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PRODUCTION-INVENTORY SYSTEM WITH FINITE
PRODUCTION RATE, STOCK-DEPENDENT DEMAND,
AND VARIABLE HOLDING COST

HesHAM K. ALFARES!

Abstract. In general, traditional production-inventory systems are
based on a number of simplifying — but somewhat unrealistic — as-
sumptions, including constant demand rate, constant holding cost, and
instantaneous order replenishment. These assumptions have been in-
dividually challenged in numerous variations of production-inventory
models. Finite production rate models, such as economic production
quantity (EPQ) systems consider gradual order replenishment. Stock-
dependent demand models assume the demand rate to be an elastic
function of the inventory level. Variable holding cost models assume
the holding cost per unit per time period to be a function of the time
spent in storage. In this paper, the three simplifying assumptions are
simultaneously relaxed in a new production-inventory system with a
finite production rate, stock-level dependent demand rate, and vari-
able holding cost. Mathematical models and optimum solution proce-
dures, including nonlinear programming, are presented for two func-
tional forms of holding cost variability. The main contribution of this
paper is the formulation and solution of a new production-inventory
model that more closely represents real-world situations. The realistic
assumptions and efficient solution algorithms should make the model
practical and useful for industrial applications.
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1. INTRODUCTION

Traditional production-inventory control systems, such as the economic order
quantity (EOQ) model, are usually based on the assumptions of constant demand
rate, constant inventory carrying cost, and instantaneous order arrival. This pa-
per presents a realistic production-inventory model in which all these assumptions
are relaxed. The EOQ assumption of instantaneous order arrival means the whole
order quantity (i.e., all units of the purchased lot) is received at once from the
supplier. This assumption is not valid if these units are manufactured and re-
ceived over an extended time interval. The economic production quantity (EPQ)
model relaxes this assumption by incorporating a gradual order receipt, i.e. a finite
production rate. This paper presents a production-inventory control system with
a finite production rate, a stock-dependent demand rate, and a variable holding
cost.

Demand variability according to item availability and price is a frequently ob-
served phenomenon. In stock-dependent demand models, the demand for a given
item increases with higher item availability. A bigger item display tends to attract
the attention of more customers, leading to increased sales. Customers may view
larger item stock as an indication of the item’s popularity and also as a sign of
reliable, continuing supply. Furthermore, a larger inventory leads to more on-time
delivery and fewer shortages, therefore improving customer satisfaction and stim-
ulating additional demand. Stock-dependent demand is a widely accepted concept
in the literature, as illustrated in the Urban [22] survey. Several studies provide
strong evidence to support this concept. For example, Koschat [11] empirically con-
firms the existence of a positive correlation between demand for a given product
and its on-shelf inventory. Since higher sales are made on the expense of carrying
more stock, firms need to find the optimum balance between the extra holding
cost and the additional profit resulting from the induced sales.

In inventory models with variable holding costs, the holding cost is a function of
either the storage level or the storage time. Holding cost time variability is used to
reflect the fact that longer storage times frequently require higher holding costs.
Longer storage periods, especially for perishable products, usually require more
expensive specialized storage facilities. Time-dependent holding cost models rep-
resent holding cost either as a continuous nonlinear function or as a discontinuous
step function of storage time. In continuous nonlinear functions, the unit holding
cost gradually increases with longer storage time. However, in discontinuous step
functions, the storage time is divided into few intervals, with one unit holding
cost rate for each interval. Therefore, the unit holding cost is constant within each
interval, but it immediately jumps to the next rate (step) as soon as the storage
time extends to the next interval.

The aim of this paper is to present a production-inventory model with a finite
production rate, a stock-level dependent demand rate, and a variable holding cost.
In this model, the demand rate is an increasing power function of the current
inventory level, and the holding cost is an increasing step function of the time spent
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in storage. Two types of holding cost step functions are considered: retroactive
holding cost, and incremental holding cost.

Subsequent sections of this paper are organized as follows. Relevant literature
is reviewed in Section 2. The inventory model is presented and analyzed in Sec-
tion 3. The model is formulated and the optimal solution process is developed for
retroactive and incremental holding costs in Sections 4 and 5, respectively. Finally,
results are discussed and conclusions are provided in Section 6.

2. LITERATURE REVIEW

Urban [22] provides a comprehensive review of inventory models with stock-
dependent demand rates published up to 2004, classifying work in this area into
two main types. In the first type, pioneered by Gupta and Vrat [10], the demand
rate is a function of the initial inventory. In the second type, pioneered by Baker
and Urban [2, 3], the demand rate is a function of the current inventory. A third
type could be considered as models in which the demand has two stages, an initial
period of level-dependent demand followed by a period of constant demand. In this
section, we review several categories of recent production-inventory models with
variable holding costs and stock-dependent demand rates.

2.1. EOQ-TYPE MODELS WITH STOCK-DEPENDENT DEMAND

In inventory models with variable demand rates, the demand is either a function
of time or a function of the stock level. According to Urban [22], demand depen-
dence on the stock level has several functional forms, including: linear, power,
and posynomial. Several models have been proposed for deteriorating items with
stock-level dependent demand rates. Min and Zhou [12] develop an EOQ model
for perishable items with a stock-dependent demand rate. Unsatisfied demands are
partially backlogged, and the demand rate during shortages depends on the nega-
tive inventory level, i.e. the amount of shortage. Sana et al. [16] present EOQ and
EPQ inventory models in which the demand rate depends on three factors: stock
level, selling price, and advertising. Both deteriorating and ameliorating items are
considered, and the objective is to maximize average profit subject to budget and
storage capacity constraints. Yang et al. [25] propose an EOQ model for deterio-
rating items with a stock-dependent demand rate, partial backlogging, inflation,
varying replenishment cycles, and varying shortage intervals. Unique optimal so-
lutions are shown to exist, and good heuristic solution procedures are developed.

2.2. EOQ-TYPE MODELS WITH VARIABLE HOLDING COST

An increasing number of EOQ-type inventory models assume variable and non-
linear holding costs. Muhlemann and Valtis-Spanopoulos [14] are the first to in-
troduce variable holding costs into the EOQ model. In their EOQ-type model, the
holding cost is assumed to be a function of the average inventory value. Their jus-
tification is that the cost of financing increases as the amount of investment (value
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of the inventory) increases. Weiss [24] develops deterministic and stochastic EOQ
models in which the per-unit holding cost is a non-linear function of the storage
duration. According to Weiss [24], this assumption is applicable to inventory sys-
tems where the value of stored items decreases non-linearly with storage length.
For the deterministic demand case, formulas are developed for the optimal order
quantity under both finite and infinite horizons. For the stochastic demand case, a
procedure to determine the optimal order quantity is described and computational
results are presented. Ferguson et al. [4] reexamine the Weiss [24] model in which
the cumulative holding cost is a nonlinear function of time. This model is shown
to be an approximation to the optimal order quantity for perishable grocery items
subject to delivery fees, where discounts are used to increase demand prior to the
expiration dates. Given historical data, regression is used to estimate the param-
eters of the holding function from storage and capital costs, product lifetime, and
discount policy.

2.3. EOQ—TYPE MODELS WITH VARIABLE DEMAND AND VARIABLE HOLDING
COST

Goh [9] presents the first inventory model in which the demand is stock de-
pendent and the holding cost varies with storage duration. Goh considers two
types of holding cost variation: (a) a nonlinear function of storage time, and (b)
a nonlinear function of storage level. For both cases, optimal ordering policies are
developed for the deterministic, single-item, and infinite-horizon inventory model.
Giri et al. [7] present a generalized EOQ-type model for deteriorating items, in
which the demand rate, the deterioration rate, the ordering cost, and the holding
cost are continuous functions of time. Assuming completely backlogged shortages,
the optimal ordering policy is developed for a finite planning horizon. Giri and
Chaudhuri [6] develop another EOQ-type model for deteriorating items in which
the demand rate is a function of the stock level. The holding cost is assumed to be
a continuous nonlinear function of either the stock level or the storage duration,
and approximate optimal solutions are derived for the two cases. The assumption
of increasing holding cost with longer storage is applicable to deteriorating items
that require increasingly better storage facilities to avoid deterioration.

Teng and Yang [20] generalize the EOQ model to consider a fluctuating demand
rate, time-varying unit cost, and generalized holding cost. The holding cost is
assumed to include both size-related parts (such as the warehouse cost) and value-
related parts (such as the insurance cost). The cost function is shown to be convex,
and a simple heuristic solution algorithm is proposed. Roy [15] formulates two
EOQ models for deteriorating items in which the demand rate is a function of
the selling price. Both the deterioration rate and the holding cost are continuous,
linearly increasing functions of storage duration. Shortages are allowed and are
completely backlogged in the first model, while they are not allowed in the second
model.
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Gayen and Pal [5] analyze a two-warehouse inventory model for a deteriorat-
ing item, in which both the demand rate and the holding cost are assumed to
be continuous power functions of the current inventory level. Procedures are pro-
vided for approximating the optimal order policy, and results of computational
experiments are presented. Mahata and Goswami [13] investigate an EOQ model
for deteriorating items, assuming a stock-dependent demand rate and a variable
holding cost. The holding cost is considered as a non-linear function of either the
length of storage time or the current inventory level. Since real-world problems are
characterized by imprecise and/or incomplete cost information, the demand rate,
holding cost, ordering cost, and unit purchase cost are considered to be fuzzy num-
bers. The objective function is shown to be convex, and algorithms are developed
for determining the optimal ordering policies.

Alfares [1] presents a stock-dependent EOQ-type model with two types of hold-
ing cost discontinuous step functions. As the storage time extends to the next
time period, the new (higher) holding cost can be applied either retroactively to
all storage periods, or incrementally to the new period only. Urban [23] extends
Alfares [1] work by allowing non-zero end inventory for each cycle, and shifting
to a maximum-profit objective. Singh, Kumar, and Gaur [18] present an EOQ
model with time-dependent demand and partial backlogging of unsatisfied de-
mand. They also consider deteriorating items, inflation, and an incremental hold-
ing cost function. Approximate optimal solutions are provided to minimize the
inflation-adjusted total cost of ordering, holding, purchasing, and backlogging.

2.4. EPQ—TYPE MODELS WITH VARIABLE DEMAND AND/OR HOLDING COST

Assuming constant holding cost, Goh [8] presents three models of stock-
dependent demand inventory systems: (a) an EOQ model with no shortages, (b) an
EOQ model with shortages, and (c) an EPQ model. Sarfaraz [17] develops a mod-
ified EPQ model in which the holding cost is composed of two components: an
investment cost proportional to the dollar value of inventory, and a capacity cost
proportional to the maximum inventory level. Two cases are formulated and op-
timally solved: a deterministic demand model, and stochastic demand model that
considers the costs of shortages and safety stocks. As stated earlier, Sana et al. [16]
analyze an EPQ model with a stock-dependent demand rate and storage capacity
limitations.

Tripathy et al. [21] formulate an EPQ model for deteriorating items, assuming
the demand and the production rates are constant and the holding cost is a non-
linear continuous function of storage time. Partially deteriorated items are sold
with a discount, while completely deteriorated items are discarded, and shortages
are not allowed. Singh, Singh, and Vaish [19] develop an EPQ inventory model
where demand is a linear function of time, and the production rate is a linear
function of the demand. Two cases of holding costs are considered: (i) holding cost
is constant, and (ii) holding cost is a continuous linear function of time. Optimal
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solutions are developed to minimize the total cost, including interest charges for
payment delays.

The objective of this paper is to develop mathematical models and opti-
mum solution procedures for two types of production-inventory systems with a
stock-dependent demand rate, a finite production (replenishment) rate, and time-
dependent holding cost functions.

3. MODEL DEVELOPMENT

3.1. NOTATION

The notation below is mostly adopted from Goh [8] and Alfares [1] for the
production-inventory model to be developed:

q(t) = quantity on-hand (inventory level) at time ¢,

D = constant (base) demand rate,

P = production rate during the first phase of the cycle (0 <t < t4),

n = number of distinct time periods with different holding cost rates,

t = time from the start of the cycle at t = 0,

t; = end time of the first (uptime) phase of the cycle,

o; = end time of holding-cost interval ¢, where i = 1,2,...n,00 =0, and o, = 0,

K = ordering/setup cost per order,

h(t) = holding cost of the item at time ¢, h(t) = h; if 0,1 <t < 0y,

T = cycle time, i.e. time between producing two consecutive orders of size S,

B = demand elasticity rate in relation to the inventory level,

Q = maximum inventory level, corresponding to time t = ¢1,

S = production lot size = Pt;.

3.2. ASSUMPTION AND LIMITATIONS

1. A single item with an infinite planning horizon is considered.

2. The holding cost is an increasing step function of storage duration (hy < hs <
v < hy).

3. An order of lot size S is produced gradually in ¢; periods at a constant rate P.

4. The units do not lose value during storage (no item deterioration).

5. Shortages are not allowed.

6. The demand rate R is an increasing power function of the inventory level g,

given as:
R(q)=D¢’, D>0, 0<B<1, ¢>0. (3.1)

3.3. THE PRODUCTION-INVENTORY MODEL

As shown in Figure 1, the inventory level variation over time ¢(¢) during a typical
cycle is divided into two phases. During the first (uptime) phase of the cycle, a
new order is produced at a constant rate P while the inventory is consumed at the
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FIGURE 1. The inventory level during the two phases of the cycle.

stock-dependent demand rate of Dg®. Hence, the rate of change in the inventory
level is expressed as follows:
dg(t
WO _p_ Dy’ 0<t<n, P>D. q0)=0 (3:2)
During the second (downtime) phase of the cycle, the rate of change (decrease)
in the inventory level is equal to the demand rate, which is given by:

WO _ piw, w<t<t g@)=0 (33

The total cost of the system includes two components: the ordering cost, and
the holding cost. Since one order at a cost K is made in each cycle, the ordering
cost per cycle is simply K. The holding cost per cycle is obtained by integrating
the product of the holding cost h(¢) and the inventory level ¢(¢) for the whole cycle.
However, the true objective is to minimize the total cost per unit time 7'C'; which
is obtained by dividing the total cost per cycle by the cycle time T'. Therefore, the
total cost per unit time T'C' is given by:

K 1

t1 T
TC= 2+ /0 h(t)g(t)dt + % /t 1 h(t)q(t)dt. (3.4)

During the uptime phase of the cycle (0 < ¢ < t1), rearranging and integrating
the ordinary differential equation (3.2) results in the following:

t 1 t
/0 71_aq(t)ﬂdq:P/0 dt (3.5)

a=D/P

where
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The left-hand side of (3.5) can be integrated to yield the hyper-geometric func-

tion 2F1.
1 1 1
— dg=qx2 F1 (1,=:1+ =: 04" ).
/1—06(]5 q q X2 1<7ﬂv +ﬁ’aq>

After simplification, we obtain:

o) anq(t)nﬂ+1 .
3 BT L = Pt. (3.6)

n=0
Since ¢(0) = 0 while ¢(t1) = Q, integrating over the range [0, 1] gives:
oo anQnﬂ+1

h :ZP(nﬂ+1)'

n=0

(3.7)

In order to obtain an expression for ¢(¢) during the uptime phase, (3.2) is
rearranged differently from (3.5) and integrated as follows:

b b
A q(t)dt = %A %dq (38)

The right-hand side of (3.8) again integrates to the hyper-geometric func-
tion 2F1.
After simplification, (3.8) can be written as:

b o0 a” npf+2 _ a npB+2
/a gt)dt =" [Q(b)P(nﬁJrZ()) 5 (3.9)

n=0

During the downtime phase of the cycle (¢; < ¢ < T'), Alfares [1] provides the
following solution of the ordinary differential equation (3.3):

b a)2—h8 _ 2.3
/ g(tyar = 4 )D(2 _qﬂ(? (3.10)
T:tﬁ%. (3.11)

Substituting the appropriate terms from (3.7) and (3.9)—(3.11) into (3.4), and
setting the derivative with respect to @ equal to 0, we solve for the optimum value
of Q. Following the derivation steps described in Appendix A, the minimum total
cost T'C' is obtained by solving the following equation for @:

0 QOB
hQ* P (1= B2 M0Q) Y. o s = KD - )2 5) (312
n=0

where
a@? < 1.
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For convergence of the power series in (3.12), the feasibility condition (aQ® < 1)
must be satisfied. To solve (3.12), the infinite power series is well approximated
with a reasonably large number of terms. Based on extensive numerical exper-
iments, it was found that including 2000 terms is quite sufficient for accurate
results, even in the worst case when the value of aQ? is nearly equal to 1.

From the optimum value of @, the following quantities can be calculated:

T B Q¥ " = anQnht?
0 nQn,{5‘+1
§=S"2>¥ (3.14)
e

4. RETROACTIVE HOLDING COST

Assuming a retroactive holding cost, only one holding cost is used. That is, the
holding cost of the last storage interval is used retroactively for earlier intervals.
Assuming that the cycle ends in interval e, (0.1 < T < o), then the rate h. is
applied to holding cost intervals 1,2, ..., e. Therefore, the total cost per unit time
TC is given by:

TC =

S=

hi [T
+—’/ qit)ydt  o;_1 <T < 0. (4.1)
T Jo

4.1. SOLUTION PROCEDURE

The optimum solution can be determined by using the following steps:

1. Starting with the lowest holding cost hy, use (3.12) to determine @ and (3.11)
to determine T for each h; until @ is realizable (i.e., 0;1 < T < 0;). Call these
values Tr and Qg.

2. Calculate all break-point values of @, Q; = Q(0;), by setting T' = o, in (3.11)
and solving for @;.

3. For all Qg and Q;, use (3.13) to calculate and then substitute the result using
the appropriate h; into (4.1) to calculate the total cost T'C'.

4. Choose the value of @ that gives the lowest T'C, and then use (3.14) to calculate
the corresponding production lot size S.

4.2. EXAMPLE 1

Given the following parameters:

D = 400 units per year,
P = 1000 units per year,
K = $300 per order,

6 = 0.1,
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hi = $6/unit/year, ho = $8/unit/year, hs = $10/unit/year,
o1 = 0.3 years, g9 = 0.6 years, 03 = 0.

The solution procedure is implemented in the following steps.

Step 1. Substituting h; =6 (for 0 < T' < 0.3), solving (3.12) gives: @ = 155.
Substituting @ = 155 into (3.11) gives T' = 0.656 (not realizable).

Using he = 8 (for 0.3 < T < 0.6), solving (3.12) gives: Q) = 135.
Substituting @ = 135 into (3.11) gives T' = 0.567 (realizable).

Step 2. Setting T'= o1 = 0.3, solving (3.11) gives: Q1 = 73.
Setting T' = 09 = 0.6, solving (3.11) gives: Q2 = 142.

Step 3. Substituting Qr = 135 and hy = 8 into (3.13) and (4.1) gives: TC =

$1,078.09.
Substituting @1 = 73 and hy = 6 into (3.13) and (4.1) gives: TC =
$1,223.08.
Substituting Q2 = 142 and hy = 8 into (3.13) and (4.1) gives: TC =
$1,079.64.

Step 4. The minimum cost (T'C' = $1,078.09/year) is obtained with @ = 135.
Using (3.14), the corresponding lot size is calculated as: S = 338. There-
fore, the optimum inventory policy is:

Cycle time T = 0.567 year.
Lot size S = 338.

5. INCREMENTAL HOLDING COST

An incrementally increasing holding cost means that a different holding cost
h; applies to each storage interval i (o;; < t < o). The objective, which is to
minimize the total cost per unit time, is expressed as follows:

Minimize TIC = — —l— Zh / (5.1)

Ti—1

A given interval [0;_1, 0;] may fall entirely in the first phase (before 1), entirely
in the second phase (after ¢1), or straddle both phases. Therefore, depending on
the relationship between end points [0;_1, ;] and ¢, there are three possible pro-
cedures for calculating the integrals in (5.1). If the interval falls entirely in the first
phase (0;,-1 < 0; < t1), then we use (3.9), replacing a and b by ¢;,_1 and o;. If
the interval falls entirely in the second phase (t1 < ;-1 < 0;), then we use (3.10),
replacing a and b by o;_1 and o;. However, if the interval straddles both phases
(0i-1 < t1 < 0y), then we have to evaluate the integral over [0;_1,0;] using a
combination of (3.9) and (3.10) as follows:

/o. Z Qn,8+2 o q( )n,8+2] Q27,8_q(o.i)27,8

+ , Oi—1 <t <oy
P(nf +2) D(2—7) smr=hee

i1 n=0

(5.2)
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The inventory level ¢(t) is determined from (3.2) during the uptime phase and
from (3.3) during the downtime phase. Therefore, the functions ¢(o;) and ¢(o;—1)
are determined from two different expressions in the two phases.

-~ a"g(t)"
—t =P <o < .
nz:% B+ 1) t, 0<o; <t (5.3)

¢t)=[Q"° ~D(L - P)(t —t)]™F, t <o <T (5.4)

If the current interval ¢ is the last interval in the cycle (i.e. i = e), then the
intervals end point o; = o, has to be replaced by the cycle time T'. Therefore,
it should be assumed that o; = T and ¢(o;) = 0 for the last interval ¢ in (5.1).
Furthermore, the cycle time 7" must fall in the last interval e.

Oec—1 S T S O¢ (55)
5.1. SOLUTION PROCEDURE

Since the objective function (5.1) is constrained, direct optimization by differ-
ential calculus is not feasible. For the incremental holding cost case, the optimum
solution is obtained by nonlinear programming according to the following steps:

1. Substitute the minimum and maximum values of h; in (3.12) to find the range
of values for Q, and then use (3.7) and (3.11) to determine the corresponding
range of intervals for ¢; and T'.

2. For each possible combination of ¢; and T intervals, formulate a nonlinear
programming (NLP) model whose objective function is (5.1), decision variable
is @, and constraints are (3.7), (3.11), and (5.3)—(5.5). In each NLP model, use
the applicable terms for each interval [;_1, 0;] in the objective and constraints.

3. For each combination of £; and T intervals, solve the corresponding NLP model
to find the optimum solution.

4. Choose the feasible solution with the minimum total cost T'C.

5.2. EXAMPLE 2

Resolve Example 1 assuming the holding cost increases incrementally.
The solution procedure is implemented in the following steps.

Step 1. For hy = 6 (0 < T < 0.3), (3.12), (3.7), and (3.11) give Q = 155,
t1 = 0.396, and T = 0.656.
For hy = 10 (T > 0.6), (3.12), (3.7), and (3.11) give Q = 121, t; = 0.298,
and T' = 0.506.

Clearly T falls either in the second or the third interval. However,
although the results indicate that ¢; may fall either in the first or the
second interval, the minimum ¢; = 0.298 is nearly in the second interval.
Therefore, we will consider ¢; to belong to the second interval only.
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Step 2 (a). Assuming both ¢; and T are in the second interval, then e = 2. In
the objective function, (3.9) is used for the first interval (0 < t < 0.3)
which is in the uptime phase, while (5.2) is used for the second interval
(0.3 < t < T') which straddles the uptime and downtime phases. Therefore,
the NLP model is formulated as follows:

0 4n 0 3)0 1n+2

Minimize TIC = — + = Z 1000(0.11 + 2)
8 04n 0.1n+2 _ 03 0.1n+2
L8 Z @ q(0.3) ] (5.6)
T\~ 1000(0.1n + 2)
Q201
1002z -0, 1))
Subject to:
> 0.47q(0.3)01n+1
—_— =1 . i .
Z:% 01 D) 000(0.3) 0<o; <t (5.7)
0 O.4nQO.1n+1
t = _ 5.8
! T; 1000(0.1n + 1) (58)
Q101
T=t _ 5.9
' 001 —0.0) (5:9)
0.3<7T <0.6. (5.10)

Step 2 (b). Assuming ¢; is in the second interval and T is in the third interval,
then e = 3. The NLP model is formulated as follows:

300 0.47 (0.3)0.1n+2
Mi TIC = — 1000(0.1n + 2)
inimize C= T T Z 1000(0.1n + 2)

7 1000(0.1n + 2)

8 ( 0.4n[Q0.1n+2 _ q(0.3)0.1n+2]
T

(5.11)

+szo& _ q(0.6)20'1>
400(2 —0.1)

_’_E q(0.6)270.1
T \4002—0.1))"
This function is minimized subject to constraints (5.7)—(5.9) above, in
addition to the two following constraints:

q(0.6) = [Q"%1 — 400(1 — 0.1)(0.6 — ;)] 707 (5.12)
T > 0.6. (5.13)
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Step 3. The optimum solution of the NLP in step 2(a) is:
Q =126,t; =0.312, T = 0.528, S = 312, TC = $1,007.01.
The optimum solution of the NLP in step 2(b) is:
Q =143, t; =0.361, T = 0.603, S = 361, T'C' = $1,015.62.
Step 4. The optimum solution of Example 2 for incremental holding cost is:

Q =126, t; = 0.312, T = 0.528, S = 312, TC = $1,007.01.

6. DISCUSSION AND CONCLUSIONS

The two algorithms presented in sections 4 and 5 are quite efficient. In the
retroactive case, the number of algorithm iterations is proportional to the num-
ber of holding cost rates, i.e., number of holding cost intervals, n. Therefore, the
complexity of the retroactive holding cost algorithm is simply O(n). In the incre-
mental case, the number of algorithm iterations is proportional to the number of
feasible combinations of t; and T intervals. Let u and e respectively denote hold-
ing costs intervals corresponding to ¢; and T'. Since t; cannot exceed T, then u
cannot exceed e (u = 1,...,e), and since e cannot exceed n, then the number of
feasible combinations of u and e cannot exceed > ;i = n(n + 1)/2. Therefore,
the complexity of the incremental holding cost algorithm is O(n?).

To effectively use the models and algorithms in real-life applications, concerned
mangers need to validate that the models assumptions are applicable in their
organizations. First, production managers have to confirm that the demand for
the given product is indeed an increasing power function of the stock level. Sub-
sequently, the parameters of this function (D and ) need to be estimated by
least-squares regression from historical inventory and demand data. In addition,
the parameters of the holding cost function (o; and h;) and its particular form
(retroactive or incremental) have to be determined. For the solution of the equa-
tions and nonlinear programs, managers may conveniently use Microsoft Excel
with Solver add-in.

This paper presented a production-inventory system with a finite production
rate in which both the demand rate and the holding cost are variables. The de-
mand rate is stock dependent, varying as an increasing power function of the
instantaneous inventory level. The holding cost is time dependent, varying either
retroactively or incrementally as an increasing step function of the storage du-
ration. Optimization models and solution procedures have been developed, and
examples have been solved. Several steps of nonlinear programming are used to
solve problems with incremental holding cost srtucture. For future research, the
work presented here can be extended in several directions, including variable pro-
duction rates, variable ordering costs, and price-dependent demands.
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APPENDIX A. DERIVATION OF EQUATION (3.12)

Equation (3.4) can be written as follows:

TC = % + %/Otl q(t)dt + %/tlT q(t)dt. (A1)
From (3.9), the uptime phase integral is:
tl 0 n n
/q(t)dt - Q; _O%. (A.2)
) ne
From (3.10), the downtime phase integral is:
T Q> F
/t1 q(t)dt = D7) (A.3)

Substituting (A.2) and (A.3) and the values of ¢; and T from (3.7) and (3.11) into

(A.1) gives:
Q2 S O‘nQnB Q2P
K+hi| =2 -
o anQnB+1 Ql—ﬁ
Zn:O + _
P(1+nB)  D(1-p)
o hz nynB+2 hz 2—03
K+ Zn:O - Q Q
P@2+np) DQ2-p)
. anQnBJrl Qlfﬁ .
Zn:O + _
P(1+nB)  D(1-p)
Setting the derivative of T'C' with respect @ = 0:
e} hianQnﬁ—i_l hin_ﬁ o'} anQnB+1 Ql_ﬁ
Zn:O + Zn:O + _
TC! — P D P(14+np) D(1-7)

. anQnB+1 Ql—ﬁ 2
(Z”‘O P rnd) T D ﬁ))
nnB+2 (N2—0 nnp -B
h;a" Q™ hiQ )) (Zoo a"@ +Q )

TC =

K > —_—
_( +Z n=0 P D

=0 P(2 4+ np) + D(2-3
o anQnB+1 Ql—,ﬁ‘ 2
(= e o)
Since the numerator = 0, then:
oo hianQn,BJrl hinfﬁ . anQnﬁ+1 Qlfﬂ
(Z"—O P D ) ( =0 P(l+nf) | D(1 —ﬂ))
@t QY (e, @)
n=0"_p .

- <K+Zf—1 PE+np) | D2 p) P "D

=0.
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Dividing both sides by (ZZOZO ang”ﬁ + QTEB) and simplifying gives:

hanQnB+2 hQQﬁB
+ =K.
ZP (A+nB)2+nd)  DA-pE—0)
Multiplying both sides by w gives:

(1-5)

DaQn8+2 2 s KD1-p)(2-7)
ZP +nﬁ(2+nﬁ)+Q N h '

Finally, substituting « = D/P in the above equation and rearranging leads to
equation (3.12).
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