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DIRECTED POLYMER IN RANDOM ENVIRONMENT AND LAST PASSAGE
PERCOLATION ∗

Philippe Carmona1

Abstract. The sequence of random probability measures νn that gives a path of length n, 1
n

times
the sum of the random weights collected along the paths, is shown to satisfy a large deviations principle
with good rate function the Legendre transform of the free energy of the associated directed polymer
in a random environment. Consequences on the asymptotics of the typical number of paths whose
collected weight is above a fixed proportion are then drawn.
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1. Introduction

Last passage percolation

To each site (k, x) of N×Zd is assigned a random weight η(k, x). The (η(k, x))k≥1,x∈Zd are taken IID under
the probability measure Q.

The set of oriented paths of length n starting from the origin is

Ωn =
{
ω = (ω0, . . . , ωn) : ωi ∈ Zd, ω0 = 0, |ωi − ωi−1| = 1

}
.

The weight (energy, reward) of a path is the sum of weights of visited sites:

Hn = Hn(ω, η) =
n∑

k=1

η(k, ωk) (n ≥ 1, ω ∈ Ωn).

Observe that when η(k, x) are Bernoulli(p) distributed

Q(η(k, x) = 1) = 1 − Q(η(k, x) = 0) = p ∈ (0, 1),

the quantity Hn

n (ω, η) is the proportion of open sites visited by ω, and it is natural to consider for p < ρ < 1,

Nn(ρ) = number of paths of length n such that Hn(ω, η) ≥ nρ.

Keywords and phrases. Directed polymer, random environment, partition function, last passage percolation.

∗ The author acknowledges the support of the French Ministry of Education through the ANR BLAN07-2184264 grant.
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The problem of ρ-percolation, as we learnt it from Comets et al. [9] and Kesten and Sidoravicius [12], is to
study the behaviour of Nn(ρ) for large n.

Directed polymer in a random environment

We are going to consider fairly general environment distributions, by requiring first that they have exponential
moments of any order:

λ(β) = logQ
(
eβη(k,x)

)
< +∞ (β ∈ R),

and second that they satisfy a logarithmic Sobolev inequality (see e.g. [2]): in particular we can apply our result
to bounded support and Gaussian environments.

The polymer measure is the random probability measure defined on the set of oriented paths of length n by:

μn(ω) = (2d)−n eβHn(ω,η)

Zn(β)
(ω ∈ Ωn),

with Zn(β) the partition function

Zn(β) = Zn(β, η) = (2d)−n
∑

ω∈Ωn

eβHn(ω,η) = P
(
eβHn(ω,η)

)
,

where P is the law of simple random walk on Zd starting from the origin.
Bolthausen [3] proved the existence of a deterministic limiting free energy

p(β) = lim
n→+∞

1
n
Q(log Zn(β)) = Q a.s. lim

n→+∞
1
n

log Zn(β).

Thanks to Jensen’s inequality, we have the upper bound p(β) ≤ λ(β) and it is conjectured (and partially proved,
see [6,7]) that the behaviour of a typical path under the polymer measure is diffusive iff β ∈ Cη the critical
region

Cη = {β ∈ R : p(β) = λ(β)}.
In dimension d = 1, Cη = {0} and in dimensions d ≥ 3, Cη contains a neighborhood of the origin (see [3,8]).

The main theorem

The connection between Last passage percolation and Directed polymer in random environment is made by
the family (νn)n∈N of random probability measures on the real line:

νn(A) =
1

|Ωn|
∑

ω∈Ωn

1( Hn
n (ω,η)∈A) = P

(
Hn

n
(ω, η) ∈ A

)
.

Indeed,
Nn(ρ) =

∑
ω∈Ωn

1(Hn(ω,η)≥nρ) = (2d)nνn([ρ, +∞)).

The main result of the paper is

Theorem 1.1. Q almost surely, the family (νn)n∈N satisfies a large deviations principle with good rate function
I = p∗ the Legendre transform of the free energy of the directed polymer.

Let m = Q(η(k, x)) be the average weight of a path m = Q
(

Hn

n (ω, η)
)
. It is natural to consider the quantities:

Nn(ρ) =

{∑
ω∈Ωn

1(Hn(ω,η)≥nρ) if ρ ≥ m,∑
ω∈Ωn

1(Hn(ω,η)≤nρ) if ρ < m.



DIRECTED POLYMER IN RANDOM ENVIRONMENT AND LAST PASSAGE PERCOLATION 265

A simple exchange of limits β → ±∞, and n → +∞, yields the following

ρ± = Q a.s. lim
n→+∞ max

ω∈Ωn

±Hn

n
(ω, η) = lim

β→+∞
p(±β)

β
∈ [0, +∞].

Repeating the proof of Theorem 1.1 of [9] gives

Corollary 1.2. For −ρ− < ρ < ρ+, we have Q almost surely,

lim
n→+∞(Nn(ρ))

1
n = (2d)e−I(ρ).

We can then translate our knowledge of the critical region Cη, into the following remark. Let

Vη = {ρ ∈ R : I(ρ) = λ∗(ρ)} .

In dimension d = 1, Vη = {m} and in dimensions d ≥ 3, Vη contains a neighbourhood of m.
This means that in dimensions d ≥ 3, the typical large deviation of Hn

n (ω, η) close to its mean is the same as
the large deviation of 1

n (η1 + · · · + ηn) close to its mean, with ηi IID. There is no influence of the path ω: this
gives another justification to the name weak-disorder region given to the critical set Cη.

2. Proof of the main theorem

Observe that for any β ∈ R we have:∫
eβnxdνn(x) = P

(
eβHn(ω,η)

)
= Zn(β) Q a.s. (2.1)

Consequently, since eu + e−u ≥ e|u|, we obtain for any β > 0,

lim sup
n→+∞

1
n

log
(∫

eβn|x|dνn(x)
)

≤ p(β) + p(−β) < +∞,

and the family (νn)n≥0 is exponentially tight (see the Appendix, Lem. A.1). We only need to show now that
for a lower semicontinuous function I, and for x ∈ R

lim
δ→0

lim inf
n→∞

1
n

log νn((x − δ, x + δ)) = −I(x), (2.2)

lim
δ→0

lim sup
n→∞

1
n

log νn([x − δ, x + δ]) = −I(x). (2.3)

From these, we shall infer that (νn)n∈N follows a large deviations principle with good rate function I. Eventually,
equation (2.1) and

lim
n→∞

1
n

log Zn(β) = p(β)

will imply, by Varadhan’s lemma that I and p are Legendre conjugate:

I(x) = p∗(x) = sup
β∈R

(xβ − p(β)).

The strategy of proof finds its origin in Varadhan’s seminal paper [13], and has already successfully been applied
in [5]. Let us define for λ > 0, x ∈ Z, a ∈ R

V (λ)
n (x, a; η) = logPx

(
e−λ|Hn(ω,η)−a|

)
= V (λ)(0, a; τo,x ◦ η),
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with τk,x the translation operator on the environment defined by:

τk,x ◦ η(i, y) = η(k + i, x + y),

and Px the law of simple random walk starting from x.

Step 1. The functions v
(λ)
n (a) = Q

(
V (λ)(0, a; η)

)
satisfy the inequality

v
(λ)
n+m(a + b) ≥ v(λ)

n (a) + v(λ)
m (b) (n, m ∈ N; a, b ∈ R). (2.4)

Proof. Since |Hn+m − (a + b)| ≤ |Hn − b| + |(Hn+m − Hn) − a| we have

V
(λ)
n+m(x, a + b; η) ≥ logPx

(
e−λ|Hn−b|e−λ|(Hn+m−Hn)−a|

)
= logPx

(
e−λ|Hn−b|eV (λ)

m (0,a;τn,Sn◦η)
)

= log
∑

y

Px
(
e−λ|Hn−b| 1(Sn=y)

)
eV (λ)

m (0,a;τn,y◦η)

= V (λ)
n (x, b; η) + log

(∑
y

σn(y)eV (λ)
m (0,a;τn,y◦η)

)

≥ V (λ)
n (x, b; η) +

∑
y

σn(y)V (λ)
m (0, a; τn,y ◦ η) (Jensen’s inequality),

with σn the probability measure on Zd:

σn(y) =
1

V
(λ)
n (x, b; η)

Px
(
e−λ|Hn−b| 1(Sn=y)

)
(y ∈ Zd).

Observe that the random variables σn(y) are measurable with respect to the sigma field Gn = σ(η(i, x) : i ≤
n, x ∈ Zd), whereas the random variables V

(λ)
m (0, a; τn,y ◦ η) are independent from Gn. Hence, by stationarity,

v
(λ)
n+m(a + b) = Q

(
V

(λ)
n+m(0, a + b; η)

)
≥ v(λ)

n (b) +
∑

y

Q(σn(y))Q
(
V (λ)

m (0, a; τn,y ◦ η)
)

= v(λ)
n (b) +

∑
y

Q(σn(y))v(λ)
m (a)

= v(λ)
n (b) + v(λ)

m (a)Q

(∑
y

σn(y)

)

= v(λ)
n (b) + v(λ)

m (a). �

Step 2. There exists a function I(λ) : R → R+ convex, non negative, Lipschitz with constant λ, such that

− lim
n→∞

1
n

v(λ)
n (an) = I(λ)(ξ) (if

an

n
→ ξ ∈ R)). (2.5)

Proof. From |Hn − a| ≤ |Hn − b| + |a − b| we infer that

V (λ)
n (0, a; η) ≥ V (λ)

n (0, b; η) − λ|a − b|.
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Therefore the functions v
(λ)
n are all Lipschitz continuous with the same constant λ and we combine this fact

with standard subadditivity arguments (see e.g. Varadhan [13] or Alexander [1]). For sake of completeness, we
give a detailed proof in the Appendix Lemma A.2. �

Step 3. Q almost surely, for any ξ ∈ R, if an

n → ξ, then

lim
n→∞− 1

n
logP

(
e−λ|Hn−an|

)
= I(λ)(ξ). (2.6)

Proof. Since the functions are Lipschitz, it is enough to prove that for any fixed ξ ∈ Q, (2.6) holds a.s. This is
where we use the restrictive assumptions made on the distribution of the environment. If the distribution of η is
with bounded support, or Gaussian, or more generally satisfies a logarithmic Sobolev inequality with constant
c > 0, then it has the Gaussian concentration of measure property (see [2]): for any 1-Lipschitz function F of
independent random variables distributed as η,

P (|F − P (F )| ≥ r) ≤ 2e−r2/c (r > 0).

It is easy to prove, as in Proposition 1.4 of [4], that the function

(η(k, x), k ≤ n, |x| ≤ n) → logP
(
e−λ|Hn(ω,η)−a|

)

is Lipschitz, with respect to the Euclidean norm, with Lipschitz constant at most λ
√

n. Therefore, the Gaussian
concentration of measure yields

Q
(∣∣∣V (λ)

n (0, a; η) − v(λ)
n (a)

∣∣∣ ≥ u
)
≤ 2e−

λ2u2
cn .

We conclude by a Borel Cantelli argument combined with (2.5). �

Observe that for fixed ξ ∈ R, the function λ → I(λ)(ξ) is increasing; we shall consider the limit:

I(ξ) = lim
λ↑+∞

↑ I(λ)(ξ)

which is by construction non negative, convex and lower semi continuous.

Step 4. The function I satisfy (2.2) and (2.3).

Proof. Given, ξ ∈ R and λ > 0, δ > 0, we have

P
(∣∣∣∣Hn

n
(ω, η) − ξ

∣∣∣∣ ≤ δ

)
= P

(
e−λn|Hn

n (ω,η)−ξ| ≥ e−λnδ
)
≤ eλnδP

(
e−λ|Hn−nξ|

)
.

Therefore,

lim sup
1
n

log νn([ξ − δ, ξ + δ]) ≤ λδ − I(λ)(ξ)

lim sup
δ→0

lim sup
1
n

log νn([ξ − δ, ξ + δ]) ≤ −I(λ)(ξ)

and we obtain by letting λ → +∞,

lim sup
δ→0

lim sup
1
n

log νn([ξ − δ, ξ + δ]) ≤ −I(ξ).
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Given ξ ∈ R such that I(ξ) < +∞, and δ > 0, we have for λ > 0,

P
(∣∣∣∣Hn

n
− ξ

∣∣∣∣ < δ

)
≥ P

(
e−λ|Hn−nξ|

)
− e−λδn.

Hence, if we choose λ > 0 large enough such that λδ > I(ξ) ≥ I(λ)(ξ), we obtain

lim inf
n→+∞

1
n

log νn((ξ − δ, ξ + δ)) ≥ −I(λ)(ξ) ≥ −I(ξ)

and therefore
lim inf

δ→0
lim inf
n→+∞

1
n

log νn((ξ − δ, ξ + δ)) ≥ −I(ξ). �

Appendix A

Exponential tightness plays the same role in Large Deviations theory as tightness in weak convergence theory;
in particular it implies that the Large Deviations Property holds along a subsequence with a good rate function
(see Thm. 3.7 of Feng and Kurtz [11], or Lem. 4.1.23 of Dembo and Zeitouni [10]). Therefore, once exponential
tightness is established, we only need to identify the rate function: the Weak Large Deviations Property implies
the Large Deviations Property with a good rate function (see Dembo and Zeitouni [10], Lem. 1.2.18). Our
strategy of proof is then clear. First we establish exponential tightness, by applying the following lemma to
the probability νn and the Lyapunov function x → |x|, then we prove a Weak Large Deviations Property by
checking that the limits (2.2) and (2.3) hold.

Lemma A.1. Let (μn)n∈N be a sequence of probability measures on a Polish space X. Assume that there exists
a (Lyapunov) function F : X → R+ such that the level sets {F ≤ C}C>0 are compacts, and

lim sup
n→+∞

1
n

log
(∫

enF (x)dμn(x)
)

< +∞.

The (μn)n∈N is exponentially tight, i.e. for each A > 0, there exists a compact KA such that:

lim sup
n→+∞

log μn(KC
A ) ≤ −A.

Proof. Let M = lim supn→+∞
1
n log

(∫
enF (x)dμn(x)

)
. There exists n0 such that for n ≥ n0,

1
n

log
(∫

enF (x)dμn(x)
)

≤ 2M.

Thanks to Markov inequality, for C > 0 and n ≥ n0,

μn(F > C) = μn(enF > enC) ≤ e−nC

∫
enfdμn ≤ e−n(C−2M).

Hence, if C > 2M + A, then for the compact set KA = {F ≤ C}, and n ≥ n0,

1
n

log μn(KC
A ) ≤ −(C − 2M) < −A. �

In Step 2 of the proof of the main theorem, we apply the following lemma to the family of functions
un = −v

(λ)
n .
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Lemma A.2. Assume that the non negative functions un : R → R+ are Lipschitz with the same constant
C > 0, that is

∀n, x, y, |un(x) − un(y)| ≤ C|x − y| .
Assume furthermore the subadditivity:

∀x, y, n, m, un+m(x + y) ≤ un(x) + um(y) .

Then there exists a non negative function I : R → R+, Lipschitz with constant C, that satisfies:
(i) if an

n → x, then 1
nun(an) → I(x) .

(ii) I is convex.

Proof. For fixed x ∈ R, the sequence zn = un(nx) is subadditive and non negative:

zn+m ≤ zn + zm .

Therefore, by the standard subadditive theorem for sequences of real numbers, we can consider the limit

I(x) = inf
n≥1

1
n

zn = lim
n→+∞

1
n

zn = lim
n→+∞

1
n

un(nx) .

If we take limits in the inequality ∣∣∣∣ 1nun(nx) − 1
n

un(ny)
∣∣∣∣ ≤ C|x − y|

we obtain |I(x) − I(y)| ≤ C|x − y|.
(i) Assume an

n → x, then ∣∣∣∣ 1nun(nx) − 1
n

un(an)
∣∣∣∣ ≤ C

∣∣∣x − an

n

∣∣∣→ 0.

Hence, 1
nun(an) → I(x).

(ii) We have, �y� denoting the integer part of the real number y, for any x, y and 0 < t < 1,

u
tn�+
(1−t)n�(ntx + n(1 − t)y) ≤ u
tn�(ntx) + u
(1−t)n�(n(1 − t)y).

Since 1
n (�tn� + �(1 − t)n�) → 1, we have by (i)

1
n

u
tn�+
(1−t)n�(ntx + n(1 − t)y) → I(tx + (1 − t)y).

Furthermore, since 1
n�tn� → t, we have by (i),

1
n

u
tn�(ntx) → tI(x)

and similarly,
1
n

u
(1−t)n�(n(1 − t)y) → (1 − t)I(y).

Combining these limits with the preceding inequality yields,

I(tx + (1 − t)y) ≤ tI(x) + (1 − t)I(y)

that is I is convex. �
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