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ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON
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Abstract. We estimate the anisotropic index of an anisotropic fractional Brownian field. For all
directions, we give a convergent estimator of the value of the anisotropic index in this direction, based
on generalized quadratic variations. We also prove a central limit theorem. First we present a result
of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we
define Radon transforms of the anisotropic fractional Brownian field and prove that these processes
admit a spectral density satisfying the previous assumptions. Finally we use simulated fields to test
the proposed estimator in different anisotropic and isotropic cases. Results show that the estimator
behaves similarly in all cases and is able to detect anisotropy quite accurately.
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Introduction

The one dimensional fractional Brownian motion (fBm) was defined through a stochastic integral by
Mandelbrot and Van Ness [21] in 1968 for the modeling of irregular data such as the level of water flows
or economic series. Let us recall that this process is a Gaussian zero mean process with stationary increments
characterized by its so-called Hurst index H ∈ (0, 1) and denoted by BH = {BH(t); t ∈ R}. A generalization of
Bochner’s Theorem allows to give a spectral representation of its covariance function, namely

Cov (BH(t), BH(s)) =
∫

R

(
e−itξ − 1

) (
eisξ − 1

) |ξ|−2H−1dξ. (1)

The function |ξ|−2H−1 is called the spectral density of the fBm. Processes with that kind of spectral density
are called “1/f -noises” in the terminology of signal theory. The Hurst parameter is the index of irregularity of
the fBm. It corresponds to the order of self-similarity of the process and to the critical Hölder exponent of its
paths.

Keywords and phrases. Anisotropic Gaussian fields, identification, estimator, asymptotic normality, Radon transform.

∗ This work was supported by ANR grant “mipomodim” NT05-1-42030.
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In this paper we consider d-parameter real-valued Gaussian fields with zero mean and stationary increments,
defined through a spectral representation{∫

Rd

(
e−it·ξ − 1

)
f(ξ)1/2W (dξ); t ∈ Rd

}
, (2)

where · is the usual scalar product on Rd and W is a complex Brownian measure with W (−A) = W (A) for any
Borel set A ⊂ Rd. The function f , called the spectral density, is a positive even function of L1

(
Rd, min

(
1, |ξ|2)dξ

)
.

A natural extension of the 1-dimensional fBm is obtained when the spectral density is given by |ξ|−2H−d,
where | · | is the euclidean norm on Rd. This yields a zero mean Gaussian field with stationary increments which
is isotropic and has therefore the same critical Hölder exponent H in all directions of Rd.

In order to get an anisotropic field with stationary increments A. Bonami and A. Estrade define in [8] an
anisotropic fractional Brownian field by considering a spectral density of the shape

fh(ξ) = |ξ|−2h(ξ)−d, (3)

where the power h(ξ) ∈ (0, 1) is an even function which depends on the direction ξ/|ξ| of Rd. Other gen-
eralizations have been proposed for anisotropic data modeling like the fractional Brownian sheet [20] or the
multifractional Brownian motion introduced simultaneously in [6] and [24], where the Hurst parameter H is
replaced by a function depending on the point t ∈ Rd. However such generalizations yield models with non
stationary increments.

Here we consider an anisotropic fractional Brownian field X defined by (2) with (3) for some anisotropic
index h and we focus on the identification of h. As already noticed in [8] this index cannot be recovered by
analysing the regularity of X line by line since its regularity along a line does not depend on the direction (see
[4] for another method). Hence, to recover anisotropy, authors give another directional analysis method, which
is based on field projections. Actually, the critical Hölder exponent of the process {RθX(t); t ∈ R} obtained
by averaging the field along an hyperplane orthogonal to a fixed direction θ, called Radon transform of X , is
proved to be equal to h(θ)+ d−1

2 for this direction. An estimator of h(θ) is then proposed in [2], using quadratic
variations to estimate the regularity of the process RθX . However, no speed of convergence nor asymptotic
normality can be found under their weak conditions that the spectral density behaves like fh at high frequencies.

Actually, many estimators for the Hurst parameter of a 1D fBm have been proposed, based for example
on time domain methods or spectral methods (see [10] and [3] and references therein). Quadratic variations
can lead to relevant estimators with asymptotic normality of the Hölder exponent of more general Gaussian
processes with stationary increments as proved in [15] or [18] for instance. Moreover in [19] the authors give
precise bounds of the bias of the variance and show that minimax rates are achieved for this kind of estimators.
However, these previous works need assumptions on the variogram of the process X of the following type

v(t) = E

(
(X(t + t0) − X(t0))

2
)

= C|t|2H + r(t) and r(t) = o
t→0

(|t|2H
)
, (4)

with further regularity assumptions on the remainder. This leads to a first restriction on the set of values of H
since H must be in (0, 1). For this reason we adopt here a spectral point of view related to the problem of the
identification of filtered white noise introduced in [5]. In the simplest case of this paper, the authors consider a
spectral density f given by

f(ξ) = c|ξ|−2H−1 + R(ξ),
with H ∈ R+ � N, c > 0 and R ∈ C2(R), satisfying |R(j)(ξ)| ≤ C|ξ|−2H−1−s−j , with s > 0, for 0 ≤ j ≤ 2. It
follows that, when H > 1, one has to consider a process no more with stationary increments but with higher
order stationary increments.

In this paper, under the assumption that the spectral density of a Gaussian process with stationary increments
satisfies for some c, s > 0

f(ξ) = c|ξ|−2H−1 + O
|ξ|→+∞

(|ξ|−2H−1−s
)
, (5)
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we give estimators of H > 0 using quadratic variations of the process. On the one hand, for H ∈ (0, 1) this
assumption leads to (4), using the fact that v(t) = 4

∫
R

sin2
(

ξt
2

)
f(ξ)dξ. On the other hand, H can be an

integer and we do not need that the remainder is in C2(R) as in [5]. Then, with further assumptions on the
derivative of f at high frequencies, we get precise error estimates and asymptotic normality. Our main result
is that the spectral density of the Radon transform of an anisotropic fractional Brownian field satisfies (5)
with H = h(θ) + d−1

2 . Therefore we can get consistent estimators of the anisotropic index h with asymptotic
normality using quadratic variations of the Radon transform process.

The paper is organized as follows. The first section is devoted to the estimation of the Hölder exponent of
Gaussian processes (d = 1) with spectral density, using generalized quadratic variations. We give estimators
with asymptotic normality under assumptions that rely on the asymptotic behavior of the spectral density.
In the second part we estimate the anisotropic index of an anisotropic fractional Brownian field, using Radon
transforms of the field. These transformations lead to Gaussian processes with spectral densities for which we
give an asymptotic expansion. Then we apply the results of the first part to this process. In the third part, we
test the proposed estimator using anisotropic and isotropic simulated fields in two dimensions.

1. Identification of the exponent for a 1D-process

We prove in this section a first identification result in a general setting. It is based on the well-known fact
that a consistent estimator of the critical Hölder exponent of a Gaussian process with stationary increments
can be recovered using generalized quadratic variations (see [15] or [18] for instance). Actually, many authors
have considered these estimators under assumptions based on the variogram of the process. This is not adapted
here for our framework and we prove similar results under assumptions based on the asymptotic behavior of the
spectral density. Let us recall that, up to a constant, the spectral density of a 1D fractional Brownian motion of
Hurst parameter H ∈ (0, 1) is given by the function |ξ|−2H−1. Remark that no process with stationary increments
can admit such spectral density whenever H ≥ 1 since this function does not belong to L1(R, min (1, |ξ|2)dξ)
anymore. However one can obtain such spectral densities by considering processes with higher order stationary
increments (see [6] and [25] for instance). Moreover there is no restriction to define a process X with spectral
density asymptotically equivalent to that kind of function for any H > 0. Actually, when H ≥ 1, writing
H = j + s with j ∈ N and s ∈ [0, 1), X will be j times differentiable in mean square and X(j) will admit s as
critical Hölder exponent.

Let us consider a zero mean Gaussian process X = {X(t); t ∈ R}, with stationary increments and spectral
density f ∈ L1(R, min (1, |ξ|2)dξ). Let us assume that f satisfies (5) namely

f(ξ) = c|ξ|−2H−1 + O
|ξ|→+∞

(|ξ|−2H−1−s
)
,

for some H, c, s > 0. We observe a realization of X at points k
N for k = 0, . . . , N :{

X(0), X
(

1
N

)
, . . . , X

(
N

N

)}
.

Our purpose is to estimate H . The key idea of the former works concerning the estimation of Hölder ex-
ponent of Gaussian processes with stationary increments as [10, 15, 18, 19] for instance, is to consider incre-
ments of the process to get a stationary process. For instance, since X has stationary increments the process{
X
(

t+1
N

)− X
(

t
N

)
; t ∈ R

}
is stationary. More generally, one can consider the filtered process of X

ZN,a(t) =
l∑

k=0

akX

(
t + k

N

)
, for t ∈ R.



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 33

This defines a stationary process when a = (a0, . . . , al) is a discrete filter of length l + 1 and of order K ≥ 1
(l, K ∈ N with l ≥ K), which means that

l∑
k=0

akkr = 0 for 0 ≤ r ≤ K − 1 and
l∑

k=0

akkK �= 0.

For such a filter a, the observations of X allow us to compute ZN,a(p) for p = 0, . . . , N − l. Let us remark that
if we choose the filter of order 1 given by a = (1,−1) then ZN,a(p) = X

(
p+1
N

)−X
(

p
N

)
is the increment of X at

point p/N with step 1/N . More generally, for K ≥ 1, the increments of order K of X at point p/N with step 1/N

are given by ZN,a(p) for the filter a of order K and length K + 1 with ak = (−1)K−k

(
K
k

)
= (−1)K−k K!

k!(K−k)!

for 0 ≤ k ≤ K. Let us point out that, since X has stationary increments, ZN,a is a stationary process for
any filter of order K ≥ 1. Following [18] we also consider the filtered process of X with a dilated filter. More
precisely, for an integer u ≥ 1, the dilation au of a is defined for 0 ≤ k ≤ lu by

au
k =

{
ak′ if k = k′u
0 otherwise.

Since
lu∑

k=0

krau
k = ur

l∑
k=0

krak, the filter au has the same order than a. Then, for a filter a of length l and of

order K ≥ 1 and u ≥ 1, due to the stationarity of the corresponding filtered process ZN,au, we can estimate the
empirical variance of ZN,au(0) based on the observations of X by considering

VN,au =
1

N − lu + 1

N−lu∑
p=0

(ZN,au(p))2 , (6)

which we call generalized quadratic variations of X .
Let us point out that we consider here the same kind of set of locations for the sum as in [15,18] but one could

also consider more general one as done in [19]. Moreover, let us remark that one can also consider m-variations
of the process that estimate E (ZN,au(0)m). We will focus here on the quadratic variations (m = 2). It is
motivated by a result of J. F. Coeurjolly [11] who proves that, in the fractional Brownian motion case, the
asymptotic variance of the Hurst parameter estimator is the lowest for m = 2.

To build estimators of H the main idea is to choose a filter a such that

E (VN,au) = E

(
(ZN,au(0))2

)
∼

N→+∞
CN−2Hu2H .

Then, by considering estimators given by

TN,au =
VN,au

E (VN,au)
, (7)

precise estimates of the asymptotic behavior of Cov (ZN,au(p), ZN,av(p′)) allow to get the almost sure conver-
gence of (TN,au, TN,av) to (1, 1) with asymptotic normality. Then, an asymptotic estimator of H can be built

by considering for instance 1
2 log

(
VN,au

VN,av

)
/ log

(
u
v

)
for u �= v.

The end of this section is devoted to the rigorous proofs of these statements, under assumptions that rely on
the asymptotic behavior of the spectral density.
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Our first result allows to get an asymptotic development of E (VN,au) according to the asymptotic development
of the spectral density at high frequencies. Let us remark that if we associate to the filter a the polynomial

Pa(x) =
l∑

k=0

akxk, for x ∈ R,

then a is a filter of order K if and only if P
(r)
a (1) = 0, for 0 ≤ r ≤ K − 1 and P

(K)
a (1) �= 0.

Proposition 1.1. Let X = {X(t); t ∈ R} be a zero mean Gaussian process, with stationary increments and
spectral density f . We assume that that there exists H > 0, c > 0 and s > 0 such that f satisfies (5). Then
for any filter a of order K ≥ 1 and u ≥ 1 we have the following asymptotics:

N2KE (VN,au) =

⎧⎪⎨⎪⎩
u2K

(
P (K)
a (1)
K!

)2 ∫
R

ξ2Kf(ξ)dξ + o
N→+∞

(1) if K < H

u2K
(

P (K)
a (1)
K!

)2

2c logN + o
N→+∞

(log N) if K = H.

Moreover, if K > H then Eu
a (H) = u2H

∫
R

∣∣Pa(e−iξ)
∣∣2 |ξ|−2H−1dξ < +∞ and

N2HE (VN,au) = cu2HE1
a(H) +

⎧⎪⎪⎨⎪⎪⎩
O

N→+∞
(
N−2(K−H)

)
if K − H < s/2

O
N→+∞

(N−s log N) if K − H = s/2

O
N→+∞

(N−s) if K − H > s/2.

Proof. Since by assumption X has stationary increments and spectral density f it follows from (2) for d = 1
that, when K ≥ 1,

ZN,au(t)
L2(Ω)

=
∫

R

e−i tξ
N Pa

(
e−i uξ

N

)
f(ξ)1/2W (dξ).

Therefore, for all p ∈ Z,

E

(
(ZN,au(p))2

)
=
∫

R

∣∣∣Pa

(
e−i uξ

N

)∣∣∣2 f(ξ)dξ = E (VN,au) .

Let us assume that K ≤ H , since a is of order K, from Taylor formula, for ε > 0 there exists δ > 0 such that∣∣∣∣∣∣Pa

(
e−iξ

)∣∣2 − (P (K)
a (1)
K!

)2

ξ2K

∣∣∣∣ ≤ εξ2K when |ξ| ≤ δ
′′
. Hence,

∣∣∣∣∣∣
∫
|ξ|≤ δN

u

∣∣∣Pa

(
e−i uξ

N

)∣∣∣2 f(ξ)dξ − N−2Ku2K

(
P

(K)
a (1)
K!

)2 ∫
|ξ|≤ δN

u

ξ2Kf(ξ)dξ

∣∣∣∣∣∣
≤ εN−2K

∫
|ξ|≤ δN

u

ξ2Kf(ξ)dξ.

According to (5), ∫
|ξ|≤ δN

u

ξ2Kf(ξ)dξ =

⎧⎨⎩
∫

R
ξ2Kf(ξ)dξ + o

N→+∞
(1) if K < H

2c log N + O
N→+∞

(1) if K = H

and
∫
|ξ|> δN

u

∣∣∣Pa

(
e−i uξ

N

)∣∣∣2 f(ξ)dξ = O
N→+∞

(N−2H), which yields the result.



ESTIMATION OF ANISOTROPIC GAUSSIAN FIELDS THROUGH RADON TRANSFORM 35

Now, let us assume that K > H and write f(ξ) = c|ξ|−2H−1 + R(ξ) with R ∈ L1
(
R, min(1, |ξ|2K)dξ

)
satisfying R(ξ) = O

|ξ|→+∞
(|ξ|−2H−1−s

)
. A change of variables leads to

∫
R

∣∣∣Pa

(
e−i uξ

N

)∣∣∣2 |ξ|−2H−1dξ = N−2Hu2HE1
a(H),

with E1
a(H) =

∫
R

∣∣Pa

(
e−iξ

)∣∣2 |ξ|−2H−1dξ < ∞ since H < K. Then, applying the previous results to R with H
replaced by H + s/2 we obtain the result for the remainder term, which concludes the proof. �

Therefore, to recover the parameter H , one has to consider a filter a of order K > H . In this case, for any
u ≥ 1, by stationarity of ZN,au we obtain that E (VN,au) ∼

N→+∞
N−2Hu2HcE1

a(H). In order to prove the almost

sure convergence of (TN,au, TN,av) for u, v ≥ 1, with TN,au given by (7), one has to estimate Cov (VN,au , VN,av).
Actually,

Cov (VN,au , VN,av) =
1

N − lu + 1
1

N − lv + 1

N−lu∑
p=0

N−lv∑
p=0

Cov
(
ZN,au(p)2, ZN,av(p′)2

)
,

with Cov
(
ZN,au(p)2, ZN,av(p′)2

)
= 2Cov (ZN,au(p), ZN,av(p′))2 since (ZN,au(p), ZN,av(p′)) is a Gaussian vector.

Moreover,

Cov (ZN,au(p), ZN,av(p′)) =
∫

R

e−i (p−p′)ξ
N Pa

(
e−i uξ

N

)
Pa

(
e−i vξ

N

)
f(ξ)dξ.

Let us denote

Γu,v
N,a(p) =

∫
R

e−i pξ
N hu,v

a

(
ξ

N

)
f(ξ)dξ where hu,v

a (ξ) = Pa

(
e−iuξ

)
Pa (e−ivξ) (8)

such that

Cov (VN,au , VN,av) =
2

N − lu + 1

N−lu∑
p=−N+lv

Γu,v
N,a(p)2.

It is obvious that under (5), for K > H we have

Γu,v
N,a(p) ∼

N→+∞
cN−2H

∫
R

e−ipξhu,v
a (ξ) |ξ|−2H−1dξ.

However, we have to consider
N−lu∑

p=−N+lv

Γu,v
N,a(p)2 and further assumptions have to be done to see when(∫

R
e−ipξhu,v

a (ξ) |ξ|−2H−1dξ
)
p∈Z

is in �2(Z).

Proposition 1.2. Under the assumptions of Proposition 1.1, if we assume moreover that f is differentiable on
R � (−r, r), for r large enough and

f ′(ξ) = −(2H + 1)
c

|ξ|2H+2
+ o|ξ|→+∞

(
1

|ξ|2H+2

)
, (9)

then, for K > H and any δ < min(2(K −H), 1) with δ > max(1− 2H, 0), one can find C > 0 such that, for all
|p| ≤ N , ∣∣∣Γu,v

N,a(p)
∣∣∣ ≤ CN−2H (1 + |p|)−δ

.

Moreover, for any K > H + 1/4 we have Cu,v
a (H) = 2

∑
p∈Z

(∫
R

e−ipξhu,v
a (ξ) |ξ|−2H−1dξ

)2
< +∞ and

Cov (VN,au , VN,av) ∼
N→+∞

c2Cu,v
a (H)N−4H−1.
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Proof. Let K > H . Let us write f(ξ) = c|ξ|−2H−1 + R(ξ) with R ∈ L1
(
R, min(1, |ξ|2K)dξ

)
. By a change of

variables, we can write

Γu,v
N,a(p) = cN−2H

∫
R

e−ipξhu,v
a (ξ) |ξ|−2H−1dξ +

∫
R

e−i pξ
N hu,v

a

(
ξ

N

)
R(ξ)dξ.

Let us focus on the first term and remark that for u = v, since hu,u
a (ξ) =

∣∣Pa

(
e−iuξ

)∣∣2 is real∫
R

e−ipξhu,u
a (ξ) |ξ|−2H−1dξ =

∫
R

cos(pξ)hu,u
a (ξ) |ξ|−2H−1dξ.

Moreover, since a is a filter of order K, by Taylor formula one can find C > 0 such that

|hu,u
a (ξ)| ≤ C min

(
1, ξ2K

)
and

∣∣∣∣ d
dξ

hu,u
a (ξ)

∣∣∣∣ ≤ C min
(
1, |ξ|2K−1

)
. (10)

Therefore, when p �= 0, we can integrate by parts∫
R

e−ipξhu,u
a (ξ) |ξ|−2H−1dξ = −

∫
R

sin(pξ)
p

d
dξ

(
hu,u
a (ξ) |ξ|−2H−1

)
dξ.

Then, for any δ < min(2(K − H), 1) with δ > max(1 − 2H, 0),∣∣∣∣∫
R

e−ipξhu,u
a (ξ) |ξ|−2H−1dξ

∣∣∣∣ ≤ |p|−δ

∣∣∣∣∫
R

|ξ|1−δ

∣∣∣∣ d
dξ

(
hu,u
a (ξ) |ξ|−2H−1

)∣∣∣∣dξ

∣∣∣∣ ,
with

∫
R
|ξ|1−δ

∣∣∣ d
dξ

(
hu,u
a (ξ) |ξ|−2H−1

)∣∣∣dξ < +∞ according to (10). Writing hu,v
a (ξ) as

1
2

(∣∣Pa

(
e−iuξ

)
+ Pa

(
e−ivξ

)∣∣2 + i
∣∣Pa

(
e−iuξ

)
+ iPa

(
e−ivξ

)∣∣2 − (1 + i) (hu,u
a + hv,v

a )
)

,

we also get that for any δ < min(2(K − H), 1) with δ > max(1 − 2H, 0), for all p ∈ N,∣∣∣∣∫
R

e−ipξhu,v
a (ξ) |ξ|−2H−1dξ

∣∣∣∣ ≤ C(1 + |p|)−δ.

Therefore
(∫

R
e−ipξhu,v

a (ξ) |ξ|−2H−1dξ
)
p∈Z

is in �2(Z) as soon as one can choose δ > 1/2, which is possible when
K > H + 1

4 . It remains to study the second term. Let ε > 0 and choose r > 0 such that R is differentiable on
R � (−r, r) with |R(j)(ξ)| ≤ ε|ξ|−2H−1−j for j ∈ {0, 1} and |ξ| ≥ r. We write∫

R

e−i pξ
N hu,v

a

(
ξ

N

)
R(ξ)dξ =

∫
|ξ|<r

+
∫
|ξ|≥r

.

For the first integral, since R ∈ L1(R, min (1, |ξ|2K)dξ), we remark that∣∣∣∣∣
∫
|ξ|<r

e−i pξ
N hu,v

a

(
ξ

N

)
R(ξ)dξ

∣∣∣∣∣ ≤ C(r)N−2K ,
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where C(r) is a constant that only depends on r, which may change line by line. For the second integral, for
all p ∈ Z, similar computations as previously leads to∣∣∣∣∣

∫
|ξ|≥r

e−i pξ
N hu,v

a

(
ξ

N

)
R(ξ)dξ

∣∣∣∣∣ ≤ C(r)N−2K + Cε(1 + |p|)−δN−2H ,

for any δ < min(2(K − H), 1) with δ > max(1 − 2H, 0). Therefore, for any |p| ≤ N ,∣∣∣∣∫
R

e−i pξ
N hu,v

a

(
ξ

N

)
R(ξ)dξ

∣∣∣∣ ≤ (C(r)N−2(K−H)−δ + Cε
)

(1 + |p|)−δN−2H .

It follows that one can find C > 0 such that, for all |p| ≤ N ,∣∣∣Γu,v
N,a(p)

∣∣∣ ≤ CN−2H (1 + |p|)−δ with N2HΓu,v
N,a(p) −→

N→+∞
c

∫
R

e−ipξhu,v
a (ξ) |ξ|−2H−1dξ.

Finally, when K > H+1/4 one can choose δ ∈ (1/2, 1) such that Cu,v
a (H) = 2

∑
p∈Z

(∫
R

e−ipξhu,v
a (ξ) |ξ|−2H−1dξ

)2
is finite. By the dominated convergence theorem,

N4H+1Cov (VN,au , VN,av) =
2N

N − lu + 1

N−lu∑
p=−N+lv

(
N2HΓu,v

N,a(p)
)2

−→
N→+∞

c2Cu,v
a (H). �

We can now state our first identification result.

Proposition 1.3. Let X = {X(t); t ∈ R} be a zero mean Gaussian process, with stationary increments and
spectral density f , which satisfies the assumptions of Propositions 1.1 and 1.2. Let a be a filter of order K > H
and u, v ≥ 1 two integers with u �= v. Then, almost surely,

ĤN,a(u, v) =
1

2 log(u/v)
log
(

VN,au

VN,av

)
−→

N→+∞
H.

Moreover, for K > H + 1/4, let us denote

γu,v
a (H) =

1
4 log2(u/v)

(
Cu,u

a (H)
Eu

a (H)2
+

Cv,v
a (H)

Ev
a(H)2

− 2
Cu,v

a (H)
Eu

a (H)Ev
a(H)

)
.

Then, when s > 1
2 ,

√
N
(
ĤN,a(u, v) − H

)
d−→

N→+∞
N (0, γu,v

a (H)) , with

NE

((
ĤN,a(u, v) − H

)2
)

−→
N→+∞

γu,v
a (H)

and, when s ≤ 1
2 ,

E

((
ĤN,a(u, v) − H

)2
)

= O
N→+∞

(
N−2s

)
.

Proof. Following classical computations on Gaussian quadratic forms as in [15] for instance, from Proposi-
tions 1.1 and 1.2 we obtain that for all K > H

(TN,au , TN,av) =
(

VN,au

E (VN,au)
,

VN,av

E (VN,av)

)
−→

N→+∞
(1, 1) a.s.
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with for all K > H + 1/4,
√

N (TN,au − 1, TN,av − 1) d−→
N→+∞

N (0, Σu,v
a (H)) and

NCov
(
(TN,au − 1, TN,av1 − 1)t (TN,au − 1, TN,av − 1)

)
−→

N→+∞
Σu,v

a (H),

where

Σu,v
a (H) =

(
Cu,u

a (H)/Eu
a (H)2 Cu,v

a (H)/Eu
a (H)Ev

a(H)
Cu,v

a (H)/Eu
a (H)Ev

a(H) Cv,v
a (H)/Ev

a(H)2

)
.

Then, using Taylor Formula for the function g(x, y) = log
(

x
y

)
(see Ths. 3.3.11 in [12] for instance) we get that

for K > H almost surely log
(

TN,au

TN,av

)
−→

N→+∞
0 with, for all K > H+1/4,

√
N log

(
TN,au

TN,av

)
d−→

N→+∞
N (0, Γu,v

a (H))

and

NE

(
log
(

TN,au

TN,av

)2
)

−→
N→+∞

Γu,v
a (H),

where Γu,v
a (H) = 4 log(u/v)2γu,v

a (H). Then let us write for u �= v

ĤN,a(u, v) =
1

2 log(u/v)

(
log
(

E (VN,au)
E (VN,av)

)
+ log

(
TN,au

TN,av

))
.

According to Proposition 1.1 it is straightforward to see that for K > H

ĤN,a(u, v) −→
N→+∞

H a.s.

Moreover, for K > H + 1/4 and s > 1/2, Proposition 1.1 leads to

E (VN,au)
E (VN,av)

=
(u

v

)2H
(

1 + o
N→+∞

(1/
√

N)
)

.

So in this case
√

N
(
ĤN,a(u, v) − H

)
d−→

N→+∞
N (0, γu,v

a (H)) and

NE

((
ĤN,a(u, v) − H

)2
)

−→
N→+∞

γu,v
a (H).

Let us point out that if s ≤ 1/2, from Proposition 1.1 using the fact that K > H + 1/4 > H + s/2 we get

E (VN,au)
E (VN,av)

=
(u

v

)2H
(

1 + O
N→+∞

(N−s)
)

.

Therefore,

E

((
ĤN,a(u, v) − H

)2
)

= O
N→+∞

(
N−2s

)
. �

This estimator is used in the next section in order to estimate the anisotropic index of an anisotropic fractional
Brownian field.
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2. Identification of the anisotropic index of anisotropic fractional

Brownian fields

In this section we consider an anisotropic fractional Brownian field

X =
{
X(t) ; t ∈ Rd

}
,

as introduced in [8], which is a zero mean Gaussian random field, with stationary increments and spectral
representation (2). The spectral density is given by (3), namely fh(ξ) = |ξ|−2h(ξ)−d, where h is an even
homogeneous function of degree 0 with values in (0, 1), called anisotropic index. To determine anisotropy of
such a field one could try to estimate its directional regularity by extracting lines of the field along various
directions. However, for anisotropic fractional Brownian fields, this method fails. Actually, when θ is a fixed
direction of the sphere Sd−1, one can prove that the process {X(tθ); t ∈ R} is still a zero mean Gaussian process
with spectral density given by

p ∈ R 
→
∫
〈θ〉⊥

fh (pθ + γ) dγ =
∫
〈θ〉⊥

p−2h(θ+γ)−1
(
1 + |γ|2)−h(θ+γ)−d/2

dγ,

where 〈θ〉⊥ stands for the hyperplane orthogonal to θ. Therefore, according to Proposition 3.6 and Proposi-
tion 3.3 of [8] this process admits a critical Hölder exponent equals to the essential infimum h0 of the function h.
Then, the study of the generalized quadratic variations of such a process can at most allow us to recover h0. To
deal with this obstruction and in order to study processes rather than fields, the authors of [8] have introduced
the Radon transform of such fields.

When a function f is integrable over Rd, one can define its Radon transform on R (see [28] for instance), in
the direction θ, by

Rθf(t) =
∫
〈θ〉⊥

f(s + tθ)ds, for all t ∈ R.

For a function f which does not decay sufficiently at infinity, one can integrate it against a window. Let ρ be
a smooth function defined on 〈θ〉⊥, that compensates the behavior at infinity of f . Then one can define the
windowed Radon transform of f on R, in the direction θ, by

Rθ,ρf(t) =
∫
〈θ〉⊥

f(s + tθ)ρ(s)ds, for all t ∈ R.

We should use strong assumptions on the anisotropic fractional Brownian field X in order to define its windowed
Radon transform as an integral. However, according to Proposition 4.1 of [8], one can define the Radon transform
of X , with a convenient window ρ, in the direction θ, by a discretization of the integral. For notational sake
of simplicity we deal with the direction θ to be θ0 = (0, . . . , 0, 1) and identify the space Rd−1 × {0} to Rd−1.
Let us choose ρ a function of the Schwartz class S (Rd−1

)
, with real values, ie ρ is a smooth function rapidly

decreasing
∀N ∈ N, ∀x ∈ Rd−1, |ρ(x)| ≤ CN (1 + |x|)−N . (11)

Then, the process
2−n(d−1)

∑
s∈2−nZd−1

X (s, t) ρ(s), ∀t ∈ R,

admits a limit in L2(Ω) for the finite dimensional distributions, when n tends to infinity. This limit is called
the Radon transform of X with the window ρ and is denoted by RρX = {RρX(t); t ∈ R}.

Let us remark that one can define the Radon transform of X , with the window ρ, under less restrictive
assumptions on ρ, as soon as the previous limit exists. The existence of the limit process is proved in both [8]
and [7] and relies on the slow increase of the covariance function of X due to its stationary increments and on
its mean square continuity.
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Let us also point out that one can define the Radon transform of X with the window ρ for any direction θ.
Actually, it is sufficient to chose κθ a rotation of Rd that maps θ0 = (0, . . . , 0, 1) onto θ. Since X ◦ κθ is still an
anisotropic fractional Brownian field, with anisotropic index given by h◦κθ, which satisfies the same assumption
as h, we just have to consider the Radon transform of this field with the window ρ.

By linearity of such a transformation, the Radon transform of X with the window ρ is still a zero mean
Gaussian process with stationary increments and it admits a spectral density given by the Radon transform of
the spectral density fh of X , given by (3), against the window |ρ̂|2,

R|ρ̂|2fh(p) =
∫

Rd−1
fh(γ, p) |ρ̂(γ)|2 dγ, for all p ∈ R, (12)

where ρ̂ is the (d− 1)-dimensional Fourier transform of the window ρ. To estimate the Hölder regularity of this
process, we will use its generalized quadratic variations as introduced in the section 1. Therefore, we have to
study the asymptotic behavior of R|ρ̂|2fh in order to apply Proposition 1.3. We prove and use the following
general result on the windowed Radon transform.

Proposition 2.1. Let h and c be given functions on Rd. Let α > 0. We assume that h and c are even
homogeneous functions of degree 0, Lipschitz of order α on the sphere, with h positive.

Let δ0 > 0. Let f be a function defined on Rd such that, for all δ ∈ (0, δ0),

f(ξ) =
c(ξ)

|ξ|h(ξ)
+ o

(
1

|ξ|h(ξ)+δ

)
when |ξ| → +∞.

Choose ρ ∈ S (Rd−1
)

such that
∫

Rd−1 ρ(γ)dγ = 1. Then, the Radon transform of f with the window ρ satisfies,
for all δ ∈ (0, δ1),

Rρf(p) =
c(θ0)

|p|h(θ0)
+ o

(
1

|p|h(θ0)+δ

)
when p ∈ R and |p| → +∞,

with δ1 = min (δ0, α) .

Proof. Let ρ be a function of S (Rd−1
)

with
∫

Rd−1 ρ(γ)dγ = 1. For p ∈ R, with |p| large enough, one can define
the integral

Rρf(p) =
∫

Rd−1
f(γ, p)ρ(γ)dγ.

We want to estimate its asymptotics when |p| → +∞. First, let us assume that there exists A > 1 such that,
for ξ ∈ Rd and |ξ| > A,

f(ξ) =
c(ξ)

|ξ|h(ξ)
,

with h and c satisfying assumptions of Proposition 2.1. In this case, we will prove that for all 0 < δ < α,

Rρf(p) = f(pθ0) + o(|p|−h(θ0)−δ) when p ∈ R and |p| → +∞. (13)

For |p| > A, since
∫

Rd−1 ρ(γ)dγ = 1, let us write

Rρf(p) = f(pθ0) +
∫

Rd−1
(f(γ, p)− f(pθ0)) ρ(γ)dγ.

Then, it is enough to give an upper bound for∫
Rd−1

(f(γ, p) − f(pθ0)) ρ(γ)dγ.
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Let us denote h
(
Sd−1

)
= [h0, h1] with h0 > 0 by assumption on h. Since ρ is rapidly decreasing, for all s > 0

and N ∈ N, ∫
|γ|>|p|s

(f(γ, p) − f(pθ0)) ρ(γ)dγ = O|p|→+∞(|p|−h0−Ns),

which is negligible compared to |p|−h(θ0)−δ as soon as N > δ+h1−h0
s .

Thus, it is sufficient to consider

∆s(p) =
∫
|γ|≤|p|s

(f(γ, p)− f(pθ0)) ρ(γ)dγ.

But

|∆s(p)| ≤
∫
|γ|≤|p|s

|c(γ, p)|
∣∣∣∣∣ 1

(|γ|2 + p2)h(γ,p)/2)
− 1

|p|h(θ0)

∣∣∣∣∣ |ρ(γ)|dγ

+
1

|p|h(θ0)

∫
|γ|≤|p|s

|c(γ, p) − c(θ0)||ρ(γ)|dγ.

Let us use the Lipschitz assumptions on h and c.

Lemma 2.2. If g is an homogeneous function of degree 0, Lipschitz of order α on the sphere Sd−1, then there
exists C > 0 such that for all p �= 0 and γ ∈ Rd−1,

|g(γ, p) − g(0, p)| ≤ C min
(( |γ|

|p|
)α

, 1
)

.

Proof. The function g is continuous on the sphere and thus it is bounded. Then, for p �= 0 and γ ∈ Rd−1,

|g(γ, p) − g(0, p)| ≤ 2‖g‖∞.

Moreover, g is Lipschitz of order α on the sphere. Then, there exists C > 0 such that, for p �= 0,

|g(γ, p) − g(0, p)| ≤
∣∣∣∣ (γ, p)
(|γ|2 + p2)1/2

− (0, p)
|p|

∣∣∣∣α ·

But ∣∣∣∣ (γ, p)
(|γ|2 + p2)1/2

− (0, p)
|p|

∣∣∣∣2 = 2

(
1 −

(
1 +

|γ|2
p2

)−1/2
)

≤ |γ|2
p2

,

which concludes the proof of Lemma 2.2. �

Let us recall that c is an even homogeneous function thus c(θ0) = c(0, p), for all p �= 0. Then, since c is Lipschitz
of order α, one can find C1 > 0 such that

∆s,2(p) =
1

|p|h(θ0)

∫
|γ|≤|p|s

|c(γ, p) − c(0, p)||ρ(γ)|dγ ≤ C1|p|−h(θ0)−α(1−s),

which is negligible compared to |p|−h(θ0)−δ as soon as δ < α(1 − s).
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It remains to consider

∆s,1(p) =
∫
|γ|≤|p|s

|c(γ, p)|
∣∣∣∣∣ 1

(|γ|2 + p2)h(γ,p)/2
− 1

|p|h(θ0)

∣∣∣∣∣ |ρ(γ)|dγ

=
1

|p|h(θ0)

∫
|γ|≤|p|s

|c(γ, p)|
∣∣∣∣∣ |p|h(θ0)

(|γ|2 + p2)h(γ,p)/2
− 1

∣∣∣∣∣ |ρ(γ)|dγ.

Let us write
|p|h(θ0)

(|γ|2 + p2)h(γ,p)/2
= el(p),

where, for p �= 0,

l(p) = h(θ0) ln |p| − 1
2
h(γ, p) ln

(|p|2 + |γ|2)
= (h(0, p) − h(γ, p)) ln |p| − 1

2
h(γ, p) ln

(
1 +

|γ|2
|p|2

)
,

writing h(θ0) = h(0, p) since h is an even homogeneous function. Since h is Lipschitz of order α, by Lemma 2.2,
for s < 1, there exists C2 > 0 such that, for |p| ≥ A > e and |γ| ≤ |p|s,

|l(p)| ≤ C2

(( |γ|
|p|
)α

ln |p| + |γ|2
|p|2

)
≤ 2C2

( |γ|
|p|
)α

ln |p| ≤ 2C2|p|−α(1−s) ln |p|.

The function t 
→ |t|−α(1−s) ln |t| tends to 0 at infinity. Thus one can find As > 0 such that for |p| > As we get
|l(p)| < 1. Then, for |p| > As

|el(p) − 1| ≤ e|l(p)| ≤ 2eC2|p|−α(1−s) ln |p|,
and finally

∆s,1(p) ≤ 2eC2‖c‖∞|p|−h(θ0)−α(1−s) ln |p|.
For δ < α, since |∆s(p)| ≤ ∆s,1(p) + ∆s,2(p), taking s ∈ (0, α−δ

α ) ⊂ (0, 1) we get

∆s(p) = o|p|→+∞

(
1

|p|h(θ0)+δ

)
and (13) follows. In the general case, let us assume that, for all δ ∈ (0, δ0) and ξ ∈ Rd,

f(ξ) =
c(ξ)

|ξ|h(ξ)
+ o

(
1

|ξ|h(ξ)+δ

)
when |ξ| → +∞.

Replacing ρ by |ρ| and h by h + δ in the special case above, we get the result for the remainder. �
Let us remark that to simplify the statement of this proposition, we assumed the window to be in the Schwartz
class. However it is proved in [7] p. 85 that the result still holds for a window ρ ∈ L1(Rd−1) that satisfies

|ρ(γ)| = O

(
1

|γ|M+d−1

)
when γ ∈ Rd−1 and |γ| → +∞, (14)

with M > h1 − h0 for h
(
Sd−1

)
= [h0, h1]. In this case δ1 = min(δ0, α

M+h0−h1
M+α ).
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We can now state our main result concerning the identification of the anisotropic index of an anisotropic
fractional Brownian field. We keep the notations of part 1 for the generalized quadratic variations of a 1D-process
and recall that we fix the direction θ0 = (0, . . . , 0, 1) ∈ Sd−1.

Theorem 2.3. Let X = {X(t); t ∈ Rd} be an anisotropic fractional Brownian field, with anisotropic index h
given by an even homogeneous function of degree 0 with values in (0, 1), which is assumed to be in C1

(
Sd−1

)
.

Let ρ be a window in S (Rd−1
)
. Let RρX be the Radon transform of the field X with the window ρ.

Let a be a filter of order K and u, v ≥ 1 two integers with u �= v. If K > h(θ0) + d−1
2 then almost surely

̂hN,a(θ0)(u, v) =
1

2 log(u/v)
log
(

VN,au(RρX)
VN,av(RρX)

)
− d − 1

2
−→

N→+∞
h(θ0).

Moreover, if K > h(θ0) + d−1
2 + 1/4

√
N
(

̂hN,a(θ0)(u, v) − h(θ0)
)

d−→
N→+∞

N
(

0, γu,v
a

(
h(θ0) +

d − 1
2

))
,

with

NE

((
̂hN,a(θ0)(u, v) − h(θ0)

)2
)

−→
N→+∞

γu,v
a

(
h(θ0) +

d − 1
2

)
.

Proof. It is sufficient to prove that the spectral density of RρX satisfies the assumption of Proposition 1.3.
From (12), this spectral density is given by the function

R|ρ̂|2fh(p) =
∫

Rd−1
fh((γ, p)) |ρ̂(γ)|2 dγ, for all p ∈ R,

with fh given by (3). Since we can divide RρX by a constant, we can assume that
∫

Rd−1 |ρ̂(γ)|2 dγ = 1. Then,
since 2h + d satisfies assumptions of Proposition 2.1 with α = 1, by Proposition 2.1, for all δ < 1,

R|ρ̂|2fh(p) =
1

|p|2h(θ0)+d
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+δ

)
.

We can also write this as

R|ρ̂|2fh(p) =
1

|p|2(h(θ0)+
d−1
2 )+1

+ o
|p|→+∞

(
1

|p|2(h(θ0)+
d−1
2 )+1+δ

)
.

Moreover, since h ∈ C1
(
Sd−1

)
, the function g(γ) := h(γ, 1) is differentiable on Rd−1 and, for γ, x ∈ Rd−1,

Dγg(x) =
1

(|γ|2 + 1)1/2
D (γ,1)

|(γ,1)|
h

(
(x, 0) − γ · x

|γ|2 + 1
(γ, 1)

)
,

such that
|Dγg(x)| ≤ 2‖Dh‖∞|x|.

Thus, the spectral density fh is differentiable on Rd � {0}. Let (γ, p) ∈ Rd−1 × R∗, since h(γ, p) = g(γ/p), we
get

∂

∂p
fh(γ, p) = fh(γ, p)

(
−D γ

p
g

(
− γ

p2

)
ln
(|γ|2 + p2

)− p (2h(γ, p) + d)
|γ|2 + p2

)
.
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It follows that the spectral density R|ρ̂|2fh is differentiable on R � {0} and for p �= 0 we have

(
R|ρ̂|2fh

)′
(p) =

∫
Rd−1

∂

∂p
fh(γ, p) |ρ̂(γ)|2 dγ.

Let us write
∂

∂p
fh(γ, p) =

|γ|
p2

F1(γ, p) − pF2(γ, p),

with

F1(γ, p) = D γ
p
g

(
− γ

|γ|
)

ln
(|γ|2 + p2

)
fh(γ, p)

and
F2(γ, p) = (2h((γ, p)) + d) fh+1(γ, p).

Therefore, (
R|ρ̂|2fh

)′
(p) =

1
p2

R|γ||ρ̂|2F1(p) − pR|ρ̂|2F2(p).

Then, by Proposition 2.1, whenever δ < 1,

R|ρ̂|2F2(p) =
2h(θ0) + d

|p|2h(θ0)+d+2
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+2+δ

)
.

Moreover, for any ε > 0 small enough

|F1(γ, p)| ≤ 2‖Dh‖∞fh−ε(γ, p).

Since |γ| |ρ̂|2 is integrable over Rd−1 and rapidly decreasing, following the same lines as in the proof of Propo-
sition 2.1, we get ∣∣∣R|γ||ρ̂|2F1(p)

∣∣∣ ≤ C|p|−2h(θ0)−d+2ε
.

This allows us to conclude that

(
R|ρ̂|2fh

)′
(p) = − 2h(θ0) + d

|p|2h(θ0)+d+1
+ o

|p|→+∞

(
1

|p|2h(θ0)+d+1

)
.

Therefore RρX satisfies the assumption of Proposition 1.3 with H = h(θ0) + d−1
2 and s < 1, which concludes

the proof. �

Let us remark that if we choose a window such that |ρ̂|2 only satisfies (14) for M > 2(h1 − h0) with h
(
Sd−1

)
=

[h0, h1], the estimator ̂hN,a(θ0)(u, v) still tends almost surely to h(θ0). However the rate of convergence will
depend on M . Actually the result of Theorem 2.3 holds when M ≥ 1+4(h1−h0) whereas for M < 1+4(h1−h0),
Proposition 1.3 shows that, for all s < M−2(h1−h0)

M+1 ,

Ns
(

̂hN,a(θ0)(u, v) − h(θ0)
)

L2(Ω)−→
N→+∞

0.

Let us point out that we have restricted h to have values in (0, 1) so that the anisotropic fractional Brownian
field is well defined. This can be weakened by considering fields with higher order stationary increments or with
spectral density asymptotically of the order of fh. Similar results can be obtained with the further assumption
that the partial derivatives of order 1 are asymptotically of the order of the partial derivatives of fh (see [7] for
example).
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For numerical applications, one has to approximate the Radon transform of X . Following [2] we replace
RρX(t) by

IM (t) = M−(d−1)
∑

s∈Zd−1

X
(
M−1s, t

)
ρ(M−1s), (15)

for ρ a smooth window with compact support and M ≥ 1 an integer. Let us denote for a a filter of order K
and length l and N ≤ M ,

T M
N,a(X) =

1
N − l + 1

N−l∑
p=0

(
l∑

k=0

akIM

(
p + k

N

))2

. (16)

The key point of the proof is to estimate the error due to the approximation of VN,a (RρX) by T M
N,a(X). Let us

denote H = h(θ0) + d−1
2 . Under the assumptions of Theorem 2.3, following the same lines as in [2], for α > 0

with α < h0 = min h
Sd−1

, one can prove that there exists a positive finite random variable C such that, for all

N ≥ 1. ∣∣∣T M
N,a(X)1/2 − VN,a (RρX)1/2

∣∣∣ ≤ CM−α a.s.

Moreover, since for K > H by Proposition 1.1 VN,a(RρX)
E(VN,a(RρX)) −→

N→+∞
1 a.s., one can find a positive finite random

variable C′ such that

VN,a (RρX)−1/2 ≤ C′NH a.s.

Then, for M−αNH small enough, writing

log

(
T M

N,a(X)
VN,a (RρX)

)
= 2 log

(
1 +

T M
N,a(X)1/2 − VN,a (RρX)1/2

VN,a (RρX)1/2

)
,

one can find a positive finite random variable C′′ such that, a.s.∣∣∣∣∣log

(
T M

N,a(X)
VN,a (RρX)

)∣∣∣∣∣ ≤ C′′M−αNH .

We can state the following result.

Proposition 2.4. We keep the assumptions of Theorem 2.3 and take ρ with compact support. Let H =
h(θ0) + d−1

2 and h0 = min h
Sd−1

. If K > H and q > H/h0 then, almost surely,

̂HN,a(θ0)(u, v) =
1

2 log(u/v)
log

(
T Nq

N,au(X)
T Nq

N,av(X)

)
− d − 1

2
−→

N→+∞
h(θ0),

Moreover, if K > H + 1/4 and q > (H + 1/2)/h0 then

√
N
(

̂HN,a(θ0)(u, v) − h(θ0)
)

d−→
N→+∞

N (0, γu,v
a (H)) .

3. Numerical study

In this section we present a preliminary evaluation of projection-based estimators studied above. We first
describe the synthetic datasets used for our evaluation and then discuss our estimation results.
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3.1. Simulation

A lot of numerical methods have been proposed these last years to simulate 1-dimensional fractional Brownian
motion (fBm). Most of them give rise to approximate syntheses, such as the midpoint displacement method
(see [23], for instance), the wavelet based decomposition ([1, 22, 27], etc.), or more recently a method based
on correlated random walks [14]. A few of them can be applied not only for 1-dimensional fBm but also to
simulate 2-dimensional (anisotropic) fractional Brownian fields and lead to approximate syntheses. Of course
there exist exact synthesis methods based on the Choleski decomposition of the covariance function. This yields
numerical problems due to the size of the matrix. In order to have fast synthesis one can use the stationarity
of the increments by applying the embedding circulant matrix method [13]. By this way, we easily obtain fast
and exact synthesis of 1-dimensional fBm [26]. Some authors, as in [9] and [17], apply this method for higher
dimension but this does not yield to exact synthesis. Finally, Stein proposed a fast and exact synthesis method
for isotropic fBm surfaces in [29].

For a preliminary evaluation, we used this method for generating a dataset containing three subsets of
1000 fBm fields simulated with each of the Hurst parameter values: h = 0.2 (low regularity) h = 0.5 (medium
regularity) h = 0.7 (high regularity). fBm fields were generated on a discrete grid G of size (M + 1)× (M + 1)
(M = 29 = 512) which is defined by

G =
{(

k1

M
,
k2

M

)
, 0 ≤ k1, k2 ≤ M

}
. (17)

The method was implemented in collaboration with A. Fraysse and C. Lacaux, and the corresponding matlab
codes are available at http://ciel.ccsd.cnrs.fr/ciel-00000016.

However, this method can not be generalized to simulate anisotropic fields. Hence we also used a spectral
representation approximation (SRA) technique to generate anisotropic fractional Brownian fields (afB). The
regularity of two-dimensional afB we generated differs in both vertical and horizontal directions. The spectral
densities of these fields are of the form

∀ ξ = (ξ1, ξ2) ∈ R2 � {(0, 0)}, f(ξ) =
{ |ξ|−(2hv+2), if |ξ1| < |ξ2|

|ξ|−(2hh+2), otherwise.
(18)

In this expression, hh and hv form a pair of parameters in (0, 1) which characterize the anisotropy of generated
fields. Their regularity is then given by min(hv, hh). We used an approximation of the spectral representation
in Equation (2) which was obtained by discretization. The discrete approximation is given by

x

(
k1

M
,
k2

M

)
= �

(
y

(
k1

M
,
k2

M

)
− y(0, 0)

)
, for 0 ≤ k1, k2 ≤ M,

with

y

(
k1

M
,
k2

M

)
= π

M∑
n1=−M+1

M∑
n2=−M+1

z(n1, n2) g

(
πn1, πn2

)
e−

2iπ
2M (n1k1+n2k2), (19)

where z(n1, n2) are (2M)2 independant realizations of complex random variables whose real and imaginary
components are two uncorrelated zero-mean standard gaussian variables and the function g(x, y) = f1/2(x, y)
for all (x, y) ∈ R2 � {(0, 0)} and g(0, 0) = 0. From a practical point of view, the sum in Equation (19) can be
interpreted as a filtering in the Fourier domain of a white noise z by a low-pass linear filter characterized by
the transfer function g. Based on this method, afB fields approximations can be easily and quickly simulated
using the fast Fourier transform. Similar simulations are used in [16] for an evaluation of a different estimator.
Such an approach can also be extended to the simulation of 3D fields and anisotropic fields having more than
two different directional regularities. As an illustration, some simulation examples are shown in Figure 1.

By this way, we generated a second evaluation dataset containing six subsets of 1000 fields on the grid
G for each of the following regularity parameter pairs: low isotropic regularity (hh = 0.2, hv = 0.2), medium
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(a) (b) (c)

Figure 1. Some simulations of afB surfaces. Horizontal and vertical regularity parameters
used for simulations are 0.7 and 0.7 in (a), 0.7 and 0.5 in (b) and 0.7 and 0.2 in (c).

isotropic regularity (hh = 0.5, hv = 0.5), high isotropic regularity (hh = 0.7, hv = 0.7), high/medium anisotropic
regularity (hh = 0.7, hv = 0.5), high/low anisotropic regularity (hh = 0.7, hv = 0.2), medium/low anisotropic
regularity (hh = 0.5, hv = 0.2).

3.2. Estimation

Given a field realization x, we first computed discrete Radon transforms Ih and Iv in both horizontal and
vertical directions, as defined in Equation (15) for a window function of the shape 1[0,1]: for all 0 ≤ k, l ≤ M ,

Ih

(
k

M

)
=

1
M

M∑
k2=0

x

(
k

M
,
k2

M

)
and Iv

(
l

M

)
=

1
M

M∑
k1=0

x

(
k1

M
,

l

M

)
. (20)

Then we computed generalized quadratic variations T ν
e,1 for both directions (e = v, h), as defined in Equa-

tion (16), with the second order filter a1 = (1,−2, 1) and a step of size 1/N where N = M/2ν , for ν in
{0, 1, 2, 3}:

T ν
e,1 =

1
(M/2ν − 1)

M/2ν−2∑
p=0

(
Ie

(
2ν p

M

)
− 2 Ie

(
2ν p + 1

M

)
+ Ie

(
2ν p + 2

M

))2

. (21)

We also computed generalized quadratic variations T ν
e,2 with the dilated second order filter a2 = (1, 0,−2, 0, 1):

T ν
e,2 =

1
(M/2ν − 3)

M/2ν−4∑
p=0

(
Ie

(
2ν p

M

)
− 2 Ie

(
2ν p + 2

M

)
+ Ie

(
2ν p + 4

M

))2

· (22)

Finally, we obtained the projection-based estimate ĥν
e of the index he of X in the direction e (e = v, h) for

ν ∈ {0, · · · , 3} as

ĥν
e =

1
2 log(2)

log
(

T ν
e,2

T ν
e,1

)
− 1

2
· (23)

For the evaluation, we computed empirical biases and standard deviations of estimators over sets of simulated
fields having same characteristics. Empirical biases were obtained as a difference between the mean parameter
estimates and the real parameter value. In order to enhance the estimator ability to capture anisotropic
properties, we also computed biases and standard deviations of differences between horizontal and vertical
estimates. Whole results are reported in Tables 1 and 2.

On Table 1, we observe that standard deviations of estimation errors increase as the subsampling factor 2ν

increase, meaning that subsambling of the projected signal has an effect on the estimator stability. However,
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Table 1. Evaluation of directional regularity estimators on synthetic fBm surfaces of Hurst
index h simulated using the Stein’s method of exact synthesis. Values bh and bv are empirical
biases of horizontal and vertical regularity estimators and values σh and σv are their associated
standard deviations. Values bh,v = bh−bv are differences between bias. Values σh,v are standard
deviations of differences between horizontal and vertical regularity estimates.

h ν bh±σh bv ± σv bh,v±σh,v

0.7 0 –0.047±0.049 –0.045± 0.045 –0.002±0.069
0.7 1 –0.012±0.056 –0.017± 0.061 0.005±0.085
0.7 2 –0.03±0.081 –0.023± 0.093 –0.007±0.124
0.7 3 –0.054±0.113 –0.04± 0.114 –0.014±0.158
0.5 0 –0.092±0.052 –0.095± 0.052 0.003±0.073
0.5 1 –0.034±0.069 –0.035± 0.071 0.001±0.099
0.5 2 –0.007±0.099 –0.031± 0.095 0.024±0.132
0.5 3 –0.029±0.131 –0.023± 0.136 –0.006±0.192
0.2 0 –0.239±0.055 –0.245± 0.062 0.006±0.082
0.2 1 –0.112±0.079 –0.131± 0.082 0.019±0.119
0.2 2 –0.041±0.113 –0.039± 0.12 –0.002±0.162
0.2 3 0.002±0.163 –0.039± 0.147 0.041±0.238

standard deviations do not vary significantly when the subsampling factor is fixed and parameter values are
changed. For instance, when ν = 0, standard deviations are 0.049 and 0.055 when parameters values are 0.7 and
0.2, respectively. The order of standard deviation variations is about 10−2, for any fixed subsampling factor.

Estimators underestimate the real parameter value. The underestimation increases as the parameter value
decreases. For instance, estimation biases obtained for ν = 0 are −0.047, −0.092 and −0.239 when parameter
values are 0.7, 0.5 and 0.2, respectively. Subsampling the projected signal reduces the underestimation bias.
For instance, when h = 0.2, the bias is reduced to −0.041 when the subsampling factor is increased to 22.

On Table 2, we observe that estimation biases obtained on fields simulated using the SRA technique differ
from those of Table 1. Indeed, these biases indicate that estimators overestimate parameter values. This is
probably due to the SRA technique which generates fields which are smoother than what they should be. The
best evaluation of estimator biases are those of Table 1 which were obtained on exact simulations of fBm.
However, we can notice that standard deviations of Table 2 are consistent with those of Table 1. Despite
simulation errors of the SRA technique, we can rely on results of Table 2 to get a sense of the estimator
properties when fields are anisotropic. In particular, we see that estimator biases and standard deviations do
not vary significantly from isotropic to anisotropic simulations. When the subsampling factor is fixed, standard
deviations are about the same for isotropic and anisotropic simulations. On anisotropic simulations, biases still
vary when estimated parameter values are changed. But, the bias of a regularity estimate in one direction does
not depend on the parameter value estimated in the other direction. For instance, when ν = 0, biases for the
estimation of parameter value h = 0.2 are about 0.15 in all the simulation cases involving an index value of 0.2
((hh, hv) = (0.2, 0.2), (0.7, 0.2), (0.5, 0.2)). In conclusion, the field anisotropy seems not to have any effects on
the estimator stability.

Besides, we observe on the last column of Tables 1 and 2 that standard deviations of estimate differences are
about the same when ν is fixed. In particular, when ν = 0, standard deviations are about 0.065. On isotropic
cases, biases are about 0. This suggests that it is possible to distinguish between isotropic fields and anisotropic
fields for which absolute differences between horizontal and vertical regularities are above 0.065.
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Table 2. Evaluation of directional regularity estimators on synthetic afB surfaces simulated
using the SRA method of approximate synthesis. Values hh and hv are horizontal and vertical
regularity parameters used for field simulations. Values bh and bv are empirical biases of
horizontal and vertical regularity estimators and values σh and σv are their associated standard
deviations. Values bh,v = bh − bv are differences between bias. Values σh,v are standard
deviations of differences between horizontal and vertical regularity estimates.

hh hv ν bh ± σh bv ± σv bh,v±σh,v

0.7 0.7 0 0.068± 0.041 0.069± 0.041 -0.001±0.06
0.7 0.7 1 0.003± 0.063 0.± 0.059 0.003±0.087
0.7 0.7 2 –0.012± 0.09 –0.014± 0.087 0.002±0.126
0.7 0.7 3 –0.021± 0.125 –0.024± 0.13 0.003±0.182
0.5 0.5 0 0.1± 0.046 0.102± 0.044 –0.002±0.065
0.5 0.5 1 0.012± 0.07 0.009± 0.067 0.003±0.097
0.5 0.5 2 –0.007± 0.1 –0.008± 0.097 0.001±0.139
0.5 0.5 3 –0.013± 0.142 –0.015± 0.146 0.002±0.207
0.2 0.2 0 0.156± 0.052 0.16± 0.05 –0.004±0.073
0.2 0.2 1 0.034± 0.08 0.03± 0.078 0.004±0.112
0.2 0.2 2 0.004± 0.113 0.004± 0.112 0.±0.158
0.2 0.2 3 –0.004± 0.163 –0.007± 0.164 0.003±0.238
0.7 0.5 0 0.071± 0.041 0.1± 0.044 –0.029±0.061
0.7 0.5 1 0.001± 0.064 0.002± 0.067 –0.001±0.095
0.7 0.5 2 –0.015± 0.089 –0.005± 0.101 –0.01±0.133
0.7 0.5 3 –0.026± 0.131 –0.014± 0.137 –0.012±0.189
0.7 0.2 0 0.072± 0.041 0.157± 0.052 –0.085±0.065
0.7 0.2 1 –0.002± 0.061 0.029± 0.078 –0.031±0.1
0.7 0.2 2 –0.014± 0.087 0.01± 0.114 –0.024±0.14
0.7 0.2 3 –0.022± 0.128 –0.009± 0.163 –0.013±0.21
0.5 0.2 0 0.098± 0.045 0.159± 0.053 –0.061±0.069
0.5 0.2 1 0.006± 0.072 0.032± 0.079 –0.026±0.108
0.5 0.2 2 –0.003± 0.103 0.007± 0.117 –0.01±0.16
0.5 0.2 3 –0.002± 0.142 –0.009± 0.163 0.007±0.211
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