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DEVIATION BOUNDS FOR ADDITIVE FUNCTIONALS OF MARKOV
PROCESSES

Patrick Cattiaux1 and Arnaud Guillin2

Abstract. In this paper we derive non asymptotic deviation bounds for

Pν

(∣∣∣∣1t
∫ t

0

V (Xs)ds −
∫

V dµ

∣∣∣∣ ≥ R

)

where X is a µ stationary and ergodic Markov process and V is some µ integrable function. These
bounds are obtained under various moments assumptions for V , and various regularity assumptions
for µ. Regularity means here that µ may satisfy various functional inequalities (F-Sobolev, generalized
Poincaré etc.).
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1. Introduction, framework and first results

On some Polish space E, let us consider a conservative (continuous time) Markov process (Xt, (Px)x∈E) and
its associated semi-group (Pt)t≥0 with infinitesimal generator L (and denote D(L) its domain). Let µ be a
probability measure on E which is invariant and ergodic w.r.t. Pt. The celebrated ergodic Theorem tells us
that for any V in L1(µ)

A(t, R, V ) := Pµ

(∣∣∣∣1t
∫ t

0

V (Xs)ds−
∫
V dµ

∣∣∣∣ ≥ R

)
→ 0

as t goes to +∞ for all R > 0. Level 1 large deviations theory furnishes asymptotic bounds for 1
t log(A(t, R, V ))

(see e.g. [9]). If V is bounded, one may replace the initial measure µ by a µ absolutely continuous probability
measure ν.

It is however of major importance in practice to exhibit non asymptotic upper bound but also to ensure
practical conditions to verify them; see for example a priori bounds for large and moderate deviations in
averaging principle, concentration for particular approximations of granular media equation... It will be the
purpose of the present note. In [24], Liming Wu derived such bounds.
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Theorem 1.1 (Wu [24]). If V is bounded, then for all t > 0 and all R > 0

Pν

(
1
t

∫ t

0

V (Xs)ds−
∫
V dµ ≥ R

)
≤
∣∣∣∣
∣∣∣∣dνdµ

∣∣∣∣
∣∣∣∣
L2(µ)

exp
{
−tIV

(
R+

∫
V dµ

)}
(1.2)

where IV (a) = supλ≥0{λa− Λ(λV )} and

Λ(V ) := sup
{∫

V f2dµ+ 〈Lf, f〉µ; f ∈ D(L) and
∫
f2dµ = 1

}
.

Of course a similar result holds for Pν

(
1
t

∫ t

0
V (Xs)ds−

∫
V dµ ≤ −R

)
.

The key is that
1
t

log
∣∣∣∣PV

t

∣∣∣∣
L2(µ)

≤ Λ(V )

for all t > 0, where PV
t denotes the Feynman-Kac semi-group built from Pt. This result is a consequence of

Lumer-Philips theorem. It is worthwhile noticing that, when Pt is µ symmetric, the above bound is asympto-
tically sharp, according to the spectral radius theorem, but (1.2) is also asymptotically sharp according to large
deviations theory (see [9] Th. 5.3.10).

The main difficulty is then to be able to give a precise (and if possible optimal) control of the quantity IV (a)
hence of Λ(λV ). Our approach mainly relies on the use of functional inequalities to get upper bound on Λ(λV ).
Let us illustrate this approach via the use of a Poincaré inequality (or spectral gap inequality), i.e. for all nice
enough f ,

Varµ(f) ≤ −CP 〈Lf, f〉µ. (1.3)

Take first V bounded. Of course, by homogeneity, we may only consider the V ’s satisfying
∫
V dµ = 0 and

sup |V | = 1, for which the only interesting R’s are between 0 and 1. Indeed notice that the bound (1.2) is
fortunately 0 if R > 1 in this case since Λ(λV ) ≤ λ so that IV (R) = +∞ if R > 1. The next result furnishes an
explicit bound as soon as a µ satisfies a Poincaré inequality

Proposition 1.4. Assume that µ satisfies the Poincaré inequality (1.3). Then for all V such that sup |V | = 1,
all 0 < R ≤ 1 and all t > 0

Pν

(
1
t

∫ t

0

V (Xs)ds−
∫
V dµ ≥ R

)
≤
∣∣∣∣
∣∣∣∣dνdµ

∣∣∣∣
∣∣∣∣
L2(µ)

exp (−tA) , (1.5)

where

A =
1
CP

(
1 −

√
1 − R

R+ Varµ(V )

)⎛
⎝R−

Varµ(V )
(
1 −

√
1 − R

R+Varµ(V )

)
√

1 − R
R+Varµ(V )

⎞
⎠ .

Remark 1.6. The above bound A is quite intricate. Note that, A ∼ R2

4CP Varµ(V ) when R goes to 0. Actually
one can show (see the proof below) that

A ≥ R2

8CP Varµ(V )
if R ≤ 2Varµ(V ), and A ≥ R− Varµ(V )

2CP
if R ≥ 2Varµ(V ).

These bounds are similar to those obtained by Lezaud [16] using Kato’s perturbation theory. Lezaud’s bound
depends on the asymptotic variance. Actually the best uniform result contained in [16] (see Rem. 1.2 therein)
for small R’s is exactly ours. Our proof below is much shorter.
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Proof. We may assume that
∫
V dµ = 0. If

∫
f2dµ = 1 we may write

f =
1 + εg√
1 + ε2

for some ε ≥ 0 and some g satisfying
∫
gdµ = 0 and

∫
g2dµ = 1, and conversely. Thus applying Poincaré

inequality with GP = 1/CP , for any arbitrary λ

Λ(λV ) ≤ sup
{∫

λV f2dµ−GP Varµ(f); f ∈ D(L) and
∫
f2dµ = 1

}

≤ sup
ε≥0

(
ε

1 + ε2
sup

{
2λ

∫
V gdµ+ ε

∫
(λV −GP )g2dµ

})

where the second supremum is taken over the set
{
g ∈ D(L),

∫
g2dµ = 1,

∫
gdµ = 0

}
. It follows, according to

Cauchy-Schwarz inequality and our hypotheses, that

Λ(λV ) ≤ sup
ε≥0

ε

1 + ε2
(2λVarµ(V ) + ε(λ−GP )) ,

so that, bounding roughly 1/(1 + ε2) by 1, we finally obtain that for λ < GP ,

Λ(λV ) ≤ λ2Varµ(V )
GP − λ

·

Recall that IV (R) = supλ≥0{λR− Λ(λV )}, so that we finally deduce that

IV (R) ≥ sup
λ∈[0,GP ]

{
λR− λ2Varµ(V )

GP − λ

}
.

This supremum is attained for

λ = GP

(
1 −

√
1 − R

R+ Varµ(V )

)

and is equal to A. We can conclude thanks to Wu’s theorem.
Remark that we obtain another lower bound for IV (R) if we consider the supremum for λ running on [0, GP /2]

only, and replace GP − λ by GP /2. The supremum is then attained for λ = RGP

4Varµ(V ) provided this quantity is
less than GP /2, and for λ = GP /2 otherwise, yielding the lower bounds for A in the remark. �

An interesting feature is that Proposition 1.4 admits a (partial) converse. Indeed

Proposition 1.7. Assume that µ is diffuse (i.e. for any A and any 0 ≤ α ≤ µ(A) there exists B ⊆ A such
that µ(B) = α).

Assume that there exist C and λ0 such that for all V such that
∫
V dµ = 0 and sup |V | = 1 and all 0 ≤ λ ≤ λ0,

Λ(λV ) ≤ Cλ2. Then µ satisfies a Poincaré inequality.

Proof. Let f and g as in the proof of Proposition 1.4, and V such that
∫
V dµ = 0 and sup |V | = 1.

We deduce from the hypotheses that for all ε ≥ 0 and all g such that
∫
gdµ = 0 and

∫
g2dµ = 1, for

0 ≤ λ ≤ λ0,

0 ≤ C(1 + ε2)λ2 − λ

(
ε2
∫
V g2dµ+ 2ε

∫
V gdµ

)
− ε2〈Lg, g〉µ.



DEVIATION BOUNDS FOR ADDITIVE FUNCTIONALS OF MARKOV PROCESSES 15

We show how to choose appropriate V ’s to get controls on the variance. Notice that the above quantity reaches
its minimum for

λ =
2ε
∫
V gdµ+ ε2

∫
V g2dµ

2C(1 + ε2)
that goes to 0 when ε goes to 0 and to

∫
V g2dµ/2C ≤ 1/2C when ε goes to +∞. Thus, taking a larger C

if necessary, we may assume that 1/2C ≤ λ0, and changing V into −V if necessary, we may assume that∫
V g2dµ ≥ 0.
For ε small enough the minimum is reached at some λ ≤ λ0 and has to be nonnegative. It follows

(
2
∫
V gdµ+ ε

∫
V g2dµ

)2

≤ 4C(1 + ε2)〈Lg, g〉µ,

so that letting ε go to 0 we obtain (∫
V gdµ

)2

≤ −C〈Lg, g〉µ.
We may then choose V = sign(g) − ∫

sign(g)dµ in order to obtain

(∫
|g|dµ

)2

≤ −C〈Lg, g〉µ. (1.8)

For ε going to +∞ and provided
∫
V g2dµ ≥ 0 we also obtain

(∫
V g2dµ

)2

≤ −4C〈Lg, g〉µ. (1.9)

We shall now build an appropriate V .
Let A = {|g| ≤ 1/2}. First, if µ(A) ≤ 1/2,

∫ |g|dµ ≥ 1/4, so that (1.8) implies

∫
g2dµ = 1 ≤ −16C〈Lg, g〉µ.

If µ(A) ≥ 1/2, denote by B = {|g| ≥ 3/4}. We have

1 =
∫
g2dµ ≤

∫
Bc

g2dµ+
∫

B

g2dµ ≤ 9
16

+
∫

B

g2dµ

so that
∫

B
g2dµ ≥ 7/16. Choose A′ ⊆ A such that µ(A′) = µ(B), and V = 1IB − 1IA′ . Then

∫
V g2dµ ≥ 7

16
− 1

4
µ(B) ≥ 3

16
≥ 0,

and ∫
g2dµ = 1 ≤

(
16
3

)2

4C〈−Lg, g〉µ.
Hence there exists some constant K such that

∫
g2dµ ≤ −K〈Lg, g〉µ for all g with mean 0 and variance 1, that

is Poincaré inequality holds. �

Remark 1.10. It is easy to see that (1.8) (which holds without the assumption of diffusivity) implies the
following, ∀g nice enough

Var2µ(g) ≤ C〈Lg, g〉µ ‖ g ‖2
∞,
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which is some weak Poincaré inequality. This inequality implies some concentration property for µ (see e.g. [21]
or [3]) but is quite far from the usual Poincaré inequality. More precisely the aforementioned weak Poincaré
inequality on R implies that µ concentrates like α(ds) = c/(1 + |s|3)ds , i.e. µ(|x| > s) behaves like α(|x| > s).
This weak Poincaré inequality is actually satisfied by α(ds).

It is not difficult to see that Λ(λV ) ≤ Cλp for some p > 2 (and small λ’s) cannot happen (using the same
method). This is natural since for very small R (namely R = r/

√
t) we cannot expect a better behaviour

as a Gaussian one due to the central limit theorem (see e.g. [16] Th. 3.1), while Λ(λV ) ≤ Cλp would imply
IV (R) ≥ CRp.

We can now state the problems we shall study in the sequel:
• What happens if Poincaré is reinforced, replacing it by stronger functional inequalities? The answer to

this question is partly given in [24] for the log-Sobolev inequality, namely we may consider in this case
unbounded V having some exponential moments.

• What can be said for bounded V ’s when Poincaré’s inequality does not hold?
• For unbounded V ’s, how can we obtain (may be rough) deviation bounds in full generality?
• What happens if the initial measure is no more absolutely continuous, or when its density is less

integrable?

2. Exponential bounds for unbounded V ’s and strong functional inequalities

Let us start here with an almost immediate extension of Wu’s result, tackling the first question.

Definition 2.1. Let F be defined on R+. We assume that F is continuous, increasing, concave, goes to +∞
at ∞ and satisfies F (1) = 0. It follows that F admits an inverse function which is defined on ]F (0),+∞[. In
addition we assume that F satisfies

F (xy) ≤ F (x) + F (y), (2.2)
for all positive x and y.

We say that µ satisfies an F -Sobolev inequality if for all f ∈ D(L) such that
∫
f2dµ = 1,∫

f2F (f2)dµ ≤ −〈Lf, f〉µ.

Theorem 2.3. Assume that µ satisfies an F -Sobolev inequality. Then for all V and all R > 0

Pν

(
1
t

∫ t

0

V (Xs)ds−
∫
V dµ ≥ R

)
≤
∣∣∣∣
∣∣∣∣dνdµ

∣∣∣∣
∣∣∣∣
L2(µ)

exp
(
−tH∗

(
R+

∫
V dµ

))
, (2.4)

where

H∗(a) := sup
0≤λ<λV

{
λa− F

(∫
F−1(λV )dµ

)}
,

where λV is such that λV > F (0) for all 0 ≤ λ < λV . In particular H∗(a) = 0 if λV = 0 or if
∫
F−1(λV )dµ =

+∞ for all λ > 0.
We also have

Pν

(
1
t

∫ t

0

V (Xs)ds−
∫
V dµ ≥ R

)
≤
∣∣∣∣
∣∣∣∣dνdµ

∣∣∣∣
∣∣∣∣
L2(µ)

exp (−tH∗
c (R)) ,

with

H∗
c (a) := sup

0≤λ<λ′
V

{
λa− F

(∫
F−1

(
λ

(
V −

∫
V dµ

))
dµ
)}

,

where λ′V is such that λ(V − ∫
V dµ) > F (0) for all 0 ≤ λ < λ′V . This latter bound is better than the previous

one when F (0) = −∞.
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Proof. We shall use again Wu’s theorem. Assume first that V is bounded. Applying the F -Sobolev inequality,
we get

Λ(λV ) ≤ sup
{∫

λV f2dµ−
∫
f2F (f2)dµ; f ∈ D(L) and

∫
f2dµ = 1

}
.

For all f as above, it thus holds

F

(∫
F−1(V )dµ

)
= F

(∫
F−1(V )
f2

f2dµ
)

≥
∫
F

(
F−1(V )
f2

)
f2dµ

≥
∫ (

V − F (f2)
)
f2dµ (2.5)

where we have successively used the facts that F is non-decreasing, concave and (2.2). It follows that

Λ(λV ) ≤ F

(∫
F−1(λV )dµ

)
,

yielding IV ≥ H∗.
If V is not bounded just approximate it by (V ∧ n) ∨−n.
Finally we may replace V by V − ∫

V dµ and obtain H∗
c . The property F (xy) ≤ F (x) + F (y) immediately

shows that this bound is better than the previous one except that the authorized set of λ’s differ in general,
except for F (0) = −∞ where λV = λ′V = +∞. �

Remark 2.6. The bound obtained in Theorem 2.3 is interesting since, assuming some regularity for F , Λ(λ(V −∫
V dµ)) behaves like λ2 for small λ provided it is finite for some λ0 > 0. Hence H∗

c is strictly positive and
actually behaves like Ca2 for small a while it behaves like Ca for large a.

Note that if F (0) > −∞ the theorem only applies to the bounded from below V ’s.

In the examples below −〈Lf, f〉µ = 1/2
∫ |∇f |2dµ, corresponding to diffusion process with constant diffusion

term.

Example 2.7.
1) The function F (x) = C log(x) satisfies all the previous assumptions with F (0) = −∞. The corresponding

result is then Corollary 4 in [24]. Gaussian measures satisfy such log-Sobolev inequalities. In this case F−1(y) =
exp(y/C), so that the above result holds as soon as V has some exponential moment.

Note that some converse holds in this case. Indeed if F = C log, and if

Λ(V ) ≤ 1
C

log
(∫

eCV dµ
)
,

for all V , then for all f we may choose V = 1
C log f2 and deduce the log-Sobolev inequality.

2) The functions Fα(x) = logα(1 + x) − logα(2) also satisfy all the assumptions as soon as 0 < α ≤ 1 (see
the proof of Th. 38 in [4] for instance). The measure µβ(dx) = exp(−|x|β)

Zβ
dx satisfies a cαFα-Sobolev inequality

for α = 2(1 − 1/β) and some well chosen constant cα (see [4] Sect. 7). Here F−1
α (y) behaves like exp(y1/α) at

infinity. Here again some converse holds, but details are a little bit tedious.

3) Conditions for some F -Sobolev inequalities are discussed in details in [4] and [5]. In particular explicit (and
tractable) criteria for absolutely continuous measures on the line are given in [4] Theorem 27, while sufficient
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conditions are discussed in [5] Section 8 for a general Riemannian manifold. In these papers the corresponding
F -Sobolev inequalities satisfy the tensorization property, hence due to the CLT, F cannot grow faster than a
logarithm. That is the described field of measures is between Poincaré and Gross (log-Sobolev) inequalities.
The condition F (xy) ≤ F (x) + F (y) certainly obliges us to such a restriction.

Example 2.8. It is interesting to see how the previous result applies on simple examples. Consider the standard
Ornstein-Uhlenbeck process on R, dXt = dBt − 1

2Xtdt with its symmetric probability measure γ the standard
normal law. γ satisfies a log-Sobolev inequality with constant C = 4. Easy calculations yield

Pν

(
1
t

∫ t

0

X2
sds− 1 ≥ R

)
≤
∣∣∣∣
∣∣∣∣dνdµ

∣∣∣∣
∣∣∣∣
L2(µ)

exp
(
− t

8
(R − log(1 +R))

)
.

This result is not asymptotically sharp, since according to a result by Bryc and Dembo [6] the large deviations
rate function is R2/8(R + 1) which is greater than our (R − log(1 + R))/8. In particular for small R, we are
loosing a factor 2. Note that Lezaud obtains in [16] Example 4.2 the correct bound, but that this case is a
little bit miraculous since the spectral gap of the Feynman-Kac operator can be explicitly calculated. We shall
discuss other explicit examples later on.

Remark 2.9. In the examples above, we have assumed that the diffusion coefficient is constant. And one
knows that F -Sobolev inequalities are usually verified with the energy given by

∫ |∇f |2 which could be seen
as a limitation on the diffusion process we may consider for our deviation inequalities. However we may easily
replace this assumption by some strict ellipticity, namely suppose that there exists δ > 0 such that for all x, y,
〈σ(x)σ(x)∗y, y〉 ≥ δ|y|2, then

−〈Lf, f〉 =
1
2

∫
|σ(x)∇f(x)|2dµ(x) ≥ δ

2

∫
|∇f |2dµ.

It enables us to consider deviation inequalities for strictly elliptic diffusion of the form

dXt = b(Xt)dt+ σ(Xt)dWt

using “standard” functional inequalities.

Remark 2.10. One strongly suspects that the integrability condition (
∫
F−1(λV )dµ < +∞ for some λ > 0)

is also necessary for an exponential bound to hold. We do not know whether this is true in full generality or
not, but one can easily build some examples.

Still in the Gaussian case of Example 2.8, consider V (x) = x4, and define VN = V ∧ N and F−1 = exp.
Choosing f(x) = cex2/4/(1 + x2) for some normalizing constant c, one can show by a direct (but tedious)
calculation using Laplace method, that for N large and λ ≥ 1/N

1
8 ,

Λ(λVN ) ≥ DλN
1
4 ≥ DN

1
8

for some nonnegative constant D. It follows that IVN (a) ≤ a/N
1
8 . The bound for IVN is asymptotically sharp

since we are in the symmetric case (recall the remark in the introduction). Thus for all R there exists some tN
(extracting a diagonal subsequence the same tN can be used for all R ∈ Q) such that

Pµ

(
1
tN

∫ tN

0

VN (Xs)ds−
∫
VNdµ ≥ R

)
≥ exp

(
−1

2
tNIVN

(
R+

∫
VNdµ

))
,
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from which it is easy to deduce (taking R = R′ +
∫
V − ∫

VN and using that V ≥ VN ),

Pµ

(
1
tN

∫ tN

0

V (Xs)ds−
∫
V dµ ≥ R′

)
≥ exp

(
−1

2
tNN

− 1
8

(
R′ +

∫
V dµ

))
.

Hence we have no asymptotic exponential bound.

Since Theorem 2.3 is not satisfactory when F (0) > −∞, we shall complete it, at least when a Poincaré
inequality also holds.

Theorem 2.11. Let F and µ be as in Theorem 2.3. Assume in addition that µ satisfies some Poincaré inequality
with constant CP . Let V such that

∫
V dµ = 0 and

∫
V 2dµ = m2 < +∞. Assume that

∫
F−1(λ0V

+)dµ < +∞
for some λ0 > 0 and define

λ1 = sup
{

0 < λ ≤ λ0;F
(∫

F−1(2λV 1IλV >1/4CP
)dµ

)
≤ 1/4CP

}
.

Then for all R > 0

Pν

(
1
t

∫ t

0

V (Xs)ds ≥ R

)
≤
∣∣∣∣
∣∣∣∣dνdµ

∣∣∣∣
∣∣∣∣
L2(µ)

exp
{
−t sup

0≤λ≤λ1

(
Rλ− 8m2CPλ

2
)}

.

Proof. In the definition of Λ (see Th. 1.1) we write again f = (1 + εg)/
√

1 + ε2. It yields

Λ(λV ) = sup
ε≥0

sup
g

(
ε

1 + ε2
sup

{
2λ

∫
V gdµ+ ε

(∫
λV g2dµ+ 〈Lg, g〉µ

)})
, (2.12)

where the second supremum runs on the g ∈ D(L) such that
∫
gdµ = 0 and

∫
g2dµ = 1. First, thanks to

Cauchy-Schwarz inequality,
∫
λV gdµ ≤ mλ. Next, the second term is splitting into the sum of

∫
λV g21IλV ≤GP /4dµ+

1
2
〈Lg, g〉µ ≤ GP

4

∫
g2dµ+

1
2
〈Lg, g〉µ

≤ −(GP /4),

according to Poincaré’s inequality (recall that GPCP = 1), and of

∫
λV g21IλV >GP /4dµ+

1
2
〈Lg, g〉µ ≤ 1

2
F

(∫
F−1(2λV 1IλV >GP /4)dµ

)
.

The latter is obtained by applying 2.5 replacing f by g and V by 2λV 1IλV >GP /4. Using the definition of λ1 we
finally see that for λ ≤ λ1,

Λ(λV ) ≤ sup
ε≥0

(
2εmλ− (1/8CP )ε2

) ≤ 8m2λ2CP .

The result follows by Theorem 1.1. �

Remark 2.13.
1) The positivity of λ1 is ensured by the properties of F and the positivity of λ0, while the finiteness of the

variance of V is ensured by the positivity of λ0. Once again we obtain a Gaussian bound for small R and an
exponential one for large R.

2) As shown by Aida [1] a F -Sobolev inequality together with a weak Poincaré inequality imply the ordinary
Poincaré inequality. Since any absolutely continuous measure µ on a manifold with bounded from below Ricci
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curvature satisfies a weak Poincaré inequality, the Poincaré inequality is automatically satisfied in this case. In
particular Theorem 2.11 completes the picture for the Fα introduced in Example 2.7.

3) One can easily obtain a very rough bound for λ1. For instance if F−1 = exp(xθ) for some θ > 1, the
following holds ∫

1Iλ1V >1/4CP
e(2λ1V +)θ

dµ ≤ e(1/4CP )θ − 1. (2.14)

Recall that, since we are bounding from below some supremum, we may if necessary choose (2λ1)θ ≤ 1
2 (λ0)θ .

Applying Cauchy-Schwarz inequality we obtain

µ(λ1V > 1/4CP ) ≤
(
e(1/4CP )θ − 1

)2

∫
e(λ0V +)θdµ

·

Since the left hand side in (2.14) is less than
(∫

e(λ0V +)θ

dµ
)

e−(λ0/4CP λ1)θ

we get an explicit condition for λ1.

Remark 2.15. In all explicit cases we considered, x �→ xF (x) = G(x) is convex. Hence, using the F -Sobolev
inequality, Λ(λV ) ≤ sup

(∫
λV hdµ− ∫

G(h)dµ
)

where the supremum is taken over all nonnegative h such that∫
hdµ = 1. This kind of maximization problem is well known in convex analysis since it relies on the calculation

of the Fenchel-Legendre transform of an integral which is a convex functional. If we relax both constraints on h,
one expects that this supremum is equal to

∫
G∗(λV )dµ, where G∗ is the usual Fenchel-Legendre conjugate.

Actually the situation is a little bit more intricate since L1 is not reflexive (see [14, 19, 20]). Nevertheless the
result we get using this (potential) bound is not interesting. Indeed consider G(x) = x log(x) (G(x) = +∞
if x < 0) so that G∗(u) = eu−1. Since G∗(0) �= 0 we do not obtain any interesting bound for small R. For
instance if V = 1IA−1IAc for some A with µ(A) = 1/2 we obtain H(R) = R arg sinh(eR)−√

1 + e2R2/e which is
negative for small R. It seems that the maximisation problem taking into account the (non linear) constraints
on h is not easy and we did not find any reference on it (see however [15] for connected problems with linear
constraints).

Nevertheless something can be made for still stronger F -Sobolev inequalities. First we introduce some
definitions.

Definition 2.16. We shall say that F is a contractive function if F (x) → +∞ when x goes to +∞ and
x �→ xF (x) := G(x) is a normalised Young function. This means that G (defined on R+) is convex, non-
decreasing, satisfies G(0) = 0 and G(1)+G∗(1) = 1 where G∗ is the Fenchel-Legendre conjugate of G. We shall
denote by NG the corresponding gauge norm (i.e. NG(f) = inf{u > 0;

∫
G(f/u)dµ ≤ G(1)}).

Definition 2.17. Let F be a contractive function.
• We shall say that µ satisfies the strong F -Sobolev inequality with constant CSF if for all g ∈ D(L) such

that
∫
gdµ = 0 and

∫
g2dµ = 1 it holds∫

g2F (g2)dµ ≤ −CSF 〈Lg, g〉µ.

• We shall say that µ satisfies the (defective) F -Sobolev inequality with constants CF and Cb if for all
f ∈ D(L) such that

∫
f2dµ = 1 it holds∫

f2F (f2)dµ ≤ −CF 〈Lf, f〉µ + CbF (1).

If Cb = 1 we say that the inequality is tight.

Before stating the results we have in mind in the above situation, we shall discuss Definition 2.17 and give some
examples.
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Example 2.18.
1) It is immediate that a F -Sobolev inequality together with a Poincaré inequality imply a strong F -Sobolev

inequality with CSF = CF + CbF (1)CP .
2) When F (x) = xp the local version of the strong F -Sobolev inequality is quite useful for studying regular-

izing effects in p.d.e. theory for elliptic degenerate operators. In particular if L is a sub-elliptic operator in Rd

satisfying some degeneracy conditions, we may associate a natural distance to L and the balls corresponding
to the distance. If dµ/dx belongs to some appropriate Muckenhoupt space, then µ will satisfy the strong xp-
Sobolev for some appropriate p in all balls. For precise results in this direction see e.g. Franchi [12] Theorem 4.5
or Lu [17] Theorem B.

3) The defective F -Sobolev inequality is much more well known. First we are using “tight” following Bakry,
while we used “additive” in [4]. Tight means that we have an equality for f ≡ 1. If a non tight inequality holds
(i.e. replacing F (1) by a larger constant) together with a Poincaré inequality, then modifying the constant CF

we may obtain a tight one. Actually this result is not proved in full generality but is proved in [2] for F (x) = xp

(the usual Sobolev inequality). Hence on a Riemannian manifold with Ricci curvature bounded from below, we
may apply Aida’s result formerly recalled.

It is well known in the symmetric case (see [8] Cor. 2.4.3) that a xp-Sobolev inequality for p > 2 is equivalent
to the ultracontractive bound ‖ Ptf ‖∞≤ ct−s ‖ f ‖2 for 0 < t ≤ 1 with s = p/2(p−2). We shall use this bound
in the next section.

More generally F -Sobolev inequalities are related to super-Poincaré inequalities. A precise discussion is done
in [23] (also see [13]). In particular it is shown therein that for β ≥ 1 the measure µβ(dx) = exp(−|x|β)

Zβ
dx satisfies

a defective Fα-Sobolev inequality with Fα(x) = (log(1 + x))α and α = 2(1 − 1/β). According to 1), µβ thus
satisfies the strong Fα-Sobolev inequality (since it satisfies Poincaré).

4) In the previous points we did not take care on the normalization assumption for G. It is known that if G
is not normalized one can find some k such that G(kx) is normalized. If G is moderate (i.e. G(2x) ≤ cG(x) for
some c and all x) we may replace it by its normalized equivalent, up to a change in CSF . Hence in the cases we
discussed before, the normalization hypothesis is not really relevant.

We conclude this section with the analogue of Theorem 2.11 in the contractive situation.

Theorem 2.19. Assume that µ satisfies a strong F -Sobolev inequality for some contractive function F . Let V
such that

∫
V dµ = 0 and

∫
V 2dµ = m2 < +∞. Then for all R > 0

Pν

(
1
t

∫ t

0

V (Xs)ds ≥ R

)
≤
∣∣∣∣
∣∣∣∣dνdµ

∣∣∣∣
∣∣∣∣
L2(µ)

exp
{
−t sup

0≤λ≤λ2

(
Rλ− (2m2CSF /G(1))λ2

)}
,

where λ2 = G(1)/(2CSFNG∗(V )). In particular for this bound to be interesting one needs NG∗(V ) < +∞.

Proof. Recall (2.12)

Λ(λV ) = sup
ε≥0

sup
g

(
ε

1 + ε2
sup

{
2λ

∫
V gdµ+ ε

(∫
λV g2dµ+ 〈Lg, g〉µ

)})
,

for well chosen g’s. According to the Hölder-Orlicz inequality (for normalized Young functions)

1 =
∫
g2dµ ≤ NG(g2)NG∗(1) = NG(g2).
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Using the convexity of G and G(0) = 0, it follows that
∫
G(g2)dµ ≥ G(1)NG(g2). Using Hölder-Orlicz inequality

again and the strong F -Sobolev inequality, it holds∫
λV g2dµ+ 〈Lg, g〉µ ≤ NG∗(λV )NG(g2) − (1/CSF )

∫
G(g2)dµ

≤ (λNG∗(V ) − (G(1)/CSF ))NG(g2)
≤ λNG∗(V ) − (G(1)/CSF ),

provided ((G(1)/CSF ) − λNG∗(V )) > 0. It follows that

Λ(λV ) ≤ sup
ε≥0

{
2mλε− ((G(1)/CSF ) − λNG∗(V )) ε2

} ≤ m2λ2/ ((G(1)/CSF ) − λNG∗(V )) .

Once again, we may bound IV by taking the supremum on [0, G(1)/(2CSFNG∗(V ))] and replacing (G(1)/CSF )−
λNG∗(V ) by G(1)/(2CSFNG∗(V )). The proof is completed. �

The previous proof is certainly simpler than the one of Theorem 2.11, while both theorems apply to similar
measures, for instance the µβ’s for β > 1. It is quite difficult to compare the bounds in both Theorems on this
example, but the one in Theorem 2.19 has to be worse in general since it lies on the rough use of Hölder and
Orlicz norms.

Remark 2.20. We have not discussed here the use of another type of functional inequalities called transporta-
tion cost inequalities (in path space), namely

∀ν, Wp(ν, µ) ≤
√

2C
∫

log(dν/dµ)dν

where Wp is the usual Wasserstein distance, leading to Gaussian type of deviation inequalities for Lipschitz test
function V . But the proofs are very different in spirit as they rely on the verification of some square exponential
integrability for some norm on the path space and a (dependent) tensorization property. We refer to Djellout-
Guillin-Wu [10]. Note that the results obtained there are reminiscent of an assumption of a logarithmic Sobolev
inequality to hold. However they do not rely on the knowledge of the invariant measure but on the conditions
on the drift and diffusion coefficient. In the same spirit, one may also use Poincaré inequalities or logarithmic
Sobolev inequalities on path space combined with Herbst’s argument, but they are much more difficult to prove
and do not give good bounds for large time asymptotic.

3. Polynomial and sub-exponential bounds

3.1. The case of bounded V ’s

In this subsection we shall assume that the semi-group (Pt)t≥0 satisfies the following decay property:

Assumption 3.1. There exists some non increasing function η defined on [0,+∞[ such that for all bounded f
and all t,

Varµ(Ptf) ≤ η(t) ‖ f −
∫
fdµ ‖2

∞ .

It is known (see [21] Ths. 2.1 and 2.3) that Assumption 3.1 is formally equivalent to a weak Poincaré inequal-
ity (WPI). More precisely, if µ satisfies a (WPI), i.e. for all s > 0 and all bounded g,

Varµ(g) ≤ −β(s)〈Lg, g〉µ + s ‖ g −
∫
gdµ ‖2

∞, (3.2)
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for some non increasing β, then Assumption 3.1 holds with

η(t) ≤ 2 inf {s > 0;β(s) log(1/s) ≤ 2t} .

Conversely, in the symmetric case (ore more generally if L is a normal operator), if η is decreasing with inverse
function η−1, then Assumption 3.1 implies a (WPI) with

β(t) = 2t inf
s>0

(
1
s
η−1(s exp[1 − s/t])

)
.

In particular, if η(t) ≤ e−δt for some δ > 0, Assumption 3.1 implies the (true) Poincaré inequality. In the sequel
we may thus assume that η is decaying slower than an exponential. We shall give explicit examples later.

Assumption 3.1 is clearly connected to mixing properties. Indeed recall the

Definition 3.3. Let Fs (resp. Gs) be the σ-field generated by (Xu)u≤s (resp. (Xu)u≥s ). The strong mixing
coefficient α(r) is defined as α(r) = sups,F,G{|Cov(F,G)|} where the supremum runs over s and F (resp. G)
Fs (resp. Gs+r) measurable, non-negative and bounded by 1. The process is then said to be strongly mixing
with α.

We then have

Proposition 3.4. If Assumption 3.1 holds then the stationary process is strongly mixing with α(r) ≤ √
η(r).

If in addition µ is symmetric we may choose α(r) ≤ η(r/2).
Conversely, if the stationary process is strongly mixing, then Assumption 3.1 holds with η(r) ≤ α(r).

Proof. Let F and G are centered and bounded by 1, respectively Fs and Gs+r measurable. We may apply the
Markov property to get

Eµ[FG] = Eµ[FEµ[G|Xs+r]] = Eµ[FPrg(Xs)]
where g is centered and bounded by 1. Indeed since the state space E is Polish, we may find a measurable g
such that Eµ[G|Xs+r] = g(Xs+r) (desintegration of measure).

Hence

|Eµ[FG]| ≤ Eµ[|Prg(Xs)|] =
∫

|Prg|dµ ≤
√
η(r).

In the symmetric case

Eµ[FPrg(Xs)] = Eµ[F (Xs−.)Prg(X0)] = Eµ[f(X0)Prg(X0)] =
∫
Pr/2fPr/2gdµ

and we conclude using Cauchy-Schwarz again.
For the converse, take F = Prf(X0) and G = f(Xr) for f centered and bounded by one. �

The point is that moment bounds for sums of strongly mixing sequences (extending Rosenthal’s inequalities
in the independent case) are known. A large part of them are due to Doukhan and his coauthors and may be
found in Doukhan’s book [11]. However we found the most refined version we shall use in Rio’s book [18].

Proposition 3.5. Assume that µ satisfies Assumption 3.1 for some η satisfying for some integer k, Mk(α) :=
supr(1 + r)kα(r) < +∞ with α as in Proposition 3.4.

Then there exists a constant C(k) such that for all V with sup |V | = 1, all 0 < R ≤ 1 and all t < [t]/(1−R)
where [t] is the integer part of t

Pµ

(
1
t

∫ t

0

V (Xs)ds−
∫
V dµ ≥ R

)
≤ C(k)Mk(α)

tk (R− (1 − ([t]/t)))2k
· (3.6)
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Proof. Denote by Yj =
∫ j

j−1 V (Xs)ds −
∫
V dµ. Then Yj is a (Pµ) stationary sequence of strongly mixing

centered random variables with mixing coefficient α(r − 1). Thanks to our hypothesis on α we may apply
Theorem 2.2 in [18] (see (2.23) p. 40 therein) which yields Eµ[(

∑n
1 Yj)2k] ≤ C(k)Mk(α)nk. The result follows

by using Markov inequality and the fact that V is bounded by 1. �
In the previous result one can obtain explicit bounds for C(k)Mk(α) as shown by Doukhan and Portal (see

[11] Chap. 1.4).
In the examples below again, −〈Lf, f〉µ = 1/2

∫ |∇f |2dµ.

Example 3.7. 1) If µ(dx) = c(1 + |x|)−(d+p)dx (p > 0) on Rd it is shown in [3] that (WPI) holds with
β(s) = c(d)s−2/p. Actually this result is shown for d = 1 but extends to the d dimensional case since the
tensorized 1-dimensional measure is equivalent to the d-dimensional one (of course all constants depend on d).
Hence we may choose η(t) = c(d, p)(log t/t)p/2. The bound in Proposition 3.5 is thus available for p > 2k in the
symmetric case, and p > 4k in the non symmetric-one.

2) If µ(dx) = ce−|x|pdx for some 1 ≥ p > 0, we obtain similarly η(t) = c(d, p)e−c′t
p

2−p . We can thus obtain
any polynomial bound. Of course, in this case one expects a better bound. We shall see how to get such a
bound below.

In order to get sub-exponential bounds, we recall the following moment inequality from [18] Theorem 2.5,
that holds for a (Pµ) stationary sequence of strongly mixing centred random variables Yj bounded by 1

Eµ[|
n∑
1

Yj |2k] ≤ (4nk)k

∫ 1

0

(α−1(u) ∧ n)kdu. (3.8)

Note that (3.8) allows us to give an explicit bound for C(k) in Proposition 3.5, but with a slightly worse speed.
Indeed if α(n) = cn−k we get

Eµ

⎡
⎣
∣∣∣∣∣

n∑
1

Yj

∣∣∣∣∣
2k
⎤
⎦ ≤ (4nk)kc(1 + log c+ k logn)

recovering (3.6) with an extra logarithm.
Recall now the following elementary

lim sup
q→+∞

q−1

(∫ 1

0

logq(1/u)du
)1/q

≤ 1/e.

If α(n) = ce−c′np/(2−p)
it follows that there exists some k0 depending only on c such that

∫ 1

0

(α−1(u) ∧ n)kdu ≤
(

(2 − p)k
epc′

) (2−p)k
p

,

for all k ≥ k0. Hence Eµ[|∑n
1 Yj |2k] ≤

(
4n

(
2−p
epc′

) 2−p
p

k2/p

)k

.

Using Markov inequality it thus holds

Pµ

(∫ n

0

V (Xs)ds− n

∫
V dµ ≥ S

√
n

)
≤ e−

2−p
p k

(
2
(

2 − p

pc′

) 2−p
2p

k1/p(1/S)

)2k

.

We then choose k1/p = (pc′/2 − p)2−p/2pS/2 provided it is greater than kp
0 . Finally we have obtained,
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Proposition 3.9. Assume that µ satisfies Assumption 3.1 with α(s) = ce−c′sp/(2−p)
as in Proposition 3.4, for

some 0 < p ≤ 1.
Then there exists a constant k0 depending on c, such that for all V with sup |V | = 1, all 0 < R ≤ 1 and all

t < [t]/(1 −R) where [t] is the integer part of t

Pµ

(
1
t

∫ t

0

V (Xs)ds−
∫
V dµ ≥ R

)
≤ exp

{
−c(p)

(
(R − (1 − ([t]/t)))

√
t
)p}

, (3.10)

with c(p) = 2−p
p (1/2)p(pc′/2 − p)2−p/2, provided (R − (1 − ([t]/t)))

√
t ≥ 2k1/p

0 (2 − p/pc′)2−p/2p.

Remark 3.11. If the previous result is in accordance with the C.L.T. (that holds as soon as
∫∞
0 α(s)ds < +∞),

it is of course worse than the ones we obtained in the first section. Indeed for p = 1 we recover a convergence
rate e−C

√
t (for some fixed R) while we know that (at least in the symmetric case) a Poincaré inequality holds,

hence Proposition 1.4 gives a convergence rate e−Ct.
This fact suggests that we may loose something in the time discretization. At the same time we may ask

whether it is possible to use the semi-group structure to calculate

G2k(t) := Eµ

[∣∣∣∣
∫ t

0

V (Xs)ds
∣∣∣∣
2k
]

or not. If k ∈ N it is possible to study the variations of G2k, at least in the symmetric diffusion case. We assume
now that

∫
V dµ = 0. Then

G′
2(t) = 2Eµ

[
V (Xt)

∫ t

0

V (Xs)ds
]

= 2
∫ t

0

∫ (
Ps/2V

)2 dµds ≤ 2
∫ t

0

η(s)ds.

Hence if η ∈ L1(R+, dt) we obtain that G2(t) ≤ c2t.
Using integration by parts and symmetry one can show that

(G4)′′(t) = 12Eµ

[
V (X0)V (Xt)

(∫ t

0

V (Xs)ds
)2

]

= 24Eµ

⎡
⎣V (X0)V (Xt)

(∫ t/2

0

V (Xs)ds

)2
⎤
⎦

+24Eµ

[
V (X0)V (Xt)

(∫ t

t/2

V (Xs)ds

)(∫ t/2

0

V (Xs)ds

)]
.

The first term in the above sum can be bounded by 6t2
√
η(t/2), so that if this last quantity is in L1(dt) it

furnishes a contribution c4t again to G4. The second term in the sum can be rewritten with the help of the
function

H(x) = Ex

[∫ t/2

0

V (Xt/2)V (Xs)ds

]
=
∫ t/2

0

Ps

(
V Pt/2−sV

)
(x)ds.
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It yields

Eµ

[
V (X0)V (Xt)

(∫ t

t/2

V (Xs)ds

)(∫ t/2

0

V (Xs)ds

)]
= Eµ

[
V (X0)

(∫ t/2

0

V (Xs)ds

)
H(Xt/2)

]

= Eµ

[
H(X0)V (Xt/2)

(∫ t

t/2

V (Xs)ds

)](
=
∫
H2dµ

)

=
∫ t/2

0

∫
V Ps(V Pt/2−sH)dµds =

∫ t/2

0

∫
(PsV )V (Pt/2−sH)dµds

=
∫ t/2

0

∫
(PsV )V (Pt/2−s(H −

∫
Hdµ))dµds+

(∫
Hdµ

)∫ t/2

0

∫
(PsV )V dµds

≤
∫ t/2

0

√
η(s)

√
η(t/2 − s)Var1/2

µ (H)ds+
(∫

Hdµ
)∫ t/2

0

η(s/2)ds.

But ∫
Hdµ =

∫ t/2

0

∫
V Pt/2−sV dµds ≤

∫ t/2

0

η(s/2)ds

is assumed to be bounded by d4 (see the control of G2). Since Varµ(H) ≤ ∫
H2dµ it follows that

Var1/2
µ (H) ≤

∫ t/2

0

√
η(s)

√
η(t/2 − s)ds+ d4 ≤ (t/2)

√
η(t/4) + d4.

Since we formerly assumed that t2
√
η(t/2) goes to 0, the variance is bounded and consequently so is (G4)′′

yielding a bound c4t2 for G4.
Unfortunately, it seems difficult to iterate the procedure and to get explicit expressions for the constants.

Furthermore, one suspects that a clever study will yield G2k(t) ≤ c2kt
k, that is the same behaviour as in the

discrete case. It does not seem necessary to go further.

3.2. Unbounded V ’s

If V is no more bounded, or does not fulfill the hypotheses of one of the result in the second section, one can
get some bound by truncating V . We shall briefly indicate how to do on an example.

For instance for a centered V such that
∫ |V |dµ < +∞, and all K > 0

Pµ

(
1
t

∫ t

0

V (Xs)ds ≥ R

)

≤ Pµ

(
1
t

∫ t

0

(V ∧K ∨ −K)(Xs)ds−
∫

(V ∧K ∨ −K)dµ ≥ R/2 −
∫

(V ∧K ∨−K)dµ
)

+ Pµ

(
1
t

∫ t

0

|V |1I|V |≥K(Xs)ds ≥ R/2
)

= A+B.

If
∫ |V |Sdµ < +∞, B can be bounded by Km−SR−m2mEµ[|V |S ] for all 1 ≤ m < S. If

∫
eu|V |dµ < +∞ for

some u > 0, we have B ≤ e−λ
∫

eλ|V |
√

2/KRdµ as soon as λ
√

2/KR ≤ u (just summing up the previous bounds
for m = S/2).

In order to obtain a bound for A we may use the appropriate results in Section 1 or in the previous subsection.
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If we assume for example that µ satisfies a Poincaré inequality, and thatK is such thatR/4 ≥ Eµ[|V |S ]/KS−m

we may apply Proposition 1.4 and obtain a bound for A in the form exp{−tR2/128CPK
2}.

Choosing m = S/2 (provided S ≥ 2), it is not difficult to see that the (almost) optimal choice is given by
K = cR

√
t/
√

log(2tR4/S) with t large enough for this expression to be meaningful and the previous constraint
between R and K to be satisfied.

We thus obtain a bound
C(S) logS/4(2tR4/S)R−S/2t−S/4,

for t large enough, µ satisfying a Poincaré inequality and Eµ[|V |S ] < +∞ for some S ≥ 2.
In the same way, if

∫
eu|V |dµ < +∞, we first choose λ = u

√
KR/2, and a similar method yields a bound

C(u)e−c(u)t1/5R4/5
,

for t large enough.

4. About the initial measure

In this final section we shall see what can be said for the initial measure ν. As for the latter subsection, we
shall not state general results, but give some hints in various situations. Of course we shall discuss how to get
deviation bounds for Pν(F) which are not simply given by P

1/p
µ (F) ‖ dν/dµ ‖q.

A. We have seen in Sections 2 and 1 that we may take some initial measure ν such that dν/dµ ∈ L2(µ). As
remarked by Wu [24] pp. 441–442, we may replace this assumption by dν/dµ ∈ Lq(µ) for 1 ≤ q < +∞, provided
we replace Λ by

Λp(V ) := sup
{∫

V |f |pdµ+ 〈sgn(f)|f |p−1, Lf〉µ; f ∈ Dp(L) and
∫

|f |pdµ = 1
}
,

where p and q are conjugate. If L admits a “carré du champ” Γ, one can integrate by parts and get

〈sgn(f)|f |p−1, Lf〉µ = −(4(p− 1)/p2)
∫

Γ(|f |p/2)dµ,

so that defining g = |f |p/2 we obtain that

Λp(V ) = (4(p− 1)/p2)Λ((p2/4(p− 1))V )

at least for a bounded V (remark that (p− 1)/p2 = (q − 1)/q2).
Hence all the results in Sections 2 and 1 are still true, up to the constants, for 1 < q < +∞. For instance

we get an additional constant 4(p − 1)/p2 in Proposition 1.4. Since the interesting q’s are less than 2, the
interesting p’s are greater than 2 and this bound is better than the 1/p obtained via Hölder.

B. If µ is symmetric we may argue as follows: let A be a σ(Xs, u ≤ s ≤ t) measurable subset and denote
by Rt the time reversal at time t. Then

Pν(A) = Eµ

[
dν
dµ

(X0)1IA

]
= Eµ

[
dν
dµ

(Xt)1IA ◦Rt

]
= Eµ

[(
Pu

dν
dµ

)
(Xt−u)1IA ◦Rt

]
.

If V is centered and bounded by 1, the set
{

1
t

∫ t

0
V (Xs)ds ≥ R

}
is included in

A :=
{

1
t

∫ t

u

V (Xs)ds ≥ (R− (u/t))
}

to which we may apply the previous trick.
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In particular, if the semi-group is ultracontractive (i.e. there exists some u > 0 such that Pu is mapping
continuously L1(µ) in L∞(µ)) we obtain a nice bound. Notice that Pv is also mapping continuously L1 in L2

for some v ≤ u, so that using reversibility again we may directly use Section 1, with a possible better constant.

If the semi-group is only hypercontractive, i.e. if µ satisfies some log-Sobolev inequality, we know that
relative entropy is exponentially decaying. Denote by H(h) :=

∫
h log hdµ for any density of probability, and

by hν := dν/dµ. If H(hν) < +∞ it holds H(Puhν) ≤ e−u/CLSH(hν). It is easily seen that

∫
exp (1IA − (e − 1)Pµ(A)) dPµ ≤ 1

so that using the variational definition of H and reversibility again we get

Pν(A) = Eµ [Puhν(Xu)(1IA − (e− 1)Pµ(A) + (e− 1)Pµ(A))] ≤ H(Puhν) + (e− 1)Pµ(A).

Choosing u = Rt/2 we thus obtain

Pν(A) ≤ (e − 1)e−
tR2

32CP Varµ(V ) +H(hν)e−
tR

2CLS .

If the semi-group is only Orlicz-hypercontractive in the sense of [4] we do not know whether it is possible to
extend the argument to a little bit more integrable initial densities or not. Indeed we did not find the ad-hoc
quantity replacing relative entropy.

C. Finally we shall see on a family of examples what can happen when ν is no more absolutely continuous
with respect to µ. Actually we shall consider on Rd a diffusion process

Xx
t = x+Bt −

∫ t

0

∇U(Xx
s )ds,

where x ∈ Rd and B. is a standard Brownian motion. We shall assume that U is C3, and that there exists some
function ψ going to +∞ when |x| → ∞ so that 1

2∆ψ − ∇U.∇ψ is bounded from above. These assumptions
ensure the existence of an unique non explosive strong solution. Furthermore the underlying Markov process X.

is µ symmetric for dµ = Z−1e−2Udx where Z is a normalizing constant.
For such a process it is known that the law of Xx

t is absolutely continuous w.r.t. µ. We shall denote by hx
t

its density.
If |∇U |2(y)−∆U(y) ≥ −Cm > −∞ for all y, one can show that

∫
hx

t logp
+(hx

t )dµ < +∞ for all p ≥ 1 (see [7]
Prop. 5.1), so that in particular, if the semi-group is hypercontractive (or ultracontractive) we may apply the
ideas in B.

Actually one can expect a much better integrability and it is shown in [7] Section 5.2 that for U(y) = |y|q
with 1 ≤ q ≤ 2, hx

t ∈ L∞(µ) for all t > 0 (U is not C3 but all the previous discussion is still available).
Indeed we discovered with the help of P.A. Zitt that actually, with our previous assumptions, hx

t ∈ L2(µ).
To prove it, as in [7] we follow the idea of [22] Theorem 3.2.7. Replacing the convex γ therein by γ(y) = y2

we obtain ∫
(hx

t )2dµ ≤ Ze2U(x)E

[
e−2v(Bt)e−

1
2

∫
t
0 [|∇U|2−∆U ](Bs)ds

]
≤ Ze2U(x)e

1
2 Cmt

where e−2v(y) = (2πt)−d/2 e−|y−x|2/2t. Hence we may directly apply the results in the first two sections.
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Mat. Iber. 8 (1992) 367–439.
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