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DIRECTED POLYMER IN RANDOM ENVIRONMENT AND LAST PASSAGE
PERCOLATION *

PuIiLiPPE CARMONA !

Abstract. The sequence of random probability measures v, that gives a path of length n, % times
the sum of the random weights collected along the paths, is shown to satisfy a large deviations principle
with good rate function the Legendre transform of the free energy of the associated directed polymer
in a random environment. Consequences on the asymptotics of the typical number of paths whose
collected weight is above a fixed proportion are then drawn.
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1. INTRODUCTION

Last passage percolation

To each site (k,z) of N x Z¢ is assigned a random weight n(k, z). The (n(k,2))s>1 reze are taken IID under
the probability measure Q.
The set of oriented paths of length n starting from the origin is

Q, = {w = (Wo,...,Wwn) 1 w; € 7%, wy = 0, lwi —wi—1| = 1}.
The weight (energy, reward) of a path is the sum of weights of visited sites:

H,=H,(w,n) = Zn(kz,wk) (n>1,we ).

n
k=1

Observe that when n(k, z) are Bernoulli(p) distributed
Qn(k, ) =1) =1-Q(n(k,z) = 0) =p € (0,1),
the quantity %(u}, n) is the proportion of open sites visited by w, and it is natural to consider for p < p < 1,
N, (p) = number of paths of length n such that H,(w,n) > np.

Keywords and phrases. Directed polymer, random environment, partition function, last passage percolation.
* The author acknowledges the support of the French Ministry of Education through the ANR BLANO7-2184264 grant.
I Laboratoire Jean Leray, UMR 6629 Université de Nantes, BP 92208, 44322 Nantes Cedex 03, France;

http://www.math.sciences.univ-nantes.fr/”carmona; philippe.carmona@math.univ-nantes.fr

Article published by EDP Sciences © EDP Sciences, SMAI 2010


http://dx.doi.org/10.1051/ps:2008034
http://www.esaim-ps.org
http://www.math.sciences.univ-nantes.fr/~carmona
http://www.edpsciences.org

264 P. CARMONA

The problem of p-percolation, as we learnt it from Comets et al. [9] and Kesten and Sidoravicius [12], is to
study the behaviour of N,,(p) for large n.

Directed polymer in a random environment

We are going to consider fairly general environment distributions, by requiring first that they have exponential
moments of any order:

A(B) =log Q7)) < o0 (B ER),

and second that they satisfy a logarithmic Sobolev inequality (see e.g. [2]): in particular we can apply our result
to bounded support and Gaussian environments.
The polymer measure is the random probability measure defined on the set of oriented paths of length n by:

eBHn (w,n)

Tm (WGQn),

fin(w) = (24)7"
with Z, () the partition function

Zn(B) = Zu(Bym) = () 3 P — p (P,

wey,

where P is the law of simple random walk on Z? starting from the origin.
Bolthausen [3] proved the existence of a deterministic limiting free energy

. 1 . 1
p(B) = lim —Q(logZu(5)) = Qa.s. lim —logZn(5).
Thanks to Jensen’s inequality, we have the upper bound p(5) < A(8) and it is conjectured (and partially proved,
see [6,7]) that the behaviour of a typical path under the polymer measure is diffusive iff 8 € C,, the critical
region

Cy = {6 R p(B) = A(B)}.

In dimension d = 1, C, = {0} and in dimensions d > 3, C,, contains a neighborhood of the origin (see [3,8]).

The main theorem

The connection between Last passage percolation and Directed polymer in random environment is made by
the family (v, )nen of random probability measures on the real line:

1 H,
vn(A) = 1 Z Litn o meay =P <7(w’n) < A>'
weN,
Indeed,

Na(p) = 3 Lt mznp = 2d)"va(lp, +00)).
weNy,
The main result of the paper is

Theorem 1.1. Q almost surely, the family (vn)nen satisfies a large deviations principle with good rate function
I = p* the Legendre transform of the free energy of the directed polymer.

Let m = Q(n(k, z)) be the average weight of a path m = Q (% (w, 77)) It is natural to consider the quantities:

No(p) = 4 Zwenn Latn@mzng) ifpzm,
2weq, YHu@m<ng 1 p<m.
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A simple exchange of limits § — 400, and n — 400, yields the following

pi = Qa.s. lim max :I:ﬂ(w,n) — lim p(:;ﬂ) c

[0, 4+o0].
n—+400 weN, n B—4o0

Repeating the proof of Theorem 1.1 of [9] gives
Corollary 1.2. For —p~ < p < pT, we have Q almost surely,

lim (Na(p))® = (2d)e™ ().

n—-+4oo

We can then translate our knowledge of the critical region C,, into the following remark. Let

Vy = {peR: I(p) = X*(p)}.

In dimension d = 1, V,, = {m} and in dimensions d > 3, V, contains a neighbourhood of m.
This means that in dimensions d > 3, the typical large deviation of h; (w,n) close to its mean is the same as

the large deviation of %(771 + ---+ny,) close to its mean, with n; IID. There is no influence of the path w: this
gives another justification to the name weak-disorder region given to the critical set C,,.

2. PROOF OF THE MAIN THEOREM

Observe that for any 8 € R we have:
/eﬁ"”dl/n(m) =P (eﬁH"(‘”’”)> =Z,8) Qa.s. (2.1)

Consequently, since e* + e~ % > ell, we obtain for any 8 > 0,
1
lim sup — log (/ eﬁnlxdun(ac)) < p(B) + p(=p) < +o0,
n—4oo N
and the family (v,,)n>0 is exponentially tight (see the Appendix, Lem. A.1). We only need to show now that

for a lower semicontinuous function I, and for x € R

1
lim lim inf — log v, ((z — 6,2 + 0)) = —I(z), (2.2)

§—0 n—oo M

lim lim sup % logvy,([x — 6,2 + d]) = —I(x). (2.3)

0—0 p—oo

From these, we shall infer that (1,)nen follows a large deviations principle with good rate function I. Eventually,
equation (2.1) and

o1
Jim —log Z,,(8) = p(5)
will imply, by Varadhan’s lemma that I and p are Legendre conjugate:

I(x) = p*(x) = sup(xf — p(B)).

BER

The strategy of proof finds its origin in Varadhan’s seminal paper [13], and has already successfully been applied
in [5]. Let us define for A > 0,z € Z,a € R

V,E/\) (l‘, a; 7’) = log P* (e—)\\Hn(w,n)—a\> = V()\) (Oa a;To,x © 77);
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with 73, the translation operator on the environment defined by:

Tk, © n(i,y) =nlk +i,z +y),
and P* the law of simple random walk starting from .

Step 1. The functions vy(f‘) (a) = Q(V(A) (0, a; 77)) satisfy the inequality

o (a+b) > oM (@) + oM ®B)  (n,m eN; a,beR). (2.4)

n+m
Proof. Since |Hyym — (a +b)| < |Hp — b + |(Hptm — Hp) — a] we have
v (x,a+ b;n) > log P* (e_)“H”_b‘e_)“(H"”*m_H”)_“l)

n+m
— log P? (efA\anb\ev,EN<oya;rn,snon>)

_ log Z P:E (ef)\‘anb‘ 1(Sn:y))eV#A)(O’a;T"’yOn)
Y

= VéA) (x,b;n) + log <Z gn(y)ev,g*>(o,a;7w0n)>

Y

> VN (z,b;n) + Z on(y)V, (0, a; T,y ©1N) (Jensen’s inequality),
y

with ¢, the probability measure on Z¢:

1 _\|Ha
on(y) )P”(e N g, m) (g €27),

v @b

Observe that the random variables o, (y) are measurable with respect to the sigma field G,, = o(n(i,z) : i <
n,x € Z%), whereas the random variables Vé{\)((), @; Tn,y © M) are independent from G,. Hence, by stationarity,

oo +6) = Q(VD, (0,a+bin))

> oV 0) + Y Qon)Q(VV (0,03 7y o))

= oM () + > Qon(y)v) (a)

Step 2. There exists a function I : R — Rt convex, non negative, Lipschitz with constant X, such that

~lim 2o () = 1V G %” — ¢ €R)). (2.5)

n—oo N,

Proof. From |H,, —a| < |H, — b| + |a — b| we infer that

VY0, a5m) > VY (0,b5m) — Ala — b
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Therefore the functions vy(f) are all Lipschitz continuous with the same constant A and we combine this fact

with standard subadditivity arguments (see e.g. Varadhan [13] or Alexander [1]). For sake of completeness, we
give a detailed proof in the Appendix Lemma A.2. O

Step 3. Q almost surely, for any £ € R, if %= — &, then

lim —~ log P (e—MHn—%‘) = IM(e). (2.6)

n—00 n

Proof. Since the functions are Lipschitz, it is enough to prove that for any fixed £ € Q, (2.6) holds a.s. This is
where we use the restrictive assumptions made on the distribution of the environment. If the distribution of 7 is
with bounded support, or Gaussian, or more generally satisfies a logarithmic Sobolev inequality with constant
¢ > 0, then it has the Gaussian concentration of measure property (see [2]): for any 1-Lipschitz function F' of
independent random variables distributed as 7,

P(F-P(F)|>r)<2 "/ (r>0).
It is easy to prove, as in Proposition 1.4 of [4], that the function

(n(kﬂ 1’), k < n, |1'| < n) — logP (e*)\‘Hn(w,n)fﬂ)

is Lipschitz, with respect to the Euclidean norm, with Lipschitz constant at most A\y/n. Therefore, the Gaussian
concentration of measure yields
o

We conclude by a Borel Cantelli argument combined with (2.5). g

2242

VN(0,a;m) — oM (a)‘ > u) < 90

Observe that for fixed £ € R, the function A — IV (€) is increasing; we shall consider the limit:

I(§) = lim 1 IM(¢)

AT4+o0

which is by construction non negative, convex and lower semi continuous.

Step 4. The function I satisfy (2.2) and (2.3).
Proof. Given, £ € R and A > 0,6 > 0, we have

P[22 - <d)-p (>

n (w,n)—¢] < efkn(?) < AP (efMH,an\).
Therefore,

lim sup % log v ([€ — 6,€ +6]) < A6 — IV (¢)

1
lim sup lim sup - log v, ([€ — 6,6+ 0]) < _7™ (€)
6—0

and we obtain by letting A — +oo,

1
lim sup lim sup " log v ([ — 6,6+ 0]) < —1(€).
6—0
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Given £ € R such that I(£) < 400, and ¢ > 0, we have for A > 0,

p <‘% - g‘ < 5> >Pp (e*Mva”ﬁl) e,

Hence, if we choose A > 0 large enough such that A\d > I(¢) > I (€), we obtain

liminf = logw, (€ — 6. + 6)) > IV (€) > ~1(€)

n—-+4oo N
and therefore

liminf lim inf % log v, ((§ — 6, +6)) > —I(§). O

5—0 n——+oo
APPENDIX A

Exponential tightness plays the same role in Large Deviations theory as tightness in weak convergence theory;
in particular it implies that the Large Deviations Property holds along a subsequence with a good rate function
(see Thm. 3.7 of Feng and Kurtz [11], or Lem. 4.1.23 of Dembo and Zeitouni [10]). Therefore, once exponential
tightness is established, we only need to identify the rate function: the Weak Large Deviations Property implies
the Large Deviations Property with a good rate function (see Dembo and Zeitouni [10], Lem. 1.2.18). Our
strategy of proof is then clear. First we establish exponential tightness, by applying the following lemma to
the probability v, and the Lyapunov function  — |z|, then we prove a Weak Large Deviations Property by
checking that the limits (2.2) and (2.3) hold.

Lemma A.1. Let (in)nen be a sequence of probability measures on a Polish space X . Assume that there exists
a (Lyapunov) function F: X — Ry such that the level sets {F' < C} .., are compacts, and

lim sup 1 log </ e"F(m)dun(:E)) < +o00.
n

n—-+o0o
The (tin)nen is exponentially tight, i.e. for each A > 0, there exists a compact K o such that:

lim sup log 1, (KG) < —A.

n—-+o0o

Proof. Let M =limsup,,_, ., +log ([ @ du, (z)). There exists ng such that for n > ny,
1 nF(x)
— log e dpn () | < 2M.
n
Thanks to Markov inequality, for C' > 0 and n > ny,
,LLn(F > C) _ Nn(enF > enC) < efnC/enfdMn < efn(C72IVI).
Hence, if C > 2M + A, then for the compact set K4 = {F < C}, and n > nyg,
1 c
—logun(K%) < —(C —2M) < —A. O
n

In Step 2 of the proof of the main theorem, we apply the following lemma to the family of functions

Uy, = —vﬁl)‘).



DIRECTED POLYMER IN RANDOM ENVIRONMENT AND LAST PASSAGE PERCOLATION 269

Lemma A.2. Assume that the non negative functions u, : R — Ry are Lipschitz with the same constant
C > 0, that is
Assume furthermore the subadditivity:

anya n,m, Un+m($ + y) S Un($) + Um(y) .

Then there exists a non negative function I : R — Ry, Lipschitz with constant C, that satisfies:
(i) if = — x, then Ltuy,(a,) — I(z).
(i) T is conver.

Proof. For fixed x € R, the sequence z, = u,(nz) is subadditive and non negative:
Zntm < Zn + Zm -

Therefore, by the standard subadditive theorem for sequences of real numbers, we can consider the limit

o1 o1 . 1
1) = pen =l e = i un(ne).

If we take limits in the inequality
1 1
) ()| < Cle )
we obtain |I(z) — I(y)| < Clx — y.
(i) Assume %= — z, then
Qnp

SC‘JC—— — 0.
n

1 1
‘Eun(nac) — Eun(an)

Hence, Lu,(a,) — I(z).
(ii) We have, |y] denoting the integer part of the real number y, for any z,y and 0 < ¢ < 1,

Ultn]+|(1—t)n) (ntz +n(l—t)y) < U | (ntz) + U (1—t)n] (n(1—t)y).
Since L(|tn] + [(1 —t)n]) — 1, we have by (i)

1
U{tn]+[(1=t)n] (ntx +n(l —t)y) — Itz + (1 - t)y).

Furthermore, since —711 [tn| — t, we have by (i),
! t 174
—U|4p | (ntx) — tI(x)

and similarly,
1
Sua—nn) (vl = t)y) = (1 = 1)I(y).

Combining these limits with the preceding inequality yields,
I(te + (1 —t)y) <tl(z)+ (1 —1)I(y)

that is I is convex. O
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