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LOCAL LIMIT THEOREMS FOR BROWNIAN ADDITIVE FUNCTIONALS
AND PENALISATION OF BROWNIAN PATHS, IX

Bernard Roynette1 and Marc Yor2, 3

Abstract. We obtain a local limit theorem for the laws of a class of Brownian additive functionals and
we apply this result to a penalisation problem. We study precisely the case of the additive functional:(
A−

t :=
∫ t

0
1Xs<0ds, t ≥ 0

)
. On the other hand, we describe Feynman-Kac type penalisation results

for long Brownian bridges thus completing some similar previous study for standard Brownian motion
(see [B. Roynette, P. Vallois and M. Yor, Studia Sci. Math. Hung. 43 (2006) 171–246]).
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1. Notations and introduction

1.1. Notations

•
(
Ω,
(
Xt,Ft

)
t≥0

,F∞ = ∨t≥0 Ft, Px(x ∈ R)
)

denotes the canonical realisation of the one-dimensional

Wiener process. Ω = C([0,∞[−→ R
)

is the space of continuous functions on [0,∞[,
(
Xt, t ≥ 0

)
the

coordinates process on this space,
(Ft, t ≥ 0

)
its natural filtration and

(
Px, x ∈ R

)
the family of Wiener

measures on
(
Ω,F∞

)
, with Px(X0 = x) = 1. When x = 0, we write simply P for P0.

• We denote by
(
Lx

t , t ≥ 0, x ∈ R
)

the jointly continuous family of the local times of
(
Xt, t ≥ 0

)
. We

denote
(
Lt, t ≥ 0

)
for
(
L0

t , t ≥ 0
)
, the (continuous) local time process at level 0 and by

(
τl, l ≥ 0

)
its

right-continuous inverse:
τl := inf

{
s > 0;Ls > l

}
(l ≥ 0). (1.1)

• To q a positive Radon measure on R, q �= 0, we associate the continuous additive functional:

Aq
t :=

∫
R

Lx
t q(dx). (1.2)
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When q admits a density with respect to Lebesgue measure, we keep the former notation by still writing
q for the density; we have:

Aq
t =

∫ t

0

q(Xs)ds (1.3)

from the occupation density formula for Brownian motion.

Throughout the following, we shall assume that q satisfies one of the three following hypotheses:

H1. (The integrable case)
∫

R

(
1 + |x|) q(dx) <∞.

H2. (The left unilateral case)
∫ 0

−∞

(
1 + |x|) q(dx) <∞ and there exists α < 1 such that

lim
x→∞

x2αq(a)(x) ≥ b > 0 where q(a) denotes the absolutely continuous part of q.

H3. (The right unilateral case)
∫ ∞

0

(
1 + |x|) q(dx) <∞ and there exists α < 1 such that

lim
x→−∞

|x|2αq(a)(x) ≥ b > 0.

Of course, if the pair
(
(Xt, A

q
t ), t ≥ 0

)
satisfies H2 (resp. H3), then the pair

(
(−Xt, A

q
t ), t ≥ 0

)
satisfies H3

(resp. H2).

1.2. Introduction

1.2.1.

In [14], we obtained the following results:

i) Under H1, H2 or H3, for any λ > 0:

lim
t→∞

√
t Ex

[
e
(
−λ

2 Aq
t

)]
:= ϕλq(x). (1.4)

(Later, we shall give other presentations of ϕλq.)
ii) For any s ≥ 0 and Λs ∈ Fs:

lim
t→∞

E
[
1Λse

(
−λ

2 Aq
t

)]
E
[
e
(
−λ

2 Aq
t

)] := Q(λq)
(
Λs

)
. (1.5)

where formula (1.5) induces a probability Q(λq) on
(
Ω,F∞

)
(see [9,11,13,14] for more details; see also [2]

about this penalisation result).

The first part of this work consists in:

• Using the result i) to obtain a limit theorem relative to the law of the additive functional
(
Aq

t , t ≥ 0
)
.

This is the content of Theorem 2.1.
• Obtaining a penalisation result, which is more general than (1.5) i.e., by replacing the exponential

function x −→ e−
λx
2 by a more general function. This is the content of Theorem 2.4.

1.2.2.

In Section 3 of this work, we study in detail the situation where q = 1]−∞,0] i.e.,
Aq

t := A−
t :=

∫ t

0 1Xs<0ds. In particular, we prove a penalisation theorem for long Brownian bridges: this is the
content of Theorem 3.1.
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1.2.3.

Section 4 of this work is devoted to the study of Feynman-Kac penalisation for long Brownian bridges, which
generalizes what we have done in [14] for standard Brownian motion. This is the content of Theorem 4.1.

To summarize, this work extends, in the above directions, our preceding work [14].

2. A local limit theorem for the laws of some Brownian additive functionals
and a penalisation result

2.1. A local limit theorem

Theorem 2.1. Let q satisfy one of the hypotheses H1, H2 or H3, and let (Aq
t , t ≥ 0) be defined by (1.2)

(or (1.3)). Then, for every x ∈ R, there exists a positive, σ-finite measure νx, carried by R+, such that:

√
t Px(Aq

t ∈ dz) −→
t→∞ νx(dz). (2.1)

The convergence in (2.1) is understood in the following sense: for any function f : R+ −→ R+ Borel, and
sub-exponential i.e.: there exist two positive constants C1 and C2 such that:

0 ≤ f(x) ≤ C1 e−C2x.

then √
t Ex

[
f(Aq

t )
] −→

t→∞

∫
R+

f(z)νx(dz).

The measure νx is characterized by: ∫ ∞

0

e−
λ
2 yνx(dy) = ϕλq(x). (2.2)

2.2. Proof of Theorem 2.1

We first begin with some precisions, taken from [14],
(
see also Kotani [6]

)
about ϕλq, which was defined from

(1.4) but admits at least another characterization, namely:
ϕλq is the unique solution of the Sturm-Liouville equation:

ϕ′′(dx) = λϕ(x)q(dx). (2.3)

This equation is taken in the sense of Schwartz distributions, and subject to the following boundary conditions:

Under H1. : ϕ′(+∞) = −ϕ′(−∞) =

√
2
π

(2.4)

Under H2. : ϕ′(−∞) = −
√

2
π

and ϕ(+∞) = 0 (2.5)

Under H3. : ϕ′(+∞) =

√
2
π

and ϕ(−∞) = 0. (2.6)

Theorem 2.1 is now an immediate consequence of the next lemma.

Lemma 2.2. Under either of the hypotheses H1, H2, or H3, the function: λ −→ ϕλq(x) (λ > 0) is, for any
real x, completely monotone, i.e., it satisfies:

(−1)n ∂n

∂λn
ϕλq(x) ≥ 0. (2.7)
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Consequently, there exists a positive, σ-finite measure νx, carried by R+, such that:

ϕλq(x) =
∫ ∞

0

e−
λ
2 zνx(dz). (2.8)

We shall give two proofs for Lemma 2.2.

2.3. A first proof of Lemma 2.2

We define, for every f : R+ −→ R and every real h �= 0:

Dhf(λ) :=
f(λ+ h) − f(λ)

h
· (2.9)

For f(λ) := exp − λ

2
Aq

t , we get:

(Dh)n(f)(λ) = e−
λA

q
t

2

(e−
A

q
t h

2 − 1
h

)n

and, hence for all h �= 0:
(−1)n(Dh)n(f)(λ) ≥ 0. (2.10)

Consequently, taking the expectation of the LHS in (2.10), we obtain:

√
t(−1)nEx

[
(Dh)n

(
exp − •

2
Aq

t

)]
≥ 0. (2.11)

Hence, from (1.4): √
t(−1)nEx

[
(Dh)n

(
exp − •

2
Aq

t

)]
−→
t→∞(−1)n(Dh)n

(
ϕ•q(x)

)
.

Thus:
(−1)n(Dh)n

(
ϕ•q(x)

)
(λ) ≥ 0. (2.12)

Letting h→ 0 in (2.12), and using the fact that: Dhf −→
h→0

f ′, we get:

(−1)n ∂n

∂λn

(
ϕλq(x)

) ≥ 0. (2.13)

�

2.4. A second proof of Lemma 2.2

We shall only give this second proof under the hypothesis H1 and for x = 0. In [14], Proposition 4.13,
formula (4.43), we have obtained the following explicit formula for ϕλq(0):

ϕλq(0) =
1√
2π

∫ ∞

0

[
Q

(0)
l (exp − λ〈Y, q−〉)Q(2)

l (exp − λ〈Y, q+〉)

+Q(2)
l (exp − λ〈Y, q−〉)Q(0)

l (exp − λ〈Y, q+〉)
]
dl (2.14)

where, in this formula (2.14), the process (Yx, x ≥ 0) is, under Q(0)
l , (resp. under Q(2)

l ), a squared Bessel process
with dimension 0, (resp. 2), starting from l, and we denote:

〈Y, q+〉 =
∫ ∞

0

Yx q(dx) ; 〈Y, q−〉 =
∫ 0

−∞
Y−x q(dx). (2.15)
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It is then clear from (2.14) that: λ −→ ϕλq(0) is the Laplace transform of a positive measure, as an inte-
gral, with respect to the parameter l of the product of two Laplace transforms of positive measures (indexed
by l). �

We shall now give some examples for which the measure νx may be computed explicitly. We recall that νx

is characterized by:
∫ ∞

0

e−
λ
2 zνx(dz) = ϕλq(x) where ϕλq(x) is given by (2.3)...(2.6).

2.5. Computation of νx for q(dy) = δ0(dy)

In this case, the hypothesis H1 is verified and Aq
t = Lt, is the local time at level 0

ϕλq(x) =

√
2
π

( 2
λ

+ |x|
) (

cf. [14], Ex. 4.8, pp. 199–200
)

=
∫ ∞

0

e−
λ
2 z
(√ 2

π
1z≥0dz +

√
2
π
|x|δ0(dz)

)
. (2.16)

Thus:

νx(dz) =

√
2
π

1[0,∞](z)dz +

√
2
π
|x|δ0(dz). (2.17)

2.6. Computation of νx for q(dy) = δa(dy) + δb(dy) with (a < b)

In this case, the hypothesis H1 is satisfied and Aq
t = La

t +Lb
t where (La

t , t ≥ 0) resp. (Lb
t , t ≥ 0) denotes the

local time at level a, resp. at level b. We know (see [14], Ex. 4.8, pp. 199–200) that

ϕλq(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2
π

(
1
λ

+ x− b

)
if x > b√

2
π

1
λ

if x ∈ [a, b]√
2
π

( 1
λ

+ a− x
)

if x < a

(2.18)

=

√
2
π

∫ ∞

0

e−
λ
2 z
{1

2
dz + (x− b)1x>bδ0(dz) + (a− x)1x<aδ0(dz)

}
.

Hence:

νx(dz) =

√
2
π

{
1
2

1[0,∞[(z)dz + (x− b)+δ0(dz) + (a− x)+δ0(dz)
}
. (2.19)

2.7. Computation of νx, for q(y) = e2y

In this case, the hypothesis H2 is satisfied and Aq
t =
∫ t

0

e2Xs ds.

To begin with, we show:

ϕλq(x) =

√
2
π
K0 (

√
λ ex) (2.20)

where K0 denotes the Bessel-Mc Donald function with index 0 (see [7], p. 108).

Let ψ(x) :=

√
2
π
K0 (

√
λ ex). To check (2.20), it suffices to see that:

ψ′′(x) = λe2xψ(x), ψ(x) −→
x→∞ 0, ψ′(x) −→

x→−∞−
√

2
π
· (2.21)
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Now (2.21) follows from (see [7], p. 110):

K ′
0 = −K1, −K ′

1(z) =
1
z
K1(z) +K0(z)

and

ψ(x) ∼
x→∞

√
2
π

( π

2
√
λ ex

)
e−

√
λ ex −→

x→∞ 0 ([7], p. 123)

ψ′(x) = −
√

2
π

√
λ exK1(

√
λ ex) ∼

x→−∞−
√

2
π

√
λ ex 1

2
2√
λ ex

−→
x→−∞−

√
2
π
· ([7], p. 111)

This proves (2.20). But, we also have:

K0(
√
λ ex) =

1
2

∫ ∞

0

e−t−λe2x

4t
dt
t

(
cf. [7], p. 119

)
=

1
2

∫ ∞

0

e−
λu
2 − e2x

2u
du
u
·

Hence:

νx(dz) =
1√
2π

e−
e2x

2z 1[0,∞[(z)
dz
z
· (2.22)

2.8. Computation of νx for q0(dx) = 1]−∞,0](x)dx

Here, it is the hypothesis H3 which is satisfied, and

Aq0
t =

∫ t

0

1]−∞,0](Xs)ds.

By scaling, one has, under P0 : Aq0
t

(law)
= t Aq0

1 , and it is well known that under P0, A
q0
1 follows the arc sine law,

i.e., the beta
(1

2
,
1
2

)
law. We shall recall the law of Aq0

t under Px for any x ∈ R, (see Sect. 3.1 below), which
will allow to obtain the following result:

νx(dz) = x+

√
2
π
δ0(dz) +

1
π

e−
x2−
2z 1[0,∞[(z)

dz√
z
· (2.23)

For the moment, we shall prove (2.23) without using the explicit law of Aq0
t . For this purpose, we already

observe that:

ϕλq0(x) =

√
2
π

{
ex

√
λ 1√

λ
1x≤0 +

(
x+

1√
λ

)
1x>0

}
. (2.24)

Indeed we have:

ϕ′′
λq0

(x) = λ 1]−∞,0](x)ϕλq0 (x), ϕ′
λq0

(+∞) =

√
2
π
, ϕλq0 (−∞) = 0.

Then, it remains to see that: ∫ ∞

0

e−
λ
2 zνx(dz) = ϕλq0 (x) (2.25)



PENALISING BROWNIAN FUNCTIONALS 71

where νx is defined via (2.23) and ϕλq0 (x) by (2.24). Now, for x > 0, one has:

∫ ∞

0

e−
λ
2 zνx(dz) = x+

√
2
π

+
1
π

∫ ∞

0

e−
λz
2

dz√
z

= x+

√
2
π

+
1
π

√
2
λ

Γ(1/2) = x+

√
2
π

+

√
2
π

1√
λ

= ϕλq0 (x)

whereas for x < 0:∫ ∞

0

e−
λ
2 zνx(dz) =

1
π

∫ ∞

0

e−
λ
2 z− x2

2z
dz√
z

=
2
π
K1/2

(
|x|

√
λ
) (x2

λ

)1/4

(see [7], p. 119) .

However, one has: K1/2

(
|x|√λ

)
=
(

π

2|x|√λ

)1/2

e−|x|√λ. Hence:

∫ ∞

0

e−
λ
2 zνx(dz) =

2
π

(
x2

λ

)1/4(
π

2|x|√λ

)1/2

e−|x|√λ =

√
2
π

1√
λ

e−|x|√λ = ϕλq0(x).

2.9. Computation of νx when q(y) = 1[a,b](y) (a < b)

The hypothesis H1 is satisfied and Aq
t =
∫ t

0

1[a,b](Xs) ds. We shall prove that:

ν(a,b)
x (dz) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
π

(x− b)δ0(dz) +
1

π
√
z

1[0,∞[(z)dz
(
1 + 2

∞∑
n=1

e−
n2(b−a)2

2z

)
if x > b

√
2
π

(a− x)δ0(dz) +
1

π
√
z
1[0,∞[(z)dz

(
1 + 2

∞∑
n=1

e−
n2(b−a)2

2z

)
if x < a

1
π
√
z

∞∑
n=0

(
e−
(

n(b−a)+b−x

)2
2z + e−

(
n(b−a)+(x−a)

)2
2z

)
1[0,∞[(z)dz if x ∈ [a, b].

(2.26)

Here, the explicit form of ϕ(a,b)
λq (x) is (see [14], Ex. 4.7, p. 199):

ϕ
(a,b)
λq (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
π

(
1√

λ tanh
(√

λ b−a
2

) + x− b

)
if x > b

√
2
π

(
1√

λ tanh
(√

λ b−a
2

) + a− x

)
if x < a

√
2
π

(
cosh

(√
λ
(
x− a+b

2 )
)

√
λ
(
sinh (

√
λ b−a

2 )
) ) if x ∈ [a, b].

(2.27)

It now remains to prove that: ∫ ∞

0

e−
λ
2 zν(a,b)

x (dz) = ϕ
(a,b)
λq (x) (2.28)
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where ν(a,b)
x is defined via (2.26) and ϕ(a,b)

λq via (2.27). But, (2.28) follows, after some elementary computations
from the identities, for every real u and v > 0:

cosh
(√

λu
)

√
λ sinh

(√
λv
) =

∞∑
n=0

∫ ∞

0

dh
(
e−

√
λ
(
h+(2n+1)v−u

)
+ e−

√
λ
(
h+(2n+1)v+u

))
(2.29)

=
∞∑

n=0

∫ ∞

0

dh
∫ ∞

0

ds
(
Hh+(2n+1)v−u(s) +Hh+(2n+1)v+u(s)

)
e−λs (2.30)

with
Ha(u) :=

a

2
√
πu3

e−a2/4u =
−1√
πu

∂

∂a
(e−

a2
4u ) (a > 0).

Passing from (2.29) to (2.30) is obtained by using the elementary formula:

e−
√

λa =
∫ ∞

0

e−λuHa(u)du =
∫ ∞

0

e−λu a

2
√
πu3

e−
a2
4u du. (2.31)

(Note that (2.31) is nothing else but a translation of: E
(
e−

λ2
2 Ta
)

= exp(−λa), where Ta denotes the hitting
time of level a > 0 by Brownian motion starting from 0, and Ha is the density of T a√

2
.)

We now show (2.29).

cosh
(√
λu
)

√
λ sinh

(√
λv
) =

1√
λ

e−
√

λ(v−u) 1 + e−2
√

λu

1 − e−2
√

λv

=
1√
λ

e−
√

λ(v−u)(1 + e−2
√

λu)
( ∞∑

n=0

e−2n
√

λv
)

=
1√
λ

{ ∞∑
n=0

e−
√

λ{v−u+2nv} +
∞∑

n=0

e−
√

λ
{

2(u+nv)+(v−u)
}}

=
1√
λ

{ ∞∑
n=0

(
e−

√
λ
(
(2n+1)v−u

)
+ e−

√
λ
(
u+(2n+1)v

))}
=
∫ ∞

0

e−
√

λh
{ ∞∑

n=0

e−
√

λ
(
(2n+1)v−u

)
+ e−

√
λ
(
u+(2n+1)v

)}
dh

=
∞∑

n=0

∫ ∞

0

(
e−

√
λ
(
h+(2n+1)v−u

)
+ e−

√
λ
(
h+(2n+1)v+u

))
dh.

Remark 2.3.

(i) If in formula (2.26), we take: b = 0, and we let a tend to −∞, we obtain:

lim
a→−∞ νa,0(dz) =

⎧⎪⎪⎨⎪⎪⎩
√

2
π
x+δ0(dz) +

1
π
√
z
1[0,∞[(z)dz if x > 0

1
π
√
z

e−
x2−
2z 1[0,∞[(z)dz if x ≤ 0.

(2.32)

We note that the RHS of (2.32) is nothing else but the measure νx associated with q0(y) = 1]−∞,0]

(
see

(2.23)
)
. This may be interpreted as “a continuity property” of ϕa,b, as a −→ −∞.
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(ii) In the same spirit, but taking up now the computation from Sect. 2.9, where we choose for q the function:

q(c)(y) =
1
2c

1[−c,+c](y), we have:

∫ ∞

0

e−
λz
2 ν(c)

x (dz)−→
c→0

∫ ∞

0

e−
λz
2 νx(dz) =

√
2
π

( 2
λ

+ |x|
)

(2.33)

where νx is the measure associated to q(dz) = δ0(dz) (see (2.16)). In other terms, since:
1
2c

∫ t

0

1[−c,c](Xs)ds−→
c→0

Lt a.s., we witness there also a “continuity property of ν(c)
x as c −→ 0”.

Let us show (2.33) for x = 0; from (2.27):

∫ ∞

0

e−
λz
2 ν

(c)
0 (dz) =

√
2
π

{
cosh

(√
λ
2c c
)√

λ
2c sinh

(√
λ
2c c
)}−→

c→0

√
2
π
× 2
λ

and for x �= 0, and c small enough, we obtain from (2.27) that:

∫ ∞

0

e−
λz
2 ν(c)

x (dz) =

√
2
π

⎧⎪⎪⎨⎪⎪⎩
1√

λ
2c tanh

(√
λ
2c c

) + |x− c|

⎫⎪⎪⎬⎪⎪⎭−→
c→0

√
2
π

(
2
λ

+ |x|
)
.

2.10. Computation of νx when q(y) = 1[0,∞[(y)yα, α > 0

The hypothesis H2 is satisfied, and we have: Aq
t =
∫ t

0

1(Xs>0)X
α
s ds.

We now show the existence of a constant Cα > 0 such that:

ν0(dz) =
Cα

z
1+α
2+α

1[0,∞[(z)dz. (2.34)

Indeed, thanks to the scaling property, we have:

E0

(
e−

λ
2

∫ t
0 1Xs>0Xα

s ds
)

= E0

(
e
(
−λ

2 t1+α/2Aq
1

))
= E0

(
exp
(
−1

2
Aq

λ
2

2+α t

))
. (2.35)

Thus, multiplying (2.35) by
√
t and letting t tend to +∞, we obtain:

ϕλq(0) =
1

λ
1

2+α

ϕ1 q(0) =
1

λ
1

2+α

c′α = cα

∫ ∞

0

e−
λ
2 z dz

z
1+α
2+α

·

The same computations, performed this time with x �= 0, lead to:

ϕλq(x) =
1

λ
1

2+α

ϕ1q

(
xλ

1
2+α

)
, i .e. νx =

1

λ
1

2+α

ν
(λ)

xλ
1

2+α
,

where ν(λ) is the image of ν by the application z −→ λz.
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Question 2.4. We know
(
see [10], Chap. X

)
that, if q is an integrable function, then:

1√
t

∫ t

0

q(x+Xs)ds
law−→

t→∞

(∫
q(x+ y)dy

)
|N | =

(∫
q(y)dy

)
|N | (2.36)

where N is a standard Gaussian variable, and on the LHS of (2.36), (Xs, s ≥ 0) is a Brownian motion starting

from 0. Let g denote the density of the r.v. q̄|N | with q̄ =
∫
q(y)dy that is:

g(z) =
1
q̄

√
2
π

e−
z2

2(q̄)2 1[0,∞[(z).

Let us now consider the supplementary hypothesis H̃ , which seems reasonable enough in view of (2.36), that the

density gt(x, ·) of the r.v.
1√
t

∫ t

0

q(x+Xs) ds converges, as t −→ ∞, uniformly on every compact, towards g.

However, this would imply that, for every function h, which is continuous with compact support, one would
have:

√
t Ex

[
h(Aq

t )
]

=
√
t Ex

[
h
(Aq

t√
t

√
t
)]

=
√
t

∫ ∞

0

h(z
√
t) gt(x, z) dz

=
∫ ∞

0

h(y)gt

(
x,

y√
t

)
dy −→

t→∞

∫ ∞

0

h(y)g(0)dy.

But, from Theorem 2.1., we know that:

√
t Ex

[
h(Aq

t )
] −→

t→∞

∫
R+

h(z)νx(dz).

Thus, this would imply that the measure νx(dz) would be equal to:

1
q̄

√
2
π

1[0,∞[dz (2.37)

so that, the measure νx would not depend on x, and would be proportional to Lebesgue measure on R+. But
clearly, this is not the case for either of the examples in Sections 2.4 to 2.9. Consequently, the hypothesis H̃ is
not satisfied for the corresponding q ′s. It would be of interest to know for which q ′s, if any, it is satisfied.

2.11. Penalisation by h(Aq
t)

Let q satisfy one of the previous hypotheses H1, H2 or H3, and denote, as before:

Aq
t =
∫

R

Lx
t q(dx)

(
=
∫ t

0

q(Xs)ds if q admits a density

)
. Let now h : R+ −→ R+ such that:

√
t Ex

[
h(Aq

t )
] −→

t→∞

∫ ∞

0

h(z)νx(dz). (2.38)
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Then, (2.38) is satisfied, from Theorem 2.1, as soon as h is sub-exponential (for example if h is continuous, with
compact support). We shall now study the penalisation of Wiener measure by the functional h(Aq

t ), i.e.: we
shall study the limit, as t −→ ∞, of:

Ex

(
1Λs h(Aq

t )
)

Ex

(
h(Aq

t )
) (s ≥ 0, Λs ∈ Fs). (2.39)

We have already made this study in two situations:
1) q(dy) = δ0(dy) then Aq

t = Lt (cf. [15]);

2) Aq
t =
∫

R

Ly
t q(dy) and h(u) = exp

(
−λ

2
u

)
(cf. [14]).

This time, Theorem 2.1 allows us to obtain:
Theorem 2.5. Let q, Aq and h as above. Then:

1) For every s ≥ 0, and every Λs ∈ Fs:

lim
t→∞

Ex

(
1Λs h(Aq

t )
)

Ex

(
h(Aq

t )
) exists. (2.40)

2) This limit equals Ex(1ΛsM
h,q
s ) := Qh,q(Λs), where

Mh,q
s :=

∫
R+

νXs(dz)h(z +Aq
s)∫

R+

νx(dz)h(z)
· (2.41)

Furthermore, (Mh,q
s , s ≥ 0) is a positive martingale. In the case when h(u) := e−

λ
2 u (u, λ ≥ 0), we

then obtain:

Mh,q
s =

ϕλq(Xs)
ϕλq(x)

exp
(
− λ

2
Aq

s

)
. (2.42)

Proof of Theorem 2.5. We have:

Ex

(
1Λs h(Aq

t )
)

Ex

(
h(Aq

t )
) =

Ex

(
1ΛsEb

(
h(a+Aq

t−s)
)

Ex

(
h(Aq

t )
)

from the Markov property, where b = Xs and a = Aq
s. Thus, from Theorem 2.1:

Ex

(
h(Aq

t )
) ∼

t→∞
1√
t

∫ ∞

0

νx(dz)h(z)

and Eb

(
h(a+Aq

t−s)
) ∼

t→∞
1√
t− s

∫ ∞

0

νb(dz)h(a+ z).

Hence:
Ex

(
1Λs h(Aq

t )
)

Ex

(
h(Aq

t )
) ∼

t→∞

√
t√

t− s

Ex

(
1Λs

∫
R+
νXs(dz)h(z +Aq

s)
)∫

R+
h(z)νx(dz)

−→
t→∞ Ex(1ΛsM

h,q
s ).

In the preceding lines, we have been a little careless concerning the exchange of limit and expectation. Likewise,
although it is easy to see that (Mh,q

s , s ≥ 0) is a local martingale, some care is needed in order to show that
it is a true martingale. However, all this is correct as soon as h is sub-exponential. We leave details to the
reader. �
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3. A detailed study for q0 = 1]−∞,0], A−
t :=

∫ t

0

1(Xs<0)ds

Throughout this section, we choose q0 = 1]−∞,0]. Thus, the hypothesis H3 is now satisfied. We shall study

this situation in detail, which we are able to do as we know (see [16]) the law of Aq0
t =

∫ t

0

q0(Xs)ds under Px,

for every real x (see (3.5) and (3.7) below). We shall, successively:
– compute explicitly the measure νx starting from the knowledge of the law of Aq0

t and we shall recover
the result of Section 2.8 above;

– study the penalisation, not only of the process (Xt, t ≥ 0) by h(Aq0
t ), but also the penalisation of the

“long bridges” by this functional;
– describe precisely the behavior of the canonical process under the probability Qh,q0 , where Qh,q0 is

defined via:
Qh,q0(Λs) = E(1ΛsM

h,q0
s ) (s ≥ 0, Λs ∈ Fs). (3.1)

3.1. The law of A−
t and the computation of νx

To simplify notation, we denote:

A−
t =

∫ t

0

1(Xs<0) ds =
∫ t

0

q0(Xs)ds. (3.2)

We recall the following result, which is found in [16]. For any f : [0, 1] −→ R+, Borel, sub-exponential (see
Thm. 2.1) and any y > 0:

E0

[
f

(∫ 1

0

1(Xs<y)ds
)]

=
∫ 1

0

du
π
√
u(1 − u)

e−
y2
2u f(u) + f(1)

√
2
π

∫ y

0

e−
α2
2 dα (3.3)

whereas, for any y < 0, we use:∫ 1

0

1(Xs<y) ds law=
∫ 1

0

1(Xs>−y)ds
law= 1 −

∫ 1

0

1(Xs<−y)ds (3.4)

and by the scaling property:

Ex

[
f

(∫ t

0

1(Xs<0)ds
)]

= Ex

(
f(A−

t )
)

= E0

(
f

(∫ t

0

1(Xs<−x)ds
))

= E0

(
f

(
t

∫ 1

0

1(
Xs<− x√

t

)ds
))

.

Hence, from (3.3) and (3.4), if x ≤ 0:

Ex

[
f(A−

t )
]

=
∫ t

0

dv
π
√
v(t− v)

e−
x2
2v f(v) + f(t)

√
2
π

∫ |x|√
t

0

e−
α2
2 dα (3.5)

∼
t→∞

1
π
√
t

∫ ∞

0

dv√
v

e−
x2
2v f(v) (3.6)

whereas, if x > 0:

Ex

[
f(A−

t )
]

= f(0)

√
2
π

∫ x√
t

0

e−
α2
2 dα+

∫ t

0

dv
π
√
v(t− v)

e−
x2

2(t−v) f(v) (3.7)

∼
t→∞ f(0)

√
2
π

∫ x√
t

0

e−
α2
2 dα+

1
π
√
t

∫ ∞

0

dv√
v
f(v). (3.8)
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Thus, we obtain, for f : R+ −→ R+, Borel, sub-exponential (and then
∫ ∞

0

dv√
v
f(v) <∞)

√
t Ex

[
f(A−

t )
] −→

t→∞

∫ ∞

0

f(z)νx(dz)

with

νx(dz) = x+

√
2
π
δ0(dz) +

1
π

e−
x2−
2z 1[0,∞[(z)

dz√
z

which is precisely (2.23).

3.2. Penalisation by h(A−
t ). A study of “long bridges” and of the Qh-process

We recall that, from (3.5), the density of A−
t under P0, which we denote by pA−

t
, equals:

pA−
t
(y) =

1
π

1√
y(t− y)

1[0,t](y) (: the arc sine law). (3.9)

Throughout the following, h denotes a function from R+ to R+ such that:∫ ∞

0

dy√
y
h(y) <∞.

And we assume, without loss of generality, that:∫ ∞

0

dy√
y
h(y) = 1. (3.10)

Theorem 3.1. 1) For every s ≥ 0 and every Λs ∈ Fs:

lim
t→∞E0(1Λs |A−

t = a) = Q(a)(Λs) (3.11)

with

Q(a)(Λs) :=

√
2
π

1a<s√
s− a

E0(1ΛsX
+
s |A−

s = a) + E

[
1Λs

√
a

a−A−
s

1(A−
s <a) e

− (X−
s )2

2(a−A
−
s )

]
(3.12)

(recall that X+
s = 0 ∨Xs, X

−
s = −(Xs ∧ 0) and A−

s =
∫ s

0

1Xu<0 du).

2) For every function h which satisfies (3.10), for every s ≥ 0 and any Λs ∈ Fs:

lim
t→∞

E0

(
1Λsh(A−

t )
)

E0

(
h(A−

t )
) = E(1ΛsM

h
s ) (3.13)

where (Mh
s , s ≥ 0) is the positive martingale given by:

Mh
s :=

√
2πX+

s h(A−
s ) +

∫ ∞

0

dy√
y

e−
(X−

s )2

2y h(A−
s + y) (3.14)

(note that Mh
0 = 1).
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3) Formula (3.13) induces a probability Qh on (Ω,F∞), which admits the following disintegration:

Qh(Λ) =
∫ ∞

0

Q(a)(Λ)
h(a)√
a

da (Λ ∈ F∞) (3.15)

where Q(a) is given by (3.12).

4) Under Qh, the canonical process
(
Xt, t ≥ 0

)
satisfies:

i) A−
∞ is finite a.s., and admits as density

h(y)√
y

1y>0; (3.16)

ii) let g = inf{t ; A−
t = A−

∞} = sup{t ; Xt ≤ 0}. (3.17)

Then Qh(g <∞) = 1

iii) the processes (Xt, t ≤ g) and (Xg+t, t ≥ 0) are independent;
iv) the process (Xg+t, t ≥ 0) is a 3-dimensional Bessel process starting from 0.

Moreover, while proving Theorem 3.1, we shall give a precise description of the process (Xt ; t ≤ g).

3.3. Proof of Theorem 3.1

3.3.1. Proof of point 1) in Theorem 3.1

For this purpose, we choose a function h, which is Borel, positive, and satisfies (3.10).
We first write:

E0

(
1Λsh(A−

t )
)

=
∫ t

0

E0(1Λs |A−
t = a)pA−

t
(a)h(a)da. (3.18)

Then, conditioning with respect to Fs, we obtain:

E0

(
1Λsh(A−

t )
)

= E0

(
1Λs E0

(
h

(
a+
∫ t−s

0

1(Xu<−x) du
)))

(3.19)

with a = A−
s and x = Xs. Using now (3.5) and (3.6), we obtain:

E0

(
1Λsh(A−

t )
)

= E0

(
1Λs1x<0

((∫ t−s

0

dv
π
√
v(t− s− v)

e−
x2
2v h(a+ v)

)
+ h(a+ t− s)ψ

( |x|√
t− s

)))

+E0

(
1Λs1x>0

[
h(a)ψ

(
x√
t− s

)
+
∫ t−s

0

dv
π
√
v(t− s− v)

e−
x2

2(t−s−v) h(a+ v)

])
(3.20)

:= (1)t + (2)t (3.21)

where ψ
( x√

t

)
:= P

(
|N | ≤ x√

t

)
=

√
2
π

∫ x√
t

0

e−
α2
2 dα ∼

t→∞

√
2
π

x√
t
·
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We now study successively (1)t and (2)t. We rewrite (1)t in the form:

(1)t =
∫ s

0

pA−
s
(a)daE0

(
1Λs1Xs<0

(∫ t−s

0

dv
π
√
v(t− s− v)

e−
X2

s
2v h(a+ v)

+ h(a+ t− s)ψ
( |Xs|√

t− s

))∣∣∣∣A−
s = a

)
=

∫ t−s

0

dv
π
√
v(t− s− v)

∫ v+s

v

da pA−
s
(a− v)E0

(
1Λs1Xs<0 e−

X2
s

2v |A−
s = a− v

)
h(a)

+
∫ t

t−s

pA−
s
(a+ s− t)E0

(
1Λs1Xs<0 ψ

( |Xs|√
t− s

)∣∣∣A−
s = a+ s− t

)
h(a)da. (3.22)

Similarly:

(2)t =
∫ s

0

pA−
s
(a)E0

(
1Λs1Xs>0 ψ

( |Xs|√
t− s

)∣∣∣A−
s = a

)
h(a)da (3.23)

+
∫ s

0

da pA−
s
(a)
∫ t−s

0

dv
π
√
v(t− s− v)

E0

(
1Λs1Xs>0 e−

X2
s

2(t−s−v)
∣∣A−

s = a)h(a+ v)

=
∫ s

0

pA−
s
(a)E0

(
1Λs1Xs>0 ψ

( |Xs|√
t− s

)∣∣A−
s = a

)
h(a)da (3.24)

+
∫ t−s

0

dv
π
√
v(t− s− v)

∫ v+s

v

pA−
s
(a− v)E0

(
1Λs1Xs>0 e−

X2
s

2(t−s−v)
∣∣A−

s = a− v
)
h(a)da.

Then, comparing (3.18), (3.22), (3.24) and identifying the “coefficient of h(a)”, it follows that:

E0

(
1Λs |A−

t = a
)

= (1̃)t + (2̃)t

with:

(1̃)t =
1

pA−
t
(a)

∫ t−s

0

dv
π
√
v(t− s− v)

1v<a<v+s pA−
s
(a− v)E0

(
1Λs1Xs<0 e−

X2
s

2v

∣∣A−
s = a− v

)
+

1
pA−

t
(a)

1t−s<a<t pA−
s
(a+ s− t)E0

(
1Λs1Xs<0 ψ

( |Xs|√
t− s

)∣∣A−
s = a+ s− t

)
−→
t→∞

∫ s

0

√
a√

a− w
pA−

s
(w)E0

(
1Λs1Xs<0 e−

X2
s

2(a−w)
∣∣A−

s = w
)
dw

= E0

(
1Λs1Xs<0 e

− X2
s

2(a−A
−
s )

√
a√

a−A−
s

1A−
s <a

)
(3.25)
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since pA−
t
(a) =

1
π
√
a(t− a)

1[0,t](a). Similarly, one has:

(2̃)t =
pA−

s
(a)

pA−
t
(a)

1a<s E0

(
1Λs1Xs>0ψ

( |Xs|√
t− s

)∣∣∣∣A−
s = a

)
+

1
pA−

t
(a)

∫ t−s

0

1v<a<v+s
dv

π
√
v(t− s− v)

pA−
s
(a− v) E0

(
1Λs1Xs>0e

− X2
s

2(t−s−v)
∣∣A−

s = a− v

)

−→
t→∞

1a<s√
s− a

√
2
π
E0

(
1ΛsX

+
s

∣∣A−
s = a

)
+ E0

(
1Λs1Xs>0

√
a

a−A−
s

1A−
s <a

)
.

Hence, point 1 of Theorem 3.1 follows. �

3.3.2. Proof of points 2 and 3 in Theorem 3.1

In fact, point 2 has already been shown while proving Theorem 2.5. With the help of the form (2.41) of Mh

and the explicit computation of νx

(
see formula (2.23)

)
, we obtain:

Mh
s =

∫ ∞

0

νXs(dy)h(A−
s + y)∫ ∞

0

ν0(dy)h(y)
=

∫ ∞

0

h(A−
s + y)

[
X+

s

√
2
π
δ0(dy) +

1
π

e−
(X−

s )2

2y
dy√
y

]
1
π

∫ ∞

0

h(y)
dy√
y

=
√

2πX+
s h(A−

s ) +
∫ ∞

0

dy√
y

e−
(X−

s )2

2y h(A−
s + y). (3.26)

Now, clearly, this point 1 of Theorem 3.1 which we just proved implies also point 2 of the same Theorem 3.1.
Indeed, we have:

E0

(
1Λsh(A−

t )
)

E0

(
h(A−

t )
) =

∫ t

0

E0

(
1Λs |A−

t = a
)
h(a) pA−

t
(a)da∫ t

0

h(a) pA−
t
(a)da

·

From the above point 1, and with the help of the explicit form of pA−
t
(a) as given by (3.9) the above quantity

converges, as t→ ∞, towards:

∫ ∞

0

da√
a
Q(a)(Λs)h(a)∫ ∞

0

h(a)da√
a

=
∫ ∞

0

h(a)√
a
Q(a)(Λs)da (3.27)

since we assumed:
∫ ∞

0

h(a)da√
a

= 1.
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It now remains to compute, to prove point 3,∫ ∞

0

h(a)√
a
Q(a)(Λs)da =

√
2
π

∫ s

0

1√
a(s− a)

E0

(
1ΛsX

+
s |A−

s = a
)
h(a)da (3.28)

+
∫ ∞

0

h(a)√
a
E0

(
1Λs

√
a

a−A−
s

1A−
s <a e

− (X−
s )2

2(a−A
−
s )

)
da

(
from (3.12)

)
=

√
2π
∫ s

0

pA−
s
(a)E0

(
1ΛsX

+
s |A−

s = a
)
h(a)da

+
∫ ∞

0

dy√
y
E0

(
1Λse

− (X−
s )2

2y h(A−
s + y

))
(
after the change of variable a−A−

s = y
)

=
√

2πE0

(
1ΛsX

+
s h(A−

s )
)

+
∫ ∞

0

E0

(
1Λse

− (X−
s )2

2y h(A−
s + y)

) dy√
y

= E0(1ΛsM
h
s ) (from (3.14)) . (3.29)

We now remark that point 3 in Theorem 3.1 states precisely formula (3.29) we just established. �
3.3.3. Proofs of points 4i) and 4ii) in Theorem 3.1

a) From formula (3.15) and from Doob’s optional sampling theorem, we deduce:

Qh(A−
∞ > a) = E[Mh

σa
], with σa := inf{t ; A−

t > a}. (3.30)

But:

Mh
σa

=
√

2π h(a)X+
σa

+
∫ ∞

0

dy√
y

e−
(X−

σa
)2

2y h(a+ y)

=
∫ ∞

0

dy√
y

e−
(X−

σa
)2

2y h(a+ y) since X+
σa

= 0.

We recall that the process (X−
σa

; a ≥ 0) is distributed as the reflecting Brownian motion
(|Xa|, a ≥ 0

)
, where

(Xa, a > 0) is a standard Brownian motion starting from 0 (see, e.g. [5], Thm. 3.1, p. 419). Hence, we obtain:

E[Mh
σa

] =
∫ ∞

0

dy√
y
h(a+ y)E(e−

X2
a

2y )

=
∫ ∞

0

dy√
y
h(a+ y)

√
y

y + a
=
∫ ∞

0

dy√
y + a

h(a+ y) =
∫ ∞

a

dy√
y
h(y).

b) We now remark that it is easy to recover the law of A−
∞ under Qh from points 1 and 2 in Theorem 3.1. We

may already prove that, under Q(a), one has A−
∞ = a a.s. Indeed, this follows from:

if b > a, Q(a)(A−
s > b) =

√
2
π

1a<s√
s− a

E0

(
X+

s 1A−
s >b|A−

s = a
)

+E0

(√
a

a−A−
s

1b<A−
s <a e

− (X−
s )2

2(a−A
−
s )

)
= 0.

Hence, passing to the limit as s→ ∞, if b > a: Qa(A−
∞ > b) = 0.
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On the other hand, it is clear that E0

(
1A−

s ≤a|A−
t = a) = 1 (t > s), hence, passing to the limit as t → ∞,

and then, letting s→ ∞ we obtain:

Q(a)(A−
∞ ≤ a) = 1.

Finally, from (3.15), we get:

Qh(A−
∞ ≤ b) =

∫ ∞

0

h(a)√
a
Q(a)(A−

∞ ≤ b)da =
∫ b

0

h(a)√
a

da.

�

3.3.4. Computation of Azéma’s supermartingale Zt := Qh(g > t|Ft)

Our proof of points 4iii) and 4iv) in Theorem 3.1 is based on the theory of enlargements of filtration (cf. [3]
or [4]). In order to apply this theory, we need to calculate Azéma’s supermartingale Qh(g > t|Ft). We start
with this computation.

Let g = inf{t ≥ 0 ; A−
t = A−

∞} = sup{t ≥ 0 ; Xt ≤ 0}. (3.31)

Lemma 3.2. The following explicit formula holds:

Zt := Q(h)
(
g > t|Ft) = 1(Xt<0) + 1(Xt>0)

∫ ∞

0

dv√
v
h(A−

t + v)

Mh
t

· (3.32)

Proof of Lemma 3.2. We note that, for Λt ∈ Ft:

Qh(1g>t1Λt) = Qh(1Λt1Xt<0) +Qh(1Λt1Xt>01dt<∞)

(where dt denotes the first return time to 0 after time t)

= Qh(1Λt1Xt<0) + E(1Λt1Xt>0M
h
dt

).

We have:

Mh
dt

=
√

2π h(A−
dt

)X+
dt

+
∫ ∞

0

dv√
v
h(A−

dt
+ v) =

∫ ∞

0

dv√
v
h(A−

t + v) (from (3.14))

since Xdt = 0 and A−
dt

= A−
t on the set

(
Xt > 0

)
.

Hence:

Qh(1g>t1Λt) = Qh

⎛⎜⎜⎝1Λt

⎛⎜⎜⎝1Xt<0 + 1Xt>0

∫ ∞

0

dw√
w
h(A−

t + w)

Mh
t

⎞⎟⎟⎠
⎞⎟⎟⎠ .

This proves (3.32), hence Lemma 3.2. �
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3.3.5. Proof of Qh(g <∞) = 1

We deduce from (3.32) that:

Q[g < t] = 1 −Q[g > t]

= 1 − E

[
1Xt<0M

h
t + 1Xt>0

∫ ∞

0

dv√
v
h(A−

t + v)
]

=
√

2πE
[
X+

t h(A−
t )
](

from (3.26) and since (Mh
t , t ≥ 0) is a martingale s.t. E(Mh

t ) = 1
)

=
√

2π
2

E

(∫ t

0

h(A−
s ) dLs

)
(from Itô-Tanaka formula)

−→
t→∞

√
π

2
E

(∫ ∞

0

h(A−
s ) dLs

)
=
√
π

2
E

(∫ ∞

0

h(a) dLσa

)

(where (σa, a ≥ 0) denotes the right continuous inverse of (A−
t , t ≥ 0))

= 2
√
π

2
E

(∫ ∞

0

h(a) dLa

)
(
since (X−

σa
, a ≥ 0) is distributed as

(|Xa|, a ≥ 0; cf. point a
)

of Sect. 3.3.3
)

= 2
√
π

2

∫ ∞

0

h(a)E(dLa) =
∫ ∞

0

h(a)√
a

da = 1

since E(La) =
√
a

√
2
π
· �

3.3.6. Description of the canonical process (Xt, t ≥ 0) under Qh

For this purpose, we shall use the technique of enlargement of filtrations. Thus, let (Gt, t ≥ 0) denote the
smallest filtration which makes g a (Gt t ≥ 0) stopping time, and which contains (Ft, t ≥ 0).

The application of Girsanov’s Theorem and (3.14) imply the existence of a (Ft, Q
h) Brownian motion

(βt, t ≥ 0) such that, under Qh:

Xt = βt +
∫ t

0

1
Mh

s

{√
2π h(A−

s ) 1Xs>0 −
(∫ ∞

0

dw
w3/2

e−
(X−

s )2

2w h(A−
s + w)

)
X−

s

}
ds. (3.33)

We now apply the enlargement formulae
(
cf. [3,4,8]

)
. We first observe that:

dZt = −

∫ ∞

0

dw√
w
h(A−

t + w)

(Mh
t )2

(√
2π h(A−

t )1Xt>0 dXt

)
+ dVt (3.34)

where (Vt, t ≥ 0) has bounded variations and therefore:

d〈Z, X〉t = −

∫ ∞

0

dw√
w
h(A−

t + w)

(Mh
t )2

√
2π h(A−

t ) 1(Xt>0)dt. (3.35)
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Thus, there exists a
(
(Gt, t ≥ 0), Qh

)
Brownian motion (β̃t, t ≥ 0) such that:

dXt = dβ̃t +
1
Mh

t

{√
2π h(A−

t ) 1Xt>0 −
(∫ ∞

0

dw
w3/2

e−
(X−

t )2

2w h(A−
t + w)

)
X−

t

}
dt

+1t<g

[
−
∫∞
0

dw√
w
h(A−

t + w)

(Mh
t )2

(√
2π h(A−

t ) 1Xt>0

)× Mh
t∫∞

0
dw√

w
h(A−

t + w)

]
dt

−1t>g

[
−
∫∞
0

dw√
w
h(A−

t + w)

(Mh
t )2

(√
2π h(A−

t ) 1Xt>0

)× Mh
t√

2π h(A−
t )X+

t

]
dt.

This yields, after some simplifications:

Xt = β̃t −
∫ t∧g

0

1
Mh

s

(∫ ∞

0

dw
w3/2

e−
(X−

s )2

2w h(A−
s + w)

)
X−

s ds+
∫ t

t∧g

ds
Xs

(3.36)

since, after g, X−
t = 0, hence X+

t = Xt.
Points 4 iii) and iv) of Theorem 3.1 now follow immediately from (3.36). �

Remark 3.3. When h(x) = e−
λx
2 (λ > 0, x ≥ 0), the equation (3.36) simplifies as:

Xt = β̃t −
∫ t∧g

0

√
X−

s λ
1
2

λ
1
4
√

2πX+
s −

√
X−

s

ds+
∫ t

t∧g

ds
Xs

· (3.37)

This formula (3.37) follows from:

∫ ∞

0

dw
w3/2

e−
(X−

s )2

2w −λ
2 wdw =

(
(X−

s )2

λ

)−1/4

2K−1/2(
√
λX−

s )∫ ∞

0

dw
w1/2

e−
(X−

s )2

2w −λ
2 wdw =

(
(X−

s )2

λ

)+1/4

2K1/2(
√
λX−

s )

and from: K− 1
2
(z) = K 1

2
(z) =

( π
2z

) 1
2
e−z ([7], p. 112 and p. 119).

3.3.7. Markovian limit process

Theorem 3.1 shows that the process (Xt, t ≥ 0) is not Markovian under Qh, whereas the 2-dimensional
process

(
(Xt, A

−
t ), t ≥ 0

)
is Markovian.

Indeed, g is not a (Ft, t ≥ 0) stopping time and the dynamics of (Xt) is not the same before and after g.
On the other hand, we know

(
see [14]

)
that if h(x) := e−

λ
2 x (λ, x ≥ 0), then the Qh-process is Markovian. It

is the diffusion with infinitesimal generator Lh:

Lhf(x) =
1
2
f ′′(x) +

ϕ′

ϕ
(x)f ′(x), f ∈ C2

b

where ϕ denotes the unique solution of ϕ′′ = λϕ, ϕ(−∞) = 0 ; ϕ′(+∞) =

√
2
π
· In this case, the solution of this

equation (see (2.24)) takes the explicit form:

ϕλ(x) =

√
2
π

{
ex

√
λ 1√

λ
1x≤0 +

(
x+

1√
λ

)
1x>0

}
. (3.38)
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Under Qh, we obtain:

Xt = Bt +
∫ t

0

du
X+

u + 1√
λ

(
compare with (3.37)

)
(3.39)

where (Bt, t ≥ 0) is a
(
(Ft, t ≥ 0), Qh

)
Brownian motion. The martingale (Mh

s , s ≥ 0) is equal to:

Mh
s = ϕλ(Xs) exp

(
−λ

2

∫ s

0

1]−∞,0](Xu) du
)
. (3.40)

This example motivated us to raise the question: which are the functions h such that the Qh-process is Mar-
kovian? The answer is given by the following:

Proposition 3.4. Let h be regular, bounded, satisfying equation (3.10) i.e.,
∫∞
0

dy√
yh(y) = 1 and such that the

process (Xt, t ≥ 0) is Markov under Qh. Then, there exists λ ≥ 0 such that h(x) =
√

λ
2π e−

λ
2 x (x ≥ 0).

Proof of Proposition 3.4. To answer this question, we come back to equation (3.33). The problem is to find
under which conditions the drift term:

√
2π h(A−

t ) 1Xt>0 −
(∫ ∞

0

dw
w3/2

e−
(X−

t )2

2w h(A−
t + w)

)
X−

t

√
2π h(A−

t )X+
t +

∫ ∞

0

dw
w1/2

e−
(X−

t )2

2w h(A−
t + w)

(3.41)

does not depend on A−
t . Considering this expression when Xt < 0, the problem amounts to study the functions

h for which:

x

∫ ∞

0

dw
w3/2

e−
x2
2w h(a+ w)∫ ∞

0

dw
w1/2

e−
x2
2w h(a+ w)

:= k(x) (3.42)

does not depend on a. (3.42) may be written:
∂

∂x
log
(
θ(x, a)

)
= −k(x) where we have denoted:

θ(x, a) :=
∫ ∞

0

dw√
w

e−
x2
2w h(a+ w).

Hence, by integration we obtain the existence of two functions ϕ1 and ϕ2 such that:∫ ∞

0

x√
2πw3

e−
x2
2w h(a+ w) dw = ϕ1(a)ϕ2(x). (3.43)

Letting x −→ 0 in (3.43), we obtain h(a) = ϕ1(a)ϕ2(0). Note that the LHS in (3.43) writes E
(
h(a + Tx)

)
,

where (Tx, x ≥ 0) is the
1
2
-stable subordinator of Brownian first hitting times. Hence we have:

E
[
h(a+ Tx)

]
= Px(h)(a) = E [ϕ1(a+ Tx)ϕ2(0)] = ϕ1(a)ϕ2(0) (3.44)

where (Px, x ≥ 0) denotes the semi-group associated with the subordinator (Tx, x ≥ 0), whose infinitesimal

generator is
( ∂2

∂x2

) 1
2
. In other terms, from (3.43), we get:

Pxϕ1(a) =
ϕ2(x)
ϕ2(0)

ϕ1(a). (3.45)
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ϕ1 is an eigenfunction of Px, and consequently an eigenfunction of
∂2

∂x2
. ϕ1 being positive and bounded:

ϕ1(a) = c e−
λ
2 a (a, λ ≥ 0) and h(a) = c e−

λ
2 aϕ2(0) = c′ e−

λ
2 a. �

4. A local limit theorem for a class of additive functionals of the “long
Brownian bridges”

4.1. Statement of Theorem 4.1

In this section, our aim is to obtain results similar to those in Section 2, but, now, Brownian motion
(Xs, s ≥ 0) is being replaced by the Brownian bridge with length t, with t → ∞. q denotes a function from R

to R+, which is Borel, and such that:

0 <
∫ ∞

−∞
(1 + x2) q(x) dx <∞. (4.1)

We let:

Aq
t :=

∫ t

0

q(Xs) ds. (4.2)

Theorem 4.1.
1) For every x and y ∈ R, and μ > 0:

Ex

(
exp
(
− μ

2

∫ t

0

q(Xs) ds
)∣∣∣Xt = y

)
∼

t→∞
π

2
ϕμq(x)ϕμq(y)

t
(4.3)

where ϕμq denotes the unique solution of:

ϕ′′ = (μq)ϕ, lim
x→+∞ϕ′(x) = − lim

x→−∞ϕ′(x) =

√
2
π

(4.4)

2) lim
t→∞ t Px

(
Aq

t ∈ dz|Xt = y
)

= νx ∗ νy (dz) (4.5)

where νx and νy have been defined in Theorem 2.1. The convergence in (4.5) has the same meaning as in
Theorem 2.1.

4.2. Proof of Theorem 4.1

Without loss of generality, we shall assume that μ = 1.

4.2.1. An auxiliary lemma

Lemma 4.2. There exists a constant C > 0, depending only on q, such that:

Ex

(
exp
(
− 1

2

∫ t

0

q(Xs) ds
)∣∣Xt = y

)
≤ C e

(x−y)2

2t
(1 + |x|)(1 + |y|)

1 + t
· (4.6)

4.2.2. Proof of Lemma 4.2

1) As an intermediary result, we already show that:

Ex

(
exp
(
− 1

2

∫ t

0

q(Xs) ds
)∣∣Xt = y

)
≤ C e

(x−y)2

2t
1 + |x|√

1 + t
(4.7)

for a constant C which does not depend on x, y, t.
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To prove (4.7), we condition with respect to Xt/2, and we get:

Ex

(
exp
(
− 1

2

∫ t

0

q(Xs) ds
)∣∣Xt = y

)
e−

(x−y)2

2t =
1√
πt

∫ ∞

−∞
Ex

(
exp − 1

2
Aq

t/2

∣∣Xt/2 = c
)

Ec

(
exp − 1

2
Aq

t/2

∣∣X t
2

= y
)

e−
(x−c)2

t − (y−c)2

t dc. (4.8)

In (4.8), we majorize Ec

(
exp − 1

2
Aq

t/2|Xt/2 = y
)

by 1, and we get:

Ex

(
exp − 1

2
Aq

t |Xt = y
)

e−
(x−y)2

2t ≤ 1√
πt

∫ ∞

−∞
Ex

(
exp − 1

2
Aq

t/2|Xt/2 = c
)

e−
(x−c)2

2t/2 dc

≤ Ex

(
exp − 1

2
Aq

t/2

)
≤ C

1 + |x|√
1 + t

from Lemma 4.3 in [14]. Thus, we have obtained (4.7).
2) Then, plugging the estimate (4.7) in (4.8), we obtain:

Ex

(
exp
(
− 1

2
Aq

t

)∣∣Xt = y
)

≤ e
(x−y)2

2t
C
(
1 + |y|)√
1 + t

∫ ∞

−∞
Ex

(
exp − 1

2
Aq

t/2|Xt/2 = c
) e−

(x−c)2

2t/2√
2πt/2

dc

≤ C
(
1 + |x|) (1 + |y|)

1 + t
e

(x−y)2

2t

since: Ec

(
exp − 1

2
Aq

t/2|Xt/2 = y
)

= Ey

(
exp − 1

2
Aq

t/2|Xt/2 = c
)

and

e
(x−y)2

2t
C
(
1 + |y|)√
1 + t

Ex

(
exp − 1

2
Aq

t/2|Xt/2 = c
)
≤ e

(x−y)2

2t C

(
1 + |y|)(1 + |x|)

1 + t

by applying once again Lemma 4.3 in [14]. �

4.2.3. Another auxiliary lemma

Lemma 4.3. Let Z(t, x, y) := Ex

(
exp − 1

2
Aq

t |Xt = y
)
. We also denote by U(t, x, y) the solution of:

⎧⎨⎩ ∂U

∂t
(t, x, y) − 1

2
∂2U

∂x2
(t, x, y) +

1
2
U(t, x, y) q(x) = 0

U(0, •, y) = δy.
(4.9)

Then: Z(t, x, y) =
√

2πt e
(x−y)2

2t U(t, x, y).
In particular, it follows from Lemma 4.2, that:

U(t, x, y) ≤ C

(
1 + |x|)(1 + |y|)

(1 + t)3/2
(t ≥ 1). (4.10)

4.2.4. Proof of Lemma 4.3

We know that, for every regular function f :

Zf (t, x) := Ex

[
exp
(
− 1

2
Aq

t

)
f(Xt)

]
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is solution of:
∂Zf

∂t
− 1

2
∂2Zf

∂x2
+

1
2
Zfq = 0, Zf (0, x) = f(x). (4.11)

It suffices, in order to obtain Lemma 4.3, to write:

Z(t, x, y) = lim
ε↓0

Ex

[(
exp
(
− 1

2
Aq

t

))
fε(Xt)

]
Ex

(
fε(Xt)

)
where fε is a family of functions which converges weakly towards δy, and to use (4.11). �

4.2.5. Use of the Laplace transform

We define, for every λ > 0:

A(λ, x, y) =
∫ ∞

0

e−λtU(t, x, y) dt. (4.12)

Since Z(t, x, y) is a decreasing function of t, we deduce the following equivalences from the Tauberian
theorem (see [1])

i) Z(t, x, y) ∼
t→∞

π

2
ϕq(x)ϕq(y)

t

ii) U(t, x, y) ∼
t→∞

√
π

2
√

2
ϕq(x)ϕq(y)

t3/2

iii)
∣∣∣ ∂
∂λ

A(λ, x, y)
∣∣∣ = − ∂

∂λ
A(λ, x, y) ∼

λ→0

1
2
√

2
1√
λ
ϕq(x)ϕq(y). (4.13)

We shall now show (4.13). We already deduce from Lemmas 4.2 and 4.3 that:

lim
λ→0

A(λ, x, y) =
∫ ∞

0

U(t, x, y) dt <∞ (4.14)

A(λ, x, y) ≤ C
(
1 + |x|)(1 + |y|) (4.15)∣∣∣ ∂

∂λ
A(λ, x, y)

∣∣∣ ≤ C√
λ

(
1 + |x|)(1 + |y|). (4.16)

To prove (4.13) we shall show that: ψ(x, y) := lim
λ→0

√
λ
∂

∂λ
A(λ, x, y) satisfies the Sturm-Liouville equation (for

any fixed y):
∂2

∂x2
ψ = ψ q, with adequate limit conditions in x = ±∞. (4.17)

4.2.6. Convergence of the Laplace transform: first step

We get, from (4.9):

U(t, x, y) =
1√
2πt

e−
(x−y)2

2t − 1
2

∫ t

0

ds
∫ ∞

−∞

e−
(x−z)2

2(t−s)√
2π(t− s)

U(s, z, y) q(z)dz. (4.18)

Thus, after taking the Laplace transform in the variable t of the two sides of (4.18), we obtain:

A(λ, x, y) = gλ(x, y) − 1
2

∫ ∞

−∞
gλ(x, z)A(λ, z, y) q(z)dz (4.19)
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where gλ denotes the density of the resolvent kernel of Brownian motion:

gλ(x, z) =
1√
2λ

e−|x−z|√2λ.

We write (4.19) in the form:

A(λ, x, y) = Gλ

[
δy − 1

2
(
A(λ, •, y) q(•)

]
(x) (4.20)

with for any Radon measure μ(dz):

Gλμ (x) :=
∫ ∞

−∞
gλ(x, z)μ(dz) (4.21)

and we use the resolvent equation:
∂2

∂x2
Gλ μ = −2μ+ 2λGλ μ, to obtain:

∂2

∂x2
A(λ, x, y) = 2λA(λ, x, y) − [2δy −A(λ, x, y) q(x)

]
. (4.22)

As a consequence, differentiating with respect to λ, then multiplying by
√
λ, we obtain:

∂2

∂x2

(√
λ
∂A

∂λ
(λ, x, y)

)
−
√
λ
∂A

∂λ
(λ, x, y) q(x) = 2

√
λA(λ, x, y) + 2λ3/2 ∂A

∂λ
(λ, x, y). (4.23)

Hence, from (4.16) and (4.15), and denoting Ã(λ, x, y) :=
√
λ
∂A

∂λ
(λ, x, y), it follows that:

∣∣∣ ∂2

∂x2

(
Ã(λ, x, y)

)− Ã(λ, x, y) q(x)
∣∣∣ ≤ C

√
λ
(
1 + |x|)(1 + |y|) (λ→ 0) (4.24)

(4.24) is the first step to prove that Ã(λ, x, y) converges, as λ → 0, to a solution of the Sturm-Liouville
equation (4.17).

4.2.7. Convergence of the Laplace transform: limit conditions in x = ±∞
We now examine the limit conditions in x = ±∞.
We come back to equation (4.19) which we differentiate with respect to λ, then we multiply by λ:

√
λÃ(λ, x, y) = −1

2
A(λ, x, y) − 1

2

∫ ∞

−∞
e−|x−z|√2λ|x− z| (δy(dz) −A(λ, z, y) q(z)dz

)
− 1√

2

∫ ∞

−∞
e−|x−z|√2λÃ(λ, x, z) q(z)dz. (4.25)

From (4.16) and (4.14), respectively we deduce that:

√
λ Ã(λ, x, y) −→

λ→0
0 and A(λ, x, y) converges as λ→ 0.

Hence, from (4.25), since
∫ ∞

−∞
(1 + x2) q (dz) <∞:

lim
λ→0

∫ ∞

−∞
e−|x−z|√2λÃ(λ, x, z) q(z)dz exists. (4.26)
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On the other hand, differentiating (4.25) with respect to x, we obtain:

∂Ã

∂x
(λ, x, y) =

∂B

∂x
− 1

2

{∫ x

−∞
e−|x−z|√2λÃ(λ, z, y) q(z)dz +

∫ ∞

x

e−|x−z|√2λÃ(λ, z, y) q(z)dz
}

(4.27)

with

B := − 1
2
√
λ

{
A+

∫ ∞

−∞
e−|x−z|√2λ

(
A(λ, z, y) q(z)dz − δy(dz)

)}
. (4.28)

We deduce from (4.27), (4.26) and (4.28) that:

lim
λ→0
x→∞

∂

∂x
Ã(λ, x, y) = − lim

λ→0
x→−∞

∂

∂x
Ã(λ, x, y) = C(y) (4.29)

(cf. [14], pp. 194–197 for similar computations).

4.2.8. End of the proof of point 1 of Theorem 4.1

Thus, from the equivalence between i), ii) and iii) which we recalled in (4.13), we get:

Ex

[
exp − 1

2

∫ t

0

q(Xs)ds
∣∣Xt = y

]
∼

t→∞
ψ(x, y)

t
(4.30)

where ψ is solution to:

∂2ψ

∂x2
(x, y) = ψ(x, y) q(x), lim

x→+∞
∂ψ

∂x
(x, y) = − lim

x→−∞
∂ψ

∂x
(x, y) = C(y). (4.31)

Thus, from the definition of ϕq

(
see (4.4)

)
, we get:

ψ(x, y) = C(y)
√
π

2
ϕq(x).

Now, since Z(t, x, y) is symmetric in x and y:

ψ(x, y) = Kϕq(x)ϕq(y). (4.32)

It remains to determine the value of K. For this purpose, we write:

ϕq(x) = Ex

((
exp
(
−1

2

∫ t

0

ds q(Xs)
))

ϕq(Xt)
)

(since ϕq(Xt) exp
(
−1

2
Aq

t

)
, t ≥ 0 is a martingale)

=
∫ ∞

−∞
Ex

(
exp
(
−1

2
Aq

t

) ∣∣Xt = y

)
e−

(x−y)2

2t√
2πt

ϕq(y)dy

∼
t→∞K

∫ ∞

−∞

ϕq(x)ϕq(y)
t

ϕq(y)
e−

(x−y)2

2t√
2πt

dy

=
K ϕq(x)

t
Ex

(
ϕ2

q(Xt)
) ∼

t→∞
K ϕq(x)

t

2
π
t
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since ϕq(z) ∼
|z|→∞

√
2
π
|z|. Hence K

2
π

= 1, that is: K =
π

2
·

Thus, we have obtained point 1 of Theorem 4.1.

4.2.9. Point 2 of Theorem 4.1 may be proven

with the help of (4.3), exactly as Theorem 2.1. �
Remark 4.4. Under our hypothesis H1 on q, there is the equivalence:

Z(t, x, y) ≡ Ex

(
exp − 1

2

∫ t

0

q(Xs)ds
∣∣Xt = y

)
∼

t→∞
π

2t
ϕq(x)ϕq(y). (4.33)

Intuitively, we may think of the bridge of duration t going from x to y as “resembling”, as t → ∞, to the

concatenation of two Brownian motions each being defined on a time interval
[
0,
t

2

]
, with the first one starting

from x and the second one, after time reversal, starting from y, these two parts being independent. If this were
true, then:

Z(t, x, y) = Ex

(
exp − 1

2
Aq

t |Xt = y
)

= Ex

(
exp − 1

2
Aq

t/2

)
Ey

(
exp − 1

2
Aq

t/2

)
∼

t→∞
ϕq(x)√
t/2

ϕq(y)√
t/2

=
4
π

(π
2
ϕq(x)ϕq(y)

t

)
·

Thus, comparing with (4.33) the factor
4
π

which we just obtained measures, in some sense, the default of
independence of these two Brownian components.
Remark 4.5. Theorem 4.1 allows to “penalize long Brownian Bridges”. More precisely, for every s ≥ 0 and
Λs ∈ Fs:

Ex

(
1Λs exp

(
− 1

2
Aq

t

)∣∣Xt = y
)

Ex

(
exp
(
− 1

2
Aq

t

)∣∣Xt = y
) −→

t→∞Ex(1ΛsM
ϕ
s ) (4.34)

with Mϕ
s :=

ϕq(Xs)
ϕq(x)

exp
(
− 1

2
Aq

s

)
, and (Mϕ

s , s ≥ 0) is a positive martingale. In other terms, comparing with

Theorem 5.1 in [14], the penalisation is the same for “long bridges” as for Brownian motion itself. Once more
(see [12]), we obtain that a long bridge of duration t, as t→ ∞, behaves as a standard Brownian motion.

4.2.10. Finally, we show (4.34)

Ex

(
1Λs exp

(
− 1

2
Aq

t

)
|Xt = y

)
Ex

(
exp
(
− 1

2
Aq

t

)
|Xt = y

) =
Ex

(
1Λs

(
exp
(
− 1

2
Aq

s

))
EXs,s

(
exp
(
− 1

2

∫ t

s

q(Xu)du
)
|Xt = y

))
Ex

(
exp
(
− 1

2
Aq

t

)
|Xt = y

)

∼
t→∞

Ex

(
1Λs exp

(
− 1

2
Aq

s

) ϕq(Xs)ϕq(y)
t− s

)
ϕq(x)ϕq(y)

t

−→
t→∞Ex(1ΛsM

ϕ
s ).
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