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PROCESS LEVEL MODERATE DEVIATIONS FOR STABILIZING
FUNCTIONALS

Peter Eichelsbacher1 and Tomasz Schreiber2

Abstract. Functionals of spatial point process often satisfy a weak spatial dependence condition
known as stabilization. In this paper we prove process level moderate deviation principles (MDP) for
such functionals, which is a level-3 result for empirical point fields as well as a level-2 result for empirical
point measures. The level-3 rate function coincides with the so-called specific information. We show
that the general result can be applied to prove MDPs for various particular functionals, including
random sequential packing, birth-growth models, germ-grain models and nearest neighbor graphs.
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1. Introduction and main results

In their seminal works, Comets [3], Föllmer and Orey [5], Olla [11] and Georgii [6] established process-level
large deviation principles for (lattice-indexed) Gibbsian random fields, which was further pushed into the point
process set-up by Georgii and Zessin [8] and Georgii [7]. The rate function was given there in terms of the
relative entropy density. In the present paper we discuss the corresponding process-level moderate deviation
problem. The moderate deviation principle we establish applies for well-behaved configuration functionals on
Poisson point processes, namely the so-called stabilizing functionals. The rate function turns out to be the
specific relative information of null-measures, which is the moderate deviation analogue for the specific relative
entropy.

1.1. Terminology

Consider a real-valued translation invariant functional ξ(x, σ) defined on all pairs (x, σ), where x ∈ R
d and

σ is a finite point configuration in R
d containing x. Moreover, for x �∈ σ write ξ(x, σ) := ξ(x, σ ∪ {x}). Note

that the translation invariance of ξ means here that ξ(τyx, τyσ) = ξ(x, σ) for all y ∈ R
d, where τyx := x − y

is the usual operator of translation by y. Let P be a homogeneous Poisson point process on R
d, with a certain

intensity τ > 0 to remain fixed throughout the paper, and denote by Π the distribution of P on the space Σ
of locally finite point configurations in R

d. For formal completeness we represent the space Σ as the set of all
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locally finite and simple (all atoms of mass 1) counting measures σ on R
d, endowed with the σ-field F generated

by the mappings Σ � σ �→ σ(A) for all bounded Borel A ⊂ R
d.

One crucial assumption imposed on ξ throughout this paper is the so-called exponential stabilization,
see [1,12–14]. We say that ξ is stabilizing (at intensity τ) if for each x ∈ R

d there exists an a.s. finite ran-
dom variable R(x) := Rξ(x,P) (a radius of stabilization) and ξ∞(x) := ξ∞(x,P) (the limit of ξ) such that,
with probability one, ξ(x, (P ∩BR(x)(x)) ∪ σ) = ξ∞(x) for all locally finite σ ⊆ R

d \BR(x)(x). More generally,
for a locally finite point configuration σ ⊆ R

d we consider the stabilization radius R(x) := Rξ(x, σ) of ξ at x
in σ defined so that ξ(x, (σ ∩ BR(x)(x)) ∪ σ′) takes the same value for all locally finite σ′ ⊆ R

d \ BR(x)(x). We
put Rξ(x, σ) := +∞ if this does not hold for any finite R(x). Our exponential stabilization requirement means
that ξ is stabilizing (at the intensity τ fixed throughout the paper) and at each point the stabilization radius
exhibits exponentially decaying tail, i.e.

(E) There exists c > 0 such that, for r large enough,

P(R(x) > r) ≤ exp(−cr).

In [1,12–14] a lot of examples of stabilizing functionals are discussed. In Section 2 we will focus on random
sequential packing models, birth-growth models, germ-grain models and nearest neighbor graphs.

Under the stabilization condition as stated above, the Poisson point process P with probability one takes
its values in the space Σξ ⊆ Σ, defined to consist of all configurations for which the value of ξ can be uniquely
determined at each configuration point. Thus, in order to avoid unnecessary formal subtleties, we simply extend
the functional ξ in some artificial way, say by setting ξ(x, σ) := 0 if Rξ(x, σ) = +∞. Since this happens with
probability 0 if σ is given by P , this extension does not affect our results while guaranteeing that Σξ = Σ.
For a configuration σ ∈ Σ let ξ[σ] be its ξ-marked version, where each point x ∈ σ is marked with the
corresponding value ξ(x, σ). In particular, ξ[Σ] is the space of all possible ξ-marked point configurations. We
formally represent ξ[Σ] as the space of simple point measures of R

d × R and we endow it with the σ-field F̂
generated by the mappings ξ[Σ] � σ̂ �→ σ̂(A1 ×A2) for all bounded Borel A1 ⊆ R

d, A2 ⊆ R.
For each Borel measurable region A ⊆ R

d consider the σ-field FA ⊆ F generated by the mappings Σ �
σ �→ σ(B), B ⊆ A, B bounded and measurable. Define also F̂A to be the σ-field generated by the mappings
ξ[Σ] � σ̂ �→ σ̂(B1 ×B2) with B1 ranging over bounded Borel subsets of A and with bounded Borel measurable
B2 ⊆ R. We shall write ΠA for the restriction of Π to FA. We say that a function Φ : Σ → R is local if it is
measurable with respect to FA for some bounded A. Likewise, Φ̂ : ξ[Σ] → R is local if it is measurable with
respect to F̂A for some bounded A. Observe in particular that all constant functions are local by definition.
Consider the space Bloc(Σ) consisting of all the bounded local functions on Σ with the topology determined by
the convergence: Φn → Φ as n→ ∞ iff ||Φn−Φ||∞ := supσ∈Σ |Φn(σ)−Φ(σ)| →n→∞ 0 and there exists bounded
A ⊆ R

d such that Φ,Φ1,Φ2, . . . are all FA-measurable. The definition of Bloc(ξ[Σ]) is completely analogous.
We say that a set function Θ : F → R is a signed local measure on Σ iff Θ(

⋃∞
i=1 Si) =

∑∞
i=1 Θ(Si) with

the RHS series absolutely convergent, whenever Si are pairwise disjoint and all Si are FA-measurable for some
bounded A ⊆ R

d. Denote by M0,θ
loc(Σ) the space of all translation invariant signed local measures on Σ with

total mass
∫
Σ 1dΘ = 0 (and hence referred to as null-measures in the sequel) endowed with the topology T

taken to be the weakest one which makes continuous the mappings Θ �→ 〈Φ,Θ〉 :=
∫
Σ

ΦdΘ for all Φ ∈ Bloc(Σ).
Observe that the mapping Φ �→ 〈Φ,Θ〉 is continuous in Bloc(Σ) for each Θ ∈ M0,θ

loc(Σ). Moreover, it is clear that
Bloc(Σ) is the topological dual of (M0,θ

loc(Σ), T ). In a completely analogous way we define the space M0,θ
loc(ξ[Σ])

of translation invariant signed local null-measures on ξ[Σ], endowed with the corresponding Bloc(ξ[Σ])-weak
topology T̂ ξ. Consider now the natural mark-forgetting mapping π : ξ[Σ] → Σ and observe that we have
Θ̂ ◦ π−1 ∈ M0,θ

loc(Σ) for Θ̂ ∈ M0,θ
loc(ξ[Σ]). Define

M0,θ
loc,ξ(Σ) :=

{
Θ ∈ M0,θ

loc(Σ) | ∃Θ̂ ∈ M0,θ
loc(ξ[Σ]) : Θ = Θ̂ ◦ π−1

}
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and endow M0,θ
loc,ξ(Σ) with the topology T ξ := π(T̂ ξ). Note that M0,θ

loc,ξ(Σ) ⊆ M0,θ
loc(Σ) where the equality may

but does not have to occur. Indeed, for Θ ∈ M0,θ
loc,ξ(Σ) the existence of Θ̂ ∈ M0,θ

loc(ξ[Σ]) with Θ = Θ̂ ◦ π−1 may
imply a version of σ-additivity stronger than just local whenever ξ itself is not a local functional. For similar
reasons, the topology T ξ is stronger or equal to the topology induced by the inclusion M0,θ

loc,ξ(Σ) ⊆ M0,θ
loc(Σ).

Observe also that T ξ can be equivalently characterized as the weakest topology to make continuous the mappings
M0,θ

loc,ξ(Σ) � Θ �→ [Φ̂,Θ]ξ := 〈Φ̂, ξ[Θ]〉 for all Φ̂ ∈ Bloc(ξ[Σ]). Clearly, Φ̂ �→ [Φ̂,Θ]ξ is Bloc(ξ[Σ])-continuous for
each Θ in M0,θ

loc,ξ(Σ). Moreover, it is easily seen that Bloc(ξ[Σ]) can be regarded as the topological dual for
(M0,θ

loc,ξ(Σ), T ξ) with respect to the duality [·, ·]ξ.
For λ > 0, let Qλ be the cube of volume λ centered at 0, i.e. Qλ = [− d

√
λ/2, d

√
λ/2]d. For a finite point

configuration σ ⊆ Qλ we define the empirical point field

ψξ
λ(σ) :=

1
λ

∫
Qλ

δξ[τx Perλ(σ)]dx, (1.1)

where τxy := y−x stands for the usual shift operator, while Perλ(σ) is the configuration arising by periodically
copying σ on disjoint translates of Qλ, i.e. Perλ(σ) :=

⋃
i∈Zd τ d√

λi
σ. In other words, the empirical process

arises as a probability measure on the space ξ[Σ] of marked point configurations, by normalized integration
over x ∈ Qλ of unit masses concentrated at ξ-marked d

√
λ-periodized versions of σ shifted by x. It is clear that

ψξ
λ(σ) is a translation invariant measure. Throughout this paper we focus our interest on empirical point fields

generated by the Poisson point process P

Ψξ
λ := ψξ

λ(P ∩Qλ). (1.2)

We consider also the centered versions

Ψ̄ξ
λ := Ψξ

λ − EΨξ
λ.

Observe that Ψ̄ξ
λ is a M0,θ

loc(ξ[Σ])-valued random element and that we almost surely have π(Ψ̄ξ
λ) ∈ M0,θ

loc,ξ(Σ).
It can be shown that the following law of large numbers holds almost surely in T ξ topology

lim
λ→∞

Ψξ
λ = lim

λ→∞
EΨξ

λ = ξ[Π],

this is a consequence of the exponential stabilization and we refer the reader to [16] for details. Note that by
ξ[Π] we mean here the transport of the law Π on Σ by the map ξ[·] : Σ → ξ[Σ]. The main goal of this paper is to
establish a process level (level-3) and empirical measure level (level-2) moderate deviation principle (MDP) for
Ψ̄ξ

λ under the assumption that the stabilizing ξ satisfies a level-1 moderate deviation principle, as made precise
below. The rate function of this MDP turns out to admit representation in terms of the specific information
functional I(·|Π) defined for a local null-measure Θ ∈ M0,θ

loc(Σ) by

I(Θ|Π) :=
1
2

lim
λ→∞

1
λ

∫
ΣQλ

(
dΘ|Qλ

dΠQλ

)2

dΠQλ
(1.3)

if Θ �loc Π and I(Θ) := +∞ otherwise. Note that the local absolute continuity requirement stated with
�loc above means simply that Θ|Qλ

� ΠQλ
for all λ, with the |Qλ operation standing for the restriction of

its argument measure to FQλ
. The existence of the limit in (1.3) will be established in Lemma 5.1, further

properties of the specific information functional will be discussed in Section 5.
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1.2. Process level moderate deviation principles

We say (see [4]) that a family of probability measures (με)ε>0, on some topological space Y obeys a large
deviation principle (LDP) with speed ε and good rate function I(·) : Y → R+ ∪ {0,+∞} if

• I is lower semi-continuous and has compact level sets NL := {x ∈ Y : I(x) ≤ L}, for every L ∈ [0,∞).
• For every open set G ⊆ Y it holds

lim inf
ε→0

ε logμε(G) ≥ − inf
x∈G

I(x). (1.4)

• For every closed set A ⊆ Y it holds

lim sup
ε→0

ε logμε(A) ≤ − inf
x∈A

I(x). (1.5)

Similarly we will say that a family of random variables (Yε)ε>0 with topological state space Y obeys a large
deviation principle with speed ε and good rate function I(·) : Y → R+ ∪ {0,+∞} if the sequence of their
distributions does. Formally a moderate deviation principle is nothing but a LDP. However, we will speak
about a moderate deviation principle (MDP) for a sequence of random variables, whenever the scaling of the
corresponding random variables is between that of an ordinary law of large numbers and that of a central limit
theorem.

To proceed with the statement of the moderate deviation principle for Ψ̄ξ
λ, we let αλ be such that αλ → ∞

and αλλ
−1/2 → 0.

Below, we shall assume that ξ is a bounded exponentially stabilizing functional, as required in (E). From
the results and methods of Section 4.3 in [1] it follows that

Proposition 1.1. For each Φ̂ ∈ Bloc(ξ[Σ]) there exists the limit

V [ξ; Φ̂] := lim
λ→∞

λVar
(
〈Φ̂, Ψ̄ξ

λ〉
)

(1.6)

providing the infinite volume variance density for 〈Φ̂, Ψ̄ξ
λ〉. Moreover, for each R > 0 we have

VR[ξ] := sup
||Φ̂||∞≤1, D(Φ̂)≤R

V [ξ; Φ̂] < +∞, (1.7)

where D(Φ̂) stands for the infimum of r > 0 such that Φ̂ is FB(0,r)-measurable.

Note that we multiply rather than dividing by λ in (1.6) because of the normalization for Ψξ
λ being already

present in (1.1) and (1.2). Further, we impose on ξ the following additional condition
(L) For the log-Laplace functional

Λξ
λ;αλ

(Φ̂) :=
1
α2

λ

log E exp
(
αλλ

1/2〈Φ̂, Ψ̄ξ
λ〉
)
, Φ̂ ∈ Bloc(ξ[Σ]) (1.8)

we have
lim

λ→∞
Λξ

λ;αλ
(Φ̂) =

1
2
V [ξ; Φ̂]. (1.9)

In fact, this condition is a usual ingredient needed to establish the moderate deviation principle for 〈Φ̂, Ψ̄ξ
λ〉

with rate function R � t �→ t2/(2V [ξ; Φ̂]) by an application of the Gärtner-Ellis theorem (Thm. 2.3.6 in [4]),
see [2]. In a number of cases the exponential stabilization seems to be enough to guarantee (L), see [2] and
Section 2 below, however at present we do not know if the boundedness and exponential stabilization do imply
the condition (L) in general.

The following process-level moderate deviation theorem is the first main result of our paper.
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Theorem 1.1. For a bounded functional ξ for which the conditions (E) and (L) hold, the family (α−1
λ λ1/2Ψ̄ξ

λ)λ

satisfies the moderate deviation principle on the space (M0,θ
loc(ξ[Σ]), T̂ ξ) with speed α2

λ and with the good rate
function Iξ(·|ξ[Π]) defined for Θ̂ ∈ M0,θ

loc(ξ[Σ]) to be I(Θ|Π) if Θ̂ = ξ[Θ] and +∞ otherwise, with ξ[Θ] standing
for the transport of Θ by the map ξ[·].

At this point, it is very natural to compare our Theorem 1.1 for stabilizing functionals with the corresponding
process level large deviation principles for Gibbs measures, see Comets [3], Föllmer and Orey [5], Olla [11] and
Georgii [6], as well as Georgii and Zessin [8] and Georgii [7] in the point field set-up, where the rate function was
given in terms of the relative entropy density. In fact, the specific information can be roughly interpreted as the
(halved) second derivative of the relative entropy density h(·|·) at the equilibrium measure Π in that, vaguely,
h(Π + δΘ|Π) ≈ δ2I(Θ|Π) + o(δ2). Of course in such formulation this imprecise formula can be given a definite
meaning only at the level of finite volume approximations of h(·|Π) and I(·|Π), yet it provides an intuition that
our MDP could be regarded as a local version of the process level LDP, differentiated at equilibrium. In this
context, the role played by the empirical probabilities in the LDP set-up, here is taken over by the null-measures
arising upon centering laws of the empirical point fields Ψξ

λ. To the best of our knowledge there is no moderate
deviations result on process level in the literature.

1.3. Empirical measure level moderate deviation principles

Usually as a consequence from the process level (level-3) MDP one obtains its empirical measure level (level-
2) counterpart, which is proven via the contraction principle. In our present context we prefer, however, to
establish the level-2 MDP directly, thus avoiding certain topological intricacies and getting a simpler formula
for the rate function, still in a variational rather than explicit form though.

Let us consider the empirical point process

Zξ
λ :=

1
λ

∑
x∈Pτ∩Qλ

δξ(x,Perλ(P∩Qλ)). (1.10)

and its centered version Z̄ξ
λ := Zξ

λ−EZξ
λ. Moreover let us denote by M(R) the real vector space of finite variation

signed measures on R. Equip M(R) with the weak topology generated by the sets {Uf,x,δ, f ∈ Cb(R), x ∈ R, δ >
0}, where Cb(R) is the space of bounded continuous functions on R and with

Uf,x,δ := {ν ∈ M(R), |〈f, ν〉 − x| < δ}.

The Borel-σ-field generated by the weak topology is denoted by B. It is well known, that since the collection
of linear functionals {ν �→ 〈f, ν〉 : f ∈ Cb(R)} is separating in M(R), this topology makes M(R) into a locally
convex, Hausdorff topological vector space, whose topological dual is the preceding collection, hereafter identified
with Cb(R).

In analogy with the corresponding results for process level objects, we require that ξ satisfy the exponential
stabilization condition (E). Under this conditions, using the results of [16], we get the following almost sure law
of large numbers in the Cb(R)-weak topology

lim
λ→∞

Zξ
λ = lim

λ→∞
EZξ

λ = τν[ξ], (1.11)

where, for Borel B ⊆ R,

ν[ξ](B) := P(ξ(0,P) ∈ B), (1.12)
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that is to say, ν[ξ] is the law of ξ(0,P) on R. We recall here that τ is the intensity of the Poisson point process
P . Again, using the methods and results of Section 4.3 in [1] we get

Proposition 1.2. For each f ∈ Cb(R) there exists the limit

Vf [ξ] := lim
λ→∞

λVar
(
〈f, Z̄ξ

λ〉
)

= lim
λ→∞

λVar
(
〈f, Zξ

λ〉
)
.

Moreover, we have
Vf [ξ] = τ〈f ⊗ f, μ〉, (1.13)

where μ ∈ M(R × R) is given by

μ(A1 ×A2) := P(ξ(0,P) ∈ A1 ∩A2)

+ τ

∫
Rd

[P(ξ(0,P ∪ x) ∈ A1, ξ(x,P ∪ 0) ∈ A2) − P(ξ(0,P) ∈ A1)P(ξ(0,P) ∈ A2)]dx (1.14)

for Borel A1, A2 ⊆ R
d and with f ⊗ f(x, y) := f(x)f(y), x, y ∈ R. The convergence of the integral in (1.14) is

guaranteed by the exponential stabilization of ξ.

We note that the multiplication rather than division by λ in the definition of Vf [ξ] above is due to the
λ−1-normalization already present in the definition of Zξ

λ. The following condition is a natural counterpart of
the level-3 condition (L).

(L’) The log-Laplace functional

Lξ
λ;αλ

[f ] :=
1
α2

λ

log E exp
(
〈f, Z̄ξ

λ〉
)
, f ∈ Cb(R), (1.15)

satisfies

lim
λ→∞

Lξ
λ;αλ

[f ] =
1
2
Vf [ξ]. (1.16)

Under appropriate additional conditions (L’) would follow as a direct consequence of (L), indeed, taking
Φ̂f (ξ[σ]) to be

∑
x∈σ∩[0,1]d f(ξ(x, σ)) we see that 〈f, Z̄ξ

λ〉 differs from 〈Φ̂f , Ψ̄
ξ
λ〉 just by a boundary-order term,

which can be easily dealt with e.g. by considering a periodised version of the process on a torus, thus getting
rid of such boundary effects. The point is, though, that thus defined Φ̂f is usually not bounded. On the other
hand, for all our examples both (L) and (L’) do follow from the same theory developed in [2]. Therefore we
have decided to formulate both these conditions separately, without resorting to tedious general considerations
which would not add any extra examples to our list of applications.

The following level-2 moderate deviation theorem is our second main result.

Theorem 1.2. For ξ satisfying both the exponential stabilization condition (E) and the condition (L’), the
family α−1

λ λ1/2Z̄λ satisfies a MDP on M(R), endowed with the Cb(R)-weak topology, with speed α2
λ and a

convex, good rate function

Jξ(γ) := sup
f∈Cb(R)

(〈f, γ〉 − τ

2
〈f ⊗ f, μ〉). (1.17)

2. Examples

Below, we discuss examples of stabilizing functionals for which our general level-3 and level-2 theory applies.
Our presentation is borrowed from ([2]) where level-1 moderate deviation principles are established for these
functionals. It should be noted that the corresponding central limit theorems, under much milder conditions
(no homogeneity required) have been established in [1].
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2.1. Random sequential packing

The following prototypical random sequential packing model arises in diverse disciplines, including physical,
chemical, and biological processes. See [15] for a discussion of the many applications, the many references, and
also a discussion of previous mathematical analysis. In one dimension, this model is often referred to as the
Rényi car parking model [17].

With N(τλ) standing for a Poisson random variable with parameter τλ, let Bλ,1, Bλ,2, ..., Bλ,N(τλ) be a
sequence of d-dimensional balls of volume 1 whose centers are i.i.d. random d-vectors X1, ..., XN(λ) uniformly
distributed over Qλ = [− d

√
λ/2, d

√
λ/2]d. Without loss of generality, assume that the balls are sequenced in the

order determined by marks (time coordinates) in [0, 1]. Let the first ball Bλ,1 be packed, and recursively for
i = 2, 3, . . . , N(τλ), let the ith ball Bλ,i be packed iff Bλ,i does not overlap any ball in Bλ,1, ..., Bλ,i−1 which
has already been packed. If not packed, the ith ball is discarded.

For any finite point set X ⊂ R
d, assume the points x ∈ X have time coordinates which are independent

and uniformly distributed over the interval [0, 1]. Assume unit volume balls centered at the points of X arrive
sequentially in an order determined by the time coordinates, and assume as before that each ball is packed
or discarded according to whether or not it overlaps a previously packed ball. Let ξ(x;X ) be either 1 or 0
depending on whether the ball centered at x is packed or discarded. Letting X = P we easily see that ξ(·;P)
describes the random sequential packing process as constructed above. This process depends not only on the
spatial locations of points but also on their [0, 1]-valued arrival time marks. However, this clearly does fit into
our general setting by a simple generalization to the marked case. A similar remark is due for many of the
examples below but will not be repeated there.

From [1,16] we know that ξ satisfies the exponential stabilization condition (E). Moreover, by Section 2
and Sections 6.1 and 6.2 of [2] we see that ξ satisfies both the (L) and (L’) conditions. In particular, our
Theorems 1.1 and 1.2 do apply for the random sequential packing functional ξ. To be able to obtain (L)
and (L’) in [2], we had to apply stabilization methods, cumulant techniques, and exponential modification of
measures.

2.2. Spatial birth-growth models

Our results for the prototypical packing measures as described in Section 2.1 above, extend to measures
arising from more general packing models. Consider for example the following spatial birth-growth model in
R

d. Let P̃ := {(Xi, Ti) ∈ R
d × [0, 1]} be a spatial-temporal Poisson point process. Seeds appear at uniformly

random locations Xi ∈ Qλ at times Ti i.i.d. and uniform in [0, 1]. When a seed is born, it has initial radius
ρi, 0 < L− < ρi ≤ L+ < ∞, and thereafter the radius grows at a constant speed vi, generating a cell growing
radially in all directions. When one expanding cell touches another, they both stop growing in their respective
directions. In any event, we assume that the seed radii are deterministically bounded, i.e., they never exceed a
fixed cut-off and they stop growing upon reaching it. Moreover, if a seed appears at Xi and if the ball centered
at Xi with radius ρi overlaps any of the existing cells, then the seed is discarded. Variants of this well-studied
process are used to model crystal growth [18].

To proceed, for any finite point set X ⊂ R
d, assume the points x ∈ X have i.i.d. time marks over [0, 1]. A

mark at x ∈ X represents the arrival time of a seed at x. Assume that the seeds are centered at the points of
X , that they arrive sequentially in an order determined by the associated marks, and that each seed is accepted
or rejected according to the rules above. Let ξ(x;X ) be either 1 or 0 according to whether the seed centered
at x is accepted or not. Letting X = P ∩Qλ we see that ξ(·;P ∩Qλ) corresponds to the spatial birth-growth
model introduced above.

Again, from [1,16] we know that ξ satisfies the exponential stabilization condition (E). Moreover, by Section 3
and Sections 6.1 and 6.2 of [2] we see that ξ satisfies both the (L) and (L’) conditions. In particular, our
Theorems 1.1 and 1.2 do apply for the random birth-growth functional ξ.

Remark 2.1. The results of the present subsection extend to more general versions of the prototypical packing
model. The stabilization analysis of [15] combined with [2] yields (E) and (L),(L’) in the finite input setting for
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the number of packed balls in the following general models: (a) models with balls replaced by particles of random
(bounded) size/shape/charge, (b) cooperative sequential adsorption models, and (c) ballistic deposition models
(see [15] for a complete description of these models). In each case, our general results apply to the functionals
ξ putting 1 in the centers of accepted objects and 0 in the centers of rejected objects.

2.3. Germ-grain models

Let Xi, i ≥ 1, be i.i.d. uniformly distributed over Qλ. Let T, Ti, i ≥ 1, be i.i.d. bounded random variables,
independent of the random variables Xi, 1 ≤ i ≥ 1. Consider the random grains Xi + BTi(0) as well as the
random set

Ξλ :=
N(τλ)⋃

i=1

(Xi +BTi(0)),

where Br(x) again denotes the Euclidean ball centered at x ∈ R
d of radius r > 0. The random set Ξλ usually

goes under the name of a Boolean model (see e.g. Hall [9], pp. 141, 233 and Molchanov [10] Sect. 3.2, Ex. 2.2,
p. 35).

For all u ∈ R
d, let T (u) be i.i.d. random variables with distribution equal to that of T . For all x ∈ R

d and all
locally finite point sets X ⊂ R

d, denote by V (x,X ) the Voronoi cell around x with respect to X and let ξ(x;X )
be the Lebesgue measure of the intersection of

⋃
u∈X BT (u)(u) and V (x,X ).

For ξ thus defined, we see that
∑

x∈P∩Qλ
ξ(x;P) is just the Lebesgue measure of Ξλ. Likewise, we can easily

construct a functional ξ′ such that
∑

x∈P∩Qλ
ξ′(x;P) coincides with the surface area measure of Ξλ by defining

ξ′(x;X ) to be the surface area measure of the part of ∂Ξλ falling into V (x,X ).
Using [1] and [2], Section 6.3, we again see that the functionals ξ and ξ′ as defined above do satisfy both

the (E) and (L) + (L’) conditions, whence our general results apply. Note that the arguments used when
proving conditions (L) + (L’) for Germ-grain models in [2] differ from those used for the packing models, see
Section 6.3 ibidem.

2.4. k-nearest neighbors random graphs

Let k be a positive integer. Given a locally finite point set X ⊂ R
d, the k-nearest neighbors (undirected)

graph on X , denoted NG(X ), is the graph with vertex set X obtained by including {x, y} as an edge whenever
y is one of the k-nearest neighbors of x and/or x is one of the k-nearest neighbors of y. The k-nearest neighbors
(directed) graph on X , denoted NG′(X ), is the graph with vertex set X obtained by placing a directed edge
between each point and its k-nearest neighbors.

For all t > 0, let ξt(x;X ) := 1 if the length of the edge joining x to its nearest neighbor in X is less than
t and zero otherwise. Moreover, for m ∈ N we shall consider functionals ξNG

m and ξNG′
m taking value 1 if the

degree of the vertex x in NG(X ) (respectively NG′(X )) is m, and value 0 otherwise. Clearly, as usual we shall
take X := P . It follows now from [1] and [2], Section 6.3, that all the functionals ξt, ξNG

m and ξNG′
m do satisfy

(E), (L) and (L′), whence our general results do apply.

3. Proof of Theorem 1.1

In view of Proposition 1.1 and condition (L) the projective limit technique, see Corollary 4.6.11 in [4], allows
us to conclude that Ψ̄ξ

λ satisfies the moderate deviation principle in the algebraic dual [Bloc(ξ[Σ])]′ endowed
with Bloc(ξ[Σ])-weak topology, with the good rate function

[Λξ]∗(Θ̂) := sup
Φ̂∈Bloc(ξ[Σ])

(
〈Φ̂, Θ̂〉 − 1

2
V [ξ; Φ̂]

)
, Θ̂ ∈ [Bloc(ξ[Σ])]′. (3.1)

In view of Theorem 5.2 below, we have
[Λξ]∗(Θ̂) = Iξ(Θ̂|ξ[Π]) (3.2)
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for Θ̂ ∈ M0,θ
loc(ξ[Σ]). Further, it is easily seen that T̂ ξ coincides with the topology on M0,θ

loc(ξ[Σ]) induced by the
inclusion of this space in [Bloc(ξ[Σ])]′ topologized as above. Thus, in view of Lemma 4.1.5 in [4], Theorem 1.1
will follow once we show that

[Λξ]∗(Θ̂) = +∞ (3.3)
for Θ̂ ∈ [Bloc(ξ[Σ])]′ \M0,θ

loc(ξ[Σ]). To this end, take Θ̂ with [Λξ]∗(Θ̂) < +∞ and use Proposition 1.1 writing
〈

Φ̂
||Φ̂||∞

, Θ̂

〉
≤ [Λξ]∗(Θ̂) + V

[
ξ;

Φ̂
||Φ̂||∞

]
≤ [Λξ]∗(Θ̂) + VD(Φ̂)[ξ]

for all Φ̂ ∈ Bloc(ξ[Σ]). Consequently, we see that Θ̂ is a bounded linear form on {Φ̂ ∈ Bloc(ξ[Σ]), Φ̂ is FA −
measurable} for each bounded Borel A ⊆ R

d. Using the Riesz representation theorem for the restrictions of Θ̂ to
subspaces of functions ofBloc(ξ[Σ]) depending only on the marked point configuration within [−N,N ]d, N → ∞,

we conclude that Θ̂ ∈ Mloc(ξ[Σ]). Note that this application of the Riesz representation theorem is justified
because for each N ∈ N the space of finite point configurations in [−N,N ]d can be embedded in the space of
compact subsets of [−N,N ]d endowed with the usual compact Hausdorff metric and with the resulting Borel
σ-field coinciding with F[−N,N ]d. To complete the proof it is now enough to exclude the case Θ̂ ∈ Mloc(ξ[Σ]) \
M0,θ

loc(ξ[Σ]). However, this is easily done by noting that

P

(
Ψ̄ξ

λ ∈ Mloc(ξ[Σ]) \M0,θ
loc(ξ[Σ])

)
= 0

since Ψξ
λ is translation invariant and has 0 total mass by its definition, and by observing that the space

M0,θ
loc(ξ[Σ]) is closed in Mloc(ξ[Σ]) with respect to the Bloc(ξ[Σ])-weak topology. The proof is complete. �

4. Proof of Theorem 1.2

The proof is organised similar to that of Theorem 1.1. In view of Proposition 1.2 and the condition (L’),
the projective limit technique, see Corollary 4.6.11 in [4], allows us to conclude that Z̄ξ

λ satisfies the moderate
deviation principle in the algebraic dual [Cb(R)]′ endowed with Cb(R)-weak topology, with the good rate function

[Lξ]∗(γ) := sup
f∈Cb(R)

(〈f, γ〉 − 1
2
Vf [ξ]), γ ∈ [Cb(R)]′. (4.1)

In view of Lemma 4.1.5 in [4] and of Proposition 1.2 guaranteeing that [Lξ]∗(γ) = Jξ(γ) for γ ∈ M(R), to
complete the proof of Theorem 1.2 it is now enough to show that

[Lξ]∗(γ) = +∞, γ ∈ [Cb(R)]′ \M(R). (4.2)

To this end, take γ with [Lξ]∗(γ) < +∞ and write for f ∈ Cb(R)〈
f

||f ||∞
, γ

〉
≤ [Lξ]∗(γ) +

1
2
Vf/||f ||∞ [ξ] = [Lξ]∗(γ) +

τ

2

〈
f

||f ||∞
⊗ f

||f ||∞
, μ

〉
.

Since the RHS is bounded, this means that γ is a bounded operator on Cb(R) and hence γ ∈ M(R) as required.
This completes the proof of Theorem 1.2. �

5. Properties of the specific relative information

In this section we discuss a number of properties of the specific relative information, as introduced in (1.3).
Our main purpose below is to identify the rate function in Theorem 1.1.
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5.1. Existence

Lemma 5.1. For each translation invariant local null measure Θ on Σ there exists the limit

I(Θ|Π) :=
1
2

lim
λ→∞

1
λ

∫
ΣQλ

(
dΘ|Qλ

dΠQλ

)2

dΠQλ
.

Moreover, we have

I(Θ|Π) =
1
2

sup
λ>0

1
λ

∫
ΣQλ

(
dΘ|Qλ

dΠQλ

)2

dΠQλ
. (5.1)

Proof. For a bounded region A ⊆ R write

IA(Θ|Π) :=
1
2

∫
ΣA

(
dΘ|A
dΠA

)2

dΠA. (5.2)

It is clear that, by standard superadditivity argument, the proof will be completed once we show that for
bounded and disjoint A,B ⊆ R

d

IA∪B(Θ|Π) ≥ IA(Θ|Π) + IB(Θ|Π). (5.3)

To establish (5.3), write ρA for the density dΘ|A/dΠA, define ρB and ρA∪B likewise and let ρB|A(σB |σA) :=
ρA∪B(σA ∪ σB)− ρA(σA), with σA and σB standing for generic elements of ΣA and ΣB respectively. It is clear
that ∫

ΣB

ρA∪B(σA ∪ σB)dΠB(σB) = ρA(σA) and hence
∫

ΣB

ρB|A(σB |σA)dΠB(σB) = 0 ΠA a.s. (5.4)

Moreover, since
∫
ΣA

ρAdΠA = Θ(Σ) = 0, interchanging A and B in (5.4) we are led to

∫
ΣA

ρA∪B(σA ∪ σB)dΠA(σA) = ρB(σB) and
∫

ΣA

ρB|A(σB |σA)dΠA(σA) = ρB(σB) ΠB a.s. (5.5)

With this notation we get, using (5.4),

2IA∪B(Θ|Π) =
∫

ΣA

∫
ΣB

ρ2
A∪B(σA ∪ σB)dΠB(σB)dΠA(σA)

=
∫

ΣA

∫
ΣB

(ρA(σA) + ρB|A(σB |σA))2dΠB(σB)dΠA(σA)

=
∫

ΣA

ρ2
AdΠA + 2

∫
ΣA

ρA(σA)
∫

ΣB

ρB|A(σB |σA)dΠB(σB)dΠA(σA)

+
∫

ΣA

∫
ΣB

ρ2
B|A(σB |σA)dΠB(σB)dΠA(σA)

=
∫

ΣA

ρ2
AdΠA +

∫
ΣA

∫
ΣB

ρ2
B|A(σB |σA)dΠB(σB)dΠA(σA).

Applying Jensen’s inequality we come to

2IA∪B(Θ|Π) ≥
∫

ΣA

ρ2
AdΠA +

∫
ΣB

(∫
ΣA

ρB|A(σB |σA)dΠA(σA)
)2

dΠB(σB).
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Using (5.5) we obtain finally

2IA∪B(Θ|Π) ≥
∫

ΣA

ρ2
AdΠA +

∫
ΣB

ρ2
BdΠB = 2IA(Θ|Π) + 2IB(Θ|Π)

which yields (5.3) and hence completes the proof of the lemma. �

5.2. Finite volume variational principle and lower semicontinuity

Lemma 5.2. For a bounded region A ⊆ R
d we have for each Φ ∈ B(ΣA)

1
2

Var(Φ(PA)) = sup
Θ∈M0(ΣA)

(〈Φ,Θ〉 − IA(Θ|Π)) (5.6)

with PA standing for the restriction of P to A and where M0(ΣA) is the collection of all 0-total mass signed
measures on ΣA. Moreover, for each Θ ∈ M0(ΣA) we have

IA(Θ|Π) = sup
Φ∈B(ΣA)

(
〈Φ,Θ〉 − 1

2
Var(Φ(PA))

)
. (5.7)

Proof. Fix Φ ∈ B(ΣA) and note that for Θ ∈ M0(ΣA) absolutely continuous w.r.t. ΠA we have

〈Φ,Θ〉 − IA(Θ|Π) =
∫

ΣA

[Φ − EΦ(PA)]dΘ − 1
2

∫
ΣA

(
dΘ
dΠA

)2

dΠA

because
∫
ΣA

EΦ(PA)dΘ = 0. Consequently,

〈Φ,Θ〉 − IA(Θ|Π) =
∫

ΣA

[Φ − EΦ(PA)]
dΘ
dΠA

dΠA − 1
2

∫
ΣA

(
dΘ
dΠA

)2

dΠA

≤ 1
2

∫
ΣA

[Φ − EΦ(PA)]2dΠA =
1
2

Var(Φ(PA)),

where the last inequality follows from fρ − 1
2ρ

2 ≤ 1
2f

2 for f := [Φ − EΦ(PA)] and ρ := dΘ
dΠA

. Since Θ was
arbitrary with Θ � ΠA and IA(Θ|Π) = +∞ for Θ �� ΠA, we conclude that

Var(Φ(PA)) ≥ sup
Θ∈M0(ΣA)

(〈Φ,Θ〉 − IA(Θ|Π)) . (5.8)

To proceed, let ΘΦ ∈ M0(ΣA) be given by dΘΦ := [Φ − EΦ(PA)]dΠA. We have then

1
2

Var(Φ( PA)) =
1
2

∫
ΣA

[Φ − EΦ(PA)]2dΠA =
∫

ΣA

[Φ − EΦ(PA)]dΘΦ − 1
2

∫
ΣA

(
dΘΦ

dΠA

)2

dΠA

= 〈Φ,ΘΦ〉 − IA(ΘΦ|Π).

Combining these equalities with (5.8) yields now (5.6).
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The proof of (5.7) is analogous. Fix Θ ∈ M0(ΣA) and write for Φ ∈ B(ΣA)

〈Φ,Θ〉 − Var(Φ(PA)) =
∫

ΣA

[Φ − EΦ(PA)]dΘ − 1
2

∫
ΣA

[Φ − EΦ(PA)]2dΠA

=
∫

ΣA

[Φ − EΦ(PA)]
dΘ
dΠA

dΠA − 1
2

∫
ΣA

[Φ − EΦ(PA)]2dΠA

≤ 1
2

∫
ΣA

(
dΘ
dΠA

)2

dΠA =
1
2
IA(Θ|Π),

where the last inequality follows from fρ − 1
2f

2 ≤ 1
2ρ

2 for f := [Φ − EΦ(PA)] and ρ := dΘ
dΠA

. Since Φ was
arbitrary, we see that

IA(Θ|Π) ≥ sup
Φ∈B(ΣA)

(
〈Φ,Θ〉 − 1

2
Var(Φ(PA))

)
. (5.9)

To proceed with the proof of the converse inequality observe first that if Θ �� ΠA, the expression 〈Φ,Θ〉 −
1
2 Var(Φ(PA)) can be made arbitrarily large by adjusting Φ on a region in ΣA of non-zero total variation for Θ
to which ΠA assigns zero mass. Now, for Θ � ΠA let ΦΘ := dΘ

dΠA
. Observe that EΦΘ(PA) = Θ(ΣA) = 0. Write

IA(Θ|Π) =
1
2

∫
ΣA

[ΦΘ]2dΠA =
∫

ΣA

ΦΘdΘ − 1
2

E[ΦΘ]2 = 〈ΦΘ,Θ〉 − 1
2

Var(ΦΘ(PA)).

Putting this together with (5.9) yields (5.7). This completes the proof of the lemma. �

Lemma 5.3. The mapping

(M0,θ
loc,ξ(Σ), Tξ) � Θ �→ I(Θ|Π)

is convex and lower semicontinuous.

Proof. The convexity follows immediately by the definition of I(·|Π) in view of the convexity of finite volume
functionals IQλ

(·|Π). Further, the variational formula (5.7) represents the finite volume functionals IQλ
(·|Π) as

suprema over Φ ∈ B(Qλ) of Tξ-continuous functionals, which yields the Tξ-lower semicontinuity for IQλ
(·|Π).

The required Tξ-lower semicontinuity of I(·|Π) follows now by (5.1). �

5.3. Infinite volume variational principle

Theorem 5.1. For each Φ̂ ∈ Bloc(ξ[Σ]) we have

1
2
V [ξ; Φ̂] = sup

Θ∈M0,θ
loc,ξ(Σ)

(
〈Φ̂, ξ[Θ]〉 − I(Θ|Π)

)
.

Proof. We claim first that

sup
Θ∈M0,θ

loc,ξ(Σ)

(
〈Φ̂, ξ[Θ]〉 − I(Θ|Π)

)
≤ 1

2
V [ξ; Φ̂]. (5.10)

For each Θ ∈ M0,θ
loc,ξ(Σ) such that Θ �loc Π and I(Θ|Π) < +∞ we easily conclude from the exponential

stabilization assumption (E), from the translational invariance of Θ and from Lemma 5.1 that

〈Φ̂, ξ[Θ]〉 − I(Θ|Π) = lim
λ→∞

∫
ΣQλ

〈Φ̂, ψξ
λ(σQλ

)〉dΘ|Qλ
(σQλ

) − 1
2

lim
λ→∞

1
λ

∫
ΣQλ

(
dΘ|Qλ

dΠQλ

)2

dΠQλ
.
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Consequently, using that Θ is a null-measure, we come to

〈Φ̂, ξ[Θ]〉 − I(Θ|Π) = lim
λ→∞

1
λ

∫
ΣQλ

λ[〈Φ̂, ψξ
λ(σQλ

)〉 − E〈Φ̂,Ψξ
λ〉]dΘ|Qλ

(σQλ
) − 1

2
lim

λ→∞
1
λ

∫
ΣQλ

(
dΘ|Qλ

dΠQλ

)2

dΠQλ

= lim
λ→∞

1
λ

∫
ΣQλ

λ[〈Φ̂, ψξ
λ(σQλ

)〉 − E〈Φ̂,Ψξ
λ〉]

dΘ|Qλ

dΠQλ

[σQλ
]dΠQλ

(σQλ
) − 1

2
lim

λ→∞
1
λ

∫
ΣQλ

(
dΘ|Qλ

dΠQλ

)2

dΠQλ

≤ 1
2

lim
λ→∞

1
λ

∫
ΣQλ

(
λ[〈Φ̂, ψξ

λ(σQλ
)〉 − E〈Φ̂,Ψξ

λ〉]
)2

dΠQλ
(σQλ

) =
1
2

lim
λ→∞

λVar(〈Φ̂, Ψ̄ξ
λ〉),

where the last inequality comes from fρ− 1
2ρ

2 ≤ 1
2f

2 applied for f := λ[〈Φ̂, ψξ
λ〉 − E〈Φ̂,Ψξ

λ〉] and ρ := dΘ|Qλ
/

dΠQλ
. Now, in view of Proposition 1.1 the last limit equals 1

2V [ξ; Φ̂]. Thus, since Θ was arbitrary with Θ �loc Π
with I(Θ|Π) < +∞ and since I(Θ′|Π) = +∞ for Θ′ ��loc Π, we conclude the inequality (5.10) as required.

To establish the converse inequality, for each N ∈ N construct the measure ΘΦ◦ξ
N by partitioning R

d into
translates QN [i], i ∈ Z

d of the cube QN and setting

ΘΦ◦ξ
N :=

1
N

∫
QN

τx

⎡
⎣⊕

i∈Zd

ΘΦ◦ξ
N :i

⎤
⎦dx (5.11)

with
dΘΦ◦ξ

N :i

dΠQN [i]
[σQN [i]] := λ[〈Φ̂, ψξ

QN [i](σQN [i])〉 − E〈Φ̂,Ψξ
N 〉], σQN [i] ⊆ QN [i], (5.12)

where
ψξ

QN [i](σQN [i]) =
1
N

∫
QN [i]

δξ[τx PerN (σQN [i])]dx,

see (1.1), and where
⊕

i∈Zd ΘΦ◦ξ
N :i is given for a cylinder event S = S1 × . . .× Sk, Sj ∈ FQN [j] by

⎡
⎣⊕

i∈Zd

ΘΦ◦ξ
N :i

⎤
⎦ (S) =

k∑
j=1

Θφ◦ξ
N :i(Sj). (5.13)

Note that this definition is consistent since all ΘΦ◦ξ
N :i are null-measures (have their total masses 0). Intuitively

speaking, the above construction is the counterpart of taking products of probability measures in our null-
measure setting. Observe also that, by definition, the measure ΘΦ◦ξ

N :i coincides with the translate τvΘΦ◦ξ
N :j where

v is the vector joining the center of QN [i] to the center of QN [j]. Again, roughly speaking, this construction
can be regarded as a null-measure analogue of taking the product law of i.i.d. random objects.

By exponential stabilization (E) is clear that ΘΦ◦ξ
N ∈ M0,θ

loc,ξ(Σ). Moreover, by the translation invariance of
the Poisson point process Π, writing Q∗

N [A] :=
⋃

QN [i]∩A �=∅QN [i] and Q∂
N [A] := Q∗

N [A] \A, A ⊆ R
d, in view of

(5.11) and (5.12) above we have

[ρN ]λ(σQλ
) :=

d[ΘΦ◦ξ
N ]|Qλ

dΠQλ

(σQλ
)

=
∫

QN

∫
Σ

Q∂
N

[τxQλ]

∑
QN [i]⊆Q∗

N [τxQλ]

λ[〈Φ̂, ψξ
QN [i]([σQλ

∪ σ]|QN [i])〉 − E〈Φ̂,Ψξ
QN

〉]dΠQ∂
N [τxQλ](σ)dx.

(5.14)

Using (5.14), Proposition 1.1 and exponential stabilization (E), as a consequence of the method of [1] we get
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1
2

lim
N→∞

lim
λ→∞

1
λ

∫
ΣQλ

[ρN ]2λdΠQλ
=

1
2
V [ξ; Φ̂]. (5.15)

Combining (5.14) and (5.15) with (5.11) and (5.12) we can write

1
2
V [ξ; Φ̂] = lim

N→∞
lim

λ→∞
1
λ

∫
ΣQλ

[ρN ]2λdΠQλ
− 1

2
lim

N→∞
lim

λ→∞
1
λ

∫
ΣQλ

[ρN ]2λdΠQλ

= lim
N→∞

lim
λ→∞

1
λ

∫
ΣQλ

[ρN ]λd[ΘΦ◦ξ
N ]|Qλ

− 1
2

lim
N→∞

lim
λ→∞

1
λ

∫
ΣQλ

(
d[ΘΦ◦ξ

N ]|Qλ

dΠQλ

)2

dΠQλ

= lim
N→∞

(
〈Φ̂, ξ[ΘΦ◦ξ

N ]〉 − I(ΘΦ◦ξ
N |Π)

)
.

This implies that

sup
Θ∈M0,θ

loc,ξ(Σ)

(
〈Φ̂, ξ[Θ]〉 − I(Θ|Π)〉

)
≥ 1

2
V [ξ; Φ̂]. (5.16)

Putting (5.10) and (5.16) together completes the proof of the theorem. �

Theorem 5.2. For each Θ ∈ M0,θ
loc,ξ(Σ) we have

I(Θ|Π) = sup
Φ̂∈Bloc(ξ[Σξ])

(
〈Φ̂, ξ[Θ]〉 − 1

2
V [ξ; Φ̂]

)
.

Proof. In view of the convexity and lower semicontinuity of I(Θ|Π) on (M0,θ
loc,ξ(Σ), Tξ), as stated in Lemma 5.3,

our assertion follows immediately by the Duality Lemma 4.5.8 in [4] applied for the duality [Φ̂,Θ]ξ := 〈Φ̂, ξ[Θ]〉.�

Acknowledgements. Special thanks are due to Joe E. Yukich, whose ideas and comments have motivated us to prepare
this paper.
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