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CENTRAL LIMIT THEOREM FOR SAMPLED SUMS
OF DEPENDENT RANDOM VARIABLES

Nadine Guillotin-Plantard1 and Clémentine Prieur2

Abstract. We prove a central limit theorem for linear triangular arrays under weak dependence
conditions. Our result is then applied to dependent random variables sampled by a Z-valued transient
random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch.
Dynamics 3 (2003) 477–497]. An application to parametric estimation by random sampling is also
provided.
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1. Introduction

Let {ξi}i∈Z be a sequence of centered, non essentially constant and square integrable real valued random vari-
ables. Let {an,i, −kn ≤ i ≤ kn} be a triangular array of real numbers such that for all n ∈ N,

∑kn

i=−kn
a2

n,i > 0.
We are interested in the behaviour of linear triangular arrays of the form

Xn,i = an,i ξi, n = 0, 1, . . . , i = −kn, . . . , kn, (1.1)

where (kn)n≥1 is a nondecreasing sequence of positive integers satisfying lim∞ kn = ∞. We work under a weak
dependence condition introduced in [8]. We first prove a central limit theorem for linear triangular arrays of
type (1.1) (Thm. 3.1 of Sect. 3). Applying this result, we then prove a central limit theorem for the partial
sums of weakly dependent sequences sampled by a transient Z-valued random walk (Thm. 4.1 of Sect. 4). This
result extends the results obtained by Guillotin-Plantard and Schneider [11]. Peligrad and Utev [20] derive a
central limit theorem for triangular arrays of type (1.1) under mixing conditions. Unfortunately, mixing is a
rather restrictive condition, and many simple Markov chains are not mixing. For any y ∈ R, let [y] denote the
integer part of y. It is known since a long time that the stationary Markov chain associated to the dynamical
system generated by the map T (x) = 2x − [2x] on [0, 1] via the Perron-Frobenius operator is not α-mixing, in
the sense that α(σ(T ), σ(T n)) does not tend to zero as n tends to infinity. Withers [27] proves triangular central
limit theorems under a so-called l-mixing condition, which generalizes the classical notions of mixing (such as
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strong mixing, absolute regularity, uniform mixing introduced respectively by Rosenblatt [22], Rozanov and
Volkonskii [23] and Ibragimov [13]). The idea of l-mixing requires the asymptotic decoupling of the “past” and
the “future”. The dependence setting used in the present paper (introduced in Dedecker et al., [8]) follows the
same idea. In Section 5 we give examples satisfying our dependence conditions. Coulon-Prieur and Doukhan [5]
proves a triangular central limit theorem under a weaker dependence condition. However, they assume that
the random variables ξi are uniformly bounded. Their proof is a variation of the Lindeberg method developed
in Rio [21]. Also using a variation of this method, Bardet et al. [2] prove a triangular central limit theorem,
requiring moments of order 2 + δ, δ > 0. In Section 2, we introduce the dependence setting under which we
work in the sequel. Models for which we can compute bounds for our dependence coefficients are presented in
Section 5. Finally, we give an application to parametric estimation by random sampling in Section 6.

2. Definitions

In this section, we recall the definition of the dependence coefficients which we will use in the sequel. They
have first been introduced in [8].

On the Euclidean space Rm, we define the metric

d1(x, y) =
m∑

i=1

|xi − yi|. (2.1)

Let Λ =
⋃

m∈N∗ Λm where Λm is the set of Lipschitz functions f : Rm → R with respect to the metric d1. If
f ∈ Λm, we denote by Lip(f) := supx �=y |f(x)− f(y)|/d1(x, y) the Lipschitz modulus of f . The set of functions
f ∈ Λ such that Lip(f) ≤ 1 is denoted by Λ̃.

Definition 2.1. Let ξ be a Rm-valued random variable defined on a probability space (Ω,A, P), assumed to
be square integrable. For any σ-algebra M of A, we define the θ2-dependence coefficient

θ2(M, ξ) = sup{‖E(f(ξ)|M) − E(f(ξ))‖2, f ∈ Λ̃}. (2.2)

We now define the coefficient θk,2 for a sequence of σ-algebras and a sequence of R-valued random variables.

Definition 2.2. Let (ξi)i∈Z be a sequence of square integrable random variables valued in R. Let (Mi)i∈Z be
a sequence of σ-algebras of A. For any k ∈ N∗ ∪ {∞} and n ∈ N, we define

θk,2(n) = max
1≤l≤k

1
l

sup{θ2(Mp, (ξj1 , . . . , ξjl
)), p + n ≤ j1 < . . . < jl}

and

θ2(n) = θ∞,2(n) = sup
k∈N∗

θk,2(n) .

Definition 2.3. Let (ξi)i∈Z be a sequence of square integrable random variables valued in R. Let (Mi)i∈Z be
a sequence of σ-algebras of A. The sequence (ξi)i∈Z is said to be θ2-weakly dependent with respect to (Mi)i∈Z

if lim∞ θ2(n) = 0.

Remark 2.1. Replacing the ‖ · ‖2 norm in (2.2) by the ‖ · ‖1 norm, we get the θ1 dependence coefficient first
introduced by Doukhan and Louhichi [10]. This weaker coefficient is the one used in [5].
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3. Central limit theorem for triangular arrays of dependent random
variables

Let {Xn,i, n ∈ N, −kn ≤ i ≤ kn} be a triangular array of type (1.1). We are interested in the asymptotic
behaviour of the following sum

Σn =
kn∑

i=−kn

Xn,i =
kn∑

i=−kn

an,i ξi .

Let (Mi)i∈Z be the sequence of σ-algebras of A defined by

Mi = σ (ξj , j ≤ i) , i ∈ Z .

In the sequel, the dependence coefficients are defined with respect to the sequence of σ-algebras (Mi)i∈Z. We
denote by σ2

n the variance of Σn.

Theorem 3.1. Assume that the following conditions are satisfied:

(A1) (i) lim infn→+∞
(∑kn

i=−kn
a2

n,i

)−1

σ2
n > 0,

(ii) limn→+∞ σ−1
n max−kn≤i≤kn |an,i| = 0.

(A2) {ξ2
i }i∈Z is an uniformly integrable family.

(A3) θξ
2(·) is bounded above by a non-negative function g(·) such that

x �→ x3/2 g(x) is non-increasing,∑∞
i=0 23i/2g(2iε) < ∞ for some ε ∈ ]0, 1[.

Then, as n tends to infinity, σ−1
n Σn converges in distribution to N (0, 1).

Remark 3.1. Theorem 2.2 (c) in [20] yields a central limit theorem for strongly mixing linear triangular arrays
of type (1.1). They assume that {|ξi|2+δ} is uniformly integrable for a certain δ > 0. Such an assumption is also
required for Theorem 2.1 in [27] for l-mixing arrays. In [5], the random variables ξi are assumed to be uniformly
bounded. The proof of Theorem 2.2 (c) in [20] relies on a variation on Theorem 4.1 in [25] (see Theorem B
in [20]). The proof of Theorem 3.1, which is postponed to the Appendix, also makes use of a variation on
Theorem 4.1 in [25] (see also [26]).

Remark 3.2. If θξ
2(n) = O (n−a) for some positive a, condition (A3) holds for a > 3/2.

4. Central limit theorem for the sum of dependent random variables
sampled by a transient random walk

4.1. The main result

Let (E, E , μ) be a probability space, and T : E �→ E a bijective bimeasurable transformation preserving the
probability μ. We define the stationary sequence (ζi)i∈Z = (T i)i∈Z from (E, μ) to E. Let (Xi)i≥1 be a sequence
of independent and identically distributed random variables defined on a probability space (Ω,A, P) with values
in Z and

Sn =
n∑

i=1

Xi, n ≥ 1, S0 ≡ 0.

For f ∈ L1(μ) and ω ∈ Ω, we are interested in the sampled ergodic sum

n−1∑
k=0

f ◦ ζSk(ω).
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By applying Birkhoff’s ergodic theorem to the skew-product:

U : Ω × E → Ω × E
(ω, x) �→ (σω, T ω1x)

where σ is the shift on the path space Ω = ZN, we obtain that for every function f ∈ L1(μ), the sampled
ergodic sum converges P ⊗ μ-almost surely. A natural question is to know if the random walk is universally
representative for Lp, p > 1 in the following sense: there exists a subset Ω0 of Ω of probability one such that
for every ω ∈ Ω0, for every dynamical system (E, E , μ, T ), for every f ∈ Lp, p > 1, the sampled ergodic average
converges μ-almost surely. The answer can be found in [16] if the Xi’s are square integrable: the random walk is
universally representative for Lp, p > 1 if and only if the expectation of X1 is not equal to 0 which corresponds
to the case where the random walk is transient. In that case, it seems natural to study the fluctuations of the
sampled ergodic averages around the limit. From Lacey’s theorem [15], for any H ∈ (0, 1), there exists some
function f ∈ L2(P ⊗ μ) such that the finite-dimensional distributions of the process

1
nH

[nt]−1∑
k=0

f ◦ Uk(ω, x)

converge to the finite dimensional distributions of a self-similar process. Unfortunately, this convergence on
the product space does not imply the convergence in distribution for a given path of the random walk. A first
answer to this question is given in [11] where the technique of martingale differences is used. Let us recall that
this method consists (under convenient conditions) of decomposing the function f as the sum of a function
g generating a sequence of martingale differences and a cocycle h − h ◦ T . In the standard case, the central
limit theorem for the ergodic sum is deduced from central limit theorems for the sums of martingale differences,
the term corresponding to the cocycle being negligeable in probability. In [11], only functions f generating a
sequence of martingale differences are considered. In this section, in which we prove a central limit theorem
for θ2-weakly dependent random variables sampled by a transient random walk, this argument does not hold
anymore. We apply Theorem 3.1 of Section 3.

In the sequel, the random walk (Sn)n≥0 is assumed to be transient. In particular, for every x ∈ Z, the Green
function

G(0, x) =
+∞∑
k=0

P(Sk = x)

is finite. For example, it is the case if the random variable X1 is assumed with finite absolute mean and nonzero
mean. It is also possible to choose the random variables (Xi)i≥1 symmetric and for every x ∈ R,

P(n−1/αSn ≤ x) −−−−−→
n→+∞ Fα(x),

where Fα is the distribution function of a stable law with index α ∈ (0, 1). Stone [24] has proved a local limit
theorem for this kind of random walks from which the transience can be deduced. The expectation with respect
to the measure μ (resp. with respect to P, P ⊗ μ) will be denoted in the sequel by Eμ (resp. by EP, E).

For every function f ∈ L2(μ) such that Eμ(f) = 0, we define

σ2(f) = 2
∑
x∈Z

G(0, x)Eμ(ff ◦ T x) − Eμ(f2).

Let us now state our main result whose proof is deferred to Section 4.3.
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Theorem 4.1. Let f be a function in L2(μ) such that Eμ(f) = 0. Assume that the sequence (ξx)x∈Z :=
(f ◦ T x)x∈Z satisfies assumption (A3) of Theorem 3.1. Assume that

∑
x∈Z

G(0, x)Eμ|ff ◦ T x| is finite.
If σ2(f) is positive, then for P-almost every ω ∈ Ω,

1√
n

n∑
k=0

f ◦ T Sk(ω) −−−−−→
n→+∞ N (0, σ2(f)) in distribution.

Remark 4.1. In the particular case where (f ◦ T x)x∈Z is a sequence of martingale differences, we recognize
Theorem 3.2 of [11]. Indeed, assumptions are satisfied using orthogonality of the f ◦ T x’s and then, σ2(f) =
(2G(0, 0) − 1)Eμ(f2).

Remark 4.2. The stationarity assumption can be relaxed to a stationarity assumption of order 2 on the
sequence (ξi)i∈Z

, if we assume furthermore that the latter sequence is uniformly integrable.

4.2. Computation of the variance

The random walk (Sn)n≥0 is defined as in the previous section. The local time of the random walk is then
defined for every x ∈ Z by

Nn(x) =
n∑

i=0

1{Si=x}.

The self-intersection local time is defined for every x ∈ Z by

α(n, x) =
n∑

i,j=0

1{Si−Sj=x}

and can be rewritten using the definition of the local time as

α(n, x) =
∑
y∈Z

Nn(y + x) Nn(y).

Let f be a function in L2(μ) such that Eμ(f) = 0. For every ω ∈ Ω,

n∑
k=0

f ◦ T Sk(ω) =
∑
x∈Z

Nn(x)(ω)f ◦ T x.

In order to apply results of Theorem 3.1, we need to study, for any fixed ω ∈ Ω, the asymptotic behaviour of
the variance of this sum, namely

σ2
n(f) = Eμ

⎛
⎝
∣∣∣∣∣

n∑
k=0

f ◦ T Sk(ω)

∣∣∣∣∣
2
⎞
⎠ .
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The variable ω will be omitted in the next calculations. We have

σ2
n(f) = Eμ

∣∣∣∣∣
∑
x∈Z

Nn(x)f ◦ T x

∣∣∣∣∣
2

=
∑

x,y∈Z

Nn(x)Nn(y)Eμ(f ◦ T x−y f)

=
∑

y,z∈Z

Nn(y + z)Nn(y)Eμ(f ◦ T z f)

=
∑
z∈Z

α(n, z)Eμ(f ◦ T z f).

We are now able to prove the following proposition:

Proposition 4.1. If
∑

x∈Z
G(0, x)Eμ |f f ◦ T x| is finite, then

σ2
n(f)
n

P-a.s.−−−−−→
n→+∞ σ2(f).

Proof of Proposition 4.1. We first prove the following result: if (b(x))x∈Z is a sequence of positive reals such
that

∑
x∈Z

G(0, x)b(x) is finite, then

1
n

∑
x∈Z

αn(0, x)b(x) P-a.s.−−−−−→
n→+∞ 2

∑
x∈Z

G(0, x)b(x) − b(0). (4.1)

For every 0 ≤ m < n, we denote by Wm,n the random variable

−
n∑

i,j=m

∑
x∈Z

1{Si−Sj=x}b(x).

Then, due to the positivity of the b(x)’s, for every k, m, n such that 0 ≤ k < m < n,

Wk,n ≤ Wk,m + Wm,n,

that is (Wm,n)m,n≥0 is a subadditive sequence. Then,

EP(W0,n) = −
n∑

i,j=0

∑
x∈Z

P(Si − Sj = x)b(x), by Fubini theorem

= −
(
(n + 1)b(0) + 2

n∑
i=1

i−1∑
j=0

∑
x∈Z

P(Si−j = x)b(x)
)

= −
(
(n + 1)b(0) + 2

n∑
i=1

i∑
j=1

∑
x∈Z

P(Sj = x)b(x)
)
.

Now, using that

lim
i→+∞

i∑
j=1

∑
x∈Z

P(Sj = x)b(x) =
∑
x∈Z

G(0, x)b(x) − b(0),
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we conclude that

lim
n→+∞

EP(W0,n)
n

= b(0) − 2
∑
x∈Z

G(0, x)b(x) < ∞.

So the sequence (Wm,n)m,n≥0 satisfies all the conditions of Theorem 5 in [14]. Hence

W0,n

n

P-a.s.−−−−−→
n→+∞ b(0) − 2

∑
x∈Z

G(0, x)b(x).

By remarking that W0,n = −∑x∈Z
α(n, x)b(x), (4.1) follows. For every x ∈ Z, the function f f ◦ T x can be

decomposed as
f f ◦ T x = (f f ◦ T x)1{f f◦T x≥0} − (−f f ◦ T x)1{f f◦T x<0}.

By applying the above result to both positive terms of the right-hand side, Proposition 4.1 follows. �

Remark 4.3. Let us consider the simple random walk with P(Xi = 1) = p and P(Xi = −1) = q with p > q.
Then, for x ≥ 0,

G(0, x) = (p − q)−1,

and for x ≤ −1,

G(0, x) = (p − q)−1

(
p

q

)x

·
If we assume that

∑
x∈N

E |h h ◦ T x| < +∞, a simple calculation gives

σ2(h − h ◦ T ) = 2
∑
x∈Z

[2G(0, x) − G(0, x + 1) − G(0, x − 1)] Eμ(h h ◦ T x) − 2Eμ(h2) + 2Eμ(h h ◦ T )

= −2
p − 1

p
Eμ(h2) + 2Eμ(h h ◦ T ) − 2

(p − q)
pq

∑
x≥1

(
q

p

)x

Eμ(h h ◦ T x).

4.3. Proof of Theorem 4.1

Let us define Mn = max
0≤k≤n

|Sk|. First note that

n∑
k=0

f ◦ T Sk =
∑

|x|≤Mn

Nn(x)f ◦ T x.

We want to apply Theorem 3.1 to the triangular array
{

Xn,i =
Nn(i)√

n
f ◦ T i, n ∈ N, −Mn ≤ i ≤ Mn

}
. (4.2)

The family
{(

f ◦ T i
)2}

i∈Z

is uniformly integrable since f belongs to L2(μ) and since the sequence (ζi)i∈Z
is

stationary. It remains to prove that assumption (A1) of Theorem 3.1 is satisfied for the triangular array defined
by (4.3).

Proof of (A1) (i). First, by Proposition 3.1. in [11],
∑Mn

i=−Mn
a2

n,i = α(n, 0)/n converges P-almost surely to
2G(0, 0) − 1 as n goes to infinity. Then, by Proposition 4.1, we know that σ2

n(f)/n converges to σ2(f), which
is assumed to be positive. Hence (A1)(i) is satisfied. �
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Proof of (A1) (ii). Now, by Proposition 3.2. in [11], we know that for every ρ > 0,

max
−Mn≤i≤Mn

|an,i| =
1√
n

max
i∈Z

Nn(i) = o
(
nρ− 1

2

)
P − almost surely.

So σ−1
n (f)

√
n max−Mn≤i≤Mn |an,i| tends to zero P−almost surely and assumption (A1)(ii) is satisfied. �

Hence Theorem 3.1 applied to
∑Mn

i=−Mn
an,i f ◦ T i, Proposition 4.1 and Slutsky lemma yield the result.

5. Examples

In this section, we present examples for which we can compute upper bounds for θ2(n) for any n ≥ 1. We
refer to chapter 3 in [8] and references therein for more details.

5.1. Example 1: causal functions of stationary sequences

Let (E, E , Q) be a probability space. Let (εi)i∈Z be a stationary sequence of random variables with values
in a measurable space S. Assume that there exists a real valued function H defined on a subset of SN,
such that H(ε0, ε−1, ε−2, . . . , ) is defined almost surely. The stationary sequence (ξn)n∈Z defined by ξn =
H(εn, εn−1, εn−2, . . .) is called a causal function of (εi)i∈Z.

Assume that there exists a stationary sequence (εi
′)i∈Z distributed as (εi)i∈Z and independent of (εi)i≤0.

Define ξ∗n = H(εn
′, εn−1

′, εn−2
′, . . .). Clearly, ξ∗n is independent of M0 = σ(ξi , i ≤ 0) and distributed as ξn.

Let (δ2(i))i>0 be a non increasing sequence such that

‖E (|ξi − ξ∗i | |M0)‖2 ≤ δ2(i). (5.1)

Then the coefficient θ2 of the sequence (ξn)n≥0 satisfies

θ2(i) ≤ δ2(i). (5.2)

Let us consider the particular case where the sequence of innovations (εi)i∈Z is absolutely regular in the sense of
Rozanov and Volkonskii [23]. Then, according to Theorem 4.4.7 in [3], if E is rich enough, there exists (ε′i)i∈Z

distributed as (εi)i∈Z and independent of (εi)i≤0 such that

Q(εi �= ε′i for some i ≥ k | F0) =
1
2

∥∥Qε̃k|F0 − Qε̃k

∥∥
v
,

where ε̃k = (εk, εk+1, . . .), F0 = σ(εi , i ≤ 0), and ‖ · ‖v is the variation norm. In particular if the sequence
(εi)i∈Z is independent and identically distributed, it suffices to take ε′i = εi for i > 0 and ε′i − ε′′i for i ≤ 0,
where (ε′′i )i∈Z is an independent copy of (εi)i∈Z.

Application to causal linear processes:
In that case, ξn =

∑
j≥0 ajεn−j , where (aj)j≥0 is a sequence of real numbers. We can choose

δ2(i) ≥ ‖ε0 − ε′0‖2

∑
j≥i

|aj | +
i−1∑
j=0

|aj |‖εi−j − ε′i−j‖2 .

From Proposition 2.3 in [18], we obtain that

δ2(i) ≤ ‖ε0 − ε′0‖2

∑
j≥i

|aj | +
i−1∑
j=0

|aj |
(
22

∫ β(σ(εk,k≤0),σ(εk,k≥i−j))

0

Q2
ε0

(u)
)1/2

du,
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where Qε0 is the generalized inverse of the tail function x �→ Q(|ε0| > x). In that latter case, notice that
assumption (A3) of Theorem 3.1 is satisfied if the sequence (|aj |)j≥0 decreases fast enough to zero and if
ε0 is square integrable. If the particular case where the innovations are i.i.d., we can choose δ2(i) = ‖ε0 −
ε′0‖2

∑
j≥i |aj | ≤ 2‖ε0‖2

∑
j≥i |aj |. Hence (A3) is satisfied as soon as |ai| = O (i−b

)
, with b > 5/2.

5.2. Example 2: iterated random functions

Let (ξn)n≥0 be a real valued stationary Markov chain, such that ξn = F (ξn−1, εn) for some measurable
function F and some independent and identically distributed sequence (εi)i>0 independent of ξ0. Let ξ∗0 be
a random variable distributed as ξ0 and independent of (ξ0, (εi)i>0). Define ξ∗n = F (ξ∗n−1, εn). The sequence
(ξ∗n)n≥0 is distributed as (ξn)n≥0 and independent of ξ0. Let Mi = σ(ξj , 0 ≤ j ≤ i). As in example 1, define the
sequence (δ2(i))i>0 by (5.1). The coefficient θ2 of the sequence (ξn)n≥0 satisfies the bound (5.2) of example 1.

Let μ be the distribution of ξ0 and (ξx
n)n≥0 be the chain starting from ξx

0 = x. With these notations, we can
choose δ2(i) such that

δ2(i) ≥ ‖ξi − ξ∗i ‖2 =
(∫ ∫

‖|ξx
i − ξy

i ‖2
2μ(dx)μ(dy)

)1/2

.

For instance, if there exists a sequence (d2(i))i≥0 of positive numbers such that

‖ξx
i − ξy

i ‖2 ≤ d2(i)|x − y|,

then we can take δ2(i) = d2(i)‖ξ0− ξ∗0‖2. For example, in the usual case where ‖F (x, ε0)−F (y, ε0)‖2 ≤ κ|x− y|
for some κ < 1, we can take d2(i) = κi.

An important example is ξn = f(ξn−1) + εn for some κ-Lipschitz function f . If ξ0 has a moment of order 2,
then δ2(i) ≤ κi‖ξ0 − ξ∗0‖2.

5.3. Example 3: dynamical systems on [0, 1]

Let I = [0, 1], T be a map from I to I and define Xi = T i. If μ is invariant by T , the sequence (Xi)i≥0 of
random variables from (I, μ) to I is strictly stationary.

For any finite measure ν on I, we use the notations ν(h) =
∫

I h(x)ν(dx). For any finite signed measure ν

on I, let ‖ν‖ = |ν|(I) be the total variation of ν. Denote by ‖g‖1,λ the L1-norm with respect to the Lebesgue
measure λ on I.

Covariance inequalities. In many interesting cases, one can prove that, for any BV function h and any k in
L1(I, μ),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1(‖h‖1,λ + ‖dh‖) , (5.3)

for some nonincreasing sequence an tending to zero as n tends to infinity.

Spectral gap. Define the operator L from L1(I, λ) to L1(I, λ) via the equality

∫ 1

0

L(h)(x)k(x)dλ(x) =
∫ 1

0

h(x)(k ◦ T )(x)dλ(x) where h ∈ L1(I, λ) and k ∈ L∞(I, λ).

The operator L is called the Perron-Frobenius operator of T . In many interesting cases, the spectral analysis
of L in the Banach space of BV -functions equiped with the norm ‖h‖v = ‖dh‖ + ‖h‖1,λ can be done by using
the theorem of Ionescu-Tulcea and Marinescu (see [17] and [12]). Assume that 1 is a simple eigenvalue of L and
that the rest of the spectrum is contained in a closed disk of radius strictly smaller than one. Then there exists
a unique T -invariant absolutely continuous probability μ whose density fμ is BV , and

Ln(h) = λ(h)fμ + Ψn(h) with ‖Ψn(h)‖v ≤ Kρn‖h‖v. (5.4)
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for some 0 ≤ ρ < 1 and K > 0. Assume moreover that:

I∗ = {fμ �= 0} is an interval, and there exists γ > 0 such that fμ > γ−1 on I∗. (5.5)

Without loss of generality assume that I∗ = I (otherwise, take the restriction to I∗ in what follows). Define
now the Markov kernel associated to T by

P (h)(x) =
L(fμh)(x)

fμ(x)
. (5.6)

It is easy to check (see for instance [1]) that (X0, X1, . . . , Xn) has the same distribution as (Yn, Yn−1, . . . , Y0)
where (Yi)i≥0 is a stationary Markov chain with invariant distribution μ and transition kernel P . Since ‖fg‖∞ ≤
‖fg‖v ≤ 2‖f‖v‖g‖v, we infer that, taking C = 2Kγ(‖dfμ‖ + 1),

Pn(h) = μ(h) + gn with ‖gn‖∞ ≤ Cρn‖h‖v. (5.7)

This estimate implies (5.3) with an = Cρn (see [7]).

Expanding maps: Let ([ai, ai+1[)1≤i≤N be a finite partition of [0, 1[. We make the same assumptions on T
as in [4].

(1) For each 1 ≤ j ≤ N , the restriction Tj of T to ]aj , aj+1[ is strictly monotonic and can be extented to a
function T j belonging to C2([aj , aj+1]).

(2) Let In be the set where (T n)′ is defined. There exists A > 0 and s > 1 such that infx∈In |(T n)′(x)| > Asn.
(3) The map T is topologically mixing: for any two nonempty open sets U, V , there exists n0 ≥ 1 such that

T−n(U) ∩ V �= ∅ for all n ≥ n0.
If T satisfies 1, 2 and 3, then (5.4) holds. Assume furthermore that (5.5) holds (see [19] for sufficient conditions).
Then, arguing as in example 4 in Section 7 of [7], we can prove that for the Markov chain (Yi)i≥0 and the
σ-algebras Mi = σ(Yj , j ≤ i), there exists a positive constant C such that θ2(i) ≤ Cρi.

Remark 5.1. In examples 2 and 3, the sequences are indexed by N and not by Z. However, using existence
theorem of Kolmogorov (see Thm. 0.2.7 in [6]), if (Xi)i∈N is a stationary process indexed by N, there exists
a stationary sequence (Yi)i∈Z indexed by Z such that for any k ≤ l ∈ Z, both marginals (Yk, . . . , Yl) and
(X0, . . . , Xl−k) have the same distribution. Moreover, in examples 2 and 3, the sequences are Markovian, hence
θY
2 (n) = θX

2 (n) for any n ≥ 1. We then apply Theorem 4.1 to the sequence (Yi)i∈Z. The limit variance can be
rewritten as

σ2(f) = 2
∑
x∈Z

G(0, x)Cov(f(X0), f(X|x|)) − Var(f(X0)).

6. Application to parametric estimation by random sampling

We investigate in this section the problem of parametric estimation by random sampling for second order
stationary processes. We assume that we observe a stationary process (ξi)i∈N at random times Sn, n ≥ 0, where
(Sn)n≥0 is a non negative increasing random walk satisfying the assumptions of Section 4. In the case where
the marginal expectation of the process (ξi)i∈N, m, is unknown, Deniau et al. [9] estimate it using the sampled
empirical mean m̂n = 1

n

∑n
i=1 ξSi . They measure the quality of this estimator by considering the following

quadratic criterion function:
a(S) = lim

n→+∞(n Var m̂n).

In the case where (Cov(ξ1, ξn+1))n∈N
is in l1, we have

a(S) =
+∞∑

k=−∞
Cov(ξS1 , ξS|k|+1) < ∞.
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We then get Corollary 6.1 below, which gives the asymptotic behaviour of the estimate m̂n after centering and
normalization.

Corollary 6.1. Let us keep the assumptions of Section 4 on the random walk (Sn)n∈N and on the process
(ξi)i∈N. Assume moreover that S0 = 0 and that (Sn+1 − Sn)n∈N takes its values in N∗. Then, for P-almost
every ω ∈ Ω, √

n (m̂n − m) −−−−−→
n→+∞ N (0, a(S)).

Proof of Corollary 6.1. Corollary 6.1 can be deduced from Theorem 4.1 of Section 4 applied to f(x) = x − m.
We have indeed σ2(f) = a(S). �

7. Appendix

This section is devoted to the proof of Theorem 3.1 of Section 3.

Proof of Theorem 3.1. Let us assume, without loss of generality, that σn = 1. In a first time, we state second
moment inequalities (see Lem. 7.1 below). �
Lemma 7.1. Assume that (ηi)i∈Z is centered and satisfies conditions (A2) and (A3) of Theorem 3.1, then for
any reals −kn ≤ a ≤ b ≤ kn,

Var

(
b∑

i=a

an,iηi

)
≤ C

b∑
i=a

a2
n,i ,

with C = supi∈Z

(
Eη2

i

)
+ 2
√

supi∈Z (Eη2
i )
∑∞

l=1 θ1,2(l).

Proof of Lemma 7.1.

Var
( b∑

j=a

an,jηj

)
=

b∑
j=a

a2
n,j Var(ηj) +

b∑
i=a

b∑
j=a;j �=i

an,i an,j Cov(ηi, ηj)

≤
b∑

j=a

a2
n,j Var(ηj) +

b∑
i=a

a2
n,i

b∑
j=a;j �=i

|Cov(ηi, ηj)|

by remarking that |an,i| |an,j | ≤ 1
2 (a2

n,i + a2
n,j).

Then for any j > i, using Cauchy-Schwarz inequality, we obtain that

|Cov(ηi, ηj)| = |E (ηi E (ηj |Mi))|
≤ ||ηi||2 ||E (ηj |Mi)||2
≤ ||ηi||2 θ1,2(j − i).

As (ηi)i∈Z is centered, and as (η2
i )i∈Z is uniformly integrable, we deduce that

Var
( b∑

j=a

an,jηj

)
≤ C

b∑
j=a

a2
n,j ,

with C = supi∈Z

(
Eη2

i

)
+ 2
√

supi∈Z (Eη2
i )
∑∞

l=1 θ1,2(l) which is finite from assumptions (A2) and (A3). �
First, for any M > 0, we define:

ϕM :

{
R → R

x �→ ϕM (x) = (x ∧ M) ∨ (−M).
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Using the moment inequalities stated in Lemma 7.1, we can now use a classical truncation argument to reduce
the problem to the study of a triangular array {Zn,i, −kn ≤ i ≤ kn, i ∈ N} with assumptions:

• Zn,i = ãn,ign,i(ξi) with gn,i Lipschitz satisfying Lip(gn,i) ≤ 1;
• max−kn≤i≤kn |Zn,i| ≤ δn with lim∞ δn = 0;
• lim supn→+∞

∑kn

i=−kn
ã2

n,i < ∞ and

• Var
(∑kn

i=−kn
Zn,i

)
= 1,

with gn,i(x) = ϕεn/|an,i|(x) − E
(
ϕεn/|an,i|(ξi)

)
where (εn)n≥1 is a sequence of positive numbers such that

lim∞ εn = 0 and such that

Var

(
kn∑

i=−kn

an,ign,i(ξi)

)
∼n→+∞ Var

(
kn∑

i=−kn

an,iξi

)
= 1.

Remark that the gn,i’s satisfy |gn,i(x)| ≤ |x|+√supi∈Z (Eξ2
i ), and it implies that the triangular array {gn,i(ξi),

−kn ≤ i ≤ kn, n ∈ N} is square uniformly integrable by assumption (A2) of Theorem 3.1.

We then take ãn,i = an,i/

√
Var
(∑kn

i=−kn
an,ign,i(ξi)

)
.

Let us prove now that the truncated array satisfies the central limit theorem:

kn∑
i=−kn

Zn,i
D−−−−−→

n→+∞ N (0, 1). (7.1)

The proof is a variation on the proof of Theorem 4.1 in [25]. Let

dt(X, Y ) =
∣∣EeitX − EeitY

∣∣ .
To prove Theorem 3.1, it is enough to prove that for all t,

dt

(
kn∑

i=−kn

Zn,i, η

)
−−−−−→
n→+∞ 0,

with η the standard normal distribution. We first need some simple properties of the distance dt. Let
X, X1, X2, Y1, Y2 be random variables with zero means and finite second moments. We assume that the random
variables Y1, Y2 are independent. We define At(X) = dt

(
X, η

√
EX2

)
. We have then the following inequalities:

Lemma 7.2 (Lem. 4.3 in [25]).

At(X) ≤ 2
3
|t|3E|X |3,

At(Y1 + Y2) ≤ At(Y1) + At(Y2),

dt(X1 + X2, X1) ≤ t2

2

(
EX2

2 + (EX2
1EX2

2 )1/2
)

,

dt(ηa, ηb) ≤ t2

2
|a2 − b2|.
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We next need the following lemma:

Lemma 7.3. Let 0 < ε < 1. There exists some positive constant C(ε) such that for all a ∈ Z, for all v ∈ N∗,
At

(∑a+v
i=a+1 Zn,i

)
is bounded by

C(ε)

⎛
⎝|t|3h2/ε

a+v∑
i=a+1

E
(|Zn,i|3

)
+ t2

⎛
⎝h(ε−1)/2 +

∑
j :2j≥h1/ε

23j/2g(2jε)

⎞
⎠ a+v∑

i=a+1

ã2
n,i

⎞
⎠ ,

where h is an arbitrary positive natural number and with g introduced in Assumption (A3) of Theorem 3.1.

Before proving Lemma 7.3, we achieve the proof of Theorem 3.1. By Lemma 7.3, we have

dt

(
kn∑

i=−kn

Zn,i, η

)
= At

(
kn∑

i=−kn

Zn,i

)
≤ C(t, ε)

(
h2/ε

kn∑
i=−kn

E(|Zn,i|3) + δ(h)
kn∑

i=−kn

ã2
n,i

)
,

with δ(h) = h(ε−1)/2 +
∑

j :2j≥h1/ε 23j/2g(2jε).

Now, using assumption (A3), we get δ(h) −−−−−→
h→+∞

0.

On the other hand we have
kn∑

i=−kn

E(|Zn,i|3) ≤ δn

kn∑
i=−kn

Var(Zn,i). (7.2)

Then, arguing as for the proof of Lemma 7.1, using assumptions (A2) and (A3) of Theorem 3.1 and the fact that
the gn,i’s are 1-Lipschitz, we get the existence of a finite constant C such that for any reals −kn ≤ a ≤ b ≤ kn,

Var

(
b∑

i=a

Zn,i

)
≤ C

b∑
i=a

ã2
n,i. (7.3)

Hence the right hand term of (7.2) is bounded by C δn

∑kn

i=−kn
ã2

n,i, which tends to zero as n tends to infinity.
Consequently

inf
h≥1

(
h2/ε

kn∑
i=−kn

E(|Zn,i|3) + δ(h)
kn∑

i=−kn

ã2
n,i

)
−−−−−→
n→+∞ 0.

It achieves the proof of Theorem 3.1.

Proof of Lemma 7.3. Let h ∈ N∗. Let 0 < ε < 1. In the following, C denotes some constant which may vary
from line to line. Let κε be a positive constant greater than 1 which will be precised further. Let v < κε h1/ε.
We have

At

(
a+v∑

i=a+1

Zn,i

)
≤ 2

3
|t|3E

∣∣∣∣∣
a+v∑

i=a+1

Zn,i

∣∣∣∣∣
3

≤ 2
3

κ2
ε |t|3 h2/ε

a+v∑
i=a+1

E(|Zn,i|3) (7.4)

since |x|3 is a convex function.
Let now v ≥ κε h1/ε. Without loss of generality, assume that a = 0. Let δε = (1 − ε2 + 2ε)/2. Define then

m = [vε], B =
{
u ∈ N : 2−1(v − [vδε ]) ≤ um ≤ 2−1v

}
,

A =

⎧⎨
⎩u ∈ N : 0 ≤ u ≤ v,

(u+1)m∑
i=um+1

ã2
n,i ≤ (m/v)ε

v∑
i=1

ã2
n,i

⎫⎬
⎭ .
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Following [26] we prove that, for 0 < ε < 1, A ∩ B is not void for v greater than κε. We have indeed

|A ∩ B| = |B| − |A ∩ B| ≥ |B| − |A| ≥ v(1−ε2)/2

2

(
1 − 4v−(1−ε)2/2

)
− 3

2
,

where A denotes the complementary of the set A. We can find κε large enough so that |A∩B| be positive. �
Let u ∈ A ∩ B. We start from the following simple identity

Q ≡
v∑

i=1

Zn,i

=
um∑
i=1

Zn,i +
(u+1)m∑
i=um+1

Zn,i +
v∑

i=(u+1)m+1

Zn,i

≡ Q1 + Q2 + Q3. (7.5)

By Lemma 7.2,

dt(Q, Q1 + Q3) = dt(Q, Q − Q2) ≤ t2

2

(
EQ2

2 + (EQ2
2EQ2)1/2

)
. (7.6)

Using (7.6) and (7.3), we get

dt(Q, Q1 + Q3) ≤ Ct2v(ε−1)ε/2
v∑

i=1

ã2
n,i. (7.7)

Now, given the random variables Q1 and Q3, we define two independent random variables g1 and g3 such that
the distribution of gi coincides with that of Qi, i = 1, 3. We have

dt(Q1 + Q3, g1 + g3) =
∣∣E(eitQ1 − 1)(eitQ3 − 1) − E(eitQ1 − 1)E(eitQ3 − 1)

∣∣
≤ ∥∥eitQ1 − 1

∥∥
2

∥∥E (eitQ3 − 1 − E(eitQ3 − 1) |Mum

)∥∥
2

≤ 2|t| ‖∑um
i=1 Zn,i‖2 v |t|

(∑v
i=(u+1)m+1 |ãn,i|

)
θξ
2(m + 1)

≤ C t2 v3/2
(∑v

i=1 ã2
n,i

)
g(vε),

by (7.3), Definition 2.2 and Assumption (A3) of Theorem 3.1. Hence

dt(Q1 + Q3, g1 + g3) ≤ Ct2f(v)
v∑

i=1

ã2
n,i, (7.8)

where f(v) = v3/2 g(vε) is non-increasing by assumption (A3) of Theorem 3.1.
We also have by Lemma 7.2

At(g1 + g3) ≤ At(g1) + At(g3). (7.9)
Finally, still by Lemma 7.2, and using Definition 2.2, we have

dt

(
η
√

E(Q2), η
√

E ((g1 + g3)2)
)

≤ t2

2

∣∣E(Q2) − E
(
(g1 + g3)2

)∣∣
≤ t2

2

∣∣E(Q2
2) + 2E(Q1Q2) + 2E(Q2Q3) + 2E(Q1Q3)

∣∣
≤ Ct2

(
v(ε−1)ε/2 + f(v)

) v∑
i=1

ã2
n,i. (7.10)
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Combining (7.7)-(7.10), we get the following recurrent inequality:

At (
∑v

i=1 Zn,i) ≤ At (
∑um

i=1 Zn,i) + At

(∑v
i=(u+1)m+1 Zn,i

)
+Ct2

(
v(ε−1)ε/2 + f(v)

)∑v
i=1 ã2

n,i

for v ≥ κε h1/ε ≥ κε.
We then need the following lemma, which is a variation on Lemma 1.2. in [26].

Lemma 7.4. For every ε ∈ ]0, 1[, denote δε = (1 − ε2 + 2ε)/2. Let a non-decreasing sequence of non-negative
numbers a(n) be specified, such that there exist non-increasing sequences of non-negative numbers ε(k), γ(k)
and a sequence of naturals T (k), satisfying conditions

T (k) ≤ (k + [kδε ])/2,

a(k) ≤ max
k0≤s≤k

(a(T (s)) + γ(s))

for any k ≥ k0 with an arbitrary k0 ∈ N∗. Then

a(n) ≤ a(n0) + 2
∑

k0≤2j≤n

γ(2j),

for any n ≥ k0, where one can take n0 = 2c with c > (2 − δε)/(1 − δε).

Proof of Lemma 7.4. The proof follows essentially the same lines as the proof of Lemma 1.2. in [26] and therefore
is omitted here. �

We now apply Lemma 7.4 above with
� k0 = κε h1/ε,
� for k ≥ k0, T (k) = max {ukmk, k − ukmk − mk} where uk and mk are defined from k as u and m from

v (see the proof of A ∩ B not void),
� c < ln(κε)/ ln(2) (we may need to enlarge κε),
� for s ≥ k0, γ(s) = C t2

(
sε(ε−1)/2 + f(s)

)
,

� for s ≥ k0, a(s) = sup
l∈Z

max
k0≤i≤s

At

(∑l+i
j=l+1 Zn,j

)
∑l+i

j=l+1 ã2
n,j

.

Applying Lemma 7.4 yields the statement of Lemma 7.3.
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[18] F. Merlevède and M. Peligrad, On the coupling of dependent random variables and applications. Empirical process techniques
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