
ESAIM: PS ESAIM: Probability and Statistics
August 2007, Vol. 11, p. 412–426 www.edpsciences.org/ps
DOI: 10.1051/ps:2007027

TOWARD THE BEST CONSTANT FACTOR
FOR THE RADEMACHER-GAUSSIAN TAIL COMPARISON

Iosif Pinelis
1

Abstract. It is proved that the best constant factor in the Rademacher-Gaussian tail comparison is
between two explicitly defined absolute constants c1 and c2 such that c2 ≈ 1.01 c1. A discussion of
relative merits of this result versus limit theorems is given.
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Introduction and summary

Let ε1, . . . , εn be independent Rademacher random variables (r.v.’s), so that P(εi = 1) = P(εi = −1) = 1
2 for

all i. Let
Sn := a1ε1 + · · · + anεn,

where a1, . . . , an are any real numbers such that

a2
1 + · · · + a2

n = 1.

The best upper exponential bound on the tail probability P(Z � x) for a standard normal random variable Z and
a nonnegative number x is inft�0 e−tx E etZ = e−x2/2. Thus, a factor of the order of magnitude of 1

x is “missing”
in this bound, compared with the asymptotics P(Z � x) ∼ 1

x ϕ(x) as x → ∞, where ϕ(x) := e−x2/2/
√

2π is the
density function of Z. Now it should be clear that any exponential upper bound on the tail probabilities for
sums of independent random variables must be missing the 1

x factor.
Eaton [6] obtained an upper bound on P(Sn � x), which is asymptotic to c3 P(Z � x) as x → ∞, where

c3 :=
2e3

9
≈ 4.46,

and he conjectured that P(Sn � x) � c3
1
x ϕ(x) for x >

√
2. The stronger form of this conjecture,

P(Sn � x) � c P(Z � x) (1)
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for all x ∈ R with c = c3 was proved by Pinelis [11], along with a multidimensional extension.
Edelman [7] proposed inequality P(Sn � x) � P (Z � x − 1.5/x) for all x > 0, but his proof appears to have

a gap. A more precise upper bound, with ln c3 = 1.495 . . . in place of 1.5, was recently shown [20] to be a rather
easy corollary of the mentioned result of [11]. Various generalizations and improvements of inequality (1) as
well as related results were given by Pinelis [12, 13, 15–17,19, 20] and Bentkus [1–3].

Bobkov, Götze and Houdré (BGH) [4] gave a simple proof of (1) with a constant factor c ≈ 12.01. Their
method was based on the Chapman-Kolmogorov identity for the Markov chain (Sn). Such an identity was used,
e.g., in [14] to disprove a conjecture by Graversen and Peškir [9] on maxk�n |Sk|.

In this paper, we shall show that a modification of the BGH method can be used to obtain inequality (1)
with a constant factor c ≈ 1.01 c∗, where c∗ is the best (that is, the smallest) possible constant factor c in (1).

Let Φ and r denote the tail function of Z and the inverse Mills ratio:

Φ(x) := P(Z � x) =
∫ ∞

x

ϕ(u) du and r :=
ϕ

Φ
·

Theorem 1 (Main). For the least possible absolute constant factor c∗ in inequality (1) one has

c∗ ∈ [c1, c2] ≈ [3.18, 3.22], where

c1 :=
1

4Φ(
√

2)
and c2 := c1 ·

(
1 + 1

250

(
1 + r(

√
3 )

)) ≈ c1 · 1.01.

Here we shall present just one application of Theorem 1, to self-normalized sums

Vn :=
X1 + · · · + Xn√
X2

1 + · · · + X2
n

,

where, following Efron [8], we assume that the Xi’s satisfy the orthant symmetry condition: the joint distribution
of δ1X1, . . . , δnXn is the same for any choice of signs δ1, . . . , δn ∈ {1,−1}, so that, in particular, each Xi is
symmetrically distributed. It suffices that the Xi’s be independent and symmetrically (but not necessarily
identically) distributed. In particular, Vn = Sn if Xi = aiεi ∀i. It was noted by Efron that (i) Student’s

statistic Tn is a monotonic function of the self-normalized sum: Tn =
√

n−1
n Vn/

√
1 − V 2

n /n and (ii) the
orthant symmetry implies in general that the distribution of Vn is a mixture of the distributions of normalized
Rademacher sums Sn. Thus, one obtains

Corollary 1. Theorem 1 holds with Vn in place of Sn.

Various limit theorems for sums and self-normalized sums are available. In particular, the central limit
theorem approximation for P(Sn � x) and P(Vn � x) is simply P(Z � x), without any extra factor c. However,
(i) such asymptotic relations, without an upper bound on the rate of convergence, are impossible to use in
statistical practice when one needs to be certain that the tail probability does not exceed a prescribed level;
(ii) when an upper bound (say of the Berry-Esseen type) on the rate of convergence is available, usually it is
relatively too large to be useful in statistics, especially in the tail area; (iii) usually, large deviation asymptotics
are valid at best in the zone x = o(n), and this zone is defined only qualitatively; (iv) the summands X1, . . . , Xn

are usually required to be identically, or nearly identically, distributed. If these conditions fail to hold then
– as Theorem 1, Corollary 1, and the discussion below in the beginning of Section 1 show – the asymptotic
approximations may be inadequate. Also, it was pointed out in Theorem 2.8 of [11], that, since the normal
tail decreases fast, inequality (1) even with c ≈ 4.46 implies that relevant quantiles of Sn and Vn may exceed
the corresponding standard normal quantiles only by a relatively small amount; thus, one can use Corollary 1
rather efficiently to test symmetry even for non-i.i.d. observations.
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Figure 1. Ratio of the Rademacher and Gaussian tails for n = 100 and a1 = · · · = a100 = 1
10 .

1. Proof of Theorem 1

Theorem 1 follows immediately from Lemma 1, Theorem 2, and Lemma 3, stated in Section 1.1 below. In
particular, Lemma 3 implies that the upper bound h1(x) on P(Sn � x) provided by Theorem 2 is somewhat
better than the upper bound c2 P(Z � x), implied by Theorem 1.

While Sn represents a simplest case of the sum of independent non-identically distributed r.v.’s, it is still
very difficult to control in a precise manner. Figure 1 shows the graph of the ratio κ(x) := P(Sn � x)/ P(Z � x)
for n = 100 and a1 = · · · = an.

One can see that even for such a fairly large value of n and equal coefficients a1, . . . , an, ratio κ(x) oscillates
rather wildly. In view of this, the existence of a high-precision inductive argument in the general setting with
possibly unequal ai’s may seem very unlikely. However, such an argument will be presented in this paper.

The key idea in the proof of Theorem 1 is the construction of the upper bound h1 and, in particular, the
function g defined by (3) and (2), which allows an inductive argument to prove Theorem 2, a refined version of
Theorem 1.

The proof of Theorem 2 is based on a number of lemmas. The proofs of all lemmas are deferred to Section 1.2.

1.1. Statements of lemmas and the proof of Theorem 2

Lemma 1. One has c∗ � c1.

For a ∈ [0, 1) and x ∈ R, introduce

g(x) := c1 ·
(
1 + 1

250

(
1 + r(x)

))
Φ(x) = c1

250 · (251 Φ(x) + ϕ(x)
)
; (2)

h(x) := c1 ·
(
1 + 1

250

(
1 + r(

√
3 )

))
Φ(x) = c2 · Φ(x);
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h1(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x � 0,
1
2 if 0 < x � 1,
1

2x2 if 1 � x <
√

2,
g(x) if

√
2 � x �

√
3,

h(x) if x �
√

3;

(3)

K(a, x) := h1(u) + h1(v) − 2h1(x), where (4)

u := u(a, x) :=
x − a√
1 − a2

and (5)

v := v(a, x) :=
x + a√
1 − a2

. (6)

Theorem 2 (Refined). One has
P(Sn � x) � h1(x) (7)

for all x ∈ R.

Lemma 2. One has g � h on (−∞,
√

3 ] and g � h on [
√

3,∞).

Lemma 3. One has h1 � h on R.

Lemma 4. One has K(a, x) � 0 for all (a, x) ∈ [0, 1) × [
√

2,
√

3 ].

Lemma 5. One has K(a, x) � 0 for all (a, x) ∈ [0, 1) × [
√

3,∞).

Now we can present

Proof of Theorem 2. Theorem 2 will be proved by induction in n. It is obvious for n = 1. Let now n ∈ {2, 3, . . .}
and assume that Theorem 2 holds with n − 1 in place of n.

Note that for x � 0 inequality (7) is trivial. For x ∈ (0,
√

2), it follows by the symmetry of Sn and
Chebyshev’s inequality. Therefore, assume without loss of generality that x �

√
2 and 0 � an < 1. By the

Chapman-Kolmogorov identity and induction,

P(Sn � x) = 1
2 P(Sn−1 � x − an) + 1

2 P(Sn−1 � x + an)

� 1
2 h1

(
u(an, x)

)
+ 1

2 h1

(
v(an, x)

)
= h1(x) + 1

2 K(an, x)

for all x ∈ R. It remains to refer to Lemmas 4 and 5. �
Lemmas 2, 3, and 5 are much easier to prove than Lemma 4. The least elementary of Lemmas 2, 3, and 5 is

Lemma 3, whose proof uses the following l’Hospital-type rule for monotonicity.

Proposition 1. [18] Let −∞ � a < b � ∞. Let f and g be real-valued differentiable functions defined on the
interval (a, b) such that f(b−) = g(b−) = 0. It is assumed that g and g′ do not take on the zero value on (a, b).
Suppose finally that f ′

g′ ↗↘ on (a, b); that is, f ′
g′ switches from ↗ (increase) to ↘ (decrease) on (a, b). Then

f
g ↗↘ or ↘ on (a, b).

This proposition follows immediately from [18, Proposition 4.3 and Remark 5.3].
A significant difficulty in the proof of Lemma 4 is that the “profiles” of the function K given by the cross-

sections of the graph of K on rectangle

R := {(a, x) ∈ R
2 : 0 < a < 1,

√
2 < x <

√
3} (

or on its closure

R := {(a, x) ∈ R
2 : 0 � a � 1,

√
2 � x �

√
3} )
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Figure 2. Partition of R = (0, 1) × (
√

2,
√

3).

with a ∈ (0, 1) or x ∈ (
√

2,
√

3) fixed are very complicated; in part, this is caused by the fact that the function
h1 is defined in (3) by three different expressions over the interval [1,∞). To overcome this difficulty, an idea
is to partition R into “pieces” so that on each piece there is a direction in which the profiles of K are easier to
deal with. This idea comes naturally from the following considerations.

Remark 1.

• Observe that u = u(a, x) ∈ (1,
√

3) and v = v(a, x) ∈ (
√

2,∞) for all (a, x) ∈ R. Therefore and in view
of definitions (4) and (3), the form of expression of K on R depends on whether u <

√
2 and on whether

v <
√

3. The curves u =
√

2 and v =
√

3 (which are ellipses) partition R into 5 connected “pieces” (as
illustrated by Fig. 2), one of which may be naturally cut further into two pieces by the line x = x∗,
where

x∗ :=

√
5 + 2

√
6

9 − 2
√

6
=

√√√√23 + 28
√

2
3

19
≈ 1.55 (8)

may be also defined by the following condition:
(

(a, x) ∈ R & u =
√

2 & v =
√

3
)

=⇒ x = x∗.
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Thus, one comes to the following definitions of the “pieces”:

LLe := {(a, x) ∈ R : u <
√

2, v �
√

3};
LG := {(a, x) ∈ R : u <

√
2, v >

√
3};

GL1 := {(a, x) ∈ R : u >
√

2, v <
√

3, x � x∗};
GL2 := {(a, x) ∈ R : u >

√
2, v <

√
3, x > x∗};

GG1 := {(a, x) ∈ R : u >
√

2, v >
√

3, a < 1√
3
};

GG2 := {(a, x) ∈ R : u >
√

2, v >
√

3, a � 1√
3
};

GE := {(a, x) ∈ R : u >
√

2, v =
√

3};
ELe := {(a, x) ∈ R : u =

√
2, v �

√
3};

EG1 := {(a, x) ∈ R : u =
√

2, v >
√

3, a < 1√
3
};

EG2 := {(a, x) ∈ R : u =
√

2, v >
√

3, a � 1√
3
};

A1 := {(a, x) ∈ R : a = 0};
A2 := {(a, x) ∈ R : a = 1};

X1,1 := {(a, x) ∈ R : x =
√

2, 0 < a < 1√
2
};

X1,2 := {(a, x) ∈ R : x =
√

2, 1√
2

� a < 2
√

2
3 };

X1,3 := {(a, x) ∈ R : x =
√

2, 2
√

2
3 � a < 1};

X2 := {(a, x) ∈ R : x =
√

3},

where u and v are defined by (5) and (6). Here, for example, the L in the first position in symbol LLe
refers to “less than” in inequality u <

√
2, while the ligature Le in the second position refers to “less

than or equal to” in inequality v �
√

3. Similarly, G and E in this notation refer to “greater than” and
“equal to”, respectively. Symbol A refers here to a fixed value of a, and X to a fixed value of x.

Observe that the set R is the union of the “pieces” LLe, . . . , X2. Indeed, let {C} denote, for brevity,
the set {(a, x) ∈ R : C}, where C stands for a condition. Then, basically following the just explained
meaning of the notation for the “pieces”, one has

LLe∪LG︸ ︷︷ ︸
{u<

√
2}

∪ GL1 ∪GL2︸ ︷︷ ︸
{u>

√
2,v<

√
3}

∪ GG1 ∪GG2︸ ︷︷ ︸
{u>

√
2,v>

√
3}

∪GE

︸ ︷︷ ︸
{u>

√
2}

∪ELe∪ EG1 ∪EG2︸ ︷︷ ︸
{u=

√
2,v>

√
3}︸ ︷︷ ︸

{u=2}

= R. (9)

(In fact, the sets on the left-hand side of (9) form a partition of R.) It is also clear that the union
A1 ∪A2 ∪X1,1 ∪X1,2 ∪X1,3 ∪X2 equals the boundary of R. This verifies the entire “union-observation”,
which is illustrated in Figure 2, where only the labels of the two-dimensional members of the partition
of R are shown.

It will be understood that the function K (defined by (4)) is extended to A2 by continuity, so that

K(a, x) := −2g(x) ∀(a, x) ∈ A2 . (10)
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• Another difficulty to overcome in the proof of Lemma 4 is that the expressions for h1 and hence for
K contain the transcendental function Φ. Yet, fixing an arbitrary value of u, v, or x, one will thereby
fix the value of one of the three terms in expression (4) – h1(u), h1(v), or 2h1(x), respectively, so
that the (partial) derivative of K in (say) a with the value of u or v or x fixed will be of the form
k1 := A1eA2 + A3eA4 , where A1, . . . , A4 are algebraic expressions in (a, x) or, equivalently, in (a, u)
or (a, v). Assuming that signA3 is constant and nonzero on a given “piece” (say P ) of rectangle R,
the sign of k1 on P is the same as or opposite to that of k̃1 := A1eA2−A4/A3 + 1. Therefore, the sign
(on P ) of the derivative (say k2) of k̃1 in (say) a is the same as that of a certain algebraic expression.
Since the equations of the boundaries of the “pieces” are algebraic as well, the sign pattern of k2 on P
can be determined in a completely algorithmic manner, according to a result by Tarski [5, 10, 21]. The
implementation of this scheme will require a great amount of symbolic and numerical computation. We
have done that with the help of MathematicaTM 5.2, which is rather effective and allows complete and
easy control over the accuracy. The Tarski algorithm is implemented in Mathematica 5.2 via Reduce
and related commands. In particular, command

Reduce[cond1 && cond2 && . . ., {var1,var2,. . .,}, Reals]

returns a simplified form of the system of algebraic conditions (equations or inequalities) cond1, cond2,
. . . over real variables var1, var2, . . . . However, the execution of such a command may take a long
time if the algebraic system is more than a little complicated; in such cases, Mathematica can use some
human help.

On each of the “pieces” ELe, . . . , X2 we shall consider its own “coordinate system”, the one that
will be most convenient for us. In particular, we shall use the “coordinate” pair (a, v) on each of the
pieces LLe and LG; the pair (a, x) on each of the pieces GL1, GL2, and GG2; and the pair (a, u) on
the piece GG1. The choice of these coordinate systems was motivated by a consideration of contour
plots of the function K on R and on particular “pieces”. For instance, it will be shown in the proofs of
Lemmas 6 and 7 below that the monotonicity pattern of the function K in a with v fixed over each of
the “pieces” LLe and LG is ↘ (decreasing), ↗ (increasing), or ↘↗ (switching from decrease to increase
as a increases). Similarly over the other two-dimensional pieces: it will be shown that K is (i) ↘ or
↘↗ in a with x fixed over each of the “pieces” GL1 and GL2; (ii) ↘ in a with u fixed over GG1; and
(iii) ↘ in a with x fixed over GG2. The monotonicity patterns of K over the one-dimensional “pieces”
of R are somewhat easier to establish.

Remark 2. Since the function h1 defined by (3) is upper-semicontinuous on R and continuous on [
√

2,∞), the
function K is upper-semicontinuous on the compact rectangle R and therefore attains its maximum on R. We
conclude that K attains its maximum over R on at least one of the sets LLe, . . . , X2.

In view of this remark, the main lemma – Lemma 4 – will be easily obtained from the following series of
lemmas.

Lemma 6 (LLe). The function K does not attain a maximum on LLe.

Lemma 7 (LG). The function K does not attain a maximum on LG.

Lemma 8 (GL1). The function K does not attain a maximum on GL1.

Lemma 9 (GL2). The function K does not attain a maximum on GL2.

Lemma 10 (GG1). The function K does not attain a maximum on GG1.

Lemma 11 (GG2). The function K does not attain a maximum on GG2.

Lemma 12 (GE). One has K � 0 on GE.

Lemma 13 (ELe). One has K � 0 on ELe.
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Lemma 14 (EG1). One has K � 0 on EG1.

Lemma 15 (EG2). One has K � 0 on EG2.

Lemma 16 (A1). One has K = 0 on A1.

Lemma 17 (A2). One has K � 0 on A2.

Lemma 18 (X1,1). One has K � 0 on X1,1.

Lemma 19 (X1,2). One has K � 0 on X1,2.

Lemma 20 (X1,3). One has K � 0 on X1,3.

Lemma 21 (X2). One has K � 0 on X2.

1.2. Proofs of the lemmas

Proof of Lemma 1. Let n = 2 and a1 = a2 = 1√
2
. Then P(Sn �

√
2 ) = 1

4 = c1 P(Z �
√

2 ). �

Proof of Lemma 2. This follows from the well-known and easy-to-prove fact that the inverse Mills ratio r is
increasing. �
Proof of Lemma 3. On interval (−∞, 0], one has h1 = 1 < 1.6 < h(0) � h, since h is decreasing.

On interval (0, 1], one similarly has h1 = 1
2 < 0.51 < h(1) � h.

On interval [
√

2,
√

3 ], one has h1 = g � h, by Lemma 2.
On interval [

√
3,∞), one has h1 = h.

It remains to consider the interval (1,
√

2). For x ∈ (1,
√

2), one has h1(x) = p(x) := 1
2x2 . One has

p(∞−) = h(∞−) = 0 and, for some constant C > 0, h′(x)/p′(x) = Cx3ϕ(x), so that h′
p′ ↗↘ on (0,∞). Hence,

in view of the l’Hospital-type rule for monotonicity provided by Proposition 1, one has h
p ↘ or ↗↘ on (0, ∞),

and so, inf(1,
√

2)
h
h1

= min[1,
√

2]
h
p = min{1,

√
2}

h
p ≈ 1.01 > 1, whence h1 < h on (1,

√
2). �

Proof of Lemma 4. This lemma follows from Remark 2 and Lemmas 6–21, proved below. Indeed, by the con-
clusion of Remark 2, the function K attains its maximum over R on at least one of the sets LLe, . . . , X2. By
Lemmas 6–11, none of the sets LLe, . . . , GG2 can be a set on which K attains its maximum over R. Therefore,
K attains its maximum over R on at least one of the sets GE, . . . , X2. Finally, Lemmas 12–21 imply that this
maximum is no greater than 0. �
Proof of Lemma 5. Let 0 � a < 1 and x �

√
3. Then u �

√
2 and v �

√
3, where u and v are defined by

(5) and (6), as before. Therefore and in view of Lemma 3 and (3), one has h1(u) � h(u), h1(v) = h(v), and
h1(x) = h(x), so that

K(a, x) � 2c2 ·
(

1
2Φ(u) + 1

2Φ(v) − Φ(x)
)

� 0,

as shown in the mentioned proof in [4]. �

Proof of Lemma 6 (LLe). Expressing x and u in view of (5) and (6) in terms of a and v as x(a, v) :=
√

1 − a2 v−a
and ũ(a, v) := v − 2a√

1−a2 , respectively, one has

K(a, x) = k(a, v) := kLLe(a, v) :=
1

2ũ(a, v)2
+ g(v) − 2g(x(a, v)) ∀(a, x) ∈ LLe, (11)

since u > 1 and v >
√

2 on R. For (a, x) ∈ R, let

(Dak)(a, v) := 4Φ(
√

2)
(
x(a, v) − a

)3 ∂k

∂a
(a, v); (12)

(Da,ak)(a, x) :=
125(1 − a2)2

(x − a)2ϕ(x)
∂(Dak)

∂a

(
a, v(a, x)

)
. (13)
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The coefficients of the partial derivatives in (12) and (13) are chosen in order to make (Da,ak)(a, x) equal to an
algebraic expression (and even a polynomial) in a and x, and at that sign(Da,ak)(a, x) = sign ∂(Dak)

∂a

(
a, v(a, x)

)
.

With Mathematica 5.2, one can therefore use the command

Reduce[daakx<=0 && 0<a<1 && Sqrt[2]<x<Sqrt[3]]

(where daakx stands for (Da,ak)(a, x)), which outputs False, meaning that Da,ak > 0 on R. By (13), this
implies ∂(Dak)

∂a

(
a, v(a, x)

)
> 0 for (a, x) ∈ R, so that (Dak)(a, v) is increasing in a for every fixed value of v;

more exactly, (Dak)(a, v) is increasing in a ∈ (
a1(v), a2(v)

)
for every fixed value of v ∈ (

√
2,
√

3], where a1 and
a2 are certain functions, such that(

a, x(a, v)
) ∈ LLe ⇐⇒

(
v ∈ (

√
2,
√

3] & a ∈ (
a1(v), a2(v)

))
.

Thus, for every fixed value of v ∈ (
√

2,
√

3] the sign pattern of (Dak)(a, v) in a ∈ (
a1(v), a2(v)

)
is − or + or

−+; that is, (Dak)(a, v) may change sign only from − to + as a increases. By (12), ∂k
∂a (a, v) has the same sign

pattern. Hence, for every fixed value of v ∈ (
√

2,
√

3] one has k(a, v) ↘ or ↗ or ↘↗ in a ∈ (
a1(v), a2(v)

)
. Now

Lemma 6 follows. �
Proof of Lemma 7 (LG). This proof is almost identical to that of Lemma 6, except that the term g(v) in (11)
is replaced here by h(v), and the interval (

√
2,
√

3] is replaced by (
√

3, 5
√

2 ). However, both terms g(v) and
h(v) are constant for any fixed value of v. �
Proof of Lemma 8 (GL1). One has

(a, x) ∈ GL1 ⇐⇒
(√

2 < x � x∗ & 0 < a < a1(x)
)
, (14)

where a1(x) := x
3 − 1

3

√
6 − 2x2. Since

√
2 < u < v <

√
3 on GL1 (where again u and v are defined by (5) and

(6)), one has
K(a, x) = k(a, x) := kGL(a, x) := g(u) + g(v) − 2g(x) ∀(a, x) ∈ GL1 . (15)

For (a, x) ∈ R, let

(Dak)(a, x) :=
∂k

∂a
(a, x) · 125 Φ(

√
2 )

(
1 − a2

)3/2

(1 + ax)(251 + v)ϕ(v)
; (16)

(Da,ak)(s, x) :=
∂(Dak)

∂a
(a, x) · (1 − a2)3(1 + ax)2(251 + v)2e−

2ax
1−a2 , (17)

where
√

1 − s2 is substituted for a in the right-hand side of (17). Then (Da,ak)(s, x) is a polynomial in s and
x. Using again the Mathematica command Reduce, namely

Reduce[daak[s,x]>0 && Sqrt[2]<x<Sqrt[3] && 0<s<1], (18)

where daak[s,x] stands for (Da,ak)(s, x), one sees that for every (s, x) ∈ R

(Da,ak)(s, x) > 0 ⇐⇒
(√

2 < x < x∗∗ & s∗,1(x) < s < s∗,2(x)
)
, (19)

where x∗∗ is a certain number between
√

2 and
√

3, and s∗,1 and s∗,2 are certain functions.
(
In fact, x∗∗ ≈

1.678696 is a root of a certain polynomial of degree 32 and, for each x ∈ (
√

2, x∗∗), the values s∗,1(x) and s∗,2(x)
are two of the roots s of the polynomial (Da,ak)(s, x).

)
Next,

Reduce[daak[95/100,x]<=0 && Sqrt[2]<x<=xx]
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produces False; here xx stands for x∗ – recall the definition of GL1 and (8); that is, (Da,ak)( 95
100 , x) > 0

∀x ∈ (
√

2, x∗]. Hence and in view of (19),

s∗,1(x) < 95
100 < s∗,2(x) ∀x ∈ (

√
2, x∗]. (20)

On the other hand, setting
s1(x) :=

√
1 − a1(x)2 (21)

with a1 as in (14), one has s1 > 95
100 on (

√
2, x∗]. Hence, by (20), s1 > s∗,1 on (

√
2, x∗]. So, in view of (19), the

sign pattern of (Da,ak)(s, x) in s ∈ (s1(x), 1) is − or +−, depending on whether s1(x) � s∗,2(x) or not, for each
x ∈ (

√
2, x∗]. Now (17) and (21) imply that the sign pattern of ∂(Dak)

∂a (a, x) in a ∈ (0, a1(x)) is − or −+, so
that (Dak)(a, x) ↘ or ↘↗ in a ∈ (0, a1(x)), for each x ∈ (

√
2, x∗]. Also, (Dak)(0, x) = 0 for all x ∈ R. So, the

sign pattern of (Dak)(a, x) in a ∈ (0, a1(x)) is − or −+, for each x ∈ (
√

2, x∗]; in view of (16), ∂k
∂a (a, x) has the

same sign pattern. Thus, k(a, x) ↘ or ↘↗ in a ∈ (0, a1(x)), for each x ∈ (
√

2, x∗]. Recalling (14), we complete
the proof of Lemma 8. �
Proof of Lemma 9 (GL2). This proof is similar to that of Lemma 8. Here one has

(a, x) ∈ GL2 ⇐⇒
(
x∗ < x <

√
3 & 0 < a < a2(x)

)
, (22)

where a2(x) := −x
4 + 1

4

√
12 − 3x2. Relation (15) holds here, and we retain definitions (16) and (17). Definition

(21) is replaced here by
s2(x) :=

√
1 − a2(x)2. (23)

Letting

s∗ := s2(x∗) =
1
12

√
1728 + 384

√
6

19
≈ 0.98761,

one can see that
s2(x) � s∗ ∀x ∈ (x∗,

√
3 ). (24)

On the other hand, using instead of (18) the Mathematica command

Reduce[daak[s,x]>0 && xx<x<Sqrt[3] && ss<s<1, Quartics->True],

where xx stands for x∗ and ss stands for s∗, one sees that

(
(Da,ak)(s, x) > 0 & x∗ < x <

√
3 & s∗ < s < 1

)
⇐⇒

(
x∗ < x < x∗∗∗ & s∗ < s < s∗,2(x)

)
, (25)

where x∗∗∗ ≈ 1.678694 is a root of a certain polynomial of degree 20 and s∗,2(x) is the same root in s of the
polynomial (Da,ak)(s, x) as s∗,2(x) in (19). Hence, in view of (25) and (24), the sign pattern of (Da,ak)(s, x) in
s ∈ (s2(x), 1) is − or +−, for each x ∈ (x∗,

√
3 ).

Now (17) and (23) imply that the sign pattern of ∂(Dak)
∂a (a, x) in a ∈ (0, a2(x)) is − or −+, so that

(Dak)(a, x) ↘ or ↘↗ in a ∈ (0, a2(x)), for each x ∈ (x∗,
√

3 ). Also, (Dak)(0, x) = 0 for all x ∈ R. So,
the sign pattern of (Dak)(a, x) in a ∈ (0, a2(x)) is − or −+, for each x ∈ (x∗,

√
3 ); in view of (16), ∂k

∂a (a, x)
has the same sign pattern. Thus, k(a, x) ↘ or ↘↗ in a ∈ (0, a2(x)), for each x ∈ (x∗,

√
3 ). Recalling (22), we

complete the proof of Lemma 9. �
Proof of Lemma 10 (GG1). Expressing x and v in view of (5) and (6) in terms of a and u as x̃(a, u) :=√

1 − a2 u + a and ṽ(a, u) := u + 2a√
1−a2 , respectively, one has

K(a, x) = k(a, u) := kGG1(a, u) := g(u) + h(ṽ(a, u)) − 2g(x̃(a, u)) ∀(a, x) ∈ GG1; (26)
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note that
(a, x) ∈ GG1 =⇒ (

a, u(a, x)
) ∈ (0, 1√

3
) × (

√
2,
√

3 ). (27)

For (a, u) ∈ R, let

d(a, u) :=
∂k

∂a
(a, u) · 125 Φ(

√
2) (1 − a2)3/2/ϕ(ṽ(a, u)); (28)

da(a, u) :=
∂d

∂a
(a, u) · (1 − a2)

ϕ(ṽ(a, u))
ϕ(x̃(a, u))

;

du(a, u) :=
∂d

∂u
(a, u) · ϕ(ṽ(a, u))

ϕ(x̃(a, u))
√

1 − a2
.

The idea of the proof of Lemma 10 is to show that d(a, u) < 0 and hence ∂k
∂a (a, u) < 0 for all (a, u) ∈ R0 :=

[0, 1√
3
]× [

√
2,
√

3]. This is done by considering separately the interior and the four sides of the rectangle R0, at

that using the fact that da(a, u) and du(a, u) are polynomials in a, u, and
√

1 − a2. Employing the command

Reduce[da[a,u]==0 && du[a,u]==0 && 0<a<1/Sqrt[3] &&Sqrt[2]<u<Sqrt[3], {a,u}, Reals],

where da[a,u] and du[a,u] stand for da(a, u) and du(a, u), one sees that the system of equations da(a, u) =
0 = du(a, u) has a unique solution (a∗, u∗) ≈ (0.11918, 1.57770) in (a, u) ∈ (0, 1√

3
) × (

√
2,
√

3 ), and d(a∗, u∗) ≈
−0.44 < 0.

Let us consider next the values of d on the boundary of the rectangle (0, 1√
3
) × (

√
2,
√

3 ).

First, d(0, u) is an increasing affine function of u, and d(0,
√

3 ) ≈ −0.4 < 0. Hence, d(0, u) < 0 ∀u ∈ (
√

2,
√

3 ).
Second,

27
2 e(5+4

√
2u+u2)/6

∂d

∂u
( 1√

3
, u) = −

√
2u3 −

(
3 + 251

√
3
)

u2 −
√

2
(
3 + 251

√
3
)

u + 251
√

3 + 7

is decreasing in u and takes on value −9 − 753
√

3 < 0 at u =
√

2, so that ∂d
∂u ( 1√

3
, u) < 0 for u ∈ (

√
2,
√

3 ) and

d( 1√
3
, u) ↘ in u ∈ (

√
2,
√

3 ). Moreover, d( 1√
3
,
√

2) < 0. Thus, d( 1√
3
, u) < 0 ∀u ∈ (

√
2,
√

3 ).
Third, (

1 − a2
) ϕ(ṽ(a,

√
2 ))

ϕ(x̃(a,
√

2 ))
∂d

∂a
(a,

√
2) = p1(a) +

√
1 − a2 p2(a),

where p1(a) and p2(a) are certain polynomials in a. Therefore, the roots a of ∂d
∂a (a,

√
2) are among the roots of

the polynomial p1,2(a) := p1(a)2 − (1 − a2)p2(a)2, which has exactly two roots a ∈ (0, 1√
3
). Of the latter roots,

one is not a root of ∂d
∂a (a,

√
2). Also, ∂d

∂a (0,
√

2) = 1 > 0 and ∂d
∂a ( 1√

3
,
√

2) < 0. Hence, ∂d
∂a (a,

√
2) has exactly

one root, a∗ ≈ 0.2224, in a ∈ (0, 1√
3
) and, moreover, d(a,

√
2) ↗ in a ∈ (0, a∗] and d(a,

√
2) ↘ in a ∈ [a∗, 1√

3
).

Besides, d(a∗,
√

2) ≈ −0.088 < 0. Thus, d(a,
√

2) < 0 ∀a ∈ (0, 1√
3
).

Fourth (very similar to third),

(
1 − a2

) ϕ(ṽ(a,
√

3 ))
ϕ(x̃(a,

√
3 ))

∂d

∂a
(a,

√
3 ) = p1(a) +

√
1 − a2 p2(a),

where p1(a) and p2(a) are certain polynomials in a, different from the polynomials p1(a) and p2(a) in the previous
paragraph. Therefore, the roots a of ∂d

∂a (a,
√

3) are among the roots of the polynomial p1,2(a) := p1(a)2 − (1 −
a2)p2(a)2, which has exactly two roots a ∈ (0, 1√

3
). Of the latter roots, one is not a root of ∂d

∂a (a,
√

3 ). Also,
∂d
∂a (0,

√
3 ) = 1 > 0 and ∂d

∂a ( 1√
3
,
√

3 ) < 0. Hence, ∂d
∂a (a,

√
3 ) has exactly one root, a∗ ≈ 0.06651, in a ∈ (0, 1√

3
)
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and, moreover, d(a,
√

3 ) ↗ in a ∈ (0, a∗] and d(a,
√

3 ) ↘ in a ∈ [a∗, 1√
3
). Besides, d(a∗,

√
3 ) ≈ −0.358 < 0.

Thus, d(a,
√

3 ) < 0 ∀a ∈ (0, 1√
3
).

We conclude that d(a, u) < 0 ∀(a, u) ∈ [0, 1√
3
] × [

√
2,
√

3 ]. By (28), the same holds for ∂k
∂a (a, u). It remains

to recall (26) and (27). �
Proof of Lemma 11 (GG2). In view of Lemma 2,

K(a, x) = (g ∧ h)(u(a, x)) + h(v(a, x)) − 2g(x) ∀(a, x) ∈ GG2 . (29)

One has ∂u
∂a > 0 on GG2 and ∂v

∂a > 0 on R. Since g = c1
250

(
251Φ + ϕ

)
and h = c2 Φ are decreasing on [0,∞), we

conclude that K(a, x) is decreasing in a on GG2. �
Proof of Lemma 12 (GE). One has

(a, x) ∈ GE ⇐⇒
(
x∗ < x <

√
3 & a = a2(x) := 1

4

√
12 − 3x2 − x

4

)
,

where, as before, x∗ is defined by (8). Therefore, for all (a, x) ∈ GE

K(a, x) = k(x) := kGE(x) := K(a2(x), x) = g
(
u(a2(x), x)

)
+ g(

√
3) − 2g(x),

and it suffices to show that k � 0 on [x∗,
√

3]. For x ∈ [x∗,
√

3], let

k1(x) :=
k′(x)Φ(

√
2 )

ϕ(x)(251 + x)
;

k2(x) := k′
1(x) · 125 (x + 251)2

(
4 − x2

)3/2
ρ(x)13/2

16
√

2ϕ
(
u(a2(x), x)

)
/ϕ(x)

,

where ρ(x) := x2 + x
√

3
√

4 − x2 + 2. Then k2(x) = p1(x) +
√

ρ(x) p2(x), where p1(x) and p2(x) are some
polynomials in x and

√
4 − x2. Hence, the roots of k2(x) are among the roots of

p1,2(x) := p1(x)2 − ρ(x)p2(x)2 = p1,2,1(x) +
√

4 − x2 p1,2,2(x),

where p1,2,1(x) and p1,2,2(x) are some polynomials in x. Hence, the roots of k2(x) are among the roots of

p1,2,1(x)2 − (4 − x2)p1,2,2(x)2

1024 (x2 − 1)14
,

which is a polynomial of degree 32 and has exactly one root in [x∗,
√

3]. Also, k2(x∗) ≈ 1.39 × 107 > 0
and k2(

√
3 ) ≈ −2.07 × 106 < 0. Therefore, k2 and hence k′

1 have the sign pattern +− on [x∗,
√

3]. Next,
k1(x∗) ≈ −4.8494 < 0 and k1(

√
3 ) = 0, so that k1 and hence k′ have the sign pattern −+ on [x∗,

√
3]. It follows

that k does not have a local maximum on (x∗,
√

3). At that, k(x∗) ≈ −3.0133 × 10−6 < 0 and k(
√

3 ) = 0.
Thus, k � 0 on [x∗,

√
3]. �

Proof of Lemma 13 (ELe). This proof is very similar to that of Lemma 12 (GE). One has

(a, x) ∈ ELe ⇐⇒
(√

2 < x � x∗ & a = a1(x) := x
3 − 1

3

√
6 − 2x2

)
, (30)

where, as before, x∗ is defined by (8). Therefore, for all (a, x) ∈ LLe

K(a, x) = k(x) := kELe(x) := K(a1(x), x) = g(
√

2) + g
(
v(a1(x), x)

) − 2g(x),
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and it suffices to show that k � 0 on [
√

2, x∗]. For x ∈ [
√

2, x∗], let

k1(x) :=
500 Φ(

√
2) k′(x)

ϕ(x)(251 + x)
;

k2(x) := k′
1(x) ·

√
2(x + 251)2

(
3 − x2

)3/2
ρ(x)13/2

9ϕ
(
v(a1(x), x)

)
/ϕ(x)

,

where ρ(x) := x2 + 2x
√

2
√

3 − x2 + 3. Then k2(x) = p1(x) +
√

ρ(x) p2(x), where p1(x) and p2(x) are some
polynomials in x and

√
3 − x2. Hence, the roots of k2(x) are among the roots of

p1,2(x) := p1(x)2 − ρ(x) p2(x)2 = p1,2,1(x) +
√

3 − x2 p1,2,2(x),

where p1,2,1(x) and p1,2,2(x) are some polynomials in x. Hence, the roots of k2(x) are among the roots of

p1,2,1(x)2 − (3 − x2)p1,2,2(x)2

125524238436 (x2 − 1)14
,

which is a polynomial of degree 32 and has exactly one root in [
√

2, x∗]. Also, k2(
√

2) ≈ −6.32 × 107 < 0 and
k2(x∗) ≈ 1.06 × 108 > 0. Therefore, k2 and hence k′

1 have the sign pattern −+ on [
√

2, x∗]. Next, k1(
√

2) = 0
and k1(x∗) ≈ 0.000426 > 0, so that k1 and hence k′ have the sign pattern −+ on [

√
2, x∗]. It follows that k

does not have a local maximum on (
√

2, x∗). At that, k(
√

2) = 0 and k(x∗) ≈ −3.0133× 10−6 < 0. Thus, k � 0
on [

√
2, x∗]. �

Proof of Lemma 14 (EG1). This proof is similar to that of Lemma 13. One has

(a, x) ∈ EG1 ⇐⇒
(
x∗ < x <

√
3 & a = a1(x) := x

3 − 1
3

√
6 − 2x2

)
. (31)

Therefore, for all (a, x) ∈ EG1

K(a, x) = k(x) := kEG1(x) := K(a1(x), x) = g(
√

2 ) + h
(
v(a1(x), x)

) − 2g(x),

and it suffices to show that k � 0 on [x∗,
√

3]. For x ∈ [x∗,
√

3], let

k1(x) :=
500 Φ(

√
2) k′(x)

ϕ(x)(251 + x)
;

k2(x) := k′
1(x) ·

√
2 (x + 251)2

(
3 − x2

)3/2
ρ(x)9/2

9 r(
√

3 )ϕ
(
v(a1(x), x)

)
/ϕ(x)

,

where ρ(x) := x2 + 2x
√

2
√

3 − x2 + 3.
Then k2(x) = p1(x) +

√
3 − x2 p2(x), where p1(x) and p2(x) are some polynomials in x. Hence, the roots of

k2(x) are among the roots of

p1,2(x) :=
p1(x)2 − (3 − x2)p2(x)2

4374
(
1 + 251/r(

√
3 )

)2 (x2 − 1)4
,

which is a polynomial of degree 14 and has exactly one root in [x∗,
√

3], x# ≈ 1.6012. Also, k2(x∗) ≈ 1.1722×
106 > 0 and k2(

√
3) ≈ −3.8778× 107 < 0. Therefore, k2 and hence k′

1 have the sign pattern +− on [x∗,
√

3], so
that max[x∗,

√
3] k1 = k1(x#) ≈ −0.00034907 < 0. It follows that k′ < 0 and hence k ↘ on [x∗,

√
3]. At that,

k(x∗) ≈ −3.0133× 10−6 < 0. Thus, k � 0 on [x∗,
√

3]. �
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Proof of Lemma 15 (EG2). One has

(a, x) ∈ EG2 ⇐⇒
(√

2 < x <
√

3 & a = a2(x) := x
3 + 1

3

√
6 − 2x2

)
. (32)

Therefore, for all (a, x) ∈ EG2

K(a, x) = k(x) := kEG2(x) := K(a2(x), x) = g(
√

2) + h
(
v(a2(x), x)

) − 2g(x),

and it suffices to show that k � 0 on (
√

2,
√

3).
For the functions a1 (defined in (30) and (31)) and a2 (defined in (32)), and for x ∈ (

√
2,
√

3), one has
a2(x) � a1(x); also, h(z) is decreasing in z and v(a, x) is increasing in a. Hence, h

(
v(a2(x), x)

)
� h

(
v(a1(x), x)

)
,

so that kEG2 � kEG1 on [x∗,
√

3).
Similarly, in view of Lemma 2 one has h

(
v(a2(x), x)

)
� g

(
v(a2(x), x)

)
� g

(
v(a1(x), x)

) ∀x ∈ (
√

2, x∗], so
that kEG2 � kELe on (

√
2, x∗].

Now Lemma 15 follows, because it was shown in the proofs of Lemmas 13 and 14, respectively, that kELe � 0
on [

√
2, x∗] and kEG1 � 0 on [x∗,

√
3 ]. �

Proof of Lemma 16 (A1). This is trivial. �

Proof of Lemma 17 (A2). This is also trivial, in view of (10). �

Proof of Lemma 18 (X1,1). On X1,1, one has u <
√

2 � v. Also, by Lemma 2, g � h on [
√

3,∞). Therefore, for
all (a, x) ∈ X1,1

K(a, x) � k(a) := kX1,1(a) :=
1

2u(a,
√

2 )2
+ g

(
v(a,

√
2 )

) − 2g(
√

2 ), (33)

and it suffices to show that k � 0 on [0, 1√
2
). For a ∈ [0, 1√

2
), let

k1(a) :=
2000 Φ(

√
2) k′(a)

λ(a)
, λ(a) :=

1 − a
√

2(√
2 − a

)3 > 0;

k2(a) := k′
1(a) · (

√
2 − a)4

(
1 − a2

)4
λ(a)2/

(√
2 ϕ

(
v(a,

√
2 )

))
.

Then k2(a) =
√

1 − a2 p1(a) + p2(a), where p1(a) and p2(a) are some polynomials in a. Hence, the roots of
k2(a) are among the roots of

p1,2(a) := (1 − a2)p1(a)2 − p2(a)2,

which is a polynomial of degree 12 and has exactly two roots in [0, 1√
2
). Of those two roots, one is not a root

of k2(a), so that k2(a) has at most one root in [0, 1√
2
). Also, k2(0) = 251

√
2 > 0 and k2( 1√

2
) = −127 < 0.

Therefore, k2 and hence k′
1 have the sign pattern +− on [0, 1√

2
], so that k1 ↗↘ on [0, 1√

2
]. At that the values

of k1 at points 0, 6
10 , and 7

10 are approximately −52 < 0, 48 > 0, and −344 < 0, respectively. Therefore, k1 and
hence k′ have the sign pattern − + − on [0, 1√

2
) and, moreover, the only local maximum of k on (0, 1√

2
] occurs

only between 6
10 and 7

10 ; in fact, it occurs at a ≈ 0.67433 and equals ≈ −0.00013578 < 0. It remains to note
that k(0) ≈ −0.0028660 < 0. �

Proof of Lemma 19 (X1,2). This proof is similar to that of Lemma 11. In place of (29), here one still has relation
(33) for all (a, x) ∈ X1,2, since u <

√
2 � v on X1,2 as well. Since u(a,

√
2 ) ↗ and v(a,

√
2 ) ↗ in a ∈ [ 1√

2
, 2

√
2

3 ),

one has k ↘ on [ 1√
2
, 2

√
2

3 ), so that the maximum of k on [ 1√
2
, 2

√
2

3 ) equals k( 1√
2
), which is negative, in view of

Lemma 18 and the continuity of k. �
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Proof of Lemma 20 (X1,3). This proof is similar to that of Lemma 19. In place of (33), here one has

K(a, x) � k(a) := kX1,3(a) := g
(
u(a,

√
2 )

)
+ g

(
v(a,

√
2 )

) − 2g(
√

2 ),

for all (a, x) ∈ X1,3, since u �
√

2 and v �
√

2 on X1,3. Since k ↘ in a ∈ [ 2
√

2
3 , 1), the maximum of k on [2

√
2

3 , 1)
equals k(2

√
2

3 ) ≈ −0.25287 < 0. �
Proof of Lemma 21 (X2). This follows immediately from Lemma 5. �
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