijt, i = 1, . . . , I; j = 1, . . . , J ; t = 1, . . . , T , (2.7)

I∑
i=1

lijtwit ≤ Kjtxjt, j = 1, . . . , J ; t = 1, . . . , T , (2.8)



1250 A. EYDI AND J. MOHEBI

xjt − xj,t−1 = z′jt − zjt, j = 1, . . . , J ; t = 2, . . . , T , (2.9)

J∑
j=1

(Fjtxjt + qjt(maxi=1,2,...,n(yijtdij))) ≤ B, t = 1, (2.10)

Fjtxjt + qjt (maxi=1,2,...,n(yijtdij)) = c′jt, j = 1, . . . J ; t = 2, . . . , T, (2.11)

J∑
j=1

zjt ≤ mt, t = 2, . . . , T , (2.12)

xjt, zjt, z
′
jt, yijt ∈ {0, 1}; lijt ≥ 0;

rjt, cijt, c
′
jt, qjt ≥ 0 i = 1, . . . , I; j = 1, . . . , J ; t = 1, . . . , T .

(2.13)

Objective function (2.1) maximizes the covered demand while objective function (2.2) minimizes the facility
relocation cost over different time periods. Constraint (2.3) determines the maximum number of facilities that
can be located in the time period t. Constraint (2.4) states that any node must be covered by exactly one
facility over each period of time. Constraint (2.5) guarantees that demand point i is covered only if one facility
is placed within site j in the time period t. Constraint (2.6) shows the fraction of demand i that is covered
by facility j in the time period t. Constraint (2.7) states that, in time period t, facility j covers the demand
point i by as much as cijt. Constraint (2.8) limits the capacity of facility j in the time period t. Constraint
(2.9) ensures that the relocation costs are considered. Constraint (2.10) shows the budget constraint in the first
time period (part of the objective function seeks minimizing the cost of facility relocation. Since the relocation
of facilities is undertaken after the first period, the primary location of facilities has to be budget-constrained).
Constraint (2.11) indicates the location cost of facility j in the time period t. Constraint (2.12) limits the
number of relocation changes in each time period from period 2 to T (in a dynamic problem, the number of
facility location changes in each period may be limited to reflect tolerable levels of organizational disruption.
This dynamic configuration constraint is a natural counterpart of a static restriction on the number of facilities
which is motivated by organizational policy). Constraint (2.13) specifies the sign of variables.

2.1. Total weighted method

In the context of economics, utility emphasizes a decision-maker’s satisfaction. In terms of multi-objective
optimization, a utility function is defined for each objective and represents the relative importance of the
objective. A special form of the utility model (often used in multi-objective problems) involves the use of
weights wj (objective coefficients). In this method, which is known as total weighted method, it is assumed that
the weights scale and convert the goals to utilities. It means that a multi-objective problem would be converted
into a single-objective one.

In such a way, the user can convert a multi-objective problem to a single-objective one by multiplying each
objective by its proposed weight. This method is the easiest and possibly the most common classic approach to
a multi-objective problem and represents the most convenient way to deal with such a problem [9].

Suppose we solve the problem (Eqs. (2.1)–(2.13)) two different times by considering only one of the objective
functions z1 and z2, each time. In order to build a utility function we use two weights with w1 + w2 = 1.
Therefore, the utility function is as follows:

Max utility function = w1

[∑I
i=1

∑J
j=1

∑T
t=1 witlijt − f1min

f1max − f1min

]

+w2

[
f2max −

∑J
j=1

∑T
t=2 (c′jtz

′
jt + cjtzjt)

f2max − f2min

]
, (2.14)
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Figure 2. Pseudo code of the SA algorithm.

where f1min is minimum amount of coverage function, f1max is maximum amount of coverage function, f2min is
minimum amount of relocation cost function, and f2max is maximum amount of relocation cost function. Note
that the normalization approach is used to build the objective function (Eq. (2.14)).

To solve the model described by equations (2.3)–(2.14), GAMS software version 23.3 and BARON solver
(because of its capability for solving nonlinear mixed integer models) were used [14, 15]. Due to the nonlinear
term rjt = maxi=1,2,...,I(dijyijt), GAMS solvers fail to find a suitable solution for this problem. In other words,
after running this solver, all integer variables are found to have continuous values, i.e., nonlinear programming
(NLP) solution is printed as output solution. Hence, linear form of the above constraint, namely rjt ≥ dijyijt,
was used. In this case, the coverage radius was the same for all facilities, which was in contradiction with the
definition of a variable coverage radius problem. Despite having the same coverage radius, GAMS solution can
still be considered as an upper or lower bound. With such an interpretation, the use of a heuristic or meta-
heuristic algorithm is important when achieving a solution wherein variable coverage radius concept is taken
into account matters. This algorithm is described in the next section.

3. Simulated annealing algorithm

Simulated annealing (SA) metaheuristic is one of the well-known algorithms inspired from physical annealing
of solids. It was first introduced by Kirkpatrick et al. [20] to solve large combinatorial optimization problems.
SA algorithm simulates energy changes in a system, so that the cooling process continues until a steady state
is reached. The algorithm convergence is guaranteed only when the cooling process is done gradually, but
experiments have shown that even when the program comes with relatively rapid cooling phase, this algorithm
remains to be an effective optimization technique. SA attempts to escape from local optima by probabilistically
choosing nonimproving solutions.

Simplicity of implementation, good adaptability of the algorithm with our model, and the way to represent
solution structure were among the most important reasons why we chose SA algorithm among other available
meta-heuristics in the literature. Furthermore, SA is a local search algorithm and can work with models with
many constraints, such as that of ours. Simulated annealing is a robust general technique which has been widely
and successfully used for solving NP-Hard problems [1].

Figure 2 shows the pseudo code of the SA algorithm followed by a summary of the characteristics of SA
algorithm.
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Figure 3. Solution representation.

3.1. Solution representation

The first step to implement a meta-heuristic algorithm is to encode solutions of the problem on which the
operators of the algorithm can be performed. A matrix of dimension t ∗ (i+ P ) is used for this purpose. In this
matrix, t represents the number of time periods, and i is the number of demand points. Assuming 5 demand
points, 3 time periods and P = 2, we have the solution represented in Figure 3.

In Figure 3, highlighted cells in each period indicate the location of facilities to which demand points are
assigned. For example, demand points 1, 2 and 4 are covered by facility 3 while demand points 3 and 5 are
covered by the facility 5 during the first time period.

3.2. Initial and neighborhood solution

In this algorithm, the initial solution is generated by taking several steps are as follows:

Step 1. Generate P random numbers between successive demand points. If generated numbers are equal to
each other, this means that the number of facilities is less than P in the corresponding time period. These
numbers determine facility locations in the first time period.
Step 2. Determine facilities locations in each time period according to the number of location changes (mt) as
well as P . For example, if the location of a facility is supposed to be changed in the next time period, randomly
select one of the facilities that is to be removed in the next time period (facility 4). Then, randomly select a
facility (other than facility 4) between the corresponding demand points (facility 5) and replace it with facility
4. In this way, facilities 4 and 5 are determined as generated and removed facilities in the second time period,
respectively. Following the same procedure, specify the location of facilities in each time period (xjt). Once
finished with this step, constraints (2.3), (2.9) and (2.13) are completely satisfied, while constraint (2.12) is
satisfied in most cases.
Step 3. Allocate the demand points to the facilities (yijt) randomly; therefore, select an arbitrary facility
and allocate it to a demand point. Here an internal replication procedure to determine the best assignment is
embedded which can be performed several times to achieve the best allocation performance. The solution is
generated in this step, where constraints (2.4) and (2.5) are satisfied while the above-mentioned constraints are
also still satisfied.
Step 4. Specify the values of facility relocation variables (zjt, z

′
jt) according to the values of xjt and constraint

(2.9).
Step 5. Calculate facility coverage radius and cost of facility construction as rjt = Maxi=1,2,...,n(dijyijt) and
c′jt = Fjtxjt + qjt(rjt), respectively (observe constraint (2.11)).
Step 6. To determine lijt values corresponding to the fraction of the demands covered by parts of the facility,
we should first set to a small value the lijt values for which corresponding yijt values are equal to 1. Then, the
lijt values will be increased in such a way that the constraints (2.6)–(2.8) are not breached.

Once the above steps are completed, the values of all variables are specified.
Neighborhood solution generation procedure is as follows:
By changing the location of demand in the first period, neighborhood solution is produced. In this case, two

points can be chosen at random before moving their places. This process can be seen in Figure 4.
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Figure 4. Generated solution neighborhood procedure.

Once the neighborhood solution is generated in the first period, the process continues until all of the decision
variables are generated during various periods, as it is mentioned above [20].

3.3. Other features of the SA algorithm

Fitness function: In this algorithm, coverage and relocation cost objective function values are used as fitness
functions. Step 1: Calculate the value of coverage using the formula (2.1). Step 2: Calculate the value of relocation
cost using the formula (2.2). Step 3: Calculate the value of fitness function using the formula (2.14).

Feasibility of solution: To make sure that the solution is feasible, one must check the constraints (2.10)
and (2.12). A scalar penalty is considered for violation of these constraints. A penalty value of zero indicates
feasibility of the generated solution.

Cooling schedule: There exist several types of cooling schedule in the literature. In this paper, the geometric
cooling schedule is used, which can be described by the temperature-update formula Tk+1 = αTk.

Equilibrium condition: In this algorithm, equilibrium condition is to reach a particular number of iterations.
Stopping criterion: Reaching near-zero temperatures stops the algorithm.

4. Computational results

4.1. Dataset generation

To the best of our knowledge, the hybrid approach proposed in this article has not been presented in available
literature. Most of the covering problems presented in literature have been generated randomly. Also in this
research similar to the paper of ReVelle et al. [25], the problem data have been produced using uniform random
distributions in a specific information domain. Coordinates of the demand points, demand (or population) of
the points and the facility capacities are generated from [0, 30], [100, 200], and [300, 400] intervals, respectively.
The distances between the demand points are calculated as Euclidean distances. In order to generate present
cost of removing facilities, constant cost of constructing facilities, one may begin with calculating the values
corresponding to the first period using a uniform distribution. Then, considering rate of return, the corresponding
values to the next periods are computed. For this purpose, values of variables (present cost of facility destruction,
fixed cost of facility construction) in the first time period were produced from [500, 900], [500, 1000] intervals,
respectively, utilizing MS Excel software. Then, corresponding values to the next period were generated using
the following relationship:

F = P (F/P , i%, n),

where F is the data value in the period n (future value); P is the data value in the first period (present value);
i is the desired rate of return and n is the year in which the value of F is being calculated.

4.2. Parameter setting

The performance of SA algorithm depends highly on the values of parameters of the algorithm. Considering
one parameter at-a-time, a good combination of SA parameters was found. Table 1 summarizes the initial values
for temperature (T0), cooling rate (α), number of iterations at each temperature (k) and final temperature (Tmin).
In order to investigate the best value for each parameter, five problems were tested against various values, with
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Table 1. Tested levels of SA parameters.

Parameters Levels

T0 100 1000 10 000
α 0.90 0.95 0.99
K 3 6 10
Tmin 0.01 0.005 0.001

Table 2. Parameter setting results for initial temperature.

Problem
No.

(I, J, T ) P 100 1000 10 000

Objective
function

Time Objective
function

Time Objective
function

Time

1 (5, 5, 3) 2 0.9583 9 0.9484 11 0.9484 12
2 (7, 7, 3) 4 0.5392 13 0.6531 16 0.4831 18
3 (10, 10, 3) 5 0.7436 26 0.7707 31 0.7777 36
4 (12, 12, 3) 5 0.7992 20 0.8108 24 0.781 28
5 (14, 14, 3) 6 0.7342 23 0.8005 28 0.7494 33

Average – – 0.7549 18.2 0.7967 22 0.7479 25.4

Table 3. Parameter setting results for cooling rate.

Problem
No.

(I, J, T ) P 0.9 0.95 0.99

Objective
function

Time Objective
function

Time Objective
function

Time

1 (5, 5, 3) 2 0.9185 1 0.9286 3 0.9575 12
2 (7, 7, 3) 4 0.4217 2 0.5353 4 0.4743 18
3 (10, 10, 3) 5 0.6825 4 0.7596 8 0.7386 37
4 (12, 12, 3) 5 0.7527 3 0.7554 6 0.7856 28
5 (14, 14, 3) 6 0.7468 4 0.7141 7 0.7357 33

Average – – 0.7044 2.8 0.7386 5.6 0.7383 25.6

the results given in Tables 2–5. All running times are in seconds, and (w1, w2) = (0.5, 0.5). The best values were
found to be T0 = 1000, α = 0.95, k = 6, and Tmin = 0.005.

4.3. Numerical examples solved by SA algorithm

In Tables 6–9, several examples solved by SA algorithm are presented together with their results. It should
be noted that the following conclusions are obtained by taking (w1, w2) = (0.5, 0.5). For sensitivity analysis,
one can test different values of w1 and w2. These example cases were run on a computer equipped with a Core
i5, M 460, 2.53 GHz processor and 4 GB of RAM.

In Table 6, facilities 2 and 4 are constructed within the first time period. The demand points 1, 3, 4 and 5 are
covered by facility 4 while the demand point 2 is covered by facility 2. Since no relocation is performed in the
second time period, facilities 2 and 4 will be constant. In this time period, the demand points 1, 2, 3, 4 and 5
are covered by facility 2. In the third time period, due to one location change, facility 2 is removed and no
new facility is located, with the demand points 1, 2, 3, 4 and 5 covered by facility 4. In Table 6, it is considered
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Table 4. Parameter setting results for final temperature.

Problem
No.

(I, J, T ) P 0.01 0.005 0.001

Objective
function

Time Objective
function

Time Objective
function

Time

1 (5, 5, 3) 2 0.9376 10 0.9391 11 0.9393 12
2 (7, 7, 3) 4 0.5501 15 0.6119 16 0.514 18
3 (10, 10, 3) 5 0.803 31 0.7748 32 0.7773 36
4 (12, 12, 3) 5 0.7399 24 0.7908 25 0.7701 28
5 (14, 14, 3) 6 0.7501 28 0.7677 29 0.8543 33

Average – – 0.7561 21.6 0.7768 22.6 0.771 25.4

Table 5. Parameter setting results for number of iterations at each temperature (thermal
equilibrium).

Problem
No.

(I, J, T ) P 3 6 10

Objective
function

Time Objective
function

Time Objective
function

Time

1 (5, 5, 3) 2 0.926 4 0.94 7 0.9298 12
2 (7, 7, 3) 4 0.5477 6 0.4877 11 0.4123 18
3 (10, 10, 3) 5 0.7454 12 0.7874 22 0.7741 36
4 (12, 12, 3) 5 0.7604 9 0.7594 17 0.7974 27
5 (14, 14, 3) 6 0.72 10 0.7708 20 0.7673 32

Average – – 0.7399 8.2 0.749 15.4 0.7362 25

Table 6. Results for five demand points over three time periods.

Number Variable Variables equal to 1 P Objective
function

1 xjt x21, x31, x22, x32, x33 2 0.9497
2 yijt y121, y122, y133, y221, y222, y233, y331, y332,

y333, y421, y422, y433, y521, y522, y533
3 zjt z23
4 z′jt –

Table 7. Results for seven demand points over three time periods.

Number Variable Variables equal to 1 P Objective
function

1 xjt x21, x31, x41, x51, x12, x32, x42, x72, x33, x53, x73 4 0.7048
2 yijt y141, y172, y173, y231, y242, y273, y331, y332, y373, y441, y442,

y473, y521, y572, y533, y641, y632, y673, y721, y712, y753
3 zjt z22, z52, z13, z43
4 z′jt z′12, z′72, z′53
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Table 8. Results for five demand points over five time periods.

Number Variable Variables equal to 1 P Objective
function

1 xjt x11, x31, x41, x12, x32, x52, x33, x43, x34, x44, x45, x55 3 0.9357
2 yijt y111, y112, y143, y134, y145, y231, y252, y243, y244, y245, y331,

y332, y343, y334, y355, y411, y432, y443, y444, y445, y541, y552,
y533, y544, y555

3 zjt z42, z13, z52, z35
4 z′jt z′52, z′43, z′55

Table 9. Results for seven demand points over five time periods.

Number Variable Variables equal to 1 P Objective
function

1 xjt x21, x31, x41, x51, x32, x42, x52, x62, x13, x33, x43, x14, x34, x44, x15,
x65, x75

4 0.9053

2 yijt y141, y132, y143, y144, y115, y241, y252, y243, y244, y215, y331, y362, y343,
y334, y375, y441, y442, y413, y444, y415, y521, y552, y513, y534, y565, y621,
y662, y613, y634, y665, y731, y752, y733, y714, y715

3 zjt z22, z53, z63, z35, z45
4 z′jt z′62, z′13, z′65, z′75

that decreasing the relocation cost has more utility than increasing covered demand. Similar comments can be
expressed on Tables 7–9.

SA algorithm was run on various examples and the results were compared with the results of the example
described in the problem formulation (Eqs. (2.3)–(2.14)) when solved by GAMS software (Table 10).

The column headed by %Gap, which is related to covering objective function, is determined as follows:

%Gap =
GAMS upper bound− SA

GAMS upper bound
×100.

The column headed by %Gap, which is related to relocation cost objective function is determined as follows:

%Gap =
SA−GAMS lower bound

SA
× 100.

As was shown, recommended SA algorithm could provide suitable solutions within an acceptable time (see
Table 10 and Figure 5), as compared to those of GAMS software. In Figures 6 and 7, the terms GAMS upper
bound, GAMS lower bound, SA covered demand and SA relocation cost indicate upper bound of coverage
objective function in GAMS software, lower bound of relocation cost objective function, coverage objective
function value obtained from the SA algorithm, and relocation cost objective function value obtained from the
SA algorithm, respectively.

5. Conclusion and recommendations for future research

This study examined the gradual maximal covering location problem with variable radius over multiple time
periods. An overview of the research was presented, including definitions, necessity and objectives, assump-
tions and innovation of the problem. Following a literature review, the problem model was presented. Then, a
simulated annealing algorithm was described and its sequential steps were stipulated.
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Table 10. Comparing SA algorithm results with those of GAMS software.

Problem
number

(I, J, T )** P GAMS
solution
time (s)*

Coverage objective function Relocation cost objective function

GAMS
upper bound

SA % Gap GAMS
lower bound

SA % Gap

1 (5, 5, 3) 2 0.5 1453 1384 4.7 809 809 0.0
2 (7, 7, 3) 4 1.6 1874 1790 4.5 3226 3954 18.4
3 (10, 10, 3) 5 3.4 2728 2202 19.3 3776 5476 31.0
4 (12, 12, 3) 5 10.4 3011 2729 9.4 3755 5300 29.2
5 (14, 14, 3) 6 17.5 3263 2916 10.6 3680 4749 22.5
6 (15, 15, 3) 6 21 4041 3183 21.2 3680 4825 23.7
7 (17, 17, 3) 7 31 4458 3369 24.4 3456 4499 23.2
8 (20, 20, 3) 9 46 4834 3830 20.8 3456 4530 23.7
9 (21, 21, 3) 9 62 5409 3868 28.5 5802 9319 37.7
10 (22, 22, 3) 10 75 5664 4129 27.1 5744 8909 35.5
11 (24, 24, 3) 10 98 6192 4643 33.4 5880 9056 35.1
12 (25, 25, 3) 11 119 6425 4836 32.9 6450 9438 31.7
13 (26, 26, 3) 12 153 6838 4996 36.9 6890 10 112 31.9
14 (28, 28, 3) 12 194 7392 5321 38.9 7084 11 295 37.3
15 (30, 30, 3) 12 262 7830 5623 39.2 7470 12 496 40.2
16 (40, 40, 3) 14 346 9436 6742 40.0 8372 14 768 43.3
17 (50, 50, 3) 16 451 10 544 7158 47.3 10 768 19 743 45.5
18 (65, 65, 3) 20 580 13 640 8965 52.1 13 640 25 849 47.2
19 (85, 85, 3) 23 718 14 260 9064 57.3 14 076 30 064 53.2
20 (100, 100, 3) 25 868 16 100 9638 67.0 18 575 44 971 58.7
21 (5, 5, 5) 3 1.3 2284 2227 2.5 4575 6257 26.9
22 (7, 7, 5) 4 5 2937 2589 11.8 5614 7440 24.5
23 (10, 10, 5) 5 12 4204 3498 16.8 14 640 16 532 11.4
24 (12, 12, 5) 5 28 5190 4147 20.1 8064 10 950 26.4
25 (14, 14, 5) 6 45 6099 4621 24.2 10 981 14 452 24.0
26 (15, 15, 5) 6 53 6271 4886 22.1 11 158 14 329 22.1
27 (17, 17, 5) 7 100 8040 5294 34.2 16 031 20 190 20.6
28 (20, 20, 5) 9 172 8352 5832 30.0 13 517 19 442 30.5
29 (21, 21, 5) 9 283 9572 5936 38.0 14 973 20 822 28.1
30 (22, 22, 5) 10 395 9522 6169 35.2 13 838 19 524 29.1
31 (24, 24, 5) 11 546 9888 6328 36.0 16 176 23 247 30.4
32 (25, 25, 5) 11 621 10 575 6893 34.8 14 475 20 894 30.7
33 (26, 26, 5) 12 953 11 232 7079 37.0 18 018 27 089 33.5
34 (28, 28, 5) 12 1328 12 292 7286 40.7 19 964 29 572 32.5
35 (30, 30, 5) 12 1649 13 380 7534 43.7 20 820 31 295 33.5
36 (40, 40, 5) 14 1970 18 102 8984 50.4 25 382 39 476 35.7
37 (50, 50, 5) 16 2359 22 224 9843 55.7 29 808 47 589 37.4
38 (65, 65, 5) 20 2812 29 240 11 289 61.4 37 840 62 972 39.9
39 (85, 85, 5) 23 3309 36 547 12 943 64.6 44 114 76 325 42.2
40 (100, 100, 5) 25 3872 42 800 13 891 67.5 48 025 89 326 46.2

* As already mentioned, none of these examples can provide a feasible solution.
** Each problem consists of the two index variables xjt, zjt, z

′
jt, rjt, c

′
jt, qjt and the three index variables cijt, yijt, lijt. For

example, a problem with I = 5, J = 5, T = 3 contains 3× 5 = 15 variables xjt, 15 variables zjt, 15 variables z′jt, 15 variables rjt,

15 variables c′jt, 15 variables qjt, 3× 5× 5 = 75 variables cijt, 75 variables yijt, 75 variables lijt. Total number of variables for

this problem is 315. In this way, the size of other problems can be determined based on the number of decision variables.
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Figure 5. GAMS solution time for different problem sizes.

Figure 6. Comparison of GAMS upper bound with SA values.

Since some of unrealistic assumptions of the covering problems were no more considered in this problem,
it can be referred to as one of the most important problems in the field of facility location. In this study, a
mixed integer programming model was presented in which not only facility capacity was considered, but also
two objectives were followed: coverage maximization and relocation cost minimization.

Since this problem is a mixed integer nonlinear programming (MINLP) and NP-Hard problem, GAMS soft-
ware was seen to fail to generate suitable solutions within an acceptable time span. However, the SA algorithm
succeeded to provide good solutions within an acceptable period of time. The obtained results from GAMS
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Figure 7. Comparison of GAMS lower bound with SA values.

software were not reliable as the software did not take the variable radius coverage concept into account. Con-
sidering the limitations of GAMS software, the results of SA algorithm were reliable. With such interpretations,
the SA algorithm results are also acceptable for larger problems.

Considering previously conducted studies and in order to more precisely match the proposed model with
real-world applications, the following directions are recommended for future research:

– Since the travel time is a function of several factors such as traffic, weather condition and path quality, in
the real world, considering a variable travel time can contribute to achieving more realistic problems.

– In order to improve the SA algorithm for this problem, one can test new neighborhood definitions.
– Designing a method to achieve optimal solution can be investigated in future studies. With the second

objective function and constraints (2.10) and (2.11) been nonlinear, one can try to linearize them.
– One can use other coverage functions like step coverage function, nonlinear coverage function, etc. for

similar purposes.
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