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ON ABSORPTION TIMES AND DIRICHLET EIGENVALUES

Laurent Miclo1

Abstract. This paper gives a stochastic representation in spectral terms for the absorption time T
of a finite Markov chain which is irreducible and reversible outside the absorbing point. This yields
quantitative informations on the parameters of a similar representation due to O’Cinneide for general
chains admitting real eigenvalues. In the discrete time setting, if the underlying Dirichlet eigenvalues
(namely the eigenvalues of the Markov transition operator restricted to the functions vanishing on the
absorbing point) are nonnegative, we show that T is distributed as a mixture of sums of independent
geometric laws whose parameters are successive Dirichlet eigenvalues (starting from the smallest one).
The mixture weights depend on the starting law. This result leads to a probabilistic interpretation
of the spectrum, in terms of strong random times and local equilibria through a simple intertwining
relation. Next this study is extended to the continuous time framework, where geometric laws have to
be replaced by exponential distributions having the (opposite) Dirichlet eigenvalues of the generator
as parameters. Returning to the discrete time setting we consider the influence of negative eigenvalues
which are given another probabilistic meaning. These results generalize results of Karlin and McGregor
and Keilson for birth and death chains.
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1. Introduction

This paper shows that the time to absorption of a reversible Markov chain has a stochastic representation
in spectral terms. It gives quantitative informations on the parameters of a similar representation due to
O’Cinneide [24] for general chains admitting real eigenvalues. In continuous time, the absorption time is
distributed as a mixture of sums of independent exponentials having the underlying eigenvalues as parameters.
This generalizes results of Karlin and McGregor [15] and Keilson [17] for birth and death chains.

We begin with the case of discrete time. Let S̄ be a finite set endowed with a probability transition matrix P̄ .
We make the following irreducibility and reversibility assumptions:

(A1) There exists a particular point � ∈ S̄ which is absorbing (i.e. P̄ (�,�) = 1) and such that {�}
is the unique irreducible class of P̄ (or equivalently, for any x ∈ S̄, there exists a path going from x to �,
x = x0, x1, ..., xp = �, satisfying P̄ (xi, xi+1) > 0 for i ∈ �0, p− 1�). Let S � S̄ \ {�}, we assume furthermore
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processes.
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that the subMarkovian restriction P � (P̄ (x, y))x,y∈S of P̄ to S is irreducible (namely, any pair of points from
S can be joined by a path).

(A2) P is reversible with respect to some positive probability measure π on S:

∀ x, y ∈ S, π(x)P (x, y) = π(y)P (y, x).

Let m0 be a probability measure on S, we consider X � (Xn)n∈N a homogeneous Markov chain on S̄ whose
initial distribution is m0 and whose transitions are given by P̄ . We are interested in the absorption time

T � inf{n ∈ N : Xn = �}
which is almost surely finite by the first irreducibility hypothesis.

To describe its law, we need to introduce the corresponding Dirichlet eigenvalues, which are the eigenvalues
of the restriction of P̄ to the space of functions f : S̄ → R satisfying the Dirichlet condition f(�) = 0.
Equivalently, they are the eigenvalues of P ,

1 > θ0 > θ1 ≥ θ2 ≥ · · · ≥ θN−1 > −1

where N = card(S). The fact that they are real numbers comes from the reversibility assumption. They belong
to (−1, 1) because {�} is the unique irreducible class of P̄ . The inequality θ0 > θ1 (and also θ0 ≥ |θN−1|) is a
consequence of the irreducibility of P and of the Perron-Frobenius theorem.

To get a simple statement below, we assume that all these eigenvalues are nonnegative:
(A3) θN−1 ≥ 0.

For 0 ≤ i ≤ N−1, we denote by G(θi, θi+1, ..., θN−1) the convolution of geometric distributions of parameters
θi, θi+1, ..., θN−1. More precisely, this is the law of τi + τi+1 + · · · + τN−1, where the τj , for j ∈ �i, N − 1�, are
independent random variables and satisfy

∀ j ∈ �i, N − 1�, ∀ n ∈ N
∗, P[τj = n] = θn−1

j (1 − θj).

If we denote θ � (θ0, ..., θN−1) and if a � (a0, ..., aN−1) is a probability measure on �0, N − 1�, we introduce
MG(θ, a) the mixture of the distributions G(θi, θi+1, ..., θN−1), for i ∈ �0, N − 1�, with respective weights given
by a, i.e.

MG(θ, a) �
∑

0≤i≤N−1

aiG(θi, θi+1, ..., θN−1).

From a probabilistic point of view, if Ti, for i ∈ �0, N − 1�, are respectively distributed according to
G(θi, θi+1, ..., θN−1) and if A is independent of (Ti)i∈�0,N−1� and has a as law, then TA has distribution MG(θ, a).

One of our main results can now be stated (see the paragraph after Thm. 1.2 below for a discussion of the
links with the representation due to O’Cinneide [24]):

Theorem 1.1. Under the assumptions (A1), (A2) and (A3), there exists a probability measure a � (a0, ...,
aN−1), with a0 > 0, such that T is distributed as MG(θ, a).

The probability measure a strongly depends on the initial distribution m0 of X . Let us write a(m0), then a
commutes with the operation of taking mixtures: if m′

0 and m′′
0 are two probabilities on S and α ∈ [0, 1], then

a(αm′
0 + (1 − α)m′′

0 ) = αa(m′
0) + (1 − α)a(m′′

0 ). Thus to prove the above theorem, it is sufficient to deal with
the case where m0 is a Dirac mass at some initial point x ∈ S, nevertheless it will be more fruitful to treat the
general situation directly. There is an explicit formula for a:

∀ i ∈ �0, N − 1�, ai = m0

⎛⎝ ∏
j∈�i+1,N−1�

P − θj

1 − θj

⎞⎠ 1 − P

1 − θi
(S) (1.1)
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but to see that it is nonnegative, we will need a non-immediate linear algebra result due to Micchelli and
Willoughby [21]. In Remark 3.3 below, we will see how this expression simplifies in the important case i = 0.

If P is not assumed to be irreducible (then the inequality θ0 > θ1 is not necessarily satisfied), we can
decompose S into the corresponding irreducibility classes for P , say S1, ..., Sr, and apply the previous theorem
to the Markovian transition matrices P̄i � (P̄ (x, y))x,y∈Si�{�}, for i ∈ �1, r�, to get a similar result (except for
the assertion a0 > 0), with a mixture of sum of geometric variables of parameters certain successive Dirichlet
eigenvalues of the Pi � (P̄ (x, y))x,y∈Si , for i ∈ �1, r�.

It is also possible to describe the law of T when some of the eigenvalues are negative, but the corresponding
statement is more involved and we refer the reader to Section 6 below. The case of nonnegative eigenvalues is
already sufficient to deduce a similar result in the continuous time setting. Let S̄ = S � {�} be a finite set,
endowed with L̄ a Markov generator matrix (i.e. the off-diagonal entries are nonnegative and the rows sum up
to zero). In analogy to what we have done before, we assume that

(B1): {�} is the unique recurrence class of L̄, so in particular � is an absorbing point (namely the row
L̄(�, ·) is null) and the S × S submatrix L of L̄ (or from a functional point of view, the restriction of the
operator L̄ to functions vanishing in �) is irreducible.

(B2): L is reversible with respect to some positive probability measure π on S:

∀ x, y ∈ S, π(x)L(x, y) = π(y)L(y, x).

Let m0 be a probability measure on S, we consider X � (Xt)t≥0 a homogeneous Markov process on S̄ whose
initial distribution is m0, whose infinitesimal generator is L̄ and whose trajectories are cadlag, namely they are
right-continuous and admit left-limits. We are interested in the absorption time

T � inf{t ≥ 0 : Xt = �}

which is almost surely finite by the irreducibility hypothesis.
To describe its law, we need to introduce the corresponding Dirichlet eigenvalues, which are the eigenvalues

of the restriction of −L̄ to the space of functions vanishing at �. They are just the eigenvalues of −L,

0 < λ0 < λ1 ≤ · · · ≤ λN−1

where N = card(S). As above, the fact that they are real numbers comes from the reversibility assumption and
they are positive because {�} is the unique recurrence class of L̄. The inequality λ0 < λ1 is a consequence of
the irreducibility of L and of the Perron-Frobenius theorem. Alternatively, one can come back to the previous
situation by considering the semigroup (P̄t)t≥0 � (exp(tL̄))t≥0. Then for any t > 0, P̄t satisfies the above
discrete time hypotheses and we have for its eigenvalues

∀ 0 ≤ i ≤ N − 1, θi(t) = exp(−tλi)

which in particular are positive: θN−1(t) > 0.
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For 0 ≤ i ≤ N − 1, we denote by E(λi, λi+1, ..., λN−1) the convolution of exponential distributions of
parameters λi, λi+1, ..., λN−1. More precisely, this is the law of τ̃i + τ̃i+1 + · · · + τ̃N−1, where the τ̃j , for
j ∈ �i, N − 1�, are independent r.v. and satisfy

∀ j ∈ �i, N − 1�, ∀ t ≥ 0, P[τ̃j ≥ t] = exp(−λjt).

Again, we denote λ � (λ0, ..., λN−1) and for a probability measure a � (a0, ..., aN−1) on �0, N−1�, we introduce
ME(λ, a) the mixture of the distributions E(λi, λi+1, ..., λN−1), for i ∈ �0, N − 1�, with respective weights given
by a, i.e.

ME(λ, a) �
∑

0≤i≤N−1

aiE(λi, λi+1, ..., λN−1).

As a consequence of previous result, we get:

Theorem 1.2. Under the continuous time assumptions (B1) and (B2), there exists a probability measure
a � (a0, ..., aN−1), with a0 > 0, such that T is distributed as ME(θ, a).

That T is distributed as a mixture of convolutions of exponential laws is known and due to O’Cinneide [24].
Under the relaxed assumption that the eigenvalues of L are real, he showed that there existM ≥ N , a probability
measure a = (ai)i∈�0,M−1� and positive parameters l = (li)i∈�0,M−1� such the law of T is described by

ME(l, a) �
∑

0≤i≤M−1

aiE(li, li+1, ..., lM−1)

O’Cinneide [24] also indicated that, once the exponential distributions have been replaced by geometric distri-
butions, the same representation can also be deduced in discrete time by resorting to techniques from [23].

These results belong to the realm of phase type distributions (they correspond to general laws of absorbing
time of finite Markov chains), which are important in the computational probability approach to queueing
theory, because they lead to matrix algorithms which are tractable in practice. This field of investigation was
initiated by Neuts [22] but it is out of the scope of the present article to present it. We refer the interested
reader to the above references and to the bibliography therein (see also for instance Commault and Mocanu [4]
or He and Zhang [13,14] for more recent works on the subject). We just mention briefly a few features. The
view point of phase type distributions is the opposite of our approach: for queueing theorists the law of T is
given (this is the distribution of the arrival or service times) and they want to find a corresponding generator
L̄ with the smallest possible state space. The information (under the reversibility assumption) that we can
take M = N is important since it reduces the size of a representation in terms of a simple Markov chain.
Note that in the general case of real eigenvalues, one may have to take M > N , as it is shown by an example
due to Botta et al. [3]. Further, to estimate the minimal M seems a difficult task. The identification of the
parameters as eigenvalues given in Theorem 1.2 is also relevant. But above all, our proof is completely different
from the invariant polytope method of O’Cinneide [24] and it sheds a new probabilistic insight on his result.
We hope we will be able to extend our approach (where reversibility is only needed in next section) to recover
the full validity of O’Cinneide’s representation and maybe to better understand the general case where complex
eigenvalues enter the game (see the nice review of O’Cinneide [25] for very motivating open problems in this
direction).

An immediate application of Theorems 1.1 and 1.2, is to provide easy bounds on absorption times. Thus in
continuous time (respectively in discrete time, with nonnegative eigenvalues), T is always stochastically bounded
above by a sum of exponential laws (resp. geometric laws) of parameters the corresponding Dirichlet eigenvalues.
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For instance, in discrete time with nonnegative eigenvalues, we get with the notation introduced before
Theorem 1.1, for any n ∈ N∗,

P[T ≥ n] ≤ P[τ1 + · · · + τN−1 ≥ n]

=
∑

m∈�n,∞�

∑
n0+···+nN−1=m, nj∈N∗

∏
j∈�0,N−1�

(1 − θj)θ
nj−1
j .

This formula can be deduced using a divided differences computation (see also (6.8) in Sect. 6). For simplicity,
assume that all the eigenvalues are distinct, then we have

∑
n0+···+nN−1=m, nj∈N∗

∏
j∈�0,N−1�

θ
nj−1
j =

∑
i∈�0,N−1�

θN+m
i∏

j∈�0,k�\{i}(θi − θj)

and we recover the standard bound

P[T ≥ n] ≤
∑

i∈�0,N−1�

θN+n
i∏

j∈�0,k�\{i}(θi − θj)
·

Similar computations hold for continuous time. Unfortunately, these bounds are not very sharp in general,
unless if a0 is not negligible. Indeed, lower bound on a0 will be important in deducing interesting quantitative
informations on absorption time for specific models, but we will not investigate this subject here. Another
strong motivation to study the quantity a0 is that it can be used to deduce cut-off phenomenon in the separation
distance (at least in the absorbing setting instead of convergence to equilibrium, but they are related, see also
a remark below). Indeed, if a0 is sufficiently close to 1 (or at least if the probability measure a is concentrated
near 0), the strategy of Diaconis and Saloff-Coste [7] can be applied: they only work with birth and death chains
because they needed the structure of the law of (dual) absorbing times. The later can also be useful for cut-off
in total variation, see the recent preprint of Ding et al. [8].

Below we obtain more structural results, we present an intertwining relation between the absorbing chain
or process and a special kind of chain or process, which is nonreversible. Nevertheless, the corresponding
transition probability kernel, or generator, belongs to K̂ or L̂, respectively a certain kind of closure of reversible
and irreducible (as before) transition probabilities with nonnegative eigenvalues, or generators, absorbing in �
(see Sects. 4 and 5 for the exact definitions). This will enable us to deduce that the class of distributions
MG(a, θ) with 1 > θ0 ≥ θ1 ≥ · · · ≥ θN−1 ≥ 0 (respectively ME(a, λ) with 0 < λ0 ≤ λ1 ≤ · · · ≤ λN−1) and
any probability measure a on �0, N − 1�, is exactly the set of laws of absorption times of Markov chains (resp.
processes) starting from S and associated to a transition matrix belonging to K̂ (resp. to a generator belonging
to L̂). This characterization goes further than the result obtained by Kent [20] in this direction, even when
restricted to birth and death processes.

Theorems 1.1 and 1.2 and their proofs permit a better probabilistic understanding of the fact that under
certain circumstances, the absorption time is distributed as a sum of exponential laws (or geometrical laws in
discrete time with nonnegative eigenvalues) of parameters the corresponding Dirichlet eigenvalues. This is true
for birth and death processes (or monotone chains) starting from one end of a finite segment and absorbing
at the other end and we recover the results Karlin and McGregor [15] and Keilson [17], see for instance [6] or
Fill [11] for references and the historical background on the subject.

The proof will be based on two ideas, one is the construction of strong random times (generalizing strong
stationary times) in the spirit of the work of Aldous and Diaconis [1]. The other one is a stability result on
symmetric matrices with nonnegative entries due to Micchelli and Willoughby [21], that we learned from two
recent preprints of Fill [11,12]. The ingredient linking these two tools is the notion of local equilibrium, which
appeared in [6], but was not fully exploited there.
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One limitation of our approach is that we are only able to deal with reversible chains or processes, while
Theorem 1.1 and 1.2 sometimes also hold for nonreversible chains or processes, e.g. for skip-free ones, see the
paper of Fill [12]. We hope to better understand this situation in future work. An easy potential extension
concerns reversible Markov chains or processes with more general state space, specially diffusions (see for instance
the papers [18,19] of Kent), but this subject will not be developped here. Another even more interesting variation
relates to convergence to equilibrium for reversible Markov chains or processes. Indeed, a similar approach can
be applied for truly irreducible chains or processes (where the whole state space is the unique recurrence class),
so that Theorems 1.1 and 1.2 equally hold for strong stationary times (for a background on this field, see for
instance the paper of Aldous and Diaconis [1], Diaconis and Fill [5] or Fill [10]) with the standard (Neumann)
eigenvalues. This will be the matter of a forthcoming paper.

One may be tempted, say in the continuous time setting, to obtain a more “spatial” interpretation of the
exponential variables appearing in Theorem 1.2, for instance by seeing their partial sums as reaching times of
some level sets of the state space. But this is not true in general. We have seen in [6] that in the simple situation
of birth and death process, starting from one end of a finite interval and absorbed at the other end, the partial
sums of exponential variables correspond to stopping times of the process in certain distributions (called the
local equilibria, whose supports are the naturally increasing subinterval), but they are not reaching times. The
kind of stopping times needed, called strong randomized stopping times, will be introduced in next section. Still
in the above case of birth and death processes, the local equilibria can be related to the left-eigenvectors of the
generator (see [6]), but we have not been able to take advantage of that, in particular to deduce a probabilistic
or geometric proof of the result of Micchelli and Willoughby [21]. In the same spirit, the well-known eigenvalue
expansion for the distributions of the process at fixed times enables to get the law of the absorption time as
a “mixture” of exponential laws, but with signed weights. The interest of Theorem 1.2 is to provide a truly
probabilistic decomposition.

The plan of the paper is the following: in the next section we study a particular kind of strong random time.
In Section 3, we take advantage of these and of a linear algebra result to define local equilibrium distributions
associated to the initial probability measure m0, which lead to the proof of Theorem 1. In Section 4 we go
further and build an intertwining relation. We deduce the similar results for continuous time in Section 5 and
we deal with negative eigenvalues in Section 6. In the last section, we consider two antagonistic examples, one
is birth and death processes and the other one is chains or processes with a constant probability or rate to go
to the absorbing point.

2. Strong random times

In the next three sections, we will be working in the discrete time framework. This section is devoted to
the construction of a special kind of strong random time which will serve as an elementary brick in building
intertwinings.

Let X � (Xn)n∈N be any homogeneous Markov chain taking values in a finite state space S. We denote by
P its transition matrix and by m0 its initial distribution (seen as a row vector).

By definition, a strong random time τ is an almost surely finite randomized stopping time for X (namely a
stopping time with respect to the filtration generated by X enlarged with some independent randomness) such
that τ and Xτ are independent.

Our principal result here is

Proposition 2.1. Assume there exist θ ∈ (0, 1) and a probability measure μ on S such that

m0P = θm0 + (1 − θ)μ.

Then there exists a strong random time τ , distributed as a geometric law of parameter θ, such that Xτ admits
μ as law.

Formally, this result also holds for θ = 0, since we can then take τ ≡ 1. For θ = 1 (in which case m0 is
invariant for P ), the natural extension of the above statement would lead to τ ≡ +∞, so Xτ cannot be defined
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in general, which also reflects the fact that μ is not determined by the above equation in this situation. But if
μ = m0, one can take τ ≡ 0.

Proof. The starting idea of the following construction comes from a paper of Aldous and Diaconis [1], see the
proof of their Proposition 3.2.b. They were looking for a fastest strong stationary time (namely a strong random
time τ such that Xτ is distributed according to an invariant measure for P and which is stochastically minimal
among all such times).

Let us define

∀ x ∈ S, s(x) � 1 − m1

μ
(x)

= θ

(
1 − m0

μ
(x)

)
∈ R � {−∞}

where m1 � m0P is the law of X1. This quantity is related to the “distance” in separation between m1

and μ, but this feature will not be explicitely used in what follows. At time 1, knowing X0 and X1, we take
τ = 1 with probability (1 − θ)/(1 − s(X1)), namely we generate a Bernoulli random variable with parameter
(1−θ)/(1−s(X1)) (conditionally independent of X , knowing the latter parameter, this is where additional noise
is required) to decide if τ = 1 or not. Since s(X1) ≤ θ, one would have checked that the previous parameter
belongs to [0, 1]. So we can write

P[τ = 1|X0, X1] =
1 − θ

1 − s(X1)

and in particular P[τ = 1|X1] = 1−θ
1−s(X1) .

Let us check that

∀ x ∈ S, P[τ = 1, Xτ = x] = (1 − θ)μ(x). (2.1)

Indeed, we have for any x ∈ S,

P[τ = 1, Xτ = x] = P[τ = 1, X1 = x]
= P[τ = 1|X1 = x]P[X1 = x]

=
1 − θ

1 − s(x)
m1(x)

=
1 − θ

1 − s(x)
(θm0(x) + (1 − θ)μ(x))

=
1 − θ

1 − s(x)

(
θ
m0

μ
(x) + (1 − θ)

)
μ(x)

=
1 − θ

1 − s(x)
(1 − s(x))μ(x).

Thus (2.1) is satisfied, at least for x ∈ S such that μ(x) �= 0, so that the above operations are justified. But if
μ(x) = 0 and m1(x) > 0, we have directly that P[τ = 1, X1 = x] = 0, because s(x) = −∞, and the equality (2.1)
also holds in this situation. This is also trivially true if m1(x) = 0.

It follows from (2.1) that P[τ = 1] = (1 − θ) and that the conditional law of X1 on {τ = 1} is μ. We
also deduce that the conditional law L(X1|τ > 1) is equal to m0. This observation is the key to the iterative
construction, since we are led back to the initial situation, in some sense after having removed the μ part of
m1. More rigorously, by iteration of the above procedure, at any time n ∈ N, n ≥ 2, knowing X0, X1, ..., Xn
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and that the value of τ has not yet been fixed, i.e. τ > n, we take τ = n with probability (1 − θ)/(1 − s(Xn)),
using additional randomness as before, if necessary.

The proposition will be proven if we show that for any n ∈ N∗,

∀ x ∈ S, P[τ = n,Xn = x] = (1 − θ)θn−1μ(x). (2.2)

This is proved by induction on n. To facilitate this, consider the equality

L(Xn|τ > n) = m0. (2.3)

We have already seen that (2.2) and (2.3) are satisfied with n = 1, so let us assume they are true for any n ∈ N∗

smaller than someN ∈ N∗, we are going to deduce them with n replaced byN+1. Begin by computing for x ∈ S,

P[τ = N + 1, XN+1 = x] = P[τ = N + 1|XN+1 = x, τ > N ]P[XN+1 = x, τ > N ]

=
1 − θ

1 − s(x)
P[XN+1 = x, τ > N ]

=
1 − θ

1 − s(x)

∑
y∈S

P[XN = y, τ > N ]P (y, x)

where in the last line, we have used that the event {τ > N} depends on X only through (Xm)0≤m≤N , so we
can apply the Markov property. By the induction assumption, we have for any y ∈ S,

P[XN = y, τ > N ] = P[XN = y|τ > N ]P[τ > N ]
= m0(y)(1 − P[τ ≤ N ])

= m0(y)θN

where we took into account that (2.2) implies that P[τ = n] = (1 − θ)θn−1 for n ∈ �1, N�. So we obtain∑
y∈S

P[XN = y, τ > N ]P (y, x) = θN
∑
y∈S

m0(y)P (y, x)

= θNm1(x)

= θN (1 − s(x))μ(x).

Putting all the previous computations together, we get (2.2) with n replaced by n+ 1 (except for x ∈ S such
that μ(x) = 0, where (2.2) has to be checked directly). It remains to compute that for any x ∈ S,

P[XN+1 = x|τ > N + 1] =
P[XN+1 = x, τ > N + 1]

P[τ > N + 1]

= θ−N−1
P[XN+1 = x, τ > N + 1]

= θ−N−1
P[XN+1 = x, τ �= N + 1, τ > N ]

= θ−N−1
P[τ �= N + 1|XN+1 = x, τ > N ]P[XN+1 = x, τ > N ]

= θ−N−1

(
1 − 1 − θ

1 − s(x)

)
P[XN+1 = x, τ > N ]

= θ−N−1 θ − s(x)
1 − s(x)

P[XN+1 = x, τ > N ]

= θ−N m0(x)
μ(x)

P[XN+1 = x, τ > N ]
1 − s(x)
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but as above, we have P[XN+1 = x, τ > N ] = θN (1 − s(x))μ(x), so replacing it in the previous expression it
appears that (2.3) is satisfied with n replaced by N + 1. �

Remark 2.2.

a) Contrary to the fastest strong stationary time considered in Aldous and Diaconis [1], the new strong
random time constructed in Proposition 2.1 does not require a lot of information about the time marginal
laws of the chain X . In fact only m0 and θ are needed.

b) Notice that for a given m0, the previous result can be applied to any θ ∈ (0, θ∗] ∩ (0, 1), with θ∗ =
minx∈S m0P (x)/m0(x). The next section will help us to choose θ in a convenient way.

c) Note that if x ∈ S is such that m0(x) = 0, then s(x) = θ (even if μ(x) = 0, by virtue of the implicitly
enforced convention that 0 · ∞ = 0), so for any n ∈ N,

P[τ = n+ 1|Xn+1 = x, τ > n] = 1.

Thus the strong random time τ constructed above is always bounded above by the first hitting time of
the complementary set of the support of m0.

There is a case which is of special interest. Let us come back to the notation of the introduction, so we replace
P by P̄ and S by S̄ = S � {�}. But we now only make the first irreducibility assumption on P̄ . Then there
exists a unique distribution m0 which is positive on S and satisfies

m0P̄ = θ0m0 + (1 − θ0)δ�

where θ0 ∈ (0, 1) is the largest eigenvalue of the restriction of P̄ to functions vanishing on � (these properties
of θ0 and m0 are insured by the Perron-Frobenius theorem, reversibility is not needed). It is indeed the
renormalized positive left eigenvector associated to the eigenvalue θ0 of P and it is called the quasi-stationary
distribution of P̄ , because for any n ∈ N, the restriction of m0P̄

n to S is just θn
0m0.

Note that the function s introduced in the above proof is given by

∀ x ∈ S̄, s(x) =
{
θ , if x = �
−∞ , if x ∈ S

so τ is in fact the hitting time of � and we recover the well-known fact that it is distributed as a geometric law
of parameter θ0 (see for instance Sect. 6.5 of Chap. 3 of the book of Aldous and Fill [2]).

To profit fully from Proposition 2.1, it is important that no assumption is made on the respective supports
of m0 and μ.

3. Local equilibria

We will prove Theorem 1.1 here, through the use of a sequence of local equilibria, going from the initial
condition m0 to the quasi-stationary measure in N − 1 steps, before collapsing to δ�.

Again we consider the discrete time framework presented in the introduction. We begin by recalling a linear
algebra result of Micchelli and Willoughby [21]:

Theorem 3.1. Let B be a symmetric S×S matrix whose entries are nonnegative and let b0 ≤ b1 ≤ · · · ≤ bN−1

be its eigenvalues. Then for any l from �0, N − 1�, the matrix
∏

i∈�0,l�(B − bi) has nonnegative entries.

The symmetry condition can be weakened to a reversibility condition, asking for the existence of a positive
vector μ � (μ(x))x∈S such that

∀ x, y ∈ S, μ(x)B(x, y) = μ(y)B(y, x)
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where we have written B = (B(x, y))x,y∈S . Then let D denote the diagonal matrix with (
√
μ(x))x∈S as diagonal

and define B̃ = DBD−1. The latter matrix is symmetric and its entries are nonnegative, furthermore it has the
same eigenvalues as B. Thus for any l ∈ �0, N − 1�, the matrix∏

i∈�0,l�

(B − bi) = D−1
∏

i∈�0,l�

(B̃ − bi)D

has also nonnegative entries.
Unless otherwise stated, from now on we assume that all the eigenvalues of P are nonnegative. We can now

define the local equilibria associated to the initial condition m0. First we consider for any l ∈ �0, N�,

μ̃l � m0

∏
i∈�0,l−1�

P − θN−1−i

1 − θN−1−i

in particular μ̃0 = m0 and the Cayley-Hamilton theorem shows that μ̃N = 0.
From Theorem 3.1, applied to the reversible matrix P , we get that all these row vectors are nonnegative and

thus can be considered as nonnegative measures on S. We note that their total mass is non-increasing: for any
i ∈ �0, N − 1�, since P is subMarkovian, we have

P − θN−1−i

1 − θN−1−i
�S ≤ �S

(where �S is the indicator function of S), so integrating this inequality with respect to μ̃i, we get μ̃i+1[S] ≤ μ̃i[S].
Next we define

∀ i ∈ �0, N − 1�, di � 1 − μ̃i+1[S]
μ̃i[S]

∈ [0, 1]

(in particular di = 1 if μ̃i[S] = 0, since then we also have μ̃i+1[S] = 0) and

I � min{i ∈ �0, N − 1� : μ̃i+1[S] = 0}
= min{i ∈ �0, N − 1� : di = 1}.

We will show later on that I = N − 1, but for the moment, we introduce for any i ∈ �0, I�, the probability
measures

μi �

⎛⎝ ∏
j∈�0,i−1�

(1 − dj)−1

⎞⎠ μ̃i

which are called local equilibria. Let also take the convention that μi � δ� for i ∈ �I + 1, N�. Their interest
comes from the following observation

Lemma 3.2. For any i ∈ �0, N − 1�, we have

μiP̄ = θN−i−1μi + (1 − θN−i−1)((1 − di)μi+1 + diδ�).

Proof. By construction, we have for any i ∈ �0, N − 1�,

μ̃i(P − θN−i−1) = (1 − θN−i−1)μ̃i+1
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which can be rewritten

μiP = θN−i−1μi + (1 − θN−i−1)(1 − di)μi+1.

For i ∈ �0, I�, μi is a probability measure on S and so μiP is the restriction to S of the probability measure
μiP̄ on S̄. To get the formula of the lemma, we add the missing mass, which must be at �. For i ∈ �I + 1, N�,
this formula reduces to δ� = δ�. �

The proof of Theorem 1.1 is now quite straightforward, since it is sufficient to successively apply Proposi-
tion 2.1 to the local equilibria, via Lemma 3.2. More precisely, starting from m0 = μ0, we construct a strong
random time τN−1 through Proposition 2.1, with θ = θN−1 and μ = (1 − d0)μ1 + d0δ�. We have that τN−1 is
distributed as a geometric law G(θN−1) and according to Remark 2.2c, with probability d0 and independently
from τN−1, τN−1 coincides with T , the hitting time of �, and with probability 1 − d0, XτN−1 is distributed
according to the second local equilibrium μ1. Let us define the shifted chain X̃(1) � (X̃(1)

n )n∈N � (XτN−1+n)n∈N.
Due to the fact that τN−1 is a strong random time, X̃(1) is independent from τN−1 and is a Markov chain whose
transition matrix is P̄ and with (1−d1)μ1 +d1δ� as initial distribution. Let us consider X(1) which is just X̃(1)

conditioned by X(1)
0 �= �. It is a Markov chain admitting P̄ as transition matrix and μ1 as initial distribution.

Apply Proposition 2.1, with m0 = μ1, θ = θN−2 and μ = (1− d1)μ2 + d1δ�, to construct a strong random time
τN−2 for X(1), which is distributed as G(θN−2) and is independent of τN−1.

The proof goes on by an obvious iteration and in the end (the procedure has to stop, because I ≤ N − 1,
due to the fact that μ̃N = 0), we get Theorem 1.1 with

∀ i ∈ �0, N − 1�, aN−1−i � di

∏
j∈�0,i−1�

(1 − dj). (3.1)

Indeed, one can define a random variable A with distribution a = (a0, a1, ..., aN−1) (see the discussion before
Thm. 1.1) in the following way: let us denote X̃(1), X̃(2), ..., the shifted Markov chains constructed iteratively
through the previous procedure, then take

A � N − min{i ∈ �1, N� : X̃(i)
0 = �}.

Then for any i ∈ �1, N�, the event {A = i} is independent of τN−1, ..., τN−i (which are also independent among
themselves). This is sufficient to insure that T =

∑
j∈�N−A,N−1� τj is distributed according to MG(a, θ).

The only point which remains to be proven is that a0 > 0. This is a consequence of the well-known fact that
for any initial distribution m0 on S,

lim
n→∞

1
n

ln(P[T > n]) = − ln(θ0) (3.2)

(indeed, one can be brought back to the case where the initial distribution is the quasi-stationary probability
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measure by noticing that the quantities limn→∞ 1
n ln(Px[T > n]) exist and do not depend on the starting point

x ∈ S by the irreducibility assumption). But if J = min{j ∈ �0, N − 1� : aj > 0}, and if T is distributed
according to MG(a, θ), then we have that

∀ 0 ≤ u <
1
θJ
, E[uT ] < +∞

so the fact that θ0 > θ1 shows that J = 0. Furthermore, since

a0 = dN−1

∏
j∈�0,N−2�

(1 − dj)

=
∏

j∈�0,N−2�

(1 − dj)

we also get that dj < 1 for all j ∈ �0, N − 2�, so I = N − 1. Thus μN−1 is a probability measure on S, and
since Lemma 3.2 shows that

μN−1P̄ = θ0μN−1 + (1 − θ0)δ�

it follows that μN−1 is the quasi-stationary probability measure associated to P̄ (recall its definition given in
Rem. 2.2c).

Remark 3.3. Formula (3.1) simplifies if the definition of the dj , for j ∈ �0, N−1�, is inserted and the telescoping
product is simplified:

∀ i ∈ �0, N − 1�, aN−1−i = μ̃i(S) − μ̃i+1(S)

= m0

⎛⎝ ∏
j∈�0,i−1�

P − θN−1−j

1 − θN−1−j

⎞⎠ 1 − P

1 − θN−1−i
(S)

which is the formula (1.1) announced in the introduction. Thus the law of T can be explicitely given in terms
of the initial distribution, the product Pn, for n ∈ �1, N − 1�, and the eigenvalues of P . At least for small state
space, this is easy to implement.

Note also that it can be used to recover that a0 > 0 and to give an expression for this quantity. Let
(νi)i∈�0,N−1� be an orthogonal basis of left-eigenvectors (= measures) associated to the eigenvalues (θi)i∈�0,N−1�

of P in L
2(π), where π is the reversible probability measure mentioned in the introduction. In particular

ν0 is proportional to the quasi-stationary distribution, let us call it ν. Let us decompose m0, on this basis,
m0 �

∑
i∈�0,N−1� biνi. Then formula (1.1) for i = 0 is just

a0 =

⎛⎝ ∏
j∈�1,N−1�

θ0 − θj

1 − θj

⎞⎠ b0ν0(S).

So a0 > 0 is equivalent to b0 > 0, but b0 = 〈m0, ν0〉L2(π) > 0 because π and ν0 are positive on S and m0 is a
probability measure on S. Indeed, in terms of the quasi-stationary distribution, we have

b0 =
∑

x∈S m0(x)ν(x)π(x)√∑
x∈S ν

2(x)π(x)
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and

a0 =

⎛⎝ ∏
j∈�1,N−1�

θ0 − θj

1 − θj

⎞⎠ ∑
x∈S m0(x)ν(x)π(x)∑

x∈S ν
2(x)π(x)

·

This formula may be useful in applications where the evaluation of a0 will be important.

Remark 3.4. It is the sequence of local equilibria (μi)i∈�0,N−1� which has a meaning, not the notion of local
equilibrium by itself. Indeed, we can go a little further: let say that a finite sequence of probabilities on S,
(μi)i∈�M,N−1�, with M ∈ �0, N − 1�, is an M -sequence of local equilibria going from μM to δ�, if the relations
of Lemma 3.2 are satisfied for i ∈ �M,N − 1�, with a sequence (di)i∈�M,N−1� of numbers from [0, 1] and with
μN = δ�. The above proof shows that if the initial distribution of X is μM , then the law of T is a mixture of the
distributions G(θi, θi+1, ..., θN−1−M ), for i ∈ �0, N−1−M�, which gives positive weight to G(θ0, θ1, ..., θN−1−M ).
This is even true under the weakened assumption that θN−1−M ≥ 0, so the eigenvalues θN−M , θN−M+1, ..., θN−1

can be negative.
In particular if M = N − 1, μN−1 must be the quasi-stationary probability measure and we know by the

Perron-Frobenius theorem that θ0 is nonnegative. So we recover the fact that if the initial distribution of X is
the quasi-stationary probability measure, then the distribution of T is a geometric law of parameter θ0. Note
that the reversibility hypothesis can be dispensed with in this special case, since we don’t need Theorem 3.1 to
check that μN = δ� is nonnegative.

It also appears that to write the law of T in the form MG(θ, a) may not be very clever and that it is better
to introduce for M ∈ �0, N − 1�, the distributions

MG(M, θ, a) �
∑

0≤i≤N−1−M

aiG(θi, θi+1, ..., θN−1−M )

where a is a probability measure on �0, N − 1 −M�. Now the law of T may not be uniquely represented as
MG(M, θ, a). Indeed, we may have MG(M, θ, a) = MG(M ′, θ, a′) with M �= M ′ and a �= a′. For instance,
taking into account the previous example, MG(N − 1, θ, 1) = G(θ0), for any M ∈ �0, N − 2�, we can find a
probability measure aM on �0, N − 1 −M� such that G(θ0) = MG(M, θ, aM ). To simplify the expression for
the law of T , one has to try to find the largest M such that there exists an M -sequence of local equilibria going
from m0 to δ�.

Note also that for given M ∈ �0, N − 1� and a nonnegative θ = (θ0, ..., θN−1), the mapping
a = (a0, ..., aN−1−M ) �→ MG(θ, a) is one to one. This can be proven by considering the corresponding mo-
ment generating functions (or rather its meromorphic extension to C).

Finally notice that from a complexity point of view, once the eigenvalues are known,
(μi)i∈�0,N−1�, (di)i∈�0,N−1� and (ai)i∈�0,N−1� are not difficult to obtain via Lemma 3.2 and (3.1), indeed at
most N iterations of P̄ are necessary. To obtain the largest M such that the law of T can be represented in
the form MG(M, θ, a), at most (N − 1)N/2 steps are needed, since we have first to try with M = N − 1, next
M = N − 2, etc. to verify if we can associate to m0 an M -sequence of local equilibria through Lemma 3.2.

4. Intertwining

Our goal here is to construct an intertwining relation between X and a Markov chain of a special kind. This
is indeed the main result of this paper, as it gives a probabilistic interpretation of Theorem 1.1.

More precisely, let P̄ be an absorbing transition matrix on S̄, as in the introduction, and let θ0 > θ1 ≥
· · · ≥ θN−1 ≥ 0 be its eigenvalues, assumed to be nonnegative. For a given initial distribution m0, consider
the associated sequences of local equilibria (μi)i∈�0,N−1� and of real numbers from [0, 1], (di)i∈�0,N−1�, as in
Lemma 3.2. Recall that for i ∈ �0, N − 2�, di < 1 and that dN−1 = 1.
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Next introduce an absorbing Markov chain Y � (Yn)n∈N on Ē � �0, N − 1�� {�}, starting from 0 and with
transition matrix Q̄ given by

∀ i, j ∈ Ē, Q̄(i, j) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θN−1−i, if i = j ∈ �0, N − 1�
di(1 − θN−1−i), if i ∈ �0, N − 1� and j = �
(1 − di)(1 − θN−1−i), if i ∈ �0, N − 2� and j = i+ 1
1, if i = j = �
0, otherwise

(4.1)

(for X as well as for Y , we denote � the absorbing point, this should not lead to confusion).
The behaviour of the Markov chain Y is easy to understand: it tries to go to the next neighbour on the right,

or stay at the same place, except that it can also be killed (i.e. go to the absorbing point) and the respective
probabilities for these actions are (1 − di)(1 − θN−1−i), θN−1−i and di(1 − θN−1−i) when the current position
is i ∈ �0, N − 2�. This is also true if i = N − 1 since dN−1 = 1, so from there the Markov chain either stays at
the same place, with probability θ0, or is killed, with probability 1− θ0. But for i ∈ �0, N − 2�, the probability
to go to the right is positive. With this interpretation, for i ∈ �0, N − 1�, di can be called the chance of death
immediately after moving from the ith local equilibrium.

Let us furthermore denote by Λ the |Ē| × |S| matrix defined by

∀ i ∈ Ē, ∀ x ∈ S̄, Λ(i, x) �
{
μi(x), if i ∈ �0, N − 1�
δ�(x), if i = �. (4.2)

Its interest comes from the following intertwining relation

Lemma 4.1. For Q̄ and Λ defined at (4.1) and (4.2), we have the intertwining relation

ΛP̄ = Q̄Λ

Proof. This is just a rewriting of Lemma 3.2: fix some i ∈ �0, N − 1� and x ∈ S̄. On one hand we have

ΛP̄ (i, x) =
∑
y∈S

Λ(i, y)P̄ (y, x)

= μiP̄ (x)

and on the other hand,

Q̄Λ(i, x) = θN−1−iΛ(i, x) + (1 − di)(1 − θN−1−i)Λ(i+ 1, x) + di(1 − θN−1−i)Λ(�, x)
= (θN−i−1μi + (1 − θN−i−1)((1 − di)μi+1 + diδ�))(x)

from where we get the equality ΛP̄ (i, x) = Q̄Λ(i, x).
Consider finally the case where i = �. Then the previous equality reads δ�(x) = δ�(x). �

This intertwining relation and the fact that we have for the initial laws

L(Y0)Λ = m0 = L(X0)

enables use of a result of Diaconis and Fill [5] asserting we can intertwine X in Y in the following sense: there
exists a coupling of X and Y such that the chain (Xn, Yn)n∈N is Markovian and such that for any time n ∈ N,
we have for the conditional law of Xn knowing Y0, Y1, ..., Yn,

L(Xn|Y0, Y1, ..., Yn) = Λ(Yn, ·).
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In some sense Y indicates which local equilibrium has been reached by X and in this respect, it is interesting
to know that if a trajectory (Xn)n∈N is given, it is possible to construct (Yn)n∈N from it in a progressive way,
using also independent randomness (for more details, see Diaconis and Fill [5]).

Under the above coupling, let us denote

TX � inf{n ∈ N : Xn = �}
TY � inf{n ∈ N : Yn = �}.

It is clear that TX has the same law as T and that TY is distributed according to MG(θ, a), with the probability
measure a given by (3.1). So the next result gives another proof of Theorem 1.1:

Lemma 4.2. We have a.s. that TX = TY .

Proof. Let n ∈ N be given, we have that

P[TX ≤ n, TY ≤ n] = E[δ�(Xn)δ�(Yn)]
= E[E[δ�(Xn)|Y0, ..., Yn]δ�(Yn)]
= E[Λ(Yn,�)δ�(Yn)]
= Λ(�,�)E[δ�(Yn)]
= P[TY ≤ n]

so it follows that {TX ≤ n} is a.s. included in {TY ≤ n}. Since this is true for any n ∈ N, we get that
TX ≤ TY a.s.

But for any n ∈ N, we compute in a similar way that

P[TX ≤ n, TY > n] = E[Λ(Yn,�)��0,N−1�(Yn)]
= 0

and as a consequence TX = TY a.s. �
Thus for any absorbing Markov chain satisfying the hypotheses of the introduction, the absorption time is

distributed according to a law of the form MG(θ, a), with θ ∈ Θ and a ∈ A, where

Θ � {θ = (θi)i∈�0,N−1� ∈ [0, 1)N : θ0 > θ1 ≥ θ2 ≥ · · · ≥ θN−1}
A � {a = (ai)i∈�0,N−1� ∈ P(�0, N − 1�) : a0 > 0}

where from now on P(E) will denote the set of probability measures on E, for any finite set E. Conversely,
we can wonder if for an a priori given θ ∈ Θ and a ∈ A, one can find an absorbing Markov chain satisfying
the assumptions of the introduction and such that the law of its absorption time is distributed according to
MG(θ, a). Then the set of laws of such absorption times would exactly be MG � {MG(θ, a) : θ ∈ Θ, a ∈ A}.
We do not conjecture that this assertion is true, because we believe more restrictions should be put on the
admissible pairs (θ, a), for instance maybe that for any i ∈ �1, N − 1�, ai > 0 ⇒ ai−1 > 0.

Nevertheless, the above chain Y can be used to get a result in this direction. Let K̄ be the closure of the set
of Markov transition matrices P̄ on S̄ whose unique recurrence class is {�} and such that the restriction P of
P̄ to S × S is irreducible, reversible and admits nonnegative eigenvalues. Note that the elements of K̄ are still
transition matrices absorbing at �. Here we are interested in K̂, the set of matrices P̄ from K̄ such that {∞}
is the unique recurrence class of P̄ . If m0 ∈ P(S) and P̄ ∈ K̂ are given, we can associate to them a Markov
chain, starting from m0 with transition matrix P̄ . Let us write L(m0, P̄ ) for the law on N∗ of the corresponding
absorption time. We also need to introduce

M̂G � {MG(θ, a) : θ ∈ Θ̂, a ∈ P(�0, N − 1�)}
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with

Θ̂ � {θ = (θi)i∈�0,N−1� ∈ [0, 1)N : θ0 ≥ θ1 ≥ θ2 ≥ · · · ≥ θN−1}.

Proposition 4.3. The set of distributions L(m0, P̄ ), when m0 runs through P(S) and P̄ runs through K̂,
coincides with M̂G.

Proof. We begin with the inclusion

{L(m0, P̄ ) : m0 ∈ P(S), P̄ ∈ K̂} ⊂ M̂G . (4.3)

Let P̄ ∈ K̂ be given and (P̄ (r))r∈N be a sequence of transition matrices as in the introduction and converging
to P̄ . For any fixed r ∈ N, we consider 1 > θ

(r)
0 > θ

(r)
1 ≥ · · · ≥ θ

(r)
N−1 ≥ 0 the eigenvalues of the restriction P (r)

of P̄ (r) to S × S. Let us also fix an initial distribution m0 ∈ P(S). Lemma 3.2 enables us to associate to m0

and P̄ (r) a sequence of local equilibria (μ(r)
i )i∈�0,N−1� from P(S) and a sequence of real numbers from [0, 1),

(d(r)
i )i∈�0,N−2�. As in the beginning of this section, we construct from them two matrices Q̄(r) and Λ(r) so that

Λ(r)P̄ (r) = Q̄(r)Λ(r). (4.4)

Up to the extraction of a subsequence, we can assume by standard compactness arguments, that there exist
1 ≥ θ0 ≥ θ1 ≥ · · · ≥ θN−1 ≥ 0, a sequence (μi)i∈�0,N−1� of probabilities from P(S) and a sequence of real
numbers from [0, 1], (di)i∈�0,N−2� such that

∀ i ∈ �0, N − 1�, lim
r→∞ θ

(r)
i = θi

∀ i ∈ �0, N − 1�, lim
r→∞μ

(r)
i = μi

∀ i ∈ �0, N − 2�, lim
r→∞ d

(r)
i = di.

Thus if we construct Q̄ and Λ from (θi)i∈�0,N−1�, (di)i∈�0,N−2� and (μi)i∈�0,N−1� as above, we get, by passing
to the limit in (4.4)

ΛP̄ = Q̄Λ.

We note that the first line of Λ is m0 (since this is also true for Λ(r), for all r ∈ N), so using again a result
of Diaconis and Fill [5], we can intertwine, as above, a Markov chain X starting from m0 and admitting P̄ as
transition matrix with a Markov chain Y starting from δ0 and admitting Q̄ as transition matrix. Lemma 4.2 is
still valid and we deduce that L(m0, P̄ ) is equally the distribution of the hitting time TY of � by Y . But the
latter can now be a.s. infinite and one easily checks that it is a.s. finite if and only if θ0 < 1. To deduce this
property, we have to take into account that the only recurrence class of P̄ is {�}. Indeed, this latter assumption
implies that 1 cannot be an eigenvalue of P , the restriction of P̄ to S×S. But by a standard finite dimensional
pertubation result (see for instance the book [16] of Kato), we have that the eigenvalues of the matrices P (r)

converge to the eigenvalues of P , so in particular θ0 is the largest eigenvalue of P and thus θ0 < 1. Now it is
clear from the structure of Q̄ that the distribution of TY belongs to M̂G and this observation concludes the
proof of (4.3).

We now come to the reverse inclusion

{L(m0, P̄) : m0 ∈ P(S), P̄ ∈ K̂} ⊃ M̂G . (4.5)
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Let θ � (θi)i∈�0,N−1� ∈ Θ̂ and a ∈ P(�0, N − 1�) be given. We have first to verify that we can find a sequence
(d(r)

i )i∈�0,N−2� of real numbers from [0, 1], such that

∀ i ∈ �0, N − 1�, aN−1−i � di

∏
j∈�0,i−1�

(1 − dj).

Seeing a as a probability measure on �0, N − 1�, let

I � max{i ∈ �0, N − 1� : a(�0, I − 1�) = 0}
so I = 0 is equivalent to a0 > 0. Next we define

∀ i ∈ �0, N − 2�, di �

{ aN−1−i

a(�0, N − 1 − i�)
, if i ≤ N − I − 1

1, otherwise
(4.6)

and we immediately check that the above relation between a and (di)i∈�0,N−2� is satisfied. Now we have at our
disposition all the ingredients to construct the matrix Q̄ given in (4.1). Furthermore, it is quite obvious that
L(δ0, Q̄) = MG(θ, a). So to end the proof of (4.5), it remains to check that Q̄ ∈ K̂. First we remark that since
1 > θ0 ≥ θ1 ≥ · · · ≥ θN−I−1 ≥ 0 and dN−I−1 = 1, the path (0, 1, 2, ..., N − I − 1,�) is admissible for Q̄, as
well as the one-step paths (i,�), for i ∈ �N − I,N − 1�, because 1 > θi ≥ 0 and di = 1. So {�} is the unique
recurrence class for Q̄. Next we define, for ε ∈ (0, 1/2), a new absorbing transition matrix Q̄ε by taking

∀ i, j ∈ Ē, Q̄ε(i, j) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε, if i ∈ �1, N − 1� and j = i− 1
ε, if i ∈ �N − I − 1, N − 2� and j = i+ 1
(1 − ε)θN−1−i, if i = j ∈ �0, N − I − 1�
(1 − 2ε)θN−1−i, if i = j ∈ �N − I,N − 1�
(1 − ε)di(1 − θN−1−i), if i ∈ �0, N − I − 1� and j = �
(1 − 2ε)(1 − θN−1−i), if i ∈ �N − I,N − 1� and j = �
(1 − ε)(1 − di)(1 − θN−1−i), if i ∈ �0, N − I − 2� and j = i+ 1
1, if i = j = �
0, otherwise.

As usual, let Qε be the restriction of Q̄ε to �0, N − 1�2. It is an irreducible subMarkovian matrix of birth and
death type and thus Qε is reversible. Let us denote by

1 > θ0(ε) > θ1(ε) > θ2(ε) > · · · > θN−1(ε) > −1

the eigenvalues of Qε (they are well-known to be all distinct in the context of irreducible subMarkovian birth
and death chains). It may happen that some of them are negative. This is for instance the case, as soon as
N ≥ 1, if all the θi, for i ∈ �0, N − 1�, are zero and if a = δN−1, in which case Qε = ε(δ1(|i− j|))i,j∈�0,N−1� (it
has some negative eigenvalue, because it is symmetric, not null and its trace is zero). So let us rather consider

Q̂ε � α(ε)Id + (1 − α(ε))Q̄ε

with α(ε) � max(0,−θN−1(ε)) ∈ [0, 1). Since limε→0+ Q̄ε = Q̄, we also have

lim
ε→0+

θN−1(ε) = θN−1

and by consequence limε→0+ α(ε) = 0. Thus we get

lim
ε→0+

Q̂ε = Q̄.
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So finally Q̄ ∈ K̄, because all the transition matrices Q̃ε, for ε ∈ (0, 1/2), satisfy the assumption of the
introduction. �

Remark 4.4.
1) The end of the above proof shows that the matrix Q̄ constructed from P̄ in (4.1) belongs to K̂. Clearly,

Q is not reversible, since moves to the left are not permitted on �1, N − 1�. Also notice that since Q,
the restriction of Q̄ to �0, N − 1�2 (respectively Q̄) is upper triangular, its eigenvalues are immediate to
compute and are given by the entries of the diagonal of Q (resp. Q̄). But if some of these eigenvalues
are equal, Q (resp. Q̄) is not necessary diagonalizable, e.g. this is the case for the following matrix

Q̄ �

⎛⎝ θ 1 0
0 θ 1
0 0 1

⎞⎠
for any θ ∈ [0, 1).

2) Let (P̄ (r))r∈N be a sequence from K̂ converging to P̄ ∈ K̂ and (m(r)
0 )r∈N be a sequence from P(S)

converging to m0 ∈ P(S). Then for large r, L(m(r)
0 , P̄ (r)) is weakly convergent to L(m0, P̄ ), because

this is equivalent to

∀ k ∈ N
∗, lim

r→∞L(m(r)
0 , P̄ (r))[k] = L(m0, P̄ )[k]

and to get these limits, just write L(m(r)
0 , P̄ (r))[k] as a finite sum of products of k+ 1 entries from m

(r)
0

or P (r).
Assume that there exists m0 ∈ P(S) such that L(m0, P̄ ) = MG(θ, a) with a0 > 0. Then by

considering the moment generating functions of the L(m0, P̄
(r)), for r ∈ N, and of L(m0, P̄ ), we can

deduce the convergence for large r ∈ N of the eigenvalues of P̄ (r) to the eigenvalues of P̄ . This gives a
probabilistic alternative to the reference to classical perturbation theory in the proof of Proposition 4.3.

3) Let K̃ denote the set of P̄ ∈ K̂ which are weakly irreducible, in the sense that we cannot decompose S
into a non trivial partition S = S1 � S2 such that the restrictions of P̄ to S1 × S2 and to S2 × S1 are
null. We also introduce

M̃G � {MG(θ, a) : θ ∈ Θ̂, a ∈ P(�0, N − 1�) with a0 > 0}.

It seems possible that

{L(m0, P̄ ) : m0 ∈ P(S), P̄ ∈ K̃} = M̃G .

In the same spirit, note that due to the example of Botta et al. [3] alluded to in the introduction, Theorems 1.1
and 1.2 are no longer true when the reversibility condition is replaced by the assumption that all the eigenvalues
of P are nonnegative. It follows that there are such subMarkovian matrices P that cannot be approached by
reversible subMarkovian matrices (but maybe this is true for real-diagonalizable subMarkovian matrices). To
understand better this phenomenon, maybe it would be interesting to investigate carefully the case of skip-free
chains considered by Fill [12].

5. Continuous time

We now return to the continuous-time framework presented in the introduction. We will not develop a specific
continuous time approach, instead we extend the previous results by considering discrete time skeletons of the
underlying semi-group.
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More precisely, as already mentioned in the introduction, under the hypotheses made in the continuous-
time setting, for any δ > 0, the absorbing transition matrix P̄δ = exp(δL̄) satisfies the previous discrete time
assumptions: {�} is the unique recurrent class of P̄δ and its restriction Pδ to S×S, which coincides with exp(δL),
is irreducible and reversible with respect to the same positive probability measure π on S. Let X = (Xt)t≥0

be a Markov process with cadlag trajectories, starting from m0 with generator L̄. Then X(δ) � (Xδn)n∈N is a
Markov chain starting from m0 with transition matrix P̄δ. Recall that we are interested in T , the absorption
time of X , and let us denote

T (δ) � inf{n ∈ N : Xδn = �}

the absorption time of X(δ).
The key to Theorem 1.2 is the simple observation that

Lemma 5.1. As δ goes to 0+, δT (δ) converges a.s. to T , in particular in the weak sense,

lim
δ→0+

L(δT (δ)) = L(T ).

Proof. Since the trajectories of X are cadlag, for any s ≥ 0, XT+s = �, at least outside the negligible event
where T = +∞, so

T ≤ δT (δ) ≤ T + δ. �

Let θ(δ) = (θ(δ)i )i∈�0,N−1� be the eigenvalues of Pδ, with multiplicities and in nonincreasing order. Since
θ
(δ)
i = exp(−δλi) for all i ∈ �0, N − 1�, they are positive, so we can apply Theorem 1.1 to get a probability

measure a(δ) on �0, N − 1� such that

L(T (δ)) = MG(θ(δ), a(δ)). (5.1)

By compactness of P(�0, N −1�), a probability measure a can be found on �0, N −1� and a decreasing sequence
(δ(r))r∈N of positive real numbers converging to 0, such that limr→∞ a(δr) = a. In conjunction with the above
lemma. The next result enables us to conclude the proof of Theorem 1.2, except for the assertion that a0 > 0.

Lemma 5.2. In the sense of weak convergence,

lim
r→∞L(δrT (δr)) = ME(λ, a).

Proof. In view of (5.1) and by definition of the laws MG(θ(δ), a(δ)) and ME(λ, a), it is sufficient to show that
if for some fixed l > 0, R(δ) is distributed according to G(exp(−δl)), with δ > 0, then

lim
δ→0+

L(δR(δ)) = L(R)

where R is distributed according to an exponential distribution of parameter l. This convergence can be proven
through the use of Laplace transforms, or from a more probabilistic point of view, by noticing that R(δ) has the
same distribution as �R/δ�, which denote the smallest integer larger or equal to R/δ. �

By resorting to Laplace transforms, one can see that the mapping

P(�0, N − 1�) � a′ �→ ME(λ, a′) ∈ P(R+)

is one to one, so we get a posteriori that

lim
δ→0+

a(δ) = a.
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To finish the proof of Theorem 1.2, we must show that a0 > 0. Indeed, use similar arguments to those given in
discrete time: it is well-known that for any initial distribution m0 on S,

lim
t→+∞

1
t

ln(P[T > t]) = −λ0

(this can be easily deduced from the similar discrete time result (3.2) through finite skeletons). But if J =
min{j ∈ �0, N − 1� : aj > 0}, and if T is distributed according to ME(λ, a), then

∀ 0 ≤ l < λJ , E[exp(lT )] < +∞

so from the fact that λ0 < λ1, we conclude that J = 0, i.e. a0 > 0.
More structural results can be deduced by exhibiting an intertwining relation. Again start with skeleton

subchains. For any δ > 0, associate to the initial law m0 and to the absorbing transition matrix P̄δ, a sequence
(μ(δ)

i )i∈�0,N−1� of local equilibria on S and a sequence (d(δ)
i )i∈�0,N−2� of real numbers from [0, 1), with the

convention that d(δ)
N−1 = 1, as in Lemma 3.2. By compactness of P(S) and of [0, 1], we can find a sequence

(μi)i∈�0,N−1� of probabilities on S, a sequence (di)i∈�0,N−1� of real numbers from [0, 1] and a decreasing sequence
(δ(r))r∈N of positive real numbers converging to 0, such that

lim
r→∞(μ(δr)

i )i∈�0,N−1� = (μi)i∈�0,N−1�

lim
r→∞(d(δr)

i )i∈�0,N−1� = (di)i∈�0,N−1�

(in particular dN−1 = 1).
Next introduce an absorbing generator K̄ on Ē � �0, N − 1� � {�} given by

∀ i, j ∈ Ē, K̄(i, j) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−λN−1−i, if i = j ∈ �0, N − 1�
diλN−1−i, if i ∈ �0, N − 1� and j = �
(1 − di)λN−1−i, if i ∈ �0, N − 2� and j = i+ 1
1, if i = j = �
0, otherwise

(5.2)

and a Markov kernel Λ̄ from Ē to S̄ given by

∀ i ∈ Ē, ∀ x ∈ S̄, Λ(i, x) �
{
μi(x), if i ∈ �0, N − 1�
δ�(x), if i = �.

Their interest comes from the following intertwining relation

Lemma 5.3. We have the intertwining relation

ΛL̄ = K̄Λ.
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Proof. For δ > 0, let Q̄(δ) and Λ(δ) be the matrices associated to (θ(δ)i )i∈�0,N−1�, (μ(δ)
i )i∈�0,N−1� and (d(δ)

i )i∈�0,N−1�

as in the beginning of Section 4. So

Λ(δ)P̄δ = Q̄(δ)Λ(δ)

and by consequence

Λ(δ) P̄δ − Id
δ

=
Q̄(δ) − Id

δ
Λ(δ).

Now by replacing δ by δr and by letting r go to infinity, we get the needed relation. �
Notice that the first row of Λ is m0, since this is also true for Λ(δ), for any δ > 0. These facts lead us to

consider a particular absorbing cadlag Markov process Y � (Yt)t≥0 on Ē, starting from 0 and whose generator
is K̄. Indeed, Diaconis and Fill [5] has shown that under the above intertwining relation and the equality
L(Y0)Λ = L(X0), X and Y can be intertwined: there exists a coupling of X and Y such that the process
(Xt, Yt)t≥0 is Markovian, and such that for any time t ≥ 0, the conditional law of Xt knowing (Ys)0≤s≤t is given
by

L(Xt|(Ys)0≤s≤t) = Λ(Yt, ·).

As in discrete time, heuristically Y indicates which probability measure among {μi : i ∈ �0, N − 1�} (whose
elements can also be interpreted as local equilibria) has been reached by X , and in this respect, it is interesting
to know that if a trajectory (Xt)t≥0 is given, it is possible to construct (Yt)t≥0 from it in a progressive way,
using also independent randomness (for more details, see Fill [10]).

Under the above coupling, let us denote

TX � inf{t ≥ 0 : Xt = �}
TY � inf{t ≥ 0 : Yt = �}.

It is clear that TX has the same law as T and that TY is distributed according to ME(θ, a′), with the probability
measure a′ given by

∀ i ∈ �0, N − 1�, a′N−1−i � di

∏
j∈�0,i−1�

(1 − dj).

The last assertion is a consequence of the traditional description of the evolution of a finite cadlag homogeneous
Markov process using exponential times and the embedded Markov chain (which records the successive different
positions taken by the process).

Next remark that the proof of Lemma 4.2 is also valid in continuous time, so under the above coupling
TX = TY a.s. In particular it follows that a′ = a and since we have already seen that a0 > 0, it follows that

∀ i ∈ �0, N − 2�, di ∈ [0, 1).

We can deduce a posteriori that it was not necessary to take subsequences: first taking into account (4.6) (with
I = 0), we obtain

lim
δ→0+

(d(δ)
i )i∈�0,N−1� = (di)i∈�0,N−1�.

Next Lemma 5.3 implies that

∀ i ∈ �0, N − 1�, μiL̄ = −λN−i−1μi + λN−i−1((1 − di)μi+1 + diδ�) (5.3)
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which shows that the local equilibria can be iteratively determined by this relation and the fact that μ0 = m0.
So it follows that

lim
δ→0+

(μ(δ)
i )i∈�0,N−1� = (μi)i∈�0,N−1�.

Finally, by similar arguments, it is also possible to extend Proposition 4.3. Let L̄ be the closure of the set of
generator matrices L̄ on S̄ whose unique recurrence class is {�} and such that the restrictions L of L̄ to S × S

are irreducible and reversible. Next let L̂ be the set of matrices L̄ in L̄ such that {∞} is the unique recurrence
class of L̄. If m0 ∈ P(S) and L̄ ∈ L̂ are given, associate to them a cadlag Markov process, starting from m0 with
generator L̄. Let us write L(m0, L̄) for the law on R+ of the corresponding absorption time. Quite naturally,
also introduce

M̂E � {ME(λ, a) : θ ∈ Λ̂, a ∈ P(�0, N − 1�)}

with

Λ̂ � {λ = (λi)i∈�0,N−1� ∈ (R∗
+)N : λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN−1}.

Then we have

Proposition 5.4. The set of distributions L(m0, L̄), when m0 runs through P(S) and L̄ runs through L̂,
coincides with M̂E .

6. Negative eigenvalues

We return to the discrete time setting and investigate the peculiar features coming from the existence of
negative eigenvalue(s). They will lead to an implicit description of the law of the absorption time involving
simple probabilistic quantities and to an explicit formulation (but maybe less easy to manipulate) in terms of
local equilibria and death proportions.

As in the introduction, P̄ is a Markov transition matrix on S̄ such that {�} is the unique recurrence class
and such that the restriction P of P̄ to S × S is irreducible and reversible. So we can consider (θi)i∈�0,N−1�

the eigenvalues of P in nonincreasing order, a priori they belong to (−1, 1). We are also given m0 an initial
distribution on S and X a Markov chain starting from m0 whose transitions are described by P̄ . We are
interested in the absorption time TX � inf{n ∈ N : Xn = �}. To describe its distribution, introduce the
number of negative eigenvalues

I � inf{i ∈ �0, N − 1� : θN−1−i ≥ 0}

and we assume that I ≥ 1 (by Perron-Frobenius theory, we know that θ0 ≥ 0, so I ≤ N − 1), namely that we
are no longer in the situation where all the eigenvalues are nonnegative.

A first observation is that the beginning of the construction of the local equilibria is easier in this situation.
Indeed, for any i ∈ �0, I − 1�, (P̄ − θN−1−iIdS̄)/(1 − θN−1−i) is a Markov transition matrix, as a convex
combination of P̄ and the S̄×S̄ identity matrix IdS̄ . So we don’t need the result of Micchelli and Willoughby [21]
to see that the family of measures (m̃i)i∈�0,I� defined by

∀ i ∈ �0, I�, m̃i � m0

∏
j∈�0,i−1�

P̄ − θN−1−jIdS̄

1 − θN−1−j
(6.1)

is in fact a family of probabilities on S̄. As before, we can decompose them into

∀ i ∈ �0, I�, m̃i = m̃i(S)μi + m̃i(�)δ�
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where μi is a probability measure on S (in particular, μ0 = m0). Since � is absorbing, the map �0, I� � i �→
m̃i(S) is nonincreasing, so we write

∀ i ∈ �0, I�, m̃i(S) =
∏

j∈�0,i−1�

(1 − dj)

with (di)i∈�0,I−1� a family of numbers from [0, 1]. In fact it is not possible that for some i ∈ �0, I − 1�, di = 1,
otherwise we would have m0P̄

i = δ� and this would lead to a contradiction to the irreducibility of P . This
implies that X can stay inside S for arbitrarily large times (but with an exponentially smaller and smaller
probability as time is running on). The families (μi)i∈�0,I� of probabilities on S and (di)i∈�0,I� of numbers from
[0, 1), are uniquely determined by μ0 = m0 and the iterative relations

∀ i ∈ �0, I�, μiP̄ = θN−1−iμi + (1 − θN−1−i)((1 − di)μi+1 + diδ�). (6.2)

But since θN−1−i < 0 for i ∈ �0, I − 1�, Lemma 3.2 is of no help here. Another probabilistic interpretation is
needed. The heuristic principle is that negative eigenvalues make the chain X run “too fast” and we have to
slow it down. To do so, let (Bi)i∈�0,I−1� be independent Bernoulli random variables of respective parameters
(1/(1 − θN−1−i))i∈�0,I−1�:

∀ i ∈ �0, I − 1�, P[Bi = 1] =
1

1 − θN−1−i
= 1 − P[Bi = 0].

The family (Bi)i∈�0,I−1� is assumed to be independent of X . Next, define the time change

∀ i ∈ N, S(i) �
{ ∑

j∈�0,i−1�Bj , if i ∈ �0, I�
S(I) + i− I , if i ≥ I + 1

which is independent of X and consider the chain Y � (Yi)i∈N given by

∀ i ∈ N, Yi � XS(i).

It is in fact an inhomogeneous Markov chain with initial distribution m0 and transition matrix at time i ∈ N⎧⎨⎩
P̄ − θN−1−iIdS̄

1 − θN−1−i
, if i ∈ �0, I − 1�

P, if i ≥ I.

Let TY � inf{n ∈ N : Yn = �} be the absorption time of Y (even if this chain is inhomogeneous). Its law
is easy to describe, but we first need to extend the families (μi)i∈�0,I� and (di)i∈�0,I� into (μi)i∈�0,N−1� and
(di)i∈�0,N−1� by using the iterative relations (6.2) equally for i ∈ �I + 1, N − 1�. For the same reason as above,
for i ∈ �I + 1, N − 2�, di ∈ [0, 1), but to have that the μi belong to P(S), for i ∈ �I + 1, N − 1�, we need to use
the result of Micchelli and Willoughby [21] recalled in Theorem 3.1. Indeed, up to a normalizing factor, μi is
just m0

∏
j∈�0,i−1�(P − θN−1−jIdS)/(1 − θN−1−j). We also end up with dN−1 = 1 and by convention we take

μN = δ�.
Next consider θ+ � (θ+i )i∈�0,N−1� (where for any r ∈ R, r+ = r ∨ 0) and let a � (ai)i∈�0,N−1� be the

probability measure defined from the death proportions (di)i∈�0,N−1� as in (3.1), in particular a0 > 0. The next
assertion can be seen as a generalization of Theorem 1.1.
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Proposition 6.1. The law of TY is MG(θ+, a).

To prove this result, consider an intertwining between the inhomogeneous Y and a homogeneous Markov
chain Z constructed as in the beginning of Section 4, but with θ replaced by θ+. More precisely, Z takes values
in Ē � �0, N − 1� � {�}, starts from 0 and its transition matrix Q̃ is given by

∀ i, j ∈ Ē, Q̃(i, j) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ+N−1−i, if i = j ∈ �0, N − 1�
di(1 − θ+N−1−i), if i ∈ �0, N − 1� and j = �
(1 − di)(1 − θ+N−1−i), if i ∈ �0, N − 2� and j = i+ 1
1, if i = j = �
0, otherwise.

(6.3)

Again we denote by Λ the Markov kernel from Ē to S̄ defined in (4.2). Then we have

Lemma 6.2. There exists a Markovian coupling between Y and Z such that for any time n ∈ N, the conditional
law of Yn knowing Z0, Z1, ..., Zn is

L(Yn|Z0, Z1, ..., Zn) = Λ(Zn, ·).

Proof. We still have L(Z0)Λ = m0 = L(Y0), but since Y is not homogeneous, the intertwining cannot be reduced
to an intertwining property between transition matrices.

First construct (Yi, Zi)i∈�0,I� in the following way: begin by considering (Y )i∈�0,I� as before. Next, define

∀ i ∈ �0, I�, Zi �
{
i , if Yi ∈ S
� , if Yi = �.

Let us check the assertion of the above lemma for n ∈ �0, I�. If Zn = �, then by construction and from the fact
that � is absorbing, we know that Yn = �, so the relation is satisfied. On the other hand, if Zn �= �, then we
just know that Yn �= �. But (6.1) indicates that for n ∈ �0, I�, the law of Yn is m̃n and by construction μn is
the renormalization of the restriction of m̃n to S, thus we get the relation of the lemma.

Next the construction of (Yi, Zi)i∈�I+1,+∞� is more traditional. Indeed, let Ê � �I,N − 1� � {�}, Q̂ be the
Ê × Ê-restriction of Q̃ and Λ̂ be the Ê × S̄-restriction of Λ. These matrices are Markov kernels and we check
from the extension of (6.2) to i ∈ �I,N − 1� that we have

Λ̂P̄ = Q̂Λ̂

(see the proof of Lem. 4.1). Since furthermore we have L(ZI)Λ̂ = L(YI) with L(ZI) = m̃I(S)δI + m̃I(�)δ� ∈
P(Ê), the arguments of Diaconis and Fill [5] enables us to construct a Markov chain (Ŷi, Ẑi)i∈�I+1,+∞� such
that

– we have (ŶI , ẐI) = (YI , ZI);
– (Ŷi)i∈�I+1,+∞� is a homogeneous Markov chain with transitions described by P̄ ;
– (Ẑi)i∈�I+1,+∞� is a homogeneous Markov chain with transitions described by Q̂, or equivalently by Q̃;
– at any time n ∈ �I,+∞�, the conditional law of Ŷn knowing ẐI , ẐI+1, ..., Ẑn is

L(Ŷn|ẐI , ẐI+1, ..., Ẑn) = Λ̂(Ẑn, ·)
= Λ(Ẑn, ·).

These facts lead us to define (Yi, Zi)i∈�I+1,+∞� � (Ŷi, Ẑi)i∈�I+1,+∞�, because we then easily deduce the proper-
ties announced in the above lemma. In particular, notice that for n ∈ �I,+∞�, to condition Yn with respect to
(Z0, Z1, ..., Zn) is the same as to condition with respect to (ZI , ZI+1, ..., Zn) (since (Z0, Z1, ..., ZI) is deterministic
if Zn �= �). �



ON ABSORPTION TIMES AND DIRICHLET EIGENVALUES 141

Now it is easy to deduce Proposition 6.1. Indeed, the proof of Lemma 4.2 is still valid and shows that
L(TY ) = L(TZ). It is quite clear that TZ is distributed as MG(θ+, a). We remark that the families (μi)i∈�0,N−1�

and (di)i∈�0,N−1� retain their interpretations as local equilibria and death proportions, but with respect to the
speeded up Markov chain Y , not X .

But we are interested in TX , not in TY . By construction of Y , it appears that TX = S(TY ), nevertheless
this relation does not seem easy to exploit in general, since S and TY are not independent. Let S−1 be the
generalized inverse of S:

∀ n ∈ N, S−1(n) � inf{k ∈ N : S(k) ≥ n}.

Then it is immediate to see that we also have

TY = S−1(TX) (6.4)

and since TX and S−1 are independent, this equality and Proposition 6.1 implicitely determine the law of TX :

Lemma 6.3. The law L(TX) ∈ P(N∗) is uniquely determined by the fact that if T is distributed as L(TX) and
is independent of S, then S−1(T ) has MG(θ+, a) as law.

Proof. It is sufficient to write that for any n ∈ N∗, we have

MG(θ+, a)[n] = P[S−1(T ) = n]

=
∑

k∈�1,n�

P[S−1(k) = n, T = k]

=
∑

k∈�1,n�

P[S−1(k) = n]P[T = k]

(notice that for any k ∈ N, S−1(k) ≥ k), and since for any n ∈ N∗, P[S−1(n) = n] > 0 these identities enable to
compute iteratively P[T = n] for any n ∈ N∗. �

We could deduce from the above proof an explicit formula for the law of TX , but there is a simpler way to
deduce it.

Proposition 6.4. For any n ∈ N
∗,

P[TX = n] =
∑

k∈�1,n�

bn,kMG(θ+, a)[k] (6.5)

where for any k ∈ �1, n�,

bn,k �
∏

j∈�0,(k−1)∧(I−1)�

(1 − θN−1−j)
∑

i0+···+i(k−1)∧(I−1)=n−k

θi0
N−1θ

i1
N−2 · · · θ

i(k−1)∧(I−1)

N−1−(k−1)∧(I−1).

In particular (bn,k)n∈N∗,k∈�1,n� only depends on the negative eigenvalues, while MG(θ+, a) is defined in terms
of the nonnegative eigenvalues.

Proof. To simplify the notation, let us denote for any k ∈ N, θ̂k = θN−1−k ∧ 0 (with the convention that θ̂k = 0
for all k ≥ N). Next consider the polynomial in the z variable defined by

Qk(z) �
∏

j∈�0,k−1�

z − θ̂j

1 − θ̂j

·
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Then write for any n ∈ N,

zn =
∑

k∈�0,n�

cn,kQk(z) (6.6)

with for any k ∈ �0, n�,

cn,k �
∏

j∈�0,k−1�

(1 − θ̂j)
∑

i0+···+ik=n−k

θ̂i0
0 θ̂

i1
1 · · · θ̂ik

k (6.7)

(in particular c0,0 = 1). To get these formulas, use the observations that for any n ∈ N and k ∈ �0, n�,
zn+1 = zzn and XQk(z) = (1 − θ̂k)Qk+1(z) + θ̂kQk(z), which can be translated into the iterative relations

cn+1,0 = cn,0θ̂0

cn+1,k = cn,k−1(1 − θ̂k−1) + cn,kθ̂k, for k ∈ �1, n�

cn+1,n+1 = cn,n(1 − θ̂n).

If the θn, for n ∈ N, were nonnegative, we would recognize that cn,k = P[Rn = k], where (Rn)n∈N is a Markov
chain on N starting from 0 whose transitions are described by

∀ n ∈ N, P[Rn+1 = Rn + 1|Rn] = 1 − θ̂Rn = 1 − P[Rn+1 = Rn|Rn]

and (6.7) would follow without difficulty. But conversely, one can directly check by an elementary combinatorial
argument that the above iterative relations are satisfied if, for n ∈ N and k ∈ �0, n�, we take cn,k as defined
in (6.7), without any assumption on the signs of the θn, for n ∈ N.

Next we can translate (6.6) into information about absorption time: for any time n ∈ N∗, we have

P[TX ≤ n] = P[Xn = �]
= m0P̄

n
�{�}

= m0

⎛⎝ ∑
k∈�1,n�

cn,kQk(P̄ )

⎞⎠�{�}

=
∑

k∈�1,n�

cn,km0Qk(P̄ )�{�}

=
∑

k∈�1,n�

cn,kP[Yk = �]

=
∑

k∈�1,n�

cn,kP[TY ≤ k].

So using that for any n ∈ N∗, P[T = n] = P[T ≤ n] − P[T ≤ n− 1], with T = TX or T = TY , we obtain

P[TX = n] =
∑

k∈�1,n�

bn,kP[TY = k]

with for any k ∈ �1, n�,

bn,k � cn,n +
∑

j∈�k,n−1�

cn,j − cn−1,j.
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To recover the formula given in the proposition, we notice that by the above iterative relations,

cn,j − cn−1,j = cn−1,j−1(1 − θ̂j−1) − cn−1,j(1 − θ̂j)

so

bn,k = cn,n − cn−1,n−1(1 − θ̂n−1) + cn−1,k−1(1 − θ̂k−1)

= cn−1,k−1(1 − θ̂k−1).

We get the announced result, by taking into account that θ̂j = 0 for j ≥ I. �

One can give a reduced formula for the (bn,k)n∈N∗,k∈�1,n� appearing in the above proposition, at least if all
the negative eigenvalues are distinct. For n ∈ N, let pn(x) � xn be the nth monomial, then in terms of divided
difference, we have for any k ∈ �0, n�, and any real numbers x0 < x1 < · · · < xk,∑

i0+···+ik=n

xi0
0 x

i1
1 · · ·xik

k = pn+k[x0, x1, ..., xk] (6.8)

=
∑

i∈�0,k�

xn+k
i∏

j∈�0,k�\{i} xi − xj

thus for any n ∈ N∗ and k ∈ �1, n�,

bn,k =
∏

j∈�0,(k−1)∧(I−1)�

(1 − θN−1−j)
∑

i∈�0,(k∧I)−1�

θn−k−1+k∧I
N−1−i∏

j∈�0,(k∧I)−1�\{i} θN−1−i − θN−1−j
·

One has to be careful about the decomposition of the law of TX given in Proposition 6.4, since some of the terms
of the sum can be negative. Indeed, bn,k is nonpositive if n− k is odd and nonnegative otherwise. Nevertheless,
it seems that some partial sums are positive, see the third point in the remarks below.

Remark 6.5.

1) The probability measure a = (ai)i∈�0,N−1� which appears in Propositions 6.1 and 6.4 satisfies ai > 0 ⇒
ai−1 > 0, for any i ∈ �N − I,N − 1�. In fact, if ai > 0 then dN−1−i > 0, which means there exists an
element x ∈ S in the support of m̃N−1−i such that P̄ (x,�) > 0, but since m̃N−i is the transportation
of m̃N−1−i through the Markov matrix (P̄ −θiIdS̄)/(1−θi) whose diagonal is positive, x also belongs to
the support of m̃N−i, so dN−i > 0 and ai−1 > 0. We believe that this condition may be true in general
for i ∈ �1, N − 1�, that is why we alluded to it in the previous section. It would be a consequence of the
property that the mapping associating to i ∈ �0, N − 1� the support of μi is nondecreasing.

2) Let ΘsM be the set of eigenvalues (θi)i∈�0,N−1� in nonincreasing order of irreducible and reversibleN×N
subMarkovian matrices. It seems it is not easy to characterize ΘsM, since this is related to the famous
nonnegative inverse eigenvalue problem, see for instance the overview given by Egleston et al. [9].

3) Suppose given a family θ = (θi)i∈�0,N−1� ∈ ΘsM and a probability measure a = (ai)i∈�0,N−1� on
�0, N − 1�, satisfying that for any i ∈ �1, N − 1�, ai > 0 ⇒ ai−1 > 0 (or equivalently if a is given
by (3.1), that for any i ∈ �0, N − 2�, di > 0 ⇒ di+1 > 0). In a similar spirit to what we have done in
the previous section and at least under the above restriction on a, it seems possible that we can find
a Markov chain as in the present section, whose absorption time is distributed as in Proposition 6.1.
We assume for the remainder of these remarks that such a Markov chain exists, denoted X(θ,a). For
simplicity, we also make the assumption that the death proportions (di)i∈�0,N−1� associated to our
original Markov chain X satisfy the condition ∀ i ∈ �0, N − 2�, di > 0 ⇒ di+1 > 0.
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4) Let J ≥ I be defined by

J � inf{i ∈ �0, N − 1� : θN−1−i > 0}

and for any j ∈ �0, J�, let us decompose the sum of Proposition 6.1 into

P[TX = n] =
∑

k∈�1,n∧j�

bn,kMG(θ+, a)[k] +
∑

k∈�j+1,n�

bn,kMG(θ+, a)[k]. (6.9)

Then the last sum is nonnegative and it can be written in the following form∑
k∈�j+1,n�

bn,kMG(θ+, a)[k] = MG(θ+, a)[�j + 1,∞�]P[TX(θ,ǎ) = n] (6.10)

where the probability measure ǎ is defined as a, but in terms of the modified death proportions ď �
(ďi)i∈�0,N−1� given by

∀ i ∈ �0, N − 1�, ďi �
{

0, if i ∈ �0, j − 1�
di, otherwise.

Let us also denote d = (di)i∈�0,N−1� and write Z(d) for the chain Z constructed after Proposition 6.1,
to indicate explicitely its dependence on the vector d. From the fact that j ∈ �0, J�, it follows that

∀ k ∈ �j + 1,∞�, P[TZ(d) = k|TZ(d) ≥ j + 1] = P[TZ(ď) = k]

and this can be rewritten in the form

∀ k ∈ �j + 1,∞�, P[TZ(d) = k] = P[TZ(d) ≥ j + 1]P[TZ(ď) = k]

= MG(θ+, a)[�j + 1,∞�]MG(θ+, ǎ)[k].

Furthermore we have for any k ∈ �0, j�, MG(θ+, ǎ)[k] = 0, so if we apply Proposition 6.1 to the Markov
chain X(θ,ǎ), we get (6.10).

5) In the above considerations, let us take j = I. It is tempting to believe that the conditional law of TX

knowing that TY > I is the law of TX(θ,ǎ) , so we can identify the quantity in (6.10) as P[TX = n, TY > I]
and it would follow that the first sum in the r.h.s. of (6.9) (with j = I) is equal to P[TX = n, TY ≤ I].
But this is not true, since the latter sum can be negative. Indeed, assume that dI > 0 and let ã be
the probability measure on �0, N − 1� defined as a, but in terms of the modified death proportions
d̃ � (d̃i)i∈�0,N−1� given by

∀ i ∈ �0, N − 1�, d̃i �

⎧⎨⎩ 0, if i ∈ �0, I − 2�
1/2, if i = I − 1
di, otherwise.

Then we get that MG(θ+, ã)[k] = 0 for any k ∈ �1, I − 1� and MG(θ+, ã)[I] > 0, so that for n ≥ I, the sign of∑
k∈�1,n∧I�

bn,kMG(θ+, a)[k] = bn,IMG(θ+, a)[I]

is (−1)n−I .



ON ABSORPTION TIMES AND DIRICHLET EIGENVALUES 145

There is one situation where the implicit formula (6.4) can be simplified. Put an unoriented graph structure
on S̄ by saying that x, y ∈ S̄ are neighbours if P̄ (x, y) > 0 or P̄ (y, x) > 0. We denote by ρ the corresponding
distance and assume that the support of m0 is included in {x ∈ S : ρ(x,�) > I}. Then we have that di = 0
for all i ∈ �0, I − 1� (this is equivalent to the above condition), so a.s. TY > I and we can write

TY = TX + I − S(I). (6.11)

Let ψ be the moment generating function of the law MG(θ+, a) and ϕ be the moment generating function of
I−S(I) (which is a sum of N independent Bernoulli random variables of respective parameters (−θN−1−i/(1−
θN−1−i))i∈�0,I−1�). Then the moment generating function of TX is given by

∀ u ∈ [0, 1], E[uTX ] =
ψ(u)
ϕ(u)

· (6.12)

We will encounter such a situation in next section.
More generally, it is natural to try to decompose TX as a mixture by conditioning with respect to the σ-

field generated by {TX > S(I)} = {TY > I}. Indeed, conditioned by the event {TY > I}, (YI+n)n∈N is a
homogeneous Markov chain with initial distribution μI and transition kernel is P̄ . Thus according to the proof
of Lemma 6.2, the law of TY − I conditioned by {TY > I} is the distribution of the absorption time for a
Markov chain Z on �I,N − 1� � {�} starting from I and whose transitions are described by the restriction to
(�I,N − 1� � {�})2 of the matrix Q̃ defined in (6.3). So we have

L(TX − S(I)|TX > S(I)) = MG(θ̌, ǎ)

where θ̌ = (θi)i∈�0,N−1−I� and ǎ is the probability measure on �0, N − 1 − I� defined by

∀ i ∈ �0, N − 1 − I�, ǎN−1−I−i � dI+i

∏
j∈�I,I+i−1�

(1 − dj).

Unfortunately the conditional law L(TX |TX > S(I)) is not easy to deduce, because on {TX > S(I)}, TX and
S(I) are no longer independent in general. Let us introduce the Markov kernel K from N∗ to �0, I� describing
the conditional law L(S(I)|TX − S(I)). Let us also consider ν the probability measure on �0, I� which is the
distribution of TX conditioned on {TX ≤ S(I)}. Then to sample according to L(TX) one has to do the following:
first to draw a Bernoulli variable B of parameter m̃I(S) =

∏
j∈�0,I−1�(1−dj). If B = 1, one samples T according

to MG(θ̌, ǎ) and adds to T a variable distributed according to K(T, ·). If B = 0, one samples according to ν.
In particular, it appears that TX is stochastically dominated by I + T̃ , where T̃ is distributed according to the
mixture ⎛⎝1 −

∏
j∈�0,I−1�

(1 − dj)

⎞⎠ δ0 +
∏

j∈�0,I−1�

(1 − dj)MG(θ̌, ǎ).

But a better bound can be obtained by noticing directly that TX is stochastically dominated by TY . Both of
these bounds are independent of the negative eigenvalues.

7. Examples

We present three illustrations of the previous results: finite birth and death chains which are absorbed at one
end of their state space interval, the situation of constant probability/rate of absorption and the case N = 2 in
continuous time. Their common point is that the death proportions can be easily computed (at least when the
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initial point is the non-absorbing end in the birth and death setting). We hope to consider in future studies more
serious applications, where estimates of death proportions are more involved (even if from a complexity point
of view, they only ask for the knowledge of (m0P̄

n(�))n∈�1,N−1�, once the Dirichlet eigenvalues are known, see
remark 3.3).

• We begin with the birth and death setting, which was the first motivation for this investigation (see [6] and
in particular the end of its introduction for historical background). We take S = �0, N − 1� and write � = N ,
where N ∈ N∗.

First consider the discrete time situation, where the absorbing transition matrix P̄ satisfies

∀ i, j ∈ �0, N�, P̄ (i, j) > 0 ⇐⇒ |i− j| = 1 and i �= N.

Then its restriction P to �0, N − 1�2 is irreducible and reversible, with respect to the measure π defined by

∀ i ∈ �0, N − 1�, π(i) �
∏

j∈�0,i−1�

P (j, j + 1)
P (j + 1, j)

· (7.1)

As usual, let (θi)i∈�0,N−1� be the eigenvalues of P , in decreasing order (here they are all of multiplicity 1). Then
we recover the following well-known result:

Corollary 7.1. Assume that the eigenvalues are nonnegative, i.e. θN−1 ≥ 0, and that the initial distribution
m0 is δ0. Then TX is distributed as a sum of independent geometric distributions of respective parameters the
θi, for i ∈ �0, N − 1�.

Indeed, for any n ∈ �0, N − 1�, the support of P̄n(0, ·) is included in �0, n�, so Lemma 3.2 shows that the
death proportions di, for i ∈ �0, N − 2�, are null. In particular, we get that the probability measure a defined
by (3.1) is just δ0. So Proposition 7.1 is an immediate consequence of Theorem 1.1.

The above arguments can also be applied when there are some negative eigenvalues (see Eq. (6.2)). Taking
into account the discussion after Remarks 6.5, in particular (6.11) and (6.12), we get:

Corollary 7.2. Without any assumptions on the sign of the eigenvalues, the moment generating function of
TX , when X is starting from 0, is given by

∀ u ∈ [0, 1], E[uTX ] =
∏

i∈�0,N−1�

(1 − θi)u
1 − θiu

·

This has the probabilistic interpretation that if we add to TX an independent sum of independent Bernoulli
random variables of respective parameters (θ−i /1 + θ−i )i∈�0,N−1� then we get a random variable distributed as a
sum of independent geometric random variables of parameters (θ+i )i∈�0,N−1�.

Let us come back to the case of nonnegative eigenvalues. For more general initial distributions
m0 ∈ P(�0, N − 1�) than δ0, the law of TX is a “true” mixture of sum of geometric distributions (which
can sometimes be simplified, for instance if m0 is the quasi-stationary law, we get a geometric law of parameter
θ0, see Rem. 3.4). Indeed, if I0 � max{i ∈ �0, N −1� : m0(i) > 0}, then L(TX) is a mixture of the distributions
G(θ0, θ1, ..., θN−1), G(θ1, θ2, ..., θN−1), ..., G(θI0 , θI0+1, ..., θN−1), with the notation of the introduction, since we
must have di = 0 for i ∈ �0, N − 2 − I0�. The situation becomes more involved if there exists some negative
eigenvalues. But if we have I0 < N − 1 − I, where I is the number of negative eigenvalues, then according
to (6.11), there exists a probability measure a = (ai)i∈�0,I0� such that

∀ u ∈ [0, 1], E[uTX ] =
∑

i∈�0,I0�

ai

∏
j∈�i,N−1�

(1 − θj)u
1 − θju

·
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Let us now deal with the continuous time situation, which is simpler. Suppose L̄ is a generator on �0, N�
satisfying

∀ i, j ∈ �0, N�, L̄(i, j) > 0 ⇐⇒ |i− j| = 1 and i �= N.

As above, its restriction L to �0, N − 1�2 is irreducible and reversible with respect to the measure π defined as
in (7.1), with P replaced by L. We denote by (λi)i∈�0,N−1� the eigenvalues of −L in increasing order. Then we
have the equivalent of Proposition 7.1:

Corollary 7.3. Assume that the Markov process X starts from 0. Then TX is distributed as a sum of inde-
pendent exponential distributions of respective parameters the λi, for i ∈ �0, N − 1�.

This is an immediate consequence of the recursive formula (5.3), which implies that the death proportions
di are null for i ∈ �0, N − 2�. We also recover the local equilibria that were considered in [6]:

∀ i ∈ �0, N − 1�, μi = δ0
∏

j∈�0,i−1�

L− λN−1−iId�0,N−1�

λN−1−i

even if they were not described so explicitely there. As above, for more general initial distribution m0 ∈
P(�0, N−1�), L(TX) is a mixture of the sums of exponential distributions E(λ0, λ1, ..., λN−1), E(λ1, λ2, ..., λN−1),
..., E(λI0 , λ2, ..., λN−1), where I0 � max{i ∈ �0, N − 1� : m0(i) > 0}.

• We now come to the example of constant absorption probability. It is characterized by the existence of
a ∈ (0, 1) such that

∀ x ∈ S, P̄ (x,�) = 1 − a.

This is equivalent to the fact that P can be written under the form P = aP̃ , where P̃ is a Markov transition
matrix on S. Under our usual assumption that P is irreducible and reversible, P̃ is also irreducible and reversible.
Let (θ̃i)i∈�0,N−1� be its eigenvalues in nonincreasing order, which now belong to [−1, 1]. Thus

∀ i ∈ �0, N − 1�, θi = aθ̃i

and since θ̃0 = 1, we get a = θ0.
In this situation, whatever the initial distribution m0 ∈ P(S), the absorption time TX is distributed as the

geometric law G(θ0). This is an immediate consequence of the fact that at each time n ∈ N, if the chain has
not yet been absorbed, then it has a chance 1 − θ0 to be absorbed at next step, independent of the underlying
position. Taking into account (6.2) (for all i ∈ �0, N − 1�), it follows that we have for the death proportions

∀ i ∈ �0, N − 1�, di =
1 − θ0

1 − θN−1−i
·

Let a = (ai)i∈�0,N−1� be the weight given by (3.1):

∀ i ∈ �0, N − 2�, ai =
1 − θ0
1 − θi

∏
j∈�0,N−2−i�

θ0 − θN−1−j

1 − θN−1−j
· (7.2)

If all the eigenvalues are assumed to be nonnegative, we get the identity

G(θ0) =
∑

i∈�0,N−1�

aiG(θi, θi+1, ..., θN−1).
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If there are some negative eigenvalues, we end up with a result even more surprising. Let ΘM be the set of
eigenvalues (θi)i∈�0,N−1� in nonincreasing order of irreducible and reversible N × N Markovian matrices. If
(θi)i∈�0,N−1� is an a priori given family of numbers with θ0 ∈ (0, 1) and such that (θi/θ0)i∈�0,N−1� belongs to
ΘM and if in (6.5) we put the weight a defined by (7.2), we obtain G(θ0)[n] = (1 − θ0)θn−1

0 . Indeed, let P̃
be an irreducible and reversible S × S Markovian matrix admitting (θi/θ0)i∈�0,N−1� as eigenvalues. It is then
sufficient to apply (6.5) with the absorbing transition matrix P̄ naturally constructed from its S×S-restriction
P = θ0P̃ .

Again the continuous time equivalent is simpler. Let L̄ be an absorbing generator satisfying our usual
hypotheses and assume that there exists a constant a > 0 such that

∀ x ∈ S, L̄(x,�) = a.

Necessarily a = λ0 and independently from the initial distribution m0 ∈ P(S), the absorption time TX is
distributed as an exponential distribution E(λ0). Computing the death proportions via (5.3), we obtain the
identity

E(λ0) =
∑

0≤i≤N−1

aiE(λi, λi+1, ..., λN−1)

with

∀ i ∈ �0, N − 2�, ai =
λ0

λi

∏
j∈�i+1,N−1�

λj − λ0

λj
·

• To finish, we investigate the case N = 2 in continuous time, to determine the set of laws of absorption time
in this very simple situation.
So we consider the state space S̄ = {0, 1,�} endowed with the generator matrix

L̄ �

⎛⎝ −(a+ b) a b
c −(c+ d) d
0 0 0

⎞⎠
with a > 0, c > 0 and b ∨ d > 0, to insure the validity of assumption (B1). Note that (B2) is automatically
satisfied here.

The eigenvalues of L =
( −(a+ b) a

c −(c+ d)

)
are

λ0 =
1
2
(a+ b+ c+ d−

√
(a+ b+ c+ d)2 − 4(bd+ cb+ da)) (7.3)

λ1 =
1
2
(a+ b+ c+ d+

√
(a+ b+ c+ d)2 − 4(bd+ cb+ da)). (7.4)

Let also be given a probability measure m0 � (e, f) on S. Using the formula

m0L̄ = −λ1m0 + λ1((1 − d0)μ1 + d0δ�)

where μ1 is a probability measure on S, it follows that m0L̄(�) = eb+ fd = λ1d0, i.e.

d0 =
eb+ fd

λ1
· (7.5)
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With these quantities, the law of the absorption time of the corresponding Markov process is given by

(1 − d0)E(λ0) ∗ E(λ1) + d0E(λ1).

Conversely, we wonder if for any real numbers 0 < λ0 < λ1 and 0 ≤ d0 < 1, we can find a, b, c, d, e, f as above
such that (7.3), (7.4) and (7.5) are satisfied. This is indeed true and even if we only consider birth and death
processes, namely satisfying the restriction b = 0.

Proposition 7.4. Given 0 < λ0 < λ1 and 0 ≤ d0 < 1 there exist a > 0, c > 0, d > 0 and f ∈ [0, 1] such that

λ0 =
1
2
(a+ c+ d−

√
(a+ c+ d)2 − 4da)

λ1 =
1
2
(a+ c+ d+

√
(a+ c+ d)2 − 4da)

d0 =
fd

λ1
·

Proof. The two first equations of the proposition are equivalent to{
ad = λ0λ1

a+ c+ d = λ0 + λ1

and this leads to the following second order equation in a:

a2 + (c− λ0 − λ1)a+ λ0λ1 = 0. (7.6)

Its discriminant

(c− λ0 − λ1)2 − 4λ0λ1 = (c− (
√
λ1 −

√
λ0)2)(c− (

√
λ1 +

√
λ0)2)

must be nonnegative, so we must have c ∈ R∗
+ \ ((

√
λ1 − √

λ0)2, (
√
λ1 +

√
λ0)2). Requiring furthermore that

equation (7.6) must have a positive solution implies that c ∈ (0, (
√
λ1 −

√
λ0)2] and for these values of c, we get

two positive solutions (which is double for c = (
√
λ1 −

√
λ0)2),

a−(c) �
1
2
(λ0 + λ1 − c−

√
(c− λ0 − λ1)2 − 4λ0λ1)

a+(c) �
1
2
(λ0 + λ1 − c−

√
(c− λ0 − λ1)2 − 4λ0λ1).

As c goes from 0 to (
√
λ1 −

√
λ0)2, a−(c) (respectively a+(c)) goes from λ0 to

√
λ0λ1 (resp. from λ1 to

√
λ0λ1).

To end the proof, we note that the third equation of the above proposition permits to choice d0 in the
range [0, d/λ1] = [0, λ0/a], so all values of d0 in [0, 1) can be reached, since λ0/a−(c) converges to 1− as c goes
to 0+. �

The fact that birth and death processes lead to the same set of laws of absorption times as in the general
case (always under assumptions (B1) and (B2)) is specific to N = 2, because for N ≥ 3, we may have multiple
eigenvalues in the general case, but not for birth and death processes. We wonder if for N ≥ 3, the set of laws
of absorption times of birth and death processes is dense in the set of general absorption times.
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