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Abstract. We describe quantization designs which lead to asymptotically and order optimal func-
tional quantizers for Gaussian processes in a Hilbert space setting. Regular variation of the eigenvalues
of the covariance operator plays a crucial role to achieve these rates. For the development of a construc-
tive quantization scheme we rely on the knowledge of the eigenvectors of the covariance operator in
order to transform the problem into a finite dimensional quantization problem of normal distributions.
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1. Introduction

Functional quantization of stochastic processes can be seen as a discretization of the path-space of a process
and the approximation (coding) of a process by finitely many deterministic functions from its path-space. In a
Hilbert space setting this reads as follows.

Let (H, 〈·, ·〉) be a separable Hilbert space with norm ‖ · ‖ and let X : (Ω,A,P) → H be a random vector
taking its values in H with distribution PX . For n ∈ N, the L2-quantization problem for X of level n (or of
nat-level logn) consists in minimizing(

E min
a∈α

‖X − a‖2

)1/2

= ‖min
a∈α

‖X − a‖‖L2(P)

over all subsets α ⊂ H with card(α) ≤ n. Such a set α is called n-codebook or n-quantizer. The minimal nth
quantization error of X is then defined by:

en(X) := inf
{

(E min
a∈α

‖X − a‖2)1/2 : α ⊂ H, card(α) ≤ n

}
. (1.1)
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Under the integrability condition

E ‖X‖2 <∞ (1.2)

the quantity en(X) is finite.
For a given n-quantizer α one defines an associated closest neighbour projection

πα :=
∑
a∈α

a1Ca(α)

and the induced α-quantization (Voronoi quantization) of X by

X̂α := πα(X), (1.3)

where {Ca(α) : a ∈ α} is a Voronoi partition induced by α, that is a Borel partition of H satisfying

Ca(α) ⊂ Va(α) := {x ∈ H : ‖x− a‖ = min
b∈α

‖x− b‖} (1.4)

for every a ∈ α. Then one easily checks that, for any random vector X
′
: Ω → α ⊂ H ,

E ‖X −X
′‖2 ≥ E ‖X − X̂α‖2 = E min

a∈α
‖X − a‖2

so that finally

en(X) = inf
{

(E ‖X − X̂‖2)1/2 : X̂ = f(X), f : H → H Borel measurable, (1.5)

card(f(H)) ≤ n}
= inf

{
(E ‖X − X̂‖2)1/2 : X̂ : Ω → H random vector, card(X̂(Ω)) ≤ n

}
.

Observe that the Voronoi cells Va(α), a ∈ α are closed and convex (where convexity is a characteristic feature
of the underlying Hilbert structure). Note further that there are infinitely many α-quantizations of X which all
produce the same quantization error and X̂α is P-a.s. uniquely defined if PX vanishes on hyperplanes.

A typical setting for functional quantization is H = L2([0, 1], dt) but is obviously not restricted to the Hilbert
space setting. Functional quantization is the natural extension to stochastic processes of the so-called optimal
vector quantization of random vectors in H = R

d which has been extensively investigated since the late 1940’s in
Signal processing and Information Theory (see [4,7]). For the mathematical aspects of vector quantization in R

d,
one may consult [5], for algorithmic aspects see [16] and “non-classical” applications can be found in [14,15]. For
a first promising application of functional quantization to the pricing of financial derivatives through numerical
integration on path-spaces see [17].

We address the issue of high-resolution quantization which concerns the performance of n-quantizers and the
behaviour of en(X) as n → ∞. The asymptotics of en(X) for R

d-valued random vectors has been completely
elucidated for non-singular distributions PX by the Zador theorem (see [5]) and for a class of self-similar
(singular) distributions by [6]. In infinite dimensions no such global results hold, even for Gaussian processes.

It is convenient to use the symbols ∼ and �, where an ∼ bn means an/bn → 1 and an � bn means
lim supn→∞ an/bn ≤ 1. A measurable function ϕ : (s,∞) → (0,∞) (s ≥ 0) is said to be regularly varying at
infinity with index b ∈ R if, for every c > 0,

lim
x→∞

ϕ(cx)
ϕ(x)

= cb.
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Now let X be centered Gaussian. Denote by KX ⊂ H the reproducing kernel Hilbert space (Cameron-Martin
space) associated to the covariance operator

C
X

: H → H, C
X
y := E (〈y,X〉X) (1.6)

of X . Let λ1 ≥ λ2 ≥ . . . > 0 be the ordered nonzero eigenvalues of C
X

and let {uj : j ≥ 1} be the corresponding
orthonormal basis of supp(PX) consisting of eigenvectors (Karhunen-Loève basis). If d := dimKX < ∞, then

en(X) = en

(
d⊗

j=1

N (0, λj)

)
, the minimal nth L2-quantization error of

d⊗
j=1

N (0, λj) with respect to the l2-norm

on R
d, and thus we can read off the asymptotic behaviour of en(X) from the high-resolution formula

en

⎛⎝ d⊗
j=1

N (0, λj)

⎞⎠ ∼ q(d)
√

2π
(
Πd

j=1λj

)1/2d
(
d+ 2
d

)(d+2)/4

n−1/d as n→ ∞, (1.7)

where q(d) ∈ (0,∞) is a constant depending only on the dimension d (see [5]). Except in dimension d = 1 and
d = 2, the true value of q(d) is unknown. However, one knows (see [5]) that

q(d) ∼
(

d

2πe

)1/2

as d→ ∞. (1.8)

Assume dimKX = ∞. Under regular behaviour of the eigenvalues the sharp asymptotics of en(X) can be
derived analogously to (1.7). In view of (1.8) it is reasonable to expect that the limiting constants can be
evaluated. The recent high-resolution formula is as follows.

Theorem 1.1 ([11]). Let X be a centered Gaussian. Assume λj ∼ ϕ(j) as j → ∞, where ϕ : (s,∞) → (0,∞)
is a decreasing, regularly varying function at infinity of index −b < −1 for some s ≥ 0. Set, for every x > s,

ψ(x) :=
1

xϕ(x)
·

Then

en(X) ∼
((

b

2

)b−1
b

b− 1

)1/2

ψ(log n)−1/2 as n→ ∞.

A high-resolution formula in case b = 1 is also available (see [11]). Note that the restriction −b ≤ −1 on the

index of ϕ is natural since
∞∑

j=1

λj < ∞. The minimal Lr-quantization errors of X , 0 < r < ∞, are strongly

equivalent to the L2-errors en(X) (see [3]) and thus exhibit the same high-resolution behaviour.
The paper is organized as follows. In Section 2 we investigate a new quantization design, which furnishes

asymptotically optimal quantizers in the situation of Theorem 1.1. Here the Karhunen-Loève expansion plays
a crucial role. We also provide a lower bound for the dimension problem. The dimension problem, which is
explained at the end of Section 3 seems to be one of the hardest unsolved problems in functional quantization
of stochastic processes. In Section 3 we state different quantization designs, which are all at least order-optimal
and discuss their possible implementations regarding the example of the Brownian motion and the class of
Riemann-Liouville processes. Several proposed numerical schemes are new. The main focus in that section lies
on “good” designs for finite n ∈ N.
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2. Asymptotically optimal functional quantizers

Let X be a H-valued random vector satisfying (1.2). For every n ∈ N, L2-optimal n-quantizers α ⊂ H exist,
that is

(E min
a∈α

‖X − a‖2)1/2 = en(X)

(see [10]). If card(supp(PX)) ≥ n, optimal n-quantizers α satisfy card(α) = n, P(X ∈ Ca(α)) > 0 and the
stationarity condition

a = E (X | {X ∈ Ca(α)}), a ∈ α (2.1)
or what is the same

X̂α = E (X | X̂α) (2.2)

for every Voronoi partition {Ca(α) : a ∈ α} (see [10]). In particular, E X̂α = EX .
Now let X be centered Gaussian with dimKX = ∞. The Karhunen-Loève basis {uj : j ≥ 1} consisting of

normalized eigenvectors of C
X

is optimal for the quantization of Gaussian random vectors (see [10]). So we
start with the Karhunen-Loève expansion

X
H=

∞∑
j=1

λ
1/2
j ξjuj,

where ξj = 〈X,uj〉/λ1/2
j , j ≥ 1 are i.i.d. N (0, 1)-distributed random variables. The design of an asymptotically

optimal quantization of X is based on optimal quantizing blocks of coefficients of variable (n-dependent) block
length. Let n ∈ N and fix temporarily m, l, n1, . . . , nm ∈ N with Πm

j=1nj ≤ n, where m denotes the number of
blocks, l the block length and nj the size of the quantizer for the jth block

ξ(j) := (ξ(j−1)l+1, . . . , ξjl), j ∈ {1, . . . ,m}.

Let αj ⊂ R
l be an L2-optimal nj-quantizer for ξ(j) and let ξ̂(j) = ξ̂(j)

αj

be a αj -quantization of ξ(j). (Quanti-
zation of blocks ξ(j) instead of (λ1/2

(j−1)l+1ξ(j−1)l+1, . . . , λ
1/2
jl ξjl) is asymptotically good enough. For finite n the

quantization scheme will be considerably improved in Sect. 3.) Then, define a quantized version of X by

X̂n :=
m∑

j=1

l∑
k=1

λ
1/2
(j−1)l+k(ξ̂(j))ku(j−1)l+k. (2.3)

It is clear that card(X̂n(Ω)) ≤ n. Using (2.2) for ξ(j), one gets E X̂n = 0. If

ξ̂(j) =
∑
b∈αj

b1Cb(αj)(ξ
(j)),

then

X̂n =
∑

a∈×m
j=1αj

⎛⎝ m∑
j=1

l∑
k=1

λ
1/2
(j−1)l+ka

(j)
k u(j−1)l+k

⎞⎠Πm
j=11C

a(j) (αj)(ξ
(j))

where a = (a(1), . . . , a(m)) ∈ ×m
j=1αj . Observe that in general, X̂n is not a Voronoi quantization of X since it

is based on the (less complicated) Voronoi partitions for ξ(j), j ≤ m. (X̂n is a Voronoi quantization if l = 1 or
if λ(j−1)l+1 = . . . = λjl for every j.) Using again (2.2) for ξ(j) and the independence structure, one checks that
X̂n satisfies a kind of stationarity equation:

E (X | X̂n) = X̂n.
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Lemma 2.1. Let n ≥ 1. For every l ≥ 1 and every m ≥ 1

E ‖X − X̂n‖2 ≤
m∑

j=1

λ(j−1)l+1enj (N(0, Il))2 +
∑

j≥ml+1

λj . (2.4)

Furthermore, (2.4) stands as an equality if l = 1 (or λ(j−1)l+1 = . . . = λjl for every j, l ≥ 1).

Proof. The claim follows from the orthonormality of the basis {uj : j ≥ 1}. We have

E ‖X − X̂n‖2 =
m∑

j=1

l∑
k=1

λ(j−1)l+kE | ξ(j)k − (ξ̂(j))k |2 +
∑

j≥ml+1

λj

≤
m∑

j=1

λ(j−1)l+1

l∑
k=1

E | ξ(j)k − ξ̂(j))k |2 +
∑

j≥ml+1

λj

=
m∑

j=1

λ(j−1)l+1enj (ξ
(j))2 +

∑
j≥ml+1

λj . �

Set
C(l) := sup

k≥1
k2/lek(N(0, Il))2. (2.5)

By (1.7), C(l) <∞. For every l ∈ N,
enj (N(0, Il))2 ≤ n

−2/l
j C(l). (2.6)

Then one may replace the optimization problem which consists, for fixed n, in minimizing the right hand side
of Lemma 2.1 by the following optimal allocation problem:

min

⎧⎨⎩C(l)
m∑

j=1

λ(j−1)l+1n
−2/l
j +

∑
j≥ml+1

λj : m, l, n1, . . . , nm ∈ N,Πm
j=1nj ≤ n

⎫⎬⎭ . (2.7)

Set
m = m(n, l) := max{k ≥ 1 : n1/kλ

l/2
(k−1)l+1(Π

k
j=1λ(j−1)l+1)−l/2k ≥ 1}, (2.8)

nj = nj(n, l) := [n1/mλ
l/2
(j−1)l+1(Π

m
i=1λ(i−1)l+1)−l/2m], j ∈ {1, . . . ,m}, (2.9)

where [x] denotes the integer part of x ∈ R and

l = ln := [(max{1, logn})ϑ], ϑ ∈ (0, 1). (2.10)

In the following theorem it is demonstrated that this choice is at least asymptotically optimal provided the
eigenvalues are regularly varying.

Theorem 2.2. Assume the situation of Theorem 1.1. Consider X̂n with tuning parameters defined in (2.8)–
(2.10). Then X̂n is asymptotically n-optimal, i.e.

(E ‖X − X̂n‖2)1/2 ∼ en(X) as n→ ∞.

Note that no block quantizer with fixed block length is asymptotically optimal (see [11]). As mentioned above,
X̂n is not a Voronoi quantization of X . If αn := X̂n(Ω), then the Voronoi quantization X̂αn is clearly also
asymptotically n-optimal.
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The key property for the proof is the following l-asymptotics of the constants C(l) defined in (2.5). It is
interesting to consider also the smaller constants

Q(l) := lim
k→∞

k2/lek(N (0, Il))2 (2.11)

(see (1.7)).

Proposition 2.3. The sequences (C(l))l≥1 and (Q(l))l≥1 satisfy

lim
l→∞

C(l)
l

= lim
l→∞

Q(l)
l

= inf
l≥1

C(l)
l

= inf
l≥1

Q(l)
l

= 1.

Proof. From [11] it is known that

lim inf
l→∞

C(l)
l

= 1. (2.12)

Furthermore, it follows immediately from (1.7) and (1.8) that

lim
l→∞

Q(l)
l

= 1. (2.13)

(The proof of the existence of lim
l→∞

C(l)/l we owe to S. Dereich.) For l0, l ∈ N with l ≥ l0, write

l = n l0 +m with n ∈ N,m ∈ {0, . . . , l0 − 1}.

Since for every k ∈ N,
[kl0/l]n [k1/l]m ≤ k,

one obtains by a block-quantizer design consisting of n blocks of length l0 and m blocks of length 1 for quantizing
N(0, Il),

ek(N (0, Il))2 ≤ ne[kl0/l](N (0, Il0))
2 +me[k1/l](N (0, 1))2. (2.14)

This implies

C(l) ≤ nC(l0) sup
k≥1

k2/l

[kl0/l]2/l0
+mC(1) sup

k≥1

k2/l

[k1/l]2

≤ 41/l0nC(l0) + 4mC(1).

Consequently, using n/l ≤ 1/l0,
C(l)
l

≤ 41/l0C(l0)
l0

+
4mC(1)

l
and hence

lim sup
l→∞

C(l)
l

≤ 41/l0C(l0)
l0

·
This yields

lim sup
l→∞

C(l)
l

≤ lim inf
l0→∞

C(l0)
l0

= 1. (2.15)

It follows from (2.14) that
Q(l) ≤ nQ(l0) +mQ(1).

Consequently
Q(l)
l

≤ Q(l0)
l0

+
mQ(1)

l
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and therefore

1 = lim
l→∞

Q(l)
l

≤ Q(l0)
l0

·
This implies

inf
l0≥1

Q(l0)
l0

= 1. (2.16)

Since Q(l) ≤ C(l), the proof is complete. �

The n-asymptotics of the number m(n, ln)ln of quantized coefficients in the Karhunen-Loève expansion in
the quantization X̂n is as follows.

Lemma 2.4 ([12], Lem. 4.8). Assume the situation of Theorem 1.1. Let m(n, ln) be defined by (2.8) and (2.10).
Then

m(n, ln)ln ∼ 2 logn
b

as n→ ∞.

Proof of Theorem 2.2. For every n ∈ N,

m∑
j=1

λ(j−1)l+1n
−2/l
j =

m∑
j=1

λ(j−1)l+1(nj + 1)−2/l

(
nj + 1
nj

)2/l

≤ 41/lmn−2/ml(Πm
j=1λ(j−1)l+1)1/m

≤ 41/lmλ(m−1)l+1.

Therefore, by Lemma 2.1 and (2.6),

E ‖X − X̂n‖2 ≤ 41/lC(l)
l
mlλ(m−1)l+1 +

∑
j≥ml+1

λj

for every n ∈ N. By Lemma 2.4, we have

ml = m(n, ln)ln ∼ 2 logn
b

as n→ ∞.

Consequently, using regular variation at infinity with index −b < −1 of the function ϕ,

mlλ(m−1)l+1 ∼ mlλml ∼
(

2
b

)1−b

ψ(log n)−1

and ∑
j≥ml+1

λj ∼ mlϕ(ml)
b− 1

∼ 1
b− 1

(
2
b

)1−b

ψ(log n)−1 as n→ ∞,

where, like in Theorem 1.1, ψ(x) = 1/xϕ(x). Since by Proposition 2.3,

lim
n→∞

41/lnC(ln)
ln

= 1,

one concludes

E ‖X − X̂n‖2 �
(

2
b

)1−b
b

b− 1
ψ(log n)−1 as n→ ∞.

The assertion follows from Theorem 1.1. �
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Let us briefly comment on the true dimension of the problem.
For n ∈ N, let Cn(X) be the (nonempty) set of all L2-optimal n-quantizers. We introduce the integral number

d∗n(X) := min {dim span (α) : α ∈ Cn(X)} . (2.17)

It represents the dimension at level n of the functional quantization problem for X . Here span(α) denotes the
linear subspace of H spanned by α. In view of Lemma 2.4, a reasonable conjecture for Gaussian random vectors
is d∗n(X) ∼ 2 logn/b in regular cases, where −b is the regularity index. We have at least the following lower
estimate in the Gaussian case.

Proposition 2.5. Assume the situation of Theorem 1.1. Then

d∗n(X) � 1
b1/(b−1)

2 logn
b

as n→ ∞.

Proof. For every n ∈ N, we have

d∗n(X) = min

⎧⎪⎨⎪⎩k ≥ 0 : en

⎛⎝ k⊗
j=1

N(0, λj)

⎞⎠2

+
∑

j≥k+1

λj ≤ en(X)2

⎫⎪⎬⎪⎭ (2.18)

(see [10]). Define

cn := min

⎧⎨⎩k ≥ 0 :
∑

j≥k+1

λj ≤ en(X)2

⎫⎬⎭ .
Clearly, cn increases to infinity as n → ∞ and by (2.18), cn ≤ d∗n(X) for every n ∈ N. Using Theorem 1.1 and
the fact that ψ is regularly varying at infinity with index b− 1, we obtain

((b − 1)ψ(cn))−1 ∼
∑

j≥cn+1

λj ∼ en(X)2 ∼
(

2
b

)1−b
b

b− 1
ψ(logn)−1

and thus

ψ(cn) ∼
(

2
b

)b−1 1
b
ψ(logn) ∼ ψ

(
1

b1/(b−1)

2 logn
b

)
as n→ ∞.

Consequently,

cn ∼ 1
b1/(b−1)

2 logn
b

as n→ ∞.

This yields the assertion. �
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3. Quantizer designs and applications

In this section we are no longer interested in only asymptotically optimal quantizers of a Gaussian process
X , but rather in really optimal or at least locally optimal quantizers for finite n ∈ N.

As soon as the Karhunen-Loève basis (uj)j≥1 and the corresponding eigenvalues (λj)j≥1 of the Gaussian
process X are known, it is possible to transform the quantization problem of X in H into the quantization of⊗∞

j=1 N (0, λj) on l2 by the isometry S : H → l2

x 
→ (〈uj , x〉)j≥1

and its inverse

S−1 : (l2, 〈· , ·〉K) → (H, 〈·, ·〉), l 
→
∑
j≥1

ljuj . (3.1)

The transformed problem then allows as we will see later on a direct access by vector quantization methods.
We may focus on the quantization problem of the Gaussian random vector

ζ := S(X)

on l2 with distribution

ζ = (ζj)j≥1 ∼
∞⊗

j=1

N (0, λj)

for the eigenvalues (λj)j≥1 of CX . Note that in this case (λj)j≥1 also become the eigenvalues of the covariance
operator Cζ .

3.1. Optimal quantization of
⊗∞

j=1 N (0, λj)

Since an infinite dimensional quantization problem is without any modification not solvable by a finite
computer algorithm, we have to somehow reduce the dimension of the problem.

Assume α to be an optimal n-quantizer for
⊗∞

j=1 N (0, λj), then U := span(α) is a subspace of l2 with dimen-
sion d∗n = dimU ≤ n−1. Consequently there exist d∗n orthonormal vectors in l2 such that span(u1, . . . , ud∗

n
) = U .

Theorem 3.1 in [10] now states, that this orthonormal basis of U can be constructed by eigenvectors of Cζ ,
which correspond to the d∗n largest eigenvalues. To be more precise, we get

e2n

( ∞⊗
j=1

N (0, λj)
)

= e2n

( d∗
n⊗

n=1

N (0, λn)
)

+
∑

j≥d∗
n+1

λj . (3.2)

Hence it is sufficient to quantize only the finite-dimensional product measure
⊗d∗

n
j=1 N (0, λj) and to fill the

remaining quantizer components with zeros.
Therefore we denote by ζd the projection of ζ = (ζj)j≥1 on the first d-components, i.e. ζd = (ζ1, . . . , ζd).
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This approach leads for some d ∈ N to our first quantizer design.

Quantizer Design I Product quantizer for
⊗∞

j=1 N (0, λj)

Require: Optimal
⊗d

j=1 N (0, λj)-quantizer αd ⊂ R
d with card(αd) ≤ n

Quantizer:
αI := αd × {0} × . . .

Quantization:

ζ̂αI
=
∑
a∈αI

a�Ca(αI)(ζ) = (ζ̂d
αd

, 0, . . . )

Distortion:

E‖ζ − ζ̂αI‖2
l2 = e2n

( d⊗
j=1

N (0, λj)
)

+
∑

j≥d+1

λj

The claim about the distortion of ζ̂αI
becomes immediately evident from the orthogonality of the basis

vj = (δij)i≥1 in l2 and

E‖ζ − ζ̂αI‖2
l2 = E

∥∥∥∥ d∑
j=1

(
ζj −

(
ζ̂d

αd)
j

)
vn +

∑
j≥d+1

ζjvn

∥∥∥∥2
l2

= E

d∑
j=1

(
ζj −

(
ζ̂d

αd)
j

)2

+
∑

j≥d+1

Eζ2
j .

Unfortunately the true value of d∗n is only known for n = 2, which yields d∗2 = 1, but from Proposition 2.5 we
have the lower asymptotical bound

1
b1/(b−1)

2 logn
b

� d∗n, as n→ ∞,

whereas there is a conjecture for it to be d∗n ∼ 2 logn/b.
A numerical approach for this optimal design by means of a stochastic gradient method will be introduced

in Section 3.2, where also some choices for the block size d with regard to the quantizer size n will be given.
Moreover, numerical results for this design can be found in Table 1.

In addition to this direct quantization design, we want to present some product quantizer designs for⊗∞
j=1 N (0, λj), which are even tractable by deterministic integration methods and therefore achieve a higher

numerical accuracy and stationarity. These product designs reduce furthermore the storage demand for the
precomputed quantizers when using functional quantization as cubature formulae e.g.

To proceed this way, we replace the single quantizer block αd from quantizer Design I by the Cartesian
product of say m smaller blocks with maximal dimension l < d. We will refer to the dimension of these blocks
also as the block length.

Let li denote the length of the ith block and set

k1 := 0, ki :=
i−1∑
ν=1

lν , i ∈ {2, . . . ,m},
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then we obtain a decomposition of ζd into

ζd = (ζ(1), . . . , ζ(m)), with ζ(i) := (ζki+1, . . . , ζki+li = ζki+1). (3.3)

So we state for some l ∈ N:

Quantizer Design II Product quantizer for
⊗∞

j=1 N (0, λj)

Require: Optimal
⊗ki+1

j=ki+1 N (0, λj)-quantizers α(i) ⊂ R
li with card(α(i)) ≤ ni for some integers m ∈ N,

l1, . . . lm ≤ l, n1, . . . , nm > 1,
∏m

i=1 ni ≤ n solving
Block Allocation: {

m∑
i=1

e2ni

(
ki+1⊗

k=ki+1

N (0, λj)

)
+

∑
j≥km+1+1

λj

}
→ min .

Quantizer:

αII :=
m∏

i=1

α(i) × {0} × . . .

Quantization:

ζ̂αII
=
∑

a∈αII

a�Ca(αII)(ζ) = (ζ̂(1)
α(1)

, . . . , ζ̂(m)
α(m)

, 0, . . . )

Distortion:

E‖ζ − ζ̂αII‖2
l2 =

m∑
i=1

e2ni

(
ki+1⊗

j=ki+1

N (0, λj)

)
+

∑
j≥km+1+1

λj

Note that we do not use the asymptotically block allocation rules for the ni from (2.9), but perform instead
the block allocation directly on the true distortion of the quantizer block and not on an estimate for them.

Next, we weaken our quantizer design, and obtain this way the asymptotically optimal design from Theo-
rem 2.2.

In fact the quantizer used for this scheme are a little bit more universal, since they do not depend on the
position of the block.

The idea is to quantize blocks ξ(i) ∼ N (0, Ili) of standard normals ξ = (ξj)j≥1 ∼⊗∞
j=1 N (0, 1) and to weight

the quantizers by

√
λ(i) :=

(√
λki+1, . . . ,

√
λki+1

)
, i ∈ {1, . . . ,m},

that is

√
λ(i) ⊗ α(i) =

{
(
√
λki+1aki+1, . . . ,

√
λki+1aki+1) : a = (aki+1, . . . , aki+1) ∈ α(i)

}
.
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The design for some l ∈ N then reads as follows:
Quantizer Design III Product quantizer for

⊗∞
j=1 N (0, λj)

Require: Optimal
⊗ki+1

j=ki+1 N (0, 1)-quantizers α(i) ⊂ R
li with card(α(i)) ≤ ni for some integers m ∈ N,

l1, . . . lm ≤ l, n1, . . . , nm > 1,
∏m

i=1 ni ≤ n solving
Block Allocation: {

m∑
i=1

ki+1∑
j=ki+1

λjE

(
ξj −

(
ξ̂(i)

α(i))
j

)2

+
∑

j≥km+1+1

λj

}
→ min .

Quantizer:

αIII :=
m∏

i=1

√
λ(i) ⊗ α(i) × {0} × . . .

Quantization:

ζ̂αIII
=

∑
a=(a(1),...,a(m),0,... )∈αIII

a
m∏

i=1

�
C

a(i)

(√
λ(i)⊗α(i)

)(ζ(i))

Distortion:

E‖ζ − ζ̂αIII‖2
l2 =

m∑
i=1

ki+1∑
j=ki+1

λjE

(
ξj −

(
ξ̂(i)

α(i))
j

)2

+
∑

j≥km+1+1

λj

In the end we state explicitly for the convenience of the reader the case l = 1, for which the Designs II
and III coincide, and which relies only on one dimensional quantizers of the standard normal distribution.
These quantizers can be very easily constructed by a standard Newton-algorithm, since the Voronoi-cells in
dimension one are just simple intervals.

This special case corresponds to a direct quantization of the Karhunen-Loève expansion (2.1) and has been
used e.g. in [10,17].

We will refer to this design also as scalar product quantizer.

Quantizer Design IV Product quantizer for
⊗∞

j=1 N (0, λj)

Require: Optimal N (0, 1)-quantizers αi ⊂ R with card(αi) ≤ ni for some integers m ∈ N, n1, . . . , nm > 1,∏m
i=1 ni ≤ n solving

Block Allocation: {
m∑

j=1

λje
2
nj

(N (0, 1)
)

+
∑

j≥m+1

λn

}
→ min .

Quantizer:

αIV :=
m∏

j=1

√
λjαj × {0} × . . .

Quantization:

ζ̂αIV
=
∑

a∈αIV

a

m∏
j=1

�
Ca(

√
λjαj)

(ζj)
d= (
√
λ1ξ̂1

α1
, . . . ,

√
λmξ̂m

αm

, 0, . . . )

Distortion:

E‖ζ − ζ̂αIV‖2
l2 =

m∑
j=1

λje
2
nj

(N (0, 1)
)

+
∑

j≥m+1

λj
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Clearly, it follows from the decomposition (3.3) that Design I is optimal as soon the quantization of
⊗d∗

n
n=1 N (0, λn)

is optimal. Furthermore we obtain the proof of the asymptotically optimality for the quantizer Designs II and
III from Theorem 2.2 using the tuning parameter

l := ln := [(max{1, logn})θ] for some θ ∈ (0, 1), (3.4)

i.e.

E‖ζ − ζ̂αI‖2 ∼ E‖ζ − ζ̂αII‖2
l2 ∼ E‖ζ − ζ̂αIII‖2

l2 ∼
( b

2

)b−1 b

b− 1
ψ(log n)−1

as n→ ∞.
Using the same estimates as in the proof of Theorem 2.2 for the Design IV, we only get

E‖ζ − ζ̂αIV‖2
l2 �

( b
2

)b−1 4C(1)(b − 1) + 1
b− 1

ψ(log n)−1, (3.5)

so that we only can state, that Design IV is rate optimal.

Remark 3.1. Note that if we replace the assumption of optimality for the quantizer blocks by stationarity in
Designs I–IV, the resulting quantizers are again stationary (but not necessary asymptotically optimal).

3.2. Numerical optimization of quadratic functional quantization

Optimization of the (quadratic) quantization of R
d-valued random vector has been extensively investigated

since the early 1950’s, first in 1-dimension, then in higher dimension when the cost of numerical Monte Carlo
simulation was drastically cut down (see [4]). Recent application of optimal vector quantization to numerics
turned out to be much more demanding in terms of accuracy. In that direction, one may cite [13,16] (mainly
focused on numerical optimization of the quadratic quantization of normal distributions). To apply the methods
developed in these papers, it is more convenient to rewrite our optimization problem with respect to the standard
d-dimensional distribution N (0, Id) by simply considering the Euclidean norm derived from the covariance
matrix Diag(λ1, . . . , λd∗

n
) i.e.

(quantizer Design I) ⇔

⎧⎪⎪⎨⎪⎪⎩
n-optimal quantization of

d∗
n⊗

k=1

N (0, 1)

for the covariance norm |(z1, . . . , zd∗
n
)|2 =

∑d∗
n

k=1 λkz
2
k.

The main point is of course that the dimension d∗n is unknown. However (see Fig. 1), one clearly verifies on
small values of n that in the case of the Brownian motion, i.e. b = 2 the conjecture (d∗n ∼ logn) is most likely
true. Then for higher values of n one relies on it to shift from one dimension to another following the rule
d∗n = d, n∈ {ed, . . . , ed+1 − 1}.

3.2.1. A toolbox for quantization optimization: a short overview

Here is a short overview of stochastic optimization methods to compute optimal or at least locally optimal
quantizers in finite dimension. For more details we refer to [16] and the references therein. Let Z d= N (0; Id)
and denote by DZ

n (x) the distortion function, which is in fact the squared quantization error of a quantizer
x∈ Hn = (Rd)n in n-tuple notation, i.e.

DZ
n : Hn → R, x 
→ E min

1≤i≤n
‖Z − xi‖2

H .

Competitive Learning Vector Quantization (CLVQ). This procedure is a recursive stochastic approximation
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Figure 1. Optimal functional quantization of the Brownian motion. n 
→ logn (e
n
(W,L2

T
))2,

n ∈ {6, . . . , 160} for blocksizes dn ∈ {2, 3, 4, 5}. Vertical dashed lines: critical dimensions for
d∗n, e2 ≈ 7, e3 ≈ 20, e4 ≈ 55, e5 ≈ 148.

gradient descent based on the integral representation of the gradient ∇DZ
n (x), x∈ Hn of the distortion as the

expectation of a local gradient and a sequence of i.i.d. random variates, i.e.

∀x ∈ Hn, ∇DZ
n (x) = E(∇DZ

n (x, Z))

for ∇DZ
n (x) =

(
2
∫
Ci(x)(xi − ξ)PZ(dξ)

)
1≤i≤n

and ∇DZ
n (x, Z) =

(
2(xi − Z)1Ci(x)(Z)

)
1≤i≤n

so that, starting

from x(0)∈ (Rd)n, one sets

∀ k ≥ 0, x(k + 1) = x(k) − c

k + 1
∇DZ

n (x(k), Zk+1),

where (Zk)k≥1 are i.i.d., Z1
d= N (0, Id) and c ∈ (0, 1] is a real constant to be tuned. As set, this looks quite

formal but the operating CLVQ procedure consists of two phases at each iteration:
(i) Competitive Phase: search of the nearest neighbor x(k)i∗(k+1) of Zk+1 among the components of x(k)i,

i = 1, . . . , n (using a “winning convention” in case of conflict on the boundary of the Voronoi cells).
(ii) Cooperative Phase: one moves the winning component toward ζk+1 using a dilatation i.e. x(k+1)i∗(k+1) =

Dilatationζk+1,1− c
k+1

(x(k)i∗(k+1)).

This procedure is useful for small or medium values of n. For an extensive study of this procedure, which
turns out to be singular in the world of recursive stochastic approximation algorithms, we refer to [14]. For
general background on stochastic approximation, we refer to [1,8].

The randomized “Lloyd I procedure”. This is the randomization of the stationarity based fixed point procedure
since any optimal quantizer satisfies the stationarity property:

Ẑx(k+1) = E(Z | Ẑx(k)), x(0) ⊂ R
d.
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At every iteration the conditional expectation E(Z | Ẑx(k)) is computed using a Monte Carlo simulation. For
more details about practical aspects of Lloyd I procedure we refer to [16]. In [13], an approach based on genetic
evolutionary algorithms is developed.

For both procedures, one may substitute a sequence of quasi-random numbers to the usual pseudo-random
sequence. This often speeds up the rate of convergence of the method, although this can only be proved (see [9])
for a very specific class of stochastic algorithm (to which CLVQ does not belong).

The most important step to preserve the accuracy of the quantization as n (and d∗n) increase is to use the
so-called splitting method which finds its origin in the proof of the existence of an optimal n-quantizer: once
the optimization of a quantization grid of size n is achieved, one specifies the starting grid for the size n+ 1 or
more generally n+ ν, ν ≥ 1, by merging the optimized grid of size n resulting from the former procedure with ν
points sampled independently from the normal distribution with probability density proportional to ϕ

d
d+2 where

ϕ denotes the p.d.f. of N (0, Id). This rather unexpected choice is motivated by the fact that this distribution
provides the lowest in average random quantization error (see [2]).

As a result, to be downloaded on the website [18] devoted to quantization: www.quantize.maths-fi.com
• Optimized stationary codebooks for W : in practice, the n-quantizers α := αd∗

n of the distribution ⊗d∗
n

k=1N (0, λk),
n=1 up to 10 000 (d∗n runs from 1 up to 9).
• Companion parameters:

– distribution of Ŵ γ : P(Ŵ γ = xi) = P(Ẑα
d∗

n
= αi);

– the quadratic quantization error: ‖W − Ŵ γn‖L2
T
.

3.3. Application to the Brownian motion on L2([0, T ], dt)

We present in this subsection numerical results for the above quantizer designs applied to the Brownian
motion W on the Hilbert space

(
L2([0, T ], dt), ‖·‖L2

T

)
.

Recall that the eigenvalues of CW read

λj =
(

T

π(j − 1/2)

)2

, j ≥ 1

and the eigenvectors

uj =

√
2
T

sin(t/
√
λj), j ≥ 1

which imply a regularity index of b = 2 for the regularly varying function

ϕ(x) :=
(
T

π

)2

x−2.

Let α be a quantizer for
⊗∞

j=1 N (0, λj), then for S−1 from (3.1)

γ := S−1α =

⎧⎨⎩t 
→
√

2
T

∑
j≥1

aj sin
(
π(j − 1/2)t/T

)
: (a1, a2, . . . ) ∈ α

⎫⎬⎭ (3.6)

provides a quantizer for W , which produces the same quantization error as α and is stationary iff α is. Further-
more we can restrict w.l.o.g. to the case T = 1.

Concerning the numerical construction of a quantizer for the Brownian motion we need access to precom-
puted stationary quantizers of

⊗ki+1
j=ki+1 N (0, λj) and

⊗ki+1
j=ki+1 N (0, 1) for all possible combinations of the block

allocation problem. As soon as these quantizers are computed, we can perform the block allocation of the
quantizer designs to produce optimal quantizers for

⊗∞
j=1 N (0, λj).

www.quantize.maths-fi.com
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Table 1. Quantizer Design I.

n dn E‖W − Ŵ γI‖2
L2

T

1 1 0.5000
5 1 0.1271

10 2 0.0921
50 3 0.0558

100 4 0.0475
500 6 0.0353

1000 6 0.0318
5000 8 0.0258

10000 9 0.0238

Table 2. Quantizer Design II, l = 2.

n ni li E‖W − Ŵ γII‖2
L2

T

1 1 1 0.5000
5 5 1 0.1271

10 10 1 0.0921
50 25 × 2 = 50 2 + 1 = 3 0.0580

100 50 × 2 = 50 2 + 1 = 3 0.0492
500 100 × 2 = 500 2 + 1 = 3 0.0372

1000 111 × 3 × 3 = 999 2 + 1 + 2 = 5 0.0339
5000 166 × 10 × 3 = 4980 2 + 2 + 2 = 6 0.0276

10000 208 × 12 × 4 = 9984 2 + 2 + 2 = 6 0.0255

Table 3. Quantizer Design III, l = 3.

n ni li E‖W − Ŵ γIII‖2
L2

T

1 1 1 0.5000
5 5 1 0.1271

10 5 × 2 1 + 1 = 2 0.0984
50 10 × 5 = 50 1 + 2 = 3 0.0616

100 12 × 4 × 2 = 96 1 + 1 + 1 = 3 0.0513
500 16 × 5 × 3 × 2 = 480 1 + 1 + 1 + 1 = 4 0.0387

1000 20 × 25 × 2 = 1000 1 + 2 + 1 = 5 0.0350
5000 26 × 8 × 8 × 3 = 4992 1 + 1 + 2 + 2 = 6 0.0285

10000 25 × 36 × 11 = 9900 1 + 2 + 3 = 6 0.0264

For the quantizers of Design I we used the stochastic algorithm from Section 3.2, whereas for Designs II–IV
we could employ deterministic procedures for the integration on the Voronoi cells with max. block lengths l = 2
respectively l = 3, which provide a maximum level of stationarity, i.e. ‖∇Dn‖ ≤ 10−8.

The asymptotical performance of the quantizer designs in view of Theorem 2.2, i.e.

n 
→ logn E‖W − Ŵ γ‖2
L2

T
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Figure 2. Asymptotics for n 
→ log n× E‖W − Ŵ γ‖2
L2 for the Designs I, II, III and IV.

Table 4. Quantizer Design IV.

n ni m E‖W − Ŵ γIV‖2
L2

T

1 1 1 0.5000
5 5 1 0.1271

10 5 × 2 2 0.0984
50 12 × 4 = 48 2 0.0616

100 12 × 4 × 2 = 96 3 0.0513
500 16 × 5 × 3 × 2 = 480 4 0.0387

1000 23 × 7 × 3 × 2 = 966 4 0.0352
5000 26 × 8 × 4 × 3 × 2 = 4992 5 0.0286

10000 26 × 8 × 4 × 3 × 2 × 2 = 9984 6 0.0264

is presented in Figure 2, where the quantization coefficient is evaluated for the Brownian motion on [0, 1] with
ϕ(j) = π−2j−2 as ( b

2

)b−1 b

b− 1
π−2 =

2
π2

≈ 0.20264237 . . .

As expected we have
E‖W − Ŵ γII‖2

L2
T
≤ E‖W − Ŵ γIII‖2

L2
T
≤ E‖W − Ŵ γIV‖2

L2
T
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Figure 3. (Color online) Quantizers of size n = 6 for
⊗∞

j=1 N (0, λj) generated by Designs II,
III and IV (from left to right) and projected on the eigenspace corresponding to λ1 and λ2.

and by (3.5),

logn E‖W − Ŵ γIV‖2
L2

T
� 4C(1) + 1

2
logn en(W )2 = 5.9414 . . . logn en(W )2 ∼ 1.2040 . . .

assuming C(1) = Q(1).
Although the Designs I, II and III are asymptotically equivalent, we can observe a great superiority of

Designs I and II compared to Design III.
This is mainly caused by the better adaption to the rapidly decreasing sequence of the eigenvalues. To give

an impression of this geometrical superior adaption, we illustrate the case n = 6 in Figure 3. The quantizers for⊗∞
j=1 N (0, λj) in the figure are projected onto the first two dimensions. Within that subspace, quantizer IV is

a product quantizer of α1 × {0}, hence the rectangular shape of the Voronoi cells.
As quantizer III was formerly optimized for the symmetrically distribution N (0, I2), there are still to many

points in the subspace generated by the eigenvector of λ2, which cannot be accomplished by the weightening
tensor product

√
λ(i) ⊗ α(i).

Concerning quantizer II, we see the possibly best quantizer at level 6 for
⊗∞

j=1 N (0, λj), since the quantizer
Design II produces the same quantizer for N = 6 regardless of l = 2 or l = 3 and is therefore equivalent to
Design I. A numerical illustration of a quantization for W with n = 50 by means of Designs I–IV is given in
Figures 4 and 5.

3.4. Application to Riemann-Liouville processes

We consider Riemann-Liouville processes inH = L2([0, T ], dt). For ρ ∈ (0,∞), the Riemann-Liouville process
Xρ = (Xρ

t )t∈[0,T ] on [0, T ] is defined by:

Xρ
t :=

∫ t

0

(t− s)ρ− 1
2 dWs , (3.7)
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Figure 4. A stationary quantizer for W on L2([0, 1], dt) generated by Design I, size n = 50
and d∗n = 3.

where W is a standard Brownian motion.
Its covariance function is given by:

EXρ
sX

ρ
t =
∫ s∧t

0

(t− r)ρ− 1
2 (s− r)ρ− 1

2 dr. (3.8)

Using ρ∧ 1
2 -Hölder continuity of the map t 
→ Xρ

t from [0,T] into L2(P) and the Kolmorogov criterion one checks
that Xρ has a pathwise continuous modification so that we may assume without loss of generality that Xρ is
pathwise continuous. In particular, Xρ can be seen as a centered Gaussian random vector with values in

H = L2([0, T ], dt).

The following high-resolution formula is a consequence of a theorem by Vu and Gorenflo [19] on singular values
of Riemann-Liouville integral operators

Rβ g(t) =
1

Γ(β)

∫ t

0

(t− s)β−1g(s)ds, β ∈ (0,∞). (3.9)

For every ρ ∈ (0,∞),

en(Xρ) ∼ T ρ+1/2π−(ρ+ 1
2 )(ρ+ 1/2)ρ

(
2ρ+ 1

2ρ

)1/2

Γ(ρ+ 1/2)(logn)−ρ as n→ ∞. (3.10)



112 H. LUSCHGY ET AL.

Figure 5. Stationary quantizers of size n = 50 for W on L2([0, 1], dt) generated by
Designs II–IV (from top to bottom). See also Tables 2–4.
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This can be seen as follows. For β > 1/2, the Riemann-Liouville fractional integral operator Rβ is a bounded
operator from L2([0, T ], dt) into L2([0, T ], dt). The covariance operator

Cρ : L2([0, T ], dt) → L2([0, T ], dt)

of Xρ is given by the Fredholm transformation

Cρg(t) =
∫ T

0

g(s)EXρ
sX

ρ
t ds.

Using (3.8), one checks that Cρ admits a factorization

Cρ = SρS
∗
ρ ,

where
Sρ = Γ(ρ+ 1/2)Rρ+ 1

2
.

Consequently, it follows from Theorem 1 in [19] that the eigenvalues λ1 ≥ λ2 ≥ . . . > 0 of Cρ satisfy

λj ∼ T 2ρ+1Γ(ρ+ 1/2)2(πj)−(2ρ+1) as j → ∞. (3.11)

Now (3.10) follows from Theorem 1.1 (with ϕ(x) = T 2ρ+1Γ(ρ+ 1/2)2π−bx−b and b = 2ρ+ 1).

An immediate consequence for fractionally integrated Brownian motions on [0, T ] defined by:

Y β
t :=

1
Γ(β)

∫ t

0

(t− s)β−1Wsds (3.12)

for β ∈ (0,∞) is as follows.
For every β ∈ (0,∞),

en(Y β) ∼ T β+1π−(β+1)(β + 1)β+ 1
2

(
2β + 2
2β + 1

)1/2

(log n)−(β+ 1
2 ) as n→ ∞.

In fact, for ρ > 1/2, the Ito formula yields

Xρ
t =
(
ρ− 1

2

)∫ t

0

(t− s)ρ− 3
2Wsds.

Consequently,

Y β
t =

1
βΓ(β)

β

∫ t

0

(t− s)β+ 1
2− 3

2Wsds =
1

Γ(1 + β)
X

β+1
2

t .

The assertion follows.

One further consequence is a precise relationship between the quantization errors of Riemann-Liouville pro-
cesses and fractional Brownian motions. The fractional Brownian motion with Hurst exponent ρ ∈ (0, 1] is a
centered pathwise continuous Gaussian process Zρ = (Zρ

t )t∈[0,T ] having the covariance function

EZρ
sZ

ρ
t =

1
2
(s2ρ + t2ρ− | s− t |2ρ). (3.13)

For every ρ ∈ (0, 1),
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en(Xρ) ∼ Γ(ρ+ 1/2)
(Γ(2ρ+ 1) sin(πρ))1/2

en(Zρ) as n→ ∞. (3.14)

In fact, by [11], we have

en(Zρ) ∼ T ρ+1/2π−(ρ+ 1
2 )(ρ+ 1/2)ρ

(
2ρ+ 1

2ρ

)1/2

(Γ(2ρ+ 1) sin(πρ))1/2(logn)−ρ, n→ ∞.

Combining this formula with (3.10) yields the assertion (3.14).
Observe that strong equivalence en(Xρ) ∼ en(Zρ) as n → ∞ is true for exactly two values of ρ ∈ (0, 1),

namely for ρ = 1/2 where even en(X1/2) = en(Z1/2) = en(W ) and, a bit mysterious, for ρ = 0.81557 . . .
The basic example (among Riemann-Liouville processes) is X1/2 = W and H = L2([0, T ], dt), where

λj = T 2(π(j − 1/2))−2, uj(t) =

√
2
T

sin
(
t/
√
λj

)
, j ≥ 1 (3.15)

(see Sect. 3.3).
Since for δ, ρ ∈ (0,∞),

Xδ+ρ =
Γ(δ + ρ+ 1

2 )
Γ(ρ+ 1

2 )
Rδ(Xρ),

one gets expansions of Xδ+ρ from Karhunen-Loève expansions of Xρ. In particular,

Xδ+ 1
2 = Γ(δ + 1)

∞∑
j=1

√
λjξjRδ(uj).

However, the functions Rδ(uj), j ≥ 1, are not orthogonal in H so that the nonzero correlation between the
components of (ξ(j) − ξ̂(j)) prevents the previous estimates for E‖X − X̂n‖2 given in Lemma 2.1 from working
in this setting in the general case.

However, when l = 1 (scalar product quantizers made up with blocks of fixed length l = 1, see Design IV),
one checks that these estimates still stand as equalities since orthogonality can now be substituted by the
independence of ξj − ξ̂j and stationarity property (2.2) of the quantizations ξ̂j , j ≥ 1. It is often good enough
for applications to use scalar product quantizers (see [10,17]). If, for instance δ = 1, then

X := X3/2 =
∞∑

j=1

√
λjξjR1(uj),
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where

R1(uj)(t) =

√
2λj

T
(1 − cos(t/

√
λj)).

Note that ‖R1(uj)‖2 = T 2μj(3 − 4(−1)j−1√μj), j ≥ 1, where λj = T 2μj . Set

X̂n =
m∑

j=1

√
λj ξ̂jR1(uj).

The quantization X̂n is non Voronoi (it is related to the Voronoi tessellation of W ) and satisfies

E‖X − X̂n‖2 =
m∑

j=1

T 4μ2
j(3 − 4(−1)j−1√μj)enj (N(0, 1))2 +

∑
j≥m+1

T 4μ2
j(3 − 4(−1)j−1√μj). (3.16)

It is possible to optimize the (scalar product) quantization error using this expression instead of (2.7). As
concerns asymptotics, if the parameters are tuned following (2.8)–(2.10) with l = 1 and λj replaced by

νj := T 4μ2
j(3 + 4

√
μj) ∼ 3π−4j−4 as n→ ∞,

and using (3.10) gives

(E ‖X − X̂n‖2)1/2 �
(

3(12C(1) + 1)
4

)1/2

en(X) as n→ ∞. (3.17)

Numerical experiments seem to confirm that C(1) = Q(1). Since Q(1) = π
√

3/2 (see [5], p. 124), the above
upper bound is then

(
3(6π

√
3 + 1)

4

)1/2

= 5.02357 . . .
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