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DISTORTION MISMATCH IN THE QUANTIZATION OF PROBABILITY
MEASURES

SIEGFRIED GRAF!, HARALD LUSCHGY? AND GILLES PAGES?

Abstract. We elucidate the asymptotics of the L°-quantization error induced by a sequence of L"-
optimal n-quantizers of a probability distribution P on R¢ when s > r. In particular we show that
under natural assumptions, the optimal rate is preserved as long as s < r + d (and for every s in the
case of a compactly supported distribution). We derive some applications of these results to the error
bounds for quantization based cubature formulae in numerical integration on R¢ and on the Wiener
space.
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1. INTRODUCTION

Optimal quantization is devoted to the best approximation in Lg,(P) (r > 0) of a random vector X :
(Q, A,P) — RY by random vectors taking finitely many values in R¢ (endowed with a norm |.|). When
X € L"(P), this leads for every n > 1 to the following n-level L"(P)-optimal quantization problem for the
random vector X defined by

en,(X) = inf {| X — ¢(X)||,, ¢ : R* — R? Borel function, card(q(R%)) <n}. (1.1)
One shows that the above infimum can be taken over the Borel functions
¢:RY = a:=qRY), acR? carda<n

which are some projection following the nearest neighbour rule on their image i.e.

g(z) =) aly, (@),

aco
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(Va(@))aca being a Borel partition of R satisfying
Val(a) C {:EG R : ||z —al = rbréin |z — b||} .

The set a = ¢(R?) is (also) called a Voronoi n-quantizer and one denotes
X = q(X).

Then, if d(x, &) := minge, ||z — al| denotes the distance of = to the set «, one has
X - %2l = Bd(Xa) = [ diwa)Py (o)
Rd

which shows that e, (X) actually only depends on the distribution P =P, of X so that

enr(X)=¢e,,(P)= inf (/d z, o) dP( ))
card(a)<n
The first two basic results in optimal quantization theory are the following (see [6]):
— The above infimum is in fact a minimum: there exists for every n > 1 (at least) one L"(P)-optimal
n-quantizer o,. If supp(P) is infinite, then card(aj) = n.
— Zador’s Theorem: If X € L™"(P) i.e. [, [|z|"T"dP(z) < 400 for some n > 0, then

1i7rlnn%en7,«(P) = (Q-(P))r e Ry.

A more explicit expression is known for the real constant @, (P) (see (2.3) below). In particular, @,.(P) > 0 if
and only if P has an absolutely continuous part (with respect to the Lebesgue measure Ag on R%). When P
has an absolutely continuous part, a sequence (@, )n,>1 of n-quantizers is L"-rate optimal for P if

limsupnﬁ/ d(z,0p)"P, (dz) < 400
Rd

n

Jpa d(z, an) P (dz)

=1.
enr(P)"

and is asymptotically L -optimal if lim

Our aim in this paper is to deeply investigate the (asymptotic) L*-quantization error induced by a sequence
(n)n>1 of L"-optimal n-quantizers. It follows from the monotony of s — || .||s that (a,)n>1 remains an L*-rate
optimal sequence as long as s < r. As soon as s > r no such straightforward answer is available (except for the

uniform distribution over the unit interval since the sequence ((2];”1 )i<k<n)n>1 is L"-optimal for every r > 0).

Our main motivation for investigating this problem comes from the recent application of optimal quantization
to numerical integration (see [11]) and to the computation of conditional expectation (e.g. for the pricing of
American options, see [1]). Let us consider for the sake of simplicity the case of the error bound in the
quantization based cubature formulae for numerical integration. Let F : R? — R be a C! function with a
Lipschitz continuous differential DF'. It follows from a simple Taylor expansion (see [11]) that for any random
vector X with distribution P =P, quantized by Xe (a C RY)

E(F(X)) - E(F(X?)) ~ E(DF(X).(X — X*))| < [DF]LyElX - X°J?
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where [DF]L;p denotes the Lipschitz coefficient of DF. If « is an L?-optimal (or quadratic) quantizer then it is
stationary (see [11] or [6]) so that

X*=E(X|X?)
which makes the first order term vanish since

E(DF(X®).(X — X)) = E(DF(X®).E(X — X®|X%)) = 0.
Finally, if (a,)n>1 is a sequence of quadratic optimal n-quantizers

[E(F (X)) ~E(F(X°))| < [DFluip(ena(P))* ~ [DFlLipQa(P)n~

v
—
—
[\
~

Now, if the Hessian D?F does exist, is p-Holder (p€ (0,1]) and computable, the same approach yields

[E(P(X)) — E(F(£°)) — E(X — X2 DF(R)(X = )| < [D*Fl, | X = K310 (13)
Consequently elucidating the asymptotic behaviour of || X — X llo4p = (Jpa d(z, an)2+de(m))ﬁlp is necessary
to evaluate to what extend the cubature formula in (1.3) does improve the former one (1.2). Similar problems
occur when evaluating the error in the first order quantization based scheme designed for the pricing of multi-
asset American options or for non-linear filtering (see [2,13]). One also meets such mismatch problems in
infinite dimensions when dealing with (product) functional quantization on the Wiener space in order to price
path-dependent European options (see the example in Sect. 6 and [12]).

The paper is organized as follows: in Section 2, a lower bound for the L*(P)-quantization rate of convergence
of an asymptotically L"-optimal sequence (o, )n>1 of n-quantizers is established. In particular this result implies
that for absolutely continuous distributions P with unbounded support, the quantization rate n~1 in L*® cannot
be preserved as soon as s > r +d. If s < r + d, then the lower bound can be finite. We conjecture that, when
(0n)n>1 is L7-rate optimal the lower bound is in fact the sharp rate. In Section 3, several natural criteria on
the distribution P are derived. They ensure that (ay,)n>1 is L®-rate optimal for a given s€ (r,r +d) or even for
all s€ (r,7 4+ d). Our criteria are applied to many parametrized families of distributions on R%. We investigate
by the same method in Section 4 the critical case s = r + d and the super-critical case s > r + d. In Section 5
we show that for compactly supported distributions on the real line the lower bound obtained in Section 2
does hold as a sharp rate. Finally, in Section 6 we apply our results to the evaluation of errors in numerical
integration by quantization based cubature formulae in finite and infinite dimensions.

NOTATIONS : o ||| will denote a norm on R? and B(z,r) will denote the closed ball centred at z with radius
r > 0 (with respect to this norm), d(z, A) will denote the distance between € R? and a subset A C R<.

e )\, will denote the Lebesgue measure on R? (equipped with its Borel o-field B(R%)).

o Let (an)n>0 and (by)n>0 be two sequences of positive real numbers. The symbol a,, < b, is for a, = O(b,)
and b, = O(ay,) whereas the symbol a,, ~ b, means a,, = b, + o(b,,) as n — oo.

e |z] is for the integral part of the real number z.
e f = g means that the functions f and g are proportional.

2. THE LOWER ESTIMATE

In this section we derive an explicit lower bound in the (r, s)-problem for non-purely singular probability
distributions P and asymptotically L"-optimal quantizers. This bound is expected to be best possible.
Let r € (0,00). Let P be a probability measure on (R, B(R?)) satisfying

/ 2l dP () < +o0 (2.1)
Rd
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and supp(P) is not finite. Then e, (P) € (0,00) for every n and e, -(P) — 0 as n — co. A sequence (an)n>1
of quantizers is called asymptotically L™-optimal for P if card a,, < n for every n and

/Rd d(x, o) "dP(z) ~ enr(P)" as n — oo. (2.2)

Let P* = f.\q denote the absolutely continuous part of P with respect to A\y. Assume that / l|lz||" T dP(z) <
Rd
+oo for some i > 0. Then by the Zador Theorem (see [6])

Tim n"/e, (P)" = Qu(P) (2.3)
where
(d+r)/d
Qr(P) = Jrq ( / Y (d+")d>\d> € [0,0) (2.4)
Rd
and

Jp.q = inf n"/ e, (U([0,1]9)" € (0,00),

n>1

(U(]0,1]%) denotes the uniform distribution on the hyper-cube [0,1]%). This theorem was first stated by Zador
in [14,15] and then generalized by Bucklew and Wise (see [3]), the first completely rigourous proof has been
proposed by Graf & Luschgy in [6]. Note that the finiteness of f]Rd fé/(d+r)d )\, is a simple consequence of the

Hélder Inequality and the moment assumption [g, [|z[|"*7dP(z) < +oo: first note that [, FdAg < 400
since Ag(]|z|| < 1) < 400 and d%fﬁ« < 1. Then setting p=1+r/d, q=1+d/r, a = (r+n)d/(d+71)

/ frd = / e~ 2] £ 15 (2)dAa )
B(0,1)c [|z||>1

</Ix|>1 |x”_aqd/\d(x)> ) (/ ”x|“”f(:c)d/\d(x)) N
</le>1 = T)ddkd($)> ) (/ ||:c|’“+"dp(x)) 7

Furthermore, for probabilities P on R? with P® # 0, the empirical measures associated to an asymptotically
L"-optimal sequence (o, )n>1 of n-quantizers satisfy (see [6] Th. 7.5 or [4] for this slight extension)

IN

1 w
— Oa P, 2.
Ly 29

acan
where P, denotes the L"-point density measure of P defined by

fd/ (d+7)

R I Ty

(2.6)
Note that the limit @, (P) in the Zador Theorem reads

Q7(P) = Jr,d/fr_r/ddpa'
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The quantity that naturally comes out in the (r, s)-problem, r, s€ (0, 00), is

Qa(P) = e / fro/4ape 2.7)

s/d
= Joa ( £ <d+r>dAd> / SN € (0, +00].
Rd {f>0}

Theorem 1. Let r,s € (0,00). Assume P* # 0 and/ |lz||"T"dP(x) < +oo for some n > 0. Let (a,)n>1 be
d

an asymptotically L -optimal sequence of n-quantizers for P. Then

1iminfns/d/d(ac,an)sdP(ac) > Qr,s(P). (2.8)

n—00

Prior to the proof, let us provide a few comments on this lower bound.

COMMENTS. e The main corollary that can be directly derived from Theorem 1 is that

/ s/ @, = 400 = lim ns/d/d(m,an)sdP(x) = +00
{r>o}

n—00

since then @, s(P) = +o0.

By contraposition, a necessary condition for an asymptotically L™-optimal sequence of quantizers (c,) to
achieve the optimal rate n=%/¢ for the L*-quantization error is that Qr,s(P) < +00. But, under the moment
assumption of Theorem 1 the following equivalence holds true

Qr.s(P) < 400 <= /f*ﬁdpa = / frrardag < oo (2.9)
{f>0}

since [ga f4/ (@A < 4o0.
In turn, for probability measures P satisfying A\s(f > 0) = 400 a necessary condition for the right hand side
of (2.9) to be satisfied is that

s<d+r. (2.10)
Indeed, if s > d + r, the following chain of inequalities holds true

d+r

s

dtr

Aa(f > 0) =/1{f>o}f*1dP“ < (/ (1{f>o}f1)#dpa) = (/ f”/(d”)dAd>
(>0}

where we used that p — ||. || s(pa) is non-decreasing since P*(R%) < 1.
On the other hand, still when s < d + r, the following criterion holds for the finiteness of @, s(P):

(Elﬁ > o,/ (||| 4/ (dFr =) P () < +oo) — Q,.+(P) < +o0. (2.11)
R4
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Set p=1— € (0,1) and u = —%— 4 9. Then (2.11) follows from the regular Holder inequality applied

d+r d+r—s
with p = % = diﬁfs and ¢ = 11p = =
1/p 1/q
[ < ( / <f<x>ﬂ|x||“p>pdxd<x>> ( / ||x|-“fJQdAd<x>)
B(0,1)¢ B(0,1)¢ B(0,1)¢

p 1—p
( / f<x>|x||“dxd<x>> ( / |x||“ﬂ/<lp>dxd<x>> < oo
B(0,1)¢ B(0,1)¢

using the moment assumption in (2.11) and up/(1 — p) = d+ J{&; > d.

e It is generally not true in the general setting of Theorem 1 that lim ns/d/d(z, ap)’dP(x) = Qrs(P) (see

n—oo
Counter-Example 2 in Sect. 3). However, one may reasonably conjecture that this limiting result holds true
for sequences (ay,) of exactly L™-optimal n-quantizers. Our result in one dimension for compactly supported
distributions (see Sect. 5) supports this conjecture.

e In any case, note that (2.8) improves the obvious lower bound

1iminfn5/d/d(ac,an)5dP(ac) > 1iminfn5/den7s(P)5 > Qs(P).

n—oo n—o0

(The right inequality needs no moment assumption on P as can be checked from the proof of the Zador Theorem,
see [6].) In fact, one even has that, for every r, s€ (0, +00),

Qrs(P) = Qs(P).

Furthermore, this inequality is strict when r # s (except if f is Aj-a.e. constant on {f > 0}). Let us provide a
short proof of this fact. Set p=(d+s)/s >1,¢=(d+s)/d > and a =ds/(d+7r)(d+s), b= (d+r—s)d/(d+
r)(d + s). Then the Holder inequality yields

(Qu(P)TE = / FUE 4N, = /{f>0}fafbdAd

IN

1/p 1/q
(/ f’”’d)\d> </ qud)\d> (“<” if fo% and f%? are not proportional)
{f>0}

s/(d+s) .
(/ fd/(d+")d)\d) / T
{r>o0}

d

= (Qrs(P))T.

d/(d+s)

Proof of Theorem 1. First keep in mind that, the r 4+ n-moment assumption on P implies the finiteness of

[r #d)\d. The existence of at least one asymptotically L"-optimal sequence (ay,),>1 follows from the existence
of an r-moment for P. For every integer m > 1, set

ma™ 1 k41

k k
k=0

The sequence (fy,)m>1 is non-decreasing and converges to flip<f<ioo} = f Ada-a.e.
Let I, :=={ke€ {0,...,m2™ — 1} : X\g(E]") > 0}.
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For every k€ I,,, there exists a closed set A]* C E}* satisfying

1

ET\AT) < ——-
N(EP\AP) < —

Let €., € (0,1] be a positive real number such that the closed sets /len ={zeR?: d(z, A7) < ep}, k€ I,
satisfy

FAmdM < (1+1/m) [ f75dAg < +00.

Am Am
Set
m2™ —1
~ k
o= Y galap
k=0

It is clear that _
m#fndc U ENAD,

0<k<m2m—1
Hence
_ m2™—1 1 1
Aa({fm # fm}) < kz_:o 3om = o)
so that

Z l{fm#fm} < +00 Ag-a.€.
m>1

i.e., for Ag-a.e. x, f(x) = fm(:c) for large enough m so that fm converges to f Ag-a.e.. Finally, as a result
fm < fm < f and f,, converges to f Aj-a.e. Then, for every n > 1,

(]

n

/ (d(z, 0,))*dP(z)
Rd

Y

i /R (d,00))* Fon(w) ()
m2™—1

ni 3 2%/m(d(x,an))5d,\d(z). (2.12)
k=0 k

Since all the sets ZZ“, k =0,...,m2™ — 1 are bounded (as subsets of B(0,m + 1)), there exists for every
m > 1 and every k € {0,...,m2™ — 1} a finite “firewall” 87 C R? (see [6] or Lem. 4.3 in [4] and note that
AP C(AP)e, 2 = {ze R : d(x, (A]")°) > &m/2}) such that

Vn>1, Vae AP, d(z, o, UBY) = d(x, (o UBY) N AD).
Set ™ = Up<k<mom—10). Then, for every k€ {0,...,m2™ — 1}, for every z€ A},

d(z, o) > d(@, an U B) = d(z, (0 U ) N AY) > d(z, (0 U B™) N AYY).
Set temporarily n}® := card((a, U 8™) N /TE“) First note that it is clear that

np  card(a, N A}Y)
£~ ————F2  asn — .
n n

It follows from the asymptotic L"-optimality of the sequence (a;,) and the empirical measure theorem (see (2.5))
that

d
Ty [am fTE
Jim sup card(a,, N AJ) < fAk

< (2.13)
" n [ fadrg
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so that ) )
T+ d\ @+ d\
1iminflm2 ff+d d > m ff+d d_
noony fgznfd_“d)\d m+1fA;cnfd_”d)‘d
On the other hand, for every k€ I,

/ (d(w, an))*da() = / (e, (i UB™) NAT Y dNa(e) 2 Aa(AP )l (U(AT)
Am Am

where U(A}") denotes the uniform distribution over A} (note that the inequality is trivial when A\g(A}") = 0).
Then one may apply Zador’s theorem which yields, combined with (2.13),

. 3 .
hminfn%/ (d(z, an))*dNa() > Aa(AT) x lim inf (%) xlim((n") e ., (U(A7")))*
AZL nim ’

n n ny

u Fl
m [ fdA .
> A\ (ATY) % Je.a X (Ag(A d
> (AR meAmfﬁdAd) wax (a(A]))
k
s s a
m d 4 d )\ Am
> Joa (_1) (/fdird)\d) Ldk) Aa(AT)
er fAZ‘ fd+r d)\d
m \1 e (k41 T
Z Js,d (m—H) (/fdJrrd)\d) (2—m )\d( ZL)
with the convention % =0.

Consequently, using (2.12) and the super-additivity of liminf yield that, for every m > 1,

£ 5 m2™m 1 -
m d 4 d k k+1 d+r m
ra(s) (L) X g () 7 han)

k=0

() (L) [tz s
= s, — atr m m“i’Q_'mim .
d m+1 Rd d {f>0} d

Now, by Fatou’s Lemma, one concludes by letting m go to infinity that

liminf n /Rd (d(z, ap,))?dP(x)

n

v

, d .
hmmfni/ (d(z, ) dP(z) > Jea (/ fdirdAd> / frrardag. O
Rd R4 {f>0}

n

3. THE UPPER ESTIMATE

Let 7,5 € (0,00). In this section we investigate whether the upper bound [ d(z,ay)*dP(z) = O(n=%/9)
for L"-optimal n-quantizers a,, holds true. (This is of course less precise than the lower bound given in the
previous section.) The reason for the restriction to (exactly) optimal n-quantizers (when s > r) instead of only
asymptotically optimal n-quantizers will become clear soon. See e.g. the subsequent Example 2. First note that
the LP(P)-norms being non-decreasing as a function of p, the above upper bound trivially holds for s € (0, 7]
since

e/ / d(z, an) dP(z) < (nr/d / d(:c,an)’“dP(x))%

The same argument shows that when this rate holds for some s > 0, then it holds for every s’ € (0, s].
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For a sequence (,)n>1 of finite codebooks in R and b € (0,00) we introduce the maximal function
¥, : R — R, U {oo} by

 a(B(x,bd(x, )
Y, (z) = ol P(B(w, bd(z, an)))

(with the interpretation % := 0). Note that v, is Borel-measurable and depends on the underlying norm on R.
The theorem below provides a criterion based on these maximal functions that ensures the L*-rate optimality
of L"-optimal n-quantizers. In Corollaries 1, 3, 4 we derive more applicable criteria which only involve the
distribution P.

(3.1)

Theorem 2. Let r,s € (0,00). Assume P* # 0 and [ ||z||"""dP(z) < +oo for some n > 0. For every n > 1,
let o, be an L"-optimal n-quantizer for P. Assume that the mazimal function associated with the sequence (cu,)
satisfies

P/ () e LY(P) (3.2)
for some b e (0,1/2). Then

sup ns/d/d(ac,an)sdP(x) < +00. (3.3)

n

Proof. Let y € R? and set 6 = 6, = d(y,a,). For every z € B(y,6/2) and a € a,, we have ||z — a| >
ly = all = [l — y|| = 6/2 and hence

d(z,an) > 6/2 > ||z —yl|, © € B(y,d/2).

Let 8 = B, = an, U{y}. Then
Consequently, for every b € (0,1/2),

enr(P) —ens1,(P) > /d x, o) dP(z /d x, )" dP(x)

> /B (A0 =G, 6P

= [ e e - ulNaP)
B(y, 5b)

> ((6/2)" = (bd)")dP(x)
B(y,8b)

= ((1/2)" =b")é"P(B(y,bd)).

One derives that
C(b)

d(ya an)r < P(B(y, bd(y, Oén)) (en,r(P)r - en+1,r(P)T) (3-4)

for every y € R%, b € (0,1/2),n > 1, where C(r,b) = ((1/2)" — b")~L. Note that e, (P)" — eni1.(P)" > 0 for
every n € N (see [6]).

Now we estimate the increments ey, (P)" — ept1,(P)". (This extends a corresponding estimate in [7] to
distributions with possibly unbounded support.)

Set ey = ey (P) for convenience. Let {V, : a € ayq1} with V, = V,(a,,41) be a Voronoi partition of R?
with respect to 1. Then P(V,) > 0 for all a € o, 11 and card a1 =n+ 1 (see [6]),

i 4er ) 1
card{a € apq1: / |z —al|"dP(z) > nnj:llﬂ } < nl—

a
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and

4 n+1
d s P(V, < .
car {aeanﬂ (a)>n+1}_ 1

This implies that

4er ) 4
1 i= bl - —a|"dP(z) < —LT pv,) <
Brt1 {aGaH /va”m al (z) = n+1’ (V)_n—i—l

satisfies card3,4+1 > (n + 1)/2. Choose a closed hyper-cube K = [~m,m]¢ such that P.(K) > 3/4. The

empirical measure theorem (see (2.5) above or [4,6] for details) implies

lim card( ap N K)

= P.(K
k—o0 k 7( )

since P(0K) = M\g(0OK) = 0. We deduce card(an+1NK) > 3(n+1)/4 and hence card(Bp+1NK) > (n+1)/4 for
large enough n. Since one can find a tessellation of K into [(n 4 1)/8] V 1 cubes of diameter less than Cyn~1/¢,

there exist a1, a2 € Bn41, a1 # ag such that
lar — as|| < Cy(r)n= "4
for every n > 3. Let v = ap41 \ {a1}. Using
d(z,7) < [lz — azl] < [z — a1l + llar — a2,

one obtains

(P = ennn(PY < [ d(ar)dPla) - / A, ay1)" dP(2)
- Z/ |z — a|"dP(x / A7) dP) = 3 / |z — a|"dP(z
acy aC0n41
= [ @@=z - al)ipe)
ay
< @-1 [ Jo-aldPe) + 2 e - ol (V)
Va,
. 42" = 1)el 4, s 27C (r)'n "

n+1 n+1

Consequently, using (2.3), for every n € N,
enr(P)" = ent1,(P)" < 02(T)n_(d+r)/d

where C3(r) denotes a finite constant independent of n. Combining (3.4) and (3.5), we get

n*/d(z, o) < Cs(r,b)* <>\d(B(x ,bd(z, )))s/(d+r>

P(B(x, bd(w, )
< Os(r,0)° 4, ()7

(3.5)

(3.6)

(3.7)

for every € R% n € N,b € (0,1/2) and some finite constant C3(r,b). The proof is completed by integrating

both sides with respect to P.

O
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Application to pointwise convergence rate. In the situation of Theorem 2, assuming P = P®, but without
assuming (3.2) (so that s is not involved in that statement), one can deduce from (3.6) that

lim sup n/%d(z, ) < C(r, b) f /() < 400 P(dx)-a.s. (3.8)

n—00

since d(z, a,) — 0 P(dx)-a.s. (see [4]) implies in turn

— f(x) P(dx)-a.s. asn — oo

by the differentiation of measures. This improves considerably for absolutely continuous distributions and
(exactly) L"-optimal quantizers an a.s. result in [4].

Next we observe that in case s€ (0,d + ) a local version of condition (3.2) is always satisfied.

Lemma 1. Assume [ ||z||"dP(z) < +oco for some r € (0,00). Let (o) be a sequence of finite codebooks in
RY satisfying [ d(x,a,)"dP(z) — 0. Then the associated mazimal functions ¢, are locally in LP(P) for every
pe(0,1) ie.

VM, be (0,00), / PP dP < +o0.
B(0,M)
Proof. Let M,b € (0,00) and set A = supp(P). Then max,cp(o,m)na d(x, o) — 0 (see [4]) and hence

C(M) = d(z, an) < +00.
(M) =oup i (o am) < +o0

One derives that

B(z,bd(x, o)) C B(0,bC(M)+ M)
for every x € B(0, M) N A,n € N. Define the Hardy-Littlewood maximal function ¢ : R — R, U {oo} with
respect to the finite measures A\g(- N B(0,bC (M) + M)) and P by

) i e Ma(B(@,p) 0 BO,C(M) + M)
o(x) = ¢, m(z) = sup P(B(z,p))

Then
¥, (z) < ¢(x)
for every x € B(0, M) N A. From the Besicovitch covering theorem follows the maximal inequality
< C1q(B(0,bC (M) + M))
B P

P(¢ > p)

for every p > 0 where the finite constant C; only depends on d and the underlying norm. (See [10], Th. 2.19.
The result in [10] is stated for Euclidean norms but it obviously extends to arbitrary norms since any two norm
on R? are equivalent.) Consequently,

/ WPdP
B(0,M)nA

IN

/go”dP :/ PP >t)dt <1 —|—/ PP > t)dt
0 1

IN

o0
1+ 02/ P4t < 400
1

where Cy = C1Aq(B(0,bC (M) + M). O
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In case s > d + r under a mild assumption on the support of P a local version of (3.2) holds provided the
minimal condition is satisfied locally.
Lemma 2. Set A = supp(P). Assume P = P* = f.\g, /HxH’dP(x) < 400 for some re (0,00), Ag(- N A) is

absolutely continuous with respect to P and A is a finite union of closed convex sets. Let (a,) be a sequence of
finite codebooks in RY satisfying

/d(x,ozn)TdP(ac) — 0.
Then for p € (1,00], the associated mazimal functions ¢y are locally in LP(P) provided 1/ f is locally in LP(P).

Remark. The absolute continuity assumption A\;(- N A) < P does not follow from the absolute continuity of
P: set P = cly.A\g where U = Up>o(rn — 2= (D) 4 2= (D) Q = {r,, n >0} and ¢ = 1/A\g(U). Then
supp(P) = R but Ay &« P since A\g(U¢) = +o00 and P(U) = 0.

Proof. Let M,b € (0,00) such that B(0, M) N A # (. We have

C=C(M):= d
037 208 ey A7 o) < 00

(see [4]) and hence

)\d(B(Ia p))
)< sup ————+
vo(o) p<vc P(B(z,p))
for every x € B(0, M) N A. There exists a constant C; € (0, 00) such that

Aa(B(z, p) N B(0,M) N A) > Crp?

for every x € B(0, M) N A and p < bC since B(0, M) N A is finite union of convex sets (see [6]). Define the
maximal function ¢ = ;-1 : R* — Ry U {oo} by

@y f71AP(-N B0, M))
p(x) == S P(B(z,p) N B0, M))

and note that dA\g(- N A)/dP = 1/f. One derives that

Aa(B(z,p) N B(0, M) N A)

V(@) S Co S R Y A B(0, D))
< Cro(z)

for every x € B(0, M) N A with Cy = A\q(B(0,1))/C. By the L?(P(- N B(0, M))-boundedness of the maximal
operator f~! — @1 (see [10], Th. 2.19), we obtain

¥, 150,00 2Py < CallelpoanllLepy < Csllf a0 |l Le(p)-
This yields the assertion. O

Remarks.
e One can replace the assumption on A = supp(P) by a local “peakless” assumption, namely

VM, ¢ >0, inf Aa(B(z, p) N B(0, M) Nsupp(P))

>0
z€B(0,M)Nsupp(P), 0<p<c )\d(B(lL',p))
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which can be satisfied by many subsets which are not finite unions of closed convex sets (e.g. if A = C¢, C
convex set with a non-empty interior).

e Let s€ (0,d+r) (and P® # 0). We know by Lemma 1 that v, € LW(P) Then, owing to the domination

loc

property (on a fixed ball B(0; M), M > 0) induced by Inequality (3.7), we may apply the (reverse) Fatou’s
lemma for sequences of dominated non-negative functions (applied on every ball B(0; M)) which yields

sup 1imsupns/d/ d(z, a,)’dP(z) < /hmsupns/dd(:n,an)sdP(:ﬂ).
M>0 n—oo B(0,M) n—oo
Then, provided P = P%, Inequality (3.8) implies

[ imsup /e 0,)°dP(a) < Car)® [ 7o/

n—oo

Consequently, the “minimal” expected condition [ f —s/(d+1)dP < 400 implies

sup 1imsupns/d/ d(x,an)*dP(x) < Cs(r, b)s/f_s/("H"“)dl3 < +o0.
B(0,M)

M>0 n—oo

e Now, coming back to Assumption (3.2), i.e. i € L@t (P), one derives likewise a slightly more precise result
than that stated in Theorem 2:

limsupns/d/d(ac,an)sdP(ac) < /limsupns/dd(ac,an)sdP(ac) < Cs(ry b)s/ffs/(d”)dl3 < +o0.

n—oo n—oo

This emphasizes that, if one wishes to establish the conclusion of Theorem 2 without the global integrality
Assumption (3.2) on v, one needs to show directly that

M>0 n—oo n— o0

sup lim sup ns/d/ d(z,a,)’dP(z) = limsupns/d/d(:c,an)SdP(:c).
B(0,M)

Although of little practical help a clue in that direction could be to notice that, when s = r, it follows from
Theorem 4.5 in [4] and (2.3) that

sup QT(P)PT(B(()’M)) - QT(P)
M>0

lim nr/d/d(m,an)TdP(x).

n—oo

sup lim nr/d/ d(z, )" dP(x)
B(0,M)

The following corollaries deal with distributions first with bounded and then mainly with unbounded supports.

Corollary 1 (compactly supported distributions). Assume that supp(P) is compact and P* # 0.
(a) For every s€ (0,d +r), the assertion (3.3) of Theorem 2 holds true.
(b) Let s > d+r. Assume that supp(P) is a finite union of compact convex sets, P = P* = f.\q and

/f‘s/(d+’“)dP < 400.

Then the assertion (3.3) of Theorem 2 holds true for s (and every s’ € (0,s]). In particular:
—if f > e >0 A-a.s. on supp(P), then (5.83) holds for every s € (0,00);

- if/f7(1+5)dP = / f7%dN\g < +00 for some & > 0, then (3.3) holds with s = d+r.
{r>0}
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Proof. (a) This is an immediate consequence of Theorem 2 since Lemma 1 implies that ¢;’ﬁ is integrable.

(b) follows from Lemma 2 and Theorem 2. O

For distributions with unbounded support we provide the following condition.

Corollary 2. (Distributions with unbounded supports.) Let s€ (0,d+1r). Assume P* # 0, / |z||"*PdP(z) <
400 for some § > 0 and

/ sup 2eB@t) e dP(z) < +o0 (3.9)
B(0,M)e t§2b}|)x|| P(B(x,1)) '

for some M,b € (0,00). Then the assertion (3.3) of Theorem 2 holds true.
Proof. Let xo € supp(P). Then d(wo,an) — 0 (see [4]). For |z|| > N := ||zo| + sup,,>; d(wo, an), we have
d(z, o) < 2||z|| for every n > 1 and thus

Na(B(2. )
WlB) S W BB D)

for every x € B(0,N)¢,b > 0. Then ¢, € L@+ by Lemma 1 and the conclusion follows fro Theorem 2. O

For distributions with radial tails we obtain a condition which is very close to the minimal condition
[ f=5/@HMAP < too.

Corollary 3 (density with radial tails). (a)Assume P = f.\q4, /HxH”‘SdP(m) < +oo for some & > 0 and

J="n( o) on By.,(0, R)¢ with h : (R,00) — Ry non-increasing for some R € Ry and | - ||o any norm on
Re. Let s€ (r,d+r). If

/ flex)™*/ T AP(z) < 400 (3.10)

for some ¢ > 1, then Assertion (3.3) of Theorem 2 holds true.

(b) Assume d =1 and s€ (0,1 + 7). Assume P = f.\, [|z|"t9dP(z) < 400 for some § > 0. If supp(P) C
[Ro,00) for some Ry € R and f|(ry,0) is mon-increasing for some Ry > Ro. Assume furthermore (3.10) for
some ¢ > 1. Then the assertion (3.3) of Theorem 2 holds true.

Remark. Note that if Assumption (3.10) holds for a real number ¢ > 1 then it holds for every ¢’ € (1, ¢].

Proof. (a) We may assume without loss of generality that || - || = || - |lo. For b€ (0,1/2), let M = M(b) =
N/(1 —2b). Then for x € B(0, M)t < 2b||z|| and z € B(0,t), we have

[+ z[| = llz[| = (][] = [l[[(1 - 2b) > N.

Consequently,

P(B(x,t) — /B(Ot)f(z—i—x)d)\d(z):/ h(l| + 2]))dAa(2)

B(0,t)

Y

h(llzll +t)Aa(B(0,1))
h(l[=[I(1 + 26))Aa(B(0, 1))

Y
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for every x € B(0, M)°, t < 2b||z||. Hence

)\d(B(x,t)) < 1 _ 1

2o (|1 +2b) ~ F((1+2b)x)

t<2b||z) P(B(w,1))

for every x € B(0, M)¢ and Corollary 2 gives the assertion. Item (b) follows similarly. O

Corollary 3 provides an efficient criterion for many families of multi-dimensional distributions since many
parametric families of distributions do have radial tails. Nevertheless, it is also natural to provide a criterion
which does not require such a radial assumption. This is the aim of the next Corollary (which can also treat
successfully the most usual multi-dimensional distributions).

Corollary 4. Assume P = f.\g and /||x|\’“+6dP($) < 400 for some § > 0. Furthermore, assume that

supp(P) has no peak i.e.
: Ad(supp(P) N B(z, p))
K= inf >0 3.11
! z€supp(P), p>0 )\d(B(I, p)) ( )

and that f satisfies the local growth control assumption: there exist real numbers e > 0, n € (0, %), M,C >0
such that
Va, yesupp(P), |lz| > M, |y —z| < 2zl = f(y) > C(f(x))'*. (3.12)
dP(x)
VNN

* (fx)) o
true. In particular, if (3.12) holds either for e =0 or for every e€ (0,g] (e > 0), and if

Then, for every s€ (0,%E0) such that / < 400 (if any), the assertion (3.3) of Theorem 2 holds
R

? 14€

7(1]3(:8) = x)) T x 00
Vse (0,d+r), /R o) _/{f>0}(f( N T dA(z) < + (3.13)

then (8.3) holds for every s€ (0,d + r).

Note that (if Ag(supp(P)) = 4+o00) Assumption (3.11) is e.g. satisfied by any finite intersection of half-spaces,
the typical example being R‘j_. Furthermore, a careful reading of the proof below shows that this assumption
can be slightly relaxed into: there exists a real ¢ > 0 such that

,‘-@’f -— inf { Ad(supp(P) N B(x, p))

,0<p<c|z > 0.
z€supp(P) )\d(B(lL',p)) P H ||}

Proof. Let zo € supp(P). Then, for large enough n, o, N B(zg,1) # (). Hence
d(x, o) < d(z, 0 N B(xo, 1)) < [lz — ol + 1 < [l + [[zoll +1
so that d(z, ay) < 2||z|| provided ||z| > ||zo]l + 1. We will assume from now on (without loss of generality)

that M > ||zo|| + 1 in Assumption (3.12).
Then for every € supp(P), ||z|| > M and every pe [0, 2n||z|]

P(B(z,p))

/‘ F@ 4 )L upp(ey (@ + 9)dy
B(0,p)

C(f(x))*Xa(B(z, p) N supp(P))
Cryp(f(x) " Na(B(z, p))

IV v



142 S. GRAF, H. LUSCHGY AND G. PAGES
where we used (3.11), (3.12) and ||z|| < 27n||z|. Then

o MB@) 11
o\ P(B,p)) ~ Cry ()17

Finally one concludes by Corollary 2 once noticed that

wp (MBEDNT py L[ _dP@) .
/nz||>Mp<2nIiz|| <P(B(fv,p))) @ (Crp)T /|a:|>M (f(2)) T N

Remark. Note that the moment assumption (3.13) follows from the more natural moment assumption

IN

Vse (0,d+r), IM >0,36>0 such that / Hx||d+dis+5f(x)dac < 400
lll| =M

which is of course satisfied by all distributions having polynomial moment of any order. This follows from
a standard application of Holder inequality (see the comments that follow the statement (2.3), of the Zador
Theorem in Sect. 2), once noticed that f||x||§M fdxzsd)\d < +oo for every M > 0 since 0 < % <1land f
is a probability density function.

As concerns practical applications, the Gaussian distributions are probably the most important class of
distributions satisfying Theorem 2.

Example 1 e Let P = N (0, X) be the d-dimensional centred normal distribution with positive definite covariance
matrix ¥. Then P satisfies condition (3.10) from Corollary 3(a) with h(y) = ((QW)ddetE)_l/Qe_y2/2, llz]lo :==
|2~1/2z|| where || - || stands for the Euclidean norm on R% and M = 0. For s € (0,d + r), choose ¢ €
(1,\/(d+1)/s).
e For se€ (0,d+r), the assumptions of Corollary 3(a) are satisfied by the hyper-exponential distributions defined
by
f(a) ocexp(—allz]|®), = €R? a,b>0,

where || .|| denotes any norm on R (possible different of the underlying norm). Set h(u) o exp(—au®). Note
that if d = 1, then the normalizing positive real constant is given by kqp = 19211—1//2). In fact the whole family of
distributions

f(x) o ||lz]|€exp(—al|z]®), 2 €RY a,b>0, c>—d,
satisfies the assumptions of Corollary 3(a). In particular, the family includes the (scalar) double Gamma
distributions on the real line where

aC

() |x|c_1e_am, z€R, a, ¢c>0.

fx) =

e As concerns scalar distributions let us first mention the Gamma distributions

b

flz) = meﬂe*aml(om)(x), z€R, a, b>0,

for which the assumptions of Corollary 3(b) are satisfied for every s € (1,1 4 r). This holds as well for the
Weibull distributions

f(z) =ba" ! exp(fm)bl(ojoo)(:c), z€eR, b>0,
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the lognormal distributions

1 1
f(z) = — exp <T‘2(logz — a)2) 1,00)(2), zER, 0 >0, a €R,
e The logistic distribution
e(l?
= R
f(z) Ao ° <R

satisfies Corollary 3(a) and so do the symmetric p-stable distributions with p € (0,2) provided r < p and

seE (0, (_l-lin)(l -+ 7"))

e For the Pareto distributions where
flx) = baf(bﬂ)l(lyoo)(x), ze€R, b>0

the assumptions Corollary 3(b) are satisfied provided that » < b and s < b(1 +7)/(b + 1).

e In fact all the examples of distributions provided so far also fulfil the criterion proposed in Corollary 4. There
are natural classes of distributions whose density is not monotone which can only be handled by the criterion
in Corollary 4. We will discuss now such an example.

Let u = g.A1 be an absolutely continuous probability distribution on [0, 1] satisfying

0<C_<g< 0y < +o0.

Let (Y,)n>1 denote an i.i.d. sequence of p-distributed random variables and let N denote a Poisson random
variable with parameter A > 1, independent of (Y;,),>1. Then set X = N +Yx and P =P,. One easily checks
that
ALzl
P, =f\ with f(z)= e A Bl g(z — [2])1r, (2).

Let e > 0 and ne (0,(1/2) Ae) and z€ Ry, y€ [2(1 —n),z(1 +n)]. Assoon as n > |A] + 1, the sequence 27 is
decreasing (to 0). Hence, if © > (1 +n)[\] +1
) O Al (et
(fx)tre = (Cptte [yft AGtele]

c- eAe —1—z(e—n) (HxJ')lJFE
AL T+ L1+ ]!

One concludes using the Stirling formula that

fy)

lim inf inf — = to0.
w—+00 ye(z(1-n),z(1+n) (f(z))1*e

On the other hand, Assumption (3.13 of Cor. 4) is fulfilled since X has finite moment of any polynomial order
(see the remark following Cor. 4). Note that when the density function ¢ is not non-decreasing f cannot be a
non-decreasing function so that Corollary 3 does not apply.

The exact optimality assumption made on the sequence (a,) in Theorem 2 (and Cor. 1) is critical to get the
optimal rate n~5/¢. This is illustrated by the following counter-example.

(Counter-)example 2. Let P = U([0,1]) and for n > 2 and ¢ € (0, 00) set

enmant= {0 (1 1) Dt )
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Let r € (0,00) and assume ¢ > ﬁ Using a non-Voronoi partition gives the upper estimate

A . 1
BX - X < [1pn @l - pslds

T

Hence
limsupn”E|X — X% |" < limsup = - + !
n—00 T aboeo \27(r 1) pUHDI=r o (r 4 1)2r
1
27"(7’ + 1) r,1 Qr( )

so that in fact
lim n"E|X — X |" = Q,(P).

n—00

It follows that the sequence (a,(9)), is an asymptotically L"-optimal n-quantizer for every ¢ € (r/(r + 1), 00).
Now, let s > r and 9 € (r/(r +1),s/(s+1)). Then

E|X — X |* > e | L osde = ! —0(s+1)
— _/0 I_2n19|dx_25+1(s+1)n
so that

n*E|X — X% > mnsw(m).
Consequently,

lim n*E|X — X |

n—oo

= OQ.

4. THE CRITICAL AND SUPER-CRITICAL CASES
In this section, we investigate the upper bound for the rate of convergence when s > d + r.
Proposition 1. Let r€ (0,00). Assume P® # 0 and / |z||"?dP(z) < 400 for some § > 0. For everyn > 1,
let o, be an L7 -optimal n-quantizer for P.

(a) THE CRITICAL CASE. s =d+1: Assume there is a real ¥ > 0 such that for every v € (0,9 A s), there exists
a real number M > 0 such that

su Aa(B(z, 1)) o 1P dP (2 -
/l;(O;M)c <r§2bl||)x|| P(B(x,r))> lz|"dP(z) < +oo. (4.14)

Then,
Vee (0,14 r/d), 1imsupn1+5_a/ (d(z, ) T"dP(z) < +o0.
R

n
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(b) THE SUPER-CRITICAL CASE. s > d+1: Assume there is a real 9 € (s — (d+7), s) and a real number M > 0
such that

su Aa(B(, 7)) o 2P dP (2 -
/B(O;M)c <r<2bl||)z|| P(B(ac,r))> l2["dP(z) < +oo. (4.15)
Then,

S‘flp"%/ﬂw (d(w, an))*dP(z) < +o0. (4.16)

Proof. (b) It follows from (3.7) that, for every n > 1, be (0,1/2),
VeeRY,  (d(z, )" < Oy, ()~ ),
On the other hand, g € supp(P) being fixed, for large enough n, o, N B(zg,1) # 0 so that
Vze RY d(x,0n) < (142 — 20|)1{jz—zo>1} + 21 fjz—z0|<1} < Co(|2] V 1).
Let 1, be the maximal function associated to (e, )n>1 and b€ (0,1/2). Consequently

VeeRY,  (d(z,an))° (d(z, 0n))*~ " (Colz| v 1))°

U

v T (4, (2)) T (|2 v 1),

Q

<
<
It follows from Lemma 1 that, for every real number M > 0 and b > 0,
=9
[ we®

B(0; M)

s=9
Combined with Assumption (4.15), this clearly implies ¢,"7" € L!(P).

z||?dP(x) < +o0.

(a) The above computations are still valid when s = d 4+ r. So one concludes by considering ¢ arbitrarily close
to 0 which is precisely made possible by Assumption (4.14). O

From the above proposition one easily derives some corollaries in the formerly mentioned settings. We give
them in details for the super-critical case. The adaptation to the critical case is straightforward.

Corollary 5. Assume the global assumption on P in Proposition 1 holds and that P = f.)\g.
Letve (s— (d+7r),s).
(a) If f is radial outside a compact subset of R? (as defined in Cor. 1) and if
/f(cx)_%HxHﬁdP(ac) < +oo for some real ¢ > 1,

then Assumption (4.15) is fulfilled.
(b) If f satisfies Assumption (3.11) and Assumption (3.12) for some parameter € > 0 and if

_(s=9)(+4e) 19)(1+5)
/f l2]°dP(z) < +oo

then Assumption (4.15) is fulfilled.
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The above assumptions are clearly fulfilled by the normal distributions (and in fact most distributions men-
tioned in Ex. 1). Numerical experiments seem to suggest that the critical rate n'*4 cannot be improved for P
with unbounded support, that is,

Vs >0, limn!ta / d(z, a,)’dP(z) = +oo.
R4

n

5. A SHARP RATE FOR LIPSCHITZ DENSITIES ON COMPACT INTERVALS

Proposition 2. Let P = f.\, where [ : [a,b] — Ry is a Lipschitz continuous probability density function,
bounded away from 0 on [a,b]. Let r > 0. Let (an)n>1 be a sequence of L"-stationary and asymptotically
L"-optimal [a,b]-valued n-quantizers. Then for every s > 0,

b
lim <ns min |z — %|5dP(ac)> = Qrs(P).

a oﬁ Can

Note that we do not assume a priori that the n-quantizers are L"-optimal but only stationary and asymptotically
L"-optimal.

Proof. Tt is possible in this scalar setting to number the elements of a n-quantizer with respect to the natural
order on the real line. Furthermore, one may assume for large enough n that o, C (a,b) and carda,, = n.
Namely, we set

an = {ap,...,al}, a<al<al<--<al7t<al <b

We also set ol = a and a1 = b for convenience. For every n > 1, set for every z € [a, b]

Orn() = nZAa 1y, () (2) (5.1)
k=1
where Vj,(a,) denotes the Voronoi cell of af and Aak = af — k=1 ke {1,...,n+1}. We know from [5] (see

the proof of Th. 4(a), p. 1101) that h being Lipschitz continuous and bounded away from 0 on [a, b], there is a
positive real constant C, 3 s such that

max Aa <(C min  AcaF. 5.2
1<k<n+1 b Sy n T (5.2)

A proof of this last inequality can be found in the appendix. Set P, , = 1 Zk 1904 . the empirical measure
associated to the n-quantizer «,,. By the empirical measure theorem (recalled in (2. 5)) it follows that for large
enough n,

M 7 AR NS
va e oy, Hizan€labV} o) / FATdN,
n 77

uniformly with respect to (a’,’) € [a,b]? (where ¢, 9 = (f: g”d\;)™1). Combining this convergence with (5.2)
and using that f is bounded away from 0 on [a, b] implies that there is a real constant C bf such that, for every
n > 1 and every o/, b’ € [a, b]

b —a
——— < min A« Z < max Ack <
Ca b le 1<k<n+1,akela’,b’] 1<k<n+1,akela’,b'] n

A straightforward application of the Arzela-Ascoli Theorem yields that the sequence (¢rn)n>1 is relatively
compact for the topology of uniform convergence and that all its limiting functions are continuous. Let ¢,
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denote such a limiting function. On the one hand, for every o/, V' € [a,b] ,
1% n
/ Orm APy, = Z Acplarciapyy — U —d asn — oo,
a’ k=1

i.e. Qrn.Pr, converges weakly to the Lebesgue measure A, over [a,b]. On the other hand ¢, ,,.P, , converges
weakly to ¢,.P,. = Cf, A Pr f G A, since ¢, is continuous. Consequently, ¢, satisfies

_1
e SN = A

The function ¢, is uniquely determined by this equation so that

b
‘Pr,ni’@rf: (/f&ld)q) f_ﬁ as  n — oo.
a

Now for every k=2,...,n— 1,
we| [ ok ol sade -~ feh) [ ok~ alde| <nflfl,, [ ok ol
Vii(ak) Vii(ak) Vic(ak)
_ (A L (Aak)
I P 2 2
_ [f]Lip k4+1y)\5T2 k) St2 53
= m (Sﬁr,n(an )) +(<Pr,n(0<n)) (5.3)
and
s k k _ s _ f(alrgz) k+1\\s+1 k\\s+1
gl || ok el = I () (b))
Jl,s k k s+1 k41 k41 s+1 1
= 5 (f(ah) (ern(@h) HF @5 (prn (k™) 4O ( — (5.4)
since

(¢rn (aferl))SJrQ <C/n.
n

[flon™) = Flam)l(@rm (™)™ < [flu, Ay (prn(ag ™)) =

For k = 1 and n, the equalities (5.3) and (5.4) are no longer true due to edge effects but both induced errors
are O(1/n). Consequently

PEX X = LS (k) (o (08) 4 F(0E) (prnlal 1))

k=1
1 & s s 1
< Cur iz 20 ((onnlf™) ™ 4 (prnlal) ™) 40 (1)
k=1
1 b s+2 1
< 2057f E (@T,n) dPT,n +0 (E)

a
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On the other hand

3 (1) (rna) 4 0 el ) ™) = 2 [ ran 0 (1)
k=1 a

n

b
— 2/(gar)5+1fdPT as n — oo.

Finally

b b stL g b stL 4
s+1 s
/ (sar)é’“fdPr(/ fvild%> / flvilf#ldxl(/ f7~i1dA1> / FlrTd),
a a a a a

which completes the proof. (I

Remark. In fact, we proved a slightly more precise statement, namely that, for every r, s > 0,

~ (P 1
E|X—X"‘"|S:Q7£)+O( ) as  n — 00.

,S
n nerl
6. APPLICATION TO CUBATURE FORMULAE FOR NUMERICAL INTEGRATION

6.1. Numerical integration on R?

Thanks to the optimal L°-quantization rate provided by Theorem 2 for sequences of L"-optimal quantizers,
it is now possible to take advantage of the stationarity of quadratic quantizers for a wider class of functions.
Let f: R? — R be a twice differentiable function such that

1D f(2)]| < A(ll2]*~" + 1)

for some non-negative real constants A and B and n € (0,d]. Let X be a r.v. with distribution P = P.
Assume that X € L2+d(IP’) and that for every sequence of optimal quadratic n-quantizers (o, )n>1 the optimal
L*-quantization rate holds true for every s€ (0,2 + d). First, let @ be an optimal quadratic quantizer and Xo
a related Voronoi quantization of X. For every couple (p,q) € (1,+00)? of Holder conjugate exponents, one has

AO( 1 AO( AO[
[E£(X) = EF(X)] < SID2FXNI X = X3, (6.1)
Note that this error bound follows from the stationarity property of a quadratic quantization that is E(X | X o) =
X< since
va va o Ta 1 T va
[Ef(X) —Ef(X?)] = [Ef(X) - E f(X*) = E(DF(X*).(X = X%))| < ZE(|D*F(X?)] X = X).

Now, set p = g%rf, and ¢ = 3_%27 in equation (6.1). Then (d —n)p =d + 2 and 2¢ < d + 2 so that,

IDF(X)], < A(E[X*2 +1)7 < A(E|X]|**? +1)7 < +o0

and R ,
X — X2, = O(n™1).
Consequently the optimal rate

[E £(X) —E(f(X*"))| = O(n" 1)
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for numerical integration by (optimal quadratic) quantization holds for a wide class of (twice differentiable)
functions whose growth at infinity can be infinitely faster than quadratic (the quadratic case is obtained for
q =1 and p = 4o0 for functions having a bounded Hessian; then there is no need for the extended quantization
rate).

6.2. Numerical integration on the Wiener space
Let

W = mgnew
> "

n>1

be the Karhunen-Loéve (K-L) expansion of a standard Brownian motion (W)iepo,17- (€)) ; An)n>1 is the K-L
(orthonormal) eigensystem of the (nonnegative trace) covariance operator of the Brownian motion C,, (s,t) =
s At, indexed so that A, decreases (to 0). All these quantities do have explicit expressions (see [9,12] among
others). In that K-L expansion, (&,),>1 is then a sequence of i.i.d. random N (0; 1)-distributed random variables.

One considers a sequence of (scalar) product quantizations W of the Brownian motion W i.e.
my
WY =3 "V &el
k=1

where for every N > 1, N;,...,N, > 1,1 <k <m, and N; x --- X NmN < N, E,ij is an LZ?-optimal Ny-
quantization of & (see [8,9] for more details). Then denoting |. | L2, the quadratic norm on L?([0,77],d¢t) one
has for every s€ [2,3),

W — W,

E(jw-Ws )
T

@ |-

(E(W - W)?)
W =Wz,

1
2
s

N|=

m

= M€ =&+ S g

k>m\ +1

Z

=~
Il
_

=

IN

3
2

Yol =20+ Y €
k=1

kZmN—i-l

N

mN N
= DMl =12+ DD Mlél?
k=1

kZmN +1

where we used that 5 > 1 so that ||.

Theorem 2 (see Ex. 1), for every s€ [2,3) there exists a real constant Cs such that

. 1s a norm. Consequently, using that the normal distribution satisfies
2

- - N A, ’ -
W =W, < W =W <C [ Y Sm+ D M| =Cw =W, (6.2)
k=1""F  k>m +1
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Consequently, if furthermore (WN )N>1 is a rate optimal sequence for quadratic quantization, then
W =W, = |W = WV||, ~ ew (log N) 2. (6.3)

Note that the result clearly holds for s € (0,2] (simply using the monotony of the L®*-norm). Furthermore,
except for the final rate O((log N)~2) for which we refer to [9], the Brownian motion plays no specific role
among Gaussian processes: the inequalities in (6.2) extend to the product quantization of any Gaussian process
(Xt)eepo,m-

In fact, as emphasized in [9], optimal scalar product quantization is rate optimal but it is also possible to
produce some rate optimal sequences based on d-dimensional block product quantizations. In fact it is shown
in [9] that as d grows one can obtain the sharp convergence rate of high-resolution quantization (it is even
possible to choose this dimension d = d(N) as a function of N to achieve this sharp rate). From a numerical
viewpoint producing these d-dimensional marginal blocks is more demanding than producing scalar optimal
quantizations, but some issues are in progress on that topic.

The point here is that, if one considers some d-dimensional marginal blocks to produce a rate optimal sequence
of quantizations of the Brownian motion, such a sequence will satisfy (6.3) for every s € (0,d + 2) instead of
(0,3). This seems to be an interesting feature of d-dimensional block quantization.

The practical application to numerical integration on the Wiener space is formally similar to that on R? except
that one considers some functionals F on (L2([0,77],dt),]. | L2, ) instead of functions f defined on R¢. Then, one

approximates EF'(W) by EF (WN ) having in mind that a closed formula exists as well for the distribution of

Wy (the weights, see [12]) which makes the computation of E F (WN ) fully tractable (with negligible cost).
Then, if the Hessian D?F of F satisfies

Vwe L2([0,T].dt), [D’F@)] < Allwljs +1)
for some positive real constant A, r > 0 similar computations as those carried out in the d-dimensional case

implies that

o~ CFW
EF ~EF(WN) < 252
[EFOV) —EFWY)] < 00

Without the extended quantization rate (6.3) such a rate only holds for functionals F with a bounded Hessian.

For further applications (like Romberg extrapolation) and numerical experiments devoted to path-dependent
option pricing, we refer to [12].

APPENDIX

This appendix presents a proof of Inequality (5.2) which is the starting point of the proof of Proposition 2.
We closely follow the proof of Theorem 4 in [5]. This part of the proof is reproduced for the reader’s convenience.

Set Aak = aF — aF~1. After an appropriate change of variable the L"-stationarity equation (see [5])

ol bal
ot ok
kaies lan =2 'sign(ay — 2)f(z)dz =0,  1<k<n,
ookt

reads:

2
/ v" " Lsign(v) f(af +v)dv =0, 1 <k <n.
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Introducing f(aX) we obtain:

)"

0 Oék
/ oy (Flak 4 v) - F(ah)) dv + flak) B0

e 727
Aokt ft1
2 A r
= [T e ek e - ek o el B2
0

k k41
Setting v := A—g‘ﬂu and v := A—O‘;—u respectively we have, since f(ak) > 0,

1 k_ Aak k
(Aaﬁ)r (1 +’I“/ ur—l f(an 2 u) f(Ozn) du)
0

flak)
1 ko Aokt o~k
(Aak+yr (1 + r/o u L flom + f2(afj)t) f(an) du)

;(T:)) — /@) du finally leads to

1
Setting H(x,y) := / ru” ! fa+u
0

A k+1N\ " 1 H k k+1
( ap > _ + (Oén,Oén ) (64)

Aaf ) 1+ H(ak,an ")

Let [a,b] C (m, M) and let L‘}’b denote the Lipschitz coefficient of f on [a, b].

ve gelat), |HEE) < et L=t

1 f(«f) § Ca,b,f |£75/|

since f is bounded away from 0 on [a, b]. Consequently:

|[H (o, o™ )] < Capplog, — o™ and [H (g, ay )] < Capgloy — o™,
whenever of*! lie in [a, b].

The probability density function f being bounded away from 0 on [a, b], MAX () /< aktl<py max(Aak Aakt1)
goes to zero (see e.g. Prop. 2 in [5]), so we can estimate the right hand of (6.4):

1+ H(ok, of )

PR S (2 LI Sp— k k—1y k k41 & bt1\2
T Hak qbe) = O (el ai™) = Hon, o)) + O(max(Aal, Aa™!)?)

n’

where

max  |O(max(Aak, AarT)?)| < C max  max(Aakf, Aok T2 "5 0, (6.5)
{k / a<ak*l<p} {k / a<ak*i<p}
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Now, we have Z Aaﬁ < b — a, so that:
{k / a<ag*! <b}
Z (Aak)? < (b—a) sup (Aak) = (b—a)o(1). (6.6)
(k / a<abtl<p} {k / a<af®'<b}
Now set hy := exp(H (af+t a1 — H(ak+t of+=1)) and §, := O(max(Aak+*1 Aak+?)"). Note that, as
long as o and a5t? € [a, b], mini<,<,_1 he is bounded away from 0 by a real constant h > 0 not depending on
n since the function H is bounded away from —oco on [a, b]?. Hence

Aak+ - p—1 p— 154
< k+1) H (he +10e]) = th H<1+ ) Hhe exp Y 7] < th (b-a)o(1).

(=1 {=1 21_

One obtains a lower bound the same way round. Assume that n is large enough so that max{d,, a < o/*! <
b} < h/2. Using that In(1 —u) > —2uif 0 <wu <1/2,

AOL?LJFP r p—1 p—1 pfl (b—a) o(1)
(327) = g E(l—) Hhe exp *2;@ th .
Thus it yields that for large enough n and every o} " p ae [a, b]:
AaktP\" =
exp Zln he) — (b—a)lo(1)] | < (Kgﬂ) < exp Zln(hg) +(b—a)lo(1)] ] . (6.7)
=1
On the other hand, using once again that f is bounded away from 0 on [a, b], yields
— —_ akte okttt
pzlln(he) = pzlr/tlm—l f(alfLM*A_Qu_u) — flog + AJ2—u) du
Flan™)
p—1 k4-0+1 k+£
r A« — A«
< L% L K C(b - a). 6.8
- 7°—i-1Z 2f (akitt) <Cl-a) (6.8)
Combined with Inequality (6.7), this provides
max Aaf <C mm Aak.

{k / a<a{™ <ak <b} {k / a<olf~'<ak <b}

1="n
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