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PROBABILITY DENSITY FOR A HYPERBOLIC SPDE
WITH TIME DEPENDENT COEFFICIENTS ∗
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Abstract. We prove the existence and smoothness of density for the solution of a hyperbolic SPDE
with free term coefficients depending on time, under hypoelliptic non degeneracy conditions. The
result extends those proved in Cattiaux and Mesnager, PTRF 123 (2002) 453-483 [2] to an infinite
dimensional setting.
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Introduction

The initial developments of Malliavin Calculus provided a probabilistic proof of Hörmander’s theorem for
hypoelliptic operators in square form. As an application, the existence and smoothness of the density for the
solution of diffusion processes with coefficients depending only on the spatial variable were obtained (see [5]).
There have been several attempts to extend this result to diffusions with coefficients depending on two variables,
time and space. The first results in this direction, [3, 11], apply to pretty smooth coefficients (see the cases
termed in Section 2 as smooth, factorable and regular Hölder). More recently, Cattiaux and Mesnager [2] solved
the problem for hypoelliptic coefficients under less restrictive smoothness conditions on the coefficients.

The classical application of Malliavin Calculus mentioned before has been extended in [8] to the two-parameter
Itô equation – a wave equation in reduced form. Rules of two-parameter Itô calculus differ from those of the
classical one. As a consequence, the analogue of Hörmander’s condition is formulated in terms of the covariant
derivative instead of the Lie brackets. In view of the results of [2], a natural question is whether one could also
extend the results from [8] to coefficients of the equation depending on the two-dimensional time parameter.
This article is devoted to study this problem. Combining the techniques of [8] with those of [2], we prove in
Theorem 1.1 such an extension.

When studying the inverse of the Malliavin matrix corresponding to homogeneous diffusion processes, one
needs estimates of the type

P

{∫ S

0

Y 2
t dt ≤ aεδ,

∫ S

0

α2
t dt ≥ bεη

}
≤ εp,
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for small ε and bounded stopping time S. Here Yt = Y0 + Mt + Vt, t ≥ 0, is a continuous semimartingale
with martingale and bounded variation components, Mt and Vt, respectively; it is assumed that the quadratic
variation of Mt is of the form

∫ t

0
α2

sds (see for instance [6, 10] for different proofs of this result).
When dealing with non-homogeneous diffusions with somehow rough coefficients, such result does not suffice.

Actually, the crucial steps of the proofs of Theorem 2.6 and Proposition 3.2 in [2] consist of establishing alternate
suitable extensions using a new approach an novel ideas. Setting these ideas in an abstract framework, we prove
in Section 2 more sophisticated versions of Stroock-Norris type estimates which are shown to be useful for
two-parameter processes.

The paper is organized as follows. In Section 1, we introduce the notation, the different hypothesis we are
going to consider along the paper, and we state the main result. Section 2 is devoted to the extension of
Stroock-Norris estimates. With these tools, we prove in Section 3 the main result.

1. Notations, assumptions and the main result

Consider the stochastic differential equation on R
m

Xz = x0 +
∫

Rz

[
d∑

l=1

Al(r,Xr) dW l
r +A0(r,Xr) dr

]
, (1)

where z = (s, t) ∈ [0, S] × [0, T ], 0 ≤ S, T < ∞, x0 ∈ R
m, Rz = [0, s] × [0, t] and Wz =

(
W 1

z , . . . ,W
d
z

)
is a

d-dimensional Brownian sheet (see [1]).
Set E = {(s, t) ∈ RS,T : st �= 0}. We assume that the coefficients of (1) satisfy the conditions

(h1) Al : RS,T × R
m −→ R

m, 0 ≤ l ≤ d, are γ-Hölder continuous in t, for some γ ∈ ]0, 1[, measurable with
respect to s, and infinitely differentiable with respect to the spatial variable. Moreover,

Kγ := sup
y∈Rm

sup
0≤θ≤S

max
0≤l≤d

‖Al (θ, ·, y)‖γ <∞, (2)

where the notation ‖ · ‖γ refers to the usual Hölder norm.
(h2) for any multi-index α = (α1, . . . , αm), |α| ≥ 0, and 0 ≤ l ≤ d, the partial derivatives ∂x

αAl with respect
to x ∈ R

m exist and

K := sup
0≤θ≤S

sup
0≤τ≤T

max
0≤|α|≤N+2

max
0≤j≤d

‖∂x
αAj (θ, τ, ·)‖∞ <∞, (3)

(h3) for a fixed z = (s, t) ∈ E , the vector fields Al’s, 1 ≤ l ≤ d satisfy the restricted Hörmander’s condition
stated as follows:

The vector space spanned by the vector fields A1, . . . , Ad, A∇
i Aj , 1 ≤ i, j ≤ d, A∇

i

(
A∇

j Ak

)
, 1 ≤

i, j, k ≤ d,. . . , A∇
i1

(
. . .

(
A∇

in−1
Ain

)
. . .
)
, 1 ≤ i1, . . . , in ≤ d,. . . , at the point (0, t, x0) has full rank.

Here, the notation A∇
i Aj denotes the covariant derivative of the vector field Aj along Ai.

Assumption (h2) implies that the coefficients of the equation are Lipschitz functions and have linear growth
in the spatial variable, uniformly in the time variables. By the usual method of Picard’s iterates, one can
prove existence and uniqueness of solution for the equation (1) and moreover, the solution has almost surely
continuous paths (see Lem. 3.1 in [8]).



PROBABILITY DENSITY FOR A HYPERBOLIC SPDE WITH TIME DEPENDENT COEFFICIENTS 367

Condition (h3) clearly implies the following. There exist N := N(x0, t) ∈ N, and positive real numbers
cN := cN(x0, t), s0 := s0(t), R := R(t) such that for any v ∈ Sm−1,

N∑
k=0

∑
V ∈Σk

〈v, V (θ, t, y)〉2 ≥ cN , (4)

for any (θ, y) ∈ [0, s0] ×B(x0, R), where Σ0 = {Al, 1 ≤ l ≤ d}, Σk = {A∇
l V, 1 ≤ l ≤ d, V ∈ Σk−1}, k ≥ 1.

We consider different combinations of regularity of the coefficients and non degeneracy conditions of the
underlying differential operator, as follows.

(1) Elliptic case: (h1) and (h2) holds. Moreover, the vector space spanned by the vector fields A1, . . . , Ad

at the point (0, t, x0) has full rank.
(2) Smooth case: (h1) to (h3) hold. In addition, for each 0 ≤ l ≤ d, the functions ∂x

αAl’s are C1
b in s, for

all multi-index α,

K1 := sup
0≤θ≤S

sup
0≤τ≤T

max
0≤|α|≤N

max
1≤j≤d

∥∥∂θ∂x
αAj (θ, τ, ·)∥∥∞ <∞. (5)

(3) Factorable case: Al (θ, τ, x) = fl (θ)Al (τ, x), 0 ≤ l ≤ d, with fl measurable, 1
c′ ≥ |fl| ≥ c′ > 0. The

functions Al’s, 0 ≤ l ≤ d, satisfy the analogue of hypothesis (h1)-(h3) for coefficients which do not
depend on θ.

(4) Regular Hölder case: (h1) to (h3) hold. In addition, for any multi-index α, the functions ∂x
αAj ,

0 ≤ j ≤ d, are β (α)-Hölder continuous in the argument s, for some β (α) ∈ ] 1
2 , 1

[
. Moreover,

Kβ(α) := sup
y∈Rm

sup
0≤τ≤T

max
0≤|α|≤N+2

max
0≤l≤d

‖∂x
αAl (·, τ, y)‖β(α) <∞. (6)

(5) Irregular Hölder case: The same assumptions as in the preceding case, except that here β (α) ∈ ]0, 1
2

]
.

The main result of this paper is the next theorem, stating the existence and smoothness of density for the
probability law of the solution of (1) at any fixed point z ∈ E .

Theorem 1.1. Let X = {Xz, z ∈ RS,T} be the solution of (1). Each one of the set of assumptions termed
before as elliptic, smooth, factorable, regular Hölder and irregular Hölder, imply that the random vector Xz, for
fixed z ∈ E, has an infinitely differentiable density with respect to the Lebesgue measure.

Remark 1.2. In the formulation of assumptions (h1)–(h3) and of the different scenaries, the roles of the time
components s and t might be exchanged.

2. Stroock-Norris type lemmas for continuous semimartingales depending

on a parameter

In this section, we prove two extensions of the Stroock-Norris estimates. The difference between them stands
on the order of Hölder continuity of the involved processes. We notice that Lemma 2.1 could provide as a
by-product an alternate proof of Norris Lemma [6].
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Lemma 2.1. Let (Ys(λ), s ∈ [0, S]) be a real continuous semimartingale depending on a parameter λ ≥ 0, with
decomposition

Ys (λ) = Y0 (λ) +Ms (λ) + Vs (λ) , (7)

where Ms (λ), Vs (λ) denote a local martingale and a bounded variation process, respectively, satisfying

Ms (λ) =
m∑

j=1

∫ s

0

Ψj
η (λ) dM̃ j

η ,
〈
M̃ j, M̃k

〉
s

=
∫ s

0

Θj,k
η dη,

Vs (λ) =
∫ s

0

Φη (λ) dη.

Assume that:
(i) For each λ ≥ 0, Ψj

η (λ), Φη (λ) and Θj,k
η , 1 ≤ j, k ≤ m, are adapted continuous processes, indexed by

η ∈ [0, S], bounded by some constant K, uniformly in η, λ.
(ii) For each η ∈ [0, S], 1 ≤ j ≤ m, Yη(λ), Y0 (λ), Ψj

η (λ), Φη (λ) as functions of λ, are β-Hölder continuous,
with 1

2 < β < 1, uniformly in η.
Set 〈M (λ)〉s =

∫ s

0
Υη (λ) dη, where

Υη (λ) =
m∑

j,k=1

Ψj
η (λ) Ψk

η (λ) Θj,k
η . (8)

Fix ν > 3
2β−1 . Then, for any ρ > 3 + 2ν, positive constants α1, α2, p ≥ 2, and ε small enough, there exists a

constant C such that

P
{∫ s

0

Y 2
u (u) du ≤ α1ε

ρ,

∫ s

0

Υu (u) du ≥ α2ε

}
≤ Cεp.

Proof. Fix n ≥ 1 and set si = is
n , i = 0, . . . , n. For each i = 0, . . . , n− 2, we define

Di =
{∫ s

0

Y 2
u (u) du ≤ α1ε

ρ,

∫ si+1

si

Υu (u) du ≥ α2ε

2 (n− 1)

}
.

We also define

Dn−1 =

{∫ s

0

Y 2
u (u) du ≤ α1ε

ρ,

∫ s

(1− 1
n )s

Υu (u) du ≥ α2ε

2

}
.

Then {∫ s

0

Y 2
u (u) du ≤ α1ε

ρ,

∫ s

0

Υu (u) du ≥ α2ε

}
⊂

n−1⋃
i=0

Di. (9)

Chebyshev’s inequality and the boundedness of Ψj , Θj,k, 1 ≤ j, k ≤ m, yield for all p′ ≥ 1,

P {Dn−1} ≤ P

{∫ s

(1− 1
n )s

Υu (u) du ≥ α2ε

2

}
≤
(

2m2K3s

α2

)p′
ε−p′

np′ ·

Taking n = [ε−ν ] (where [·] denotes the integer part) and ν > 1, we have ε−p′

np′ ≤ 2p′
ε(ν−1)p′

, for any ε < ε0 =
2−

1
ν . Therefore,

P {Dn−1} ≤ Cεp′′
, (10)

for all p′′ = (ν − 1) p′ ≥ 2.
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We now study the terms P(Di), for all i = 0, . . . , n− 2. Setting

Fi =
{∫ si+2

si

Y 2
u (u) du ≤ α1ε

ρ,

∫ si+1

si

Υu (u) du ≥ α2ε

2n

}
,

we clearly have Di ⊂ Fi.
By Itô’s formula, for u ∈ ]si, si+2], it holds that

Y 2
u (λ) = Y 2

si
(λ) + 2

m∑
j=1

∫ u

si

Yη (λ) Ψj
η (λ) dM̃ j

η + 2
∫ u

si

Yη (λ)Φη (λ) dη +
∫ u

si

Υη (λ) dη. (11)

Set λ = u in (11). By integrating with respect to the u variable and applying Fubini’s theorem and a stochastic
Fubini theorem, we obtain ∫ si+2

si

Y 2
u (u) du ≥ Csi+2 + Asi+2 + Msi+2 , (12)

where, for any s ≥ si,

Cs =
∫ s

si

(∫ s

η

Υη (u) du
)

dη,

As = 2
∫ s

si

(∫ s

η

Yη (u)Φη (u) du
)

dη,

Ms = 2
m∑

j=1

∫ s

si

(∫ s

η

Yη (u)Ψj
η (u) du

)
dM̃ j

η .

We devote the remaining of the proof to show the inclusion

Fi ⊂
{

sup
si≤u≤si+2

|Mu| ≥ α2s

16
ε1+2ν , 〈M〉si+2

<
α2

2s
2

256
ε3+4ν

}
(13)

for some ν > 0. Then, applying the martingale exponential inequality,

P

{
sup

si≤u≤si+2

|Mu| ≥ α2s

16
ε1+2ν , 〈M〉si+2

<
α2

2s
2

256
ε3+4ν

}
≤ 2 exp

(
−1

2
ε−1

)
,

and this will finish the proof.
The above inclusion is obtained by proving a lower bound for Csi+2 , and upper bounds for

∣∣Asi+2

∣∣ and
〈M·〉si+2

.

Lower bound for Csi+2 . Clearly, on Fi, the triangular inequality and the Hölder continuity of Υη(·) (with
constant Kβ), imply

Csi+2 ≥
∫ si+2

si

(∫ si+2

η

Υη (η) du
)

dη −
∫ si+2

si

(∫ si+2

η

|Υη (u) − Υη (η)| du
)

dη

≥
∫ si+1

si

(si+2 − η)Υη (η) dη −
∫ si+2

si

(∫ si+2

η

Kβ |u− η|β du
)

dη

≥ (si+2 − si+1)
∫ si+2

si

Υη (η) dη −Kβ (si+2 − si)
β+2

≥ α2sε

2n2
−Kβ

(2s)β+2

nβ+2
·
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Taking n = [ε−ν ] and ν > 0, yields

α2sε

2n2
−Kβ

(2s)β+2

nβ+2
≥ α2s

2
ε1+2ν −Kβ(4sεν)β+2,

for any ε < ε0. Choose ν > 0 such that νβ > 1, so that ν (β + 2) > 1+2ν. Thus, taking ε1 =
(

α2
Kβ4β+3sβ+1

) 1
νβ−1

,

we have that for all ε < ε1 ∧ ε0, on Fi,
Csi+2 ≥ α2s

4
ε1+2ν . (14)

Upper bound for
∣∣Asi+2

∣∣. Jensen’s inequality implies

∣∣Asi+2

∣∣ ≤ 2K
∫ si+2

si

(∫ si+2

η

|Yη (u)| du
)

dη.

Since λ→ Yu (λ) is β-Hölder continuous (Hölder constant K′
β), we obtain∫ si+2

si

(∫ si+2

η

|Yη (u)| du
)

dη ≤
∫ si+2

si

(∫ si+2

η

|Yη (η)| du
)

dη +
∫ si+2

si

(∫ si+2

η

|Yη (u) − Yη (η)| du
)

dη

≤
∫ si+2

si

(si+2 − η) |Yη (η)| dη + K′
β

∫ si+2

si

(∫ si+2

η

|u− η|β du
)

dη

≤
∫ si+2

si

(si+2 − η) |Yη (η)| dη + K′
β (si+2 − si)

β+2
.

But,

∫ si+2

si

(si+2 − η) |Yη (η)| dη ≤
{∫ si+2

si

(si+2 − η)2 dη
} 1

2
{∫ si+2

si

Y 2
η (η) dη

} 1
2

≤ (si+2 − si)
3
2

{∫ si+2

si

Y 2
η (η) dη

} 1
2

·

Thus, on Fi, we have

∣∣Asi+2

∣∣ ≤ 2K
((

2s
n

) 3
2

α1
1
2 ε

ρ
2 + K′

β

(
2s
n

)β+2
)
.

As before, taking n = [ε−ν], ν > 0, one obtains

(
2s
n

) 3
2

α1
1
2 ε

ρ
2 + K′

β

(
2s
n

)β+2

≤ (4s)
3
2α1

1
2 ε

3ν
2 + ρ

2 + K′
β (4s)β+2

εν(β+2)

≤
(
(4s)

3
2 α1

1
2 + K′

β (4s)β+2
)
ε(

3ν
2 + ρ

2 )∧(ν(β+2)),

for any ε < ε0. Choose ν such that νβ > 1 and ρ > 2 + ν. Then m (ρ, ν, β) =
{

ρ
2 + 3ν

2

} ∧ {ν (2 + β)} > 1 + 2ν.
Thus, taking

ε′1 =

⎛⎝ α2

32K
(
4

3
2 s

1
2α1

1
2 + K′

β4β+2sβ+1
)
⎞⎠

1
m(ρ,ν,β)−1−2ν

,
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on Fi, we obtain for all ε < ε′1 ∧ ε0, ∣∣Asi+2

∣∣ ≤ α2s

16
ε1+2ν . (15)

Upper bound for 〈M〉si+2
. Clearly,

〈M〉si+2
= 4

m∑
j,k=1

∫ si+2

si

(∫ si+2

η

Yη (u)Ψj
η (u) du

)(∫ si+2

η

Yη (u)Ψk
η (u) du

)
Θj,k

η dη.

Jensen’s inequality implies∣∣∣∣∫ si+2

η

Yη (u)Ψj
η (u) du

∣∣∣∣ ≤ K (si+2 − η) |Yη (η)| + KK′
β (si+2 − η)β+1

.

Thus,

〈M〉si+2
≤ C1 (si+2 − si)

2
∫ si+2

si

Y 2
η (η) dη + C2 (si+2 − si)

2β+3
,

and on Fi,

〈M〉si+2
≤ C1

(
2s
n

)2

α1ε
ρ + C2

(
2s
n

)2β+3

.

Proceeding as before, we may choose ν > 0 such that ν(2β − 1) > 3, then ρ > 3 + 2ν, and find ε′′1 such that on
Fi, for all ε < ε′′1 ,

〈M〉si+2
<
α2

2s
2

256
ε3+4ν . (16)

The set Fi ∩
{
supsi≤u≤si+2

|Mu| < α2s
16 ε

1+2ν
}

is empty. In fact, on this set, by (12), (14), (15) and (16), we
obtain

α1ε
ρ ≥

∫ si+2

si

Y 2
u (u) du ≥ Csi+2 −

∣∣Asi+2

∣∣− ∣∣Msi+2

∣∣ ≥ α2s

8
ε1+2ν . (17)

Hence, taking β > 1
2 , ν > 3

2β−1 , ρ > (3 + 2ν), ε < ε̃0, with

ε̃0 := min

{(
α2s

8α1

) 1
ρ−1−2ν

, ε0, ε1, ε
′
1, ε

′′
1

}
,

(17) cannot be satisfied.
Consequently, for any ε < ε̃0,

Fi = Fi ∩
{

sup
si≤u≤si+2

|Mu| ≥ α2s

16
ε1+2ν

}
⊂
{

sup
si≤u≤si+2

|Mu| ≥ α2s

16
ε1+2ν , 〈M〉si+2

<
α2

2s
2

256
ε3+4ν

}
.

Thus, we obtain (13), and this ends the proof of the lemma. �
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The next lemma applies to the more irregular situation where β ∈]0, 1
2 ].

Lemma 2.2. Consider a continuous semimartingale (Ys(λ), 0 ≤ s ≤ S), with decomposition given in (7) and
satisfying the assumption (i) of Lemma 2.1. Fix β ∈]0, 1

2 ] and assume that:
(ii’) For each η ∈ [0, S], 1 ≤ j ≤ m, Y0(λ), Ψj

η(λ), Φη(λ), as functions of λ, are β-Hölder continuous in λ,
uniformly in η.

(iii’) For all β′ < β, there exists versions of Ψj
η(η) and Θj,k

η , 1 ≤ j, k ≤ m, respectively, which are β′-Hölder
continuous on [0, s].

Furthermore, for all p ≥ 2

E

(∥∥Ψj
· (·)∥∥p

β′ +
∥∥Θj,k

· (·)∥∥p

β′

)
≤ Cp <∞.

Then, for any ρ >
(

11
2 + 4

β′

)(
1 + 1

β′

)
, positive constants α1, α2, p ≥ 2 and ε sufficiently small, there exists a

constant C such that

P
{∫ s

0

Y 2
u (u) du ≤ α1ε

ρ,

∫ s

0

Υu (u) du ≥ α2ε

}
≤ Cεp.

Proof. We follow the arguments of Proposition 3.2 in [2] in a more abstract presentation.
Fact 1. Fix β′ < β, ε < s∧1, a > 2

(
1 + 1

β′

)
, p ≥ 2. Condition (ii’) implies the existence of a positive constant

cp such that

P
{∫ s

0

Y 2
u (u) du ≤ α1ε

a, sup
0≤u≤s

|Yu (u)| > (1 +
√
α1) ε

}
≤ cpε

p.

This can be checked following the proof of Lemma 3.4 on [2] with 〈ξ,Φ∗−1
u Y 〉(x) := Yu (u).

As a consequence, taking ρ = ra, εr < s ∧ 1, with r > 0 and a as before, we reduce the problem to estimate
the probability of the set

B =
{

sup
0≤u≤s

|Yu (u)| ≤ (1 +
√
α1) εr,

∫ s

0

Υu (u) du ≥ α2ε

}
.

As in the previous Lemma 2.1, we consider the discretization of the interval [0, s] given by si = is
n , i = 0, . . . , n,

with n =
[
ε
− 4

β′
]
.

For i = 0, . . . , n− 1, set

Ci :=
{
∃u ∈ [si, si+1] : Υu (u) < α2ε

3
2 ,

∫ s

0

Υu (u) du ≥ α2ε

}
,

Di :=

{
sup

si≤u≤si+1

|Yu (u)| ≤ (1 +
√
α1) εr, Υu (u) ≥ α2ε

3
2 , ∀u ∈ [si, si+1]

}
.

Clearly, B ∩Dc
i ⊂ Ci.

Fact 2. Condition (iii’) implies that for any p ≥ 2, and ε
1
2 < 1

2s ,

P

(
n−1⋂
i=0

Ci

)
≤ cpε

p.

For the proof of this fact, we can follow the arguments of Lemma 3.7 in [2] with
∑m

j=1〈ξ,Φ∗−1
u [Xj , Z]〉2(x) :=

Υu(u).
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Let D =
⋃n−1

i=0 Di, According to Fact 2, we have P (B ∩Dc) ≤ cpε
p for any ε

1
2 < 1

2s .
Therefore, we have only to estimate P (B ∩D). Moreover, since

P (B ∩D) ≤ P (D) ≤ n max
i

{P (Di)} ≤ ε
− 4

β′ max
i

{P (Di)} ,

it suffices to show that P (Di) ≤ Cpε
p, for any p ≥ 1, with some constant Cp, not depending on i.

Recall the definition of Υ given by (8). Owning to assumptions (i) and (ii’),

sup
(u,λ)∈[si,si+1]

2
|Υu (u) − Υu (λ)| ≤ C |si+1 − si|β = C

( s
n

)β

≤ Csβε
4β

β′ , (18)

for all ε < ε0 = 2−
β′
4 .

For any i = 0, . . . , n− 1, set

Fi =

{
sup

si≤u≤si+1

|Yu (u)| ≤ (1 +
√
α1) εr, inf

(u,λ)∈[si,si+1]
2
Υu (λ) ≥ α2

2
ε

3
2

}
.

Using (18), we prove that Di ⊂ Fi , for all ε < ε1 ∧ ε0, for some ε1 > 0.
Indeed, the triangular inequality and the estimate (18) implies that, for any λ ∈ [si, si+1], on Di

Υu (λ) ≥ Υu (u) − Csβε
4β

β′ ≥ α2ε
3
2 − Csβε

4β

β′ .

Since β′ < β, we have 4β
β′ − 3

2 > 0. Choosing ε1 =
(

α2
2Csβ

) 1
4β
β′ − 3

2 , we obtain Υu (λ) ≥ α2
2 ε

3
2 , for all ε < ε1 ∧ ε0

and for any (u, λ) ∈ [si, si+1]
2.

Thus, we have now reduced the proof to estimate P {Fi}.
We shall only consider the case i = 0. In fact, it will become clear from the proof that the arguments depend

only on the length of the interval [si, si+1].
We shall prove the existence of the arg sup associated to Y· (λ). This is done following the same arguments

as in [2], Proposition 3.2, that is, using Girsanov’s theorem. Our setting needs a more general version of this
theorem than the one used in [2]. For instance, we can apply Theorem 35 in [9], p. 132. With this, on a new
probability space, the semimartingale Y· (λ) is transformed into a local martingale and then, by a standard time
change, into a Brownian motion, for which the arg sup does exist. We only give a sketch of this procedure, since
it is very similar as in [2].

Applying a Girsanov transformation needs to work on the whole probability space Ω, and not only on F0.
For this reason, we have to modify the process Y· (λ), as follows. Define

φ(z) =
{

z if |z| ≤ K,
±2K if |z| > 3K,

otherwise, |φ| is bounded by 2K and with derivative bounded by 1;

ψε(z) =

⎧⎨⎩
1 if |z| ≥ α2

2 ε
3
2 ,

0 if |z| < α2
4 ε

3
2 ,
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ψε is even and non-decreasing on [0,∞). Set

Φ· (∗) = φ (Φ· (∗)) , (19)

Ψ
j

· (∗) = φ
(
Ψj

· (∗))ψε (Υ· (∗)) , 1 ≤ j ≤ m, (20)

Ψ
m+1

· (∗) =
√
α2

2
ε

3
2 [1 − ψε (Υ· (∗))] . (21)

Consider a Brownian motion M̃m+1, independent of
(
M̃1, . . . , M̃m

)
. Let

Y u(λ) = Y0(λ) +
m+1∑
j=1

∫ u

0

Ψ
j

η (λ) dM̃ j
η +

∫ u

0

Φη (λ) dη. (22)

This is the analogue of (3.12) in [2].
Observe that if ω ∈ F0 for u ≤ s1, then Y u (λ, ω) = Yu (λ, ω). Hence, Y · (λ) is a modification of Y· (λ).
We define the modification of Mu (λ) by Mu (λ) :=

∑m+1
j=1

∫ u

0 Ψ
j

η (λ) dM̃ j
η , with quadratic variation given by〈

M · (λ)
〉

u
=
∫ u

0 Υη (λ) dη, where

Υη(λ) =
m∑

j,k=1

Ψ
j

η (λ) Ψ
k

η (λ) Θj,k
η +

(
Ψ

m+1

η

)2

(λ) . (23)

One can check that for all η.

Υη (λ) ≥ α2

8
ε

3
2 . (24)

This is the crucial fact ensuring the existence of a probability measure P̃, equivalent to P, such that on each Fs,

dP̃
dP

= exp

{
−
∫ s

0

Φη (λ)
Υη (λ)

dMη (λ) − 1
2

∫ s

0

Φ
2

η (λ)

Υ
2

η (λ)
d
〈
M · (λ)

〉
η

}
,

and such that

Mu (λ) = Mu (λ) +
∫ u

0

Φη (λ) dη,

is a P̃ local martingale, (see [9]). Thus, P̃-a.s., Y u(λ) = Y0(λ) + Mu (λ), is a local martingale.
Set

Au(λ) =
〈
Y ·(λ)

〉
u

=
∫ u

0

Υη (λ) dη,

Tu(λ) = inf {η ≥ 0, Aη(λ) ≥ u} .

Then, there exists a P̃-Brownian motion B such that for all u, Y u(λ) = Y0(λ) + BAu(λ), that is, Y Tu(λ)(λ) =
Y0(λ) +Bu P̃-a.s., (see [4], p. 174, for details).

Let S1 = α2ε
3
2

8 s1 ≥ α2
8 sε

3
2+ 4

β′ . Using (24), we can prove

u
α2

8
ε

3
2 ≤ Au(λ) ≤ 2m2K3u. (25)
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Consequently, u
2m2K3 ≤ Tu(λ) ≤ 8u

α2ε
3
2
. Hence,

α2sε
3
2+ 4

β′

16m2K3
≤ S1

2m2K3
≤ TS1(λ) ≤ 8S1

α2ε
3
2

= s1. (26)

Set Π1(λ) := TS1(λ). The supremum of the absolute value of a linear Brownian motion on a deterministic time
interval is a.s. attained at a single time. Thus, for all λ ∈ [0, s1], P̃-a.s., there exists an unique (random) time
such that

η1(ω, λ) = arg sup
0≤η≤Π1(λ)

∣∣Y η(λ)
∣∣ . (27)

Since P and P̃ are equivalent and Π1(λ) ≤ s1, (27) holds P-a.s.
The final step consists of proving some control on the modified process Y ·(λ), because we only have the

existence of the arg sup for this process.

Let θ1 = α2sε
3
2 + 4

β′
16m2K3 . Owing to (26),

sup
0≤η≤θ1

∣∣Y η(λ)
∣∣ ≤ sup

0≤η≤Π1(λ)

∣∣Y η(λ)
∣∣ . (28)

The term sup0≤η≤θ1

∣∣Y η(λ)
∣∣ can be estimated in a similar manner as in [6]. We consider the Itô formula

for Y 2
θ1

(λ),

Y
2

θ1
(λ) = Y

2

0(λ) + 2
∫ θ1

0

Y η(λ)dMη (λ) + 2
∫ θ1

0

Y η (λ)Φη (λ) dη +
∫ θ1

0

Υη (λ) dη. (29)

Fix r′ > 2
β′ + 11

4 . We have the following facts concerning Y ·(λ):

Fact 3. There exists ε′0 > 0 such that for all ε < ε′0

P

(
sup

0≤η≤θ1

∣∣Y η(λ)
∣∣ ≤ (2 +

√
α1) εr′

)
≤ 2 exp

(
−1

2
ε−1

)
.

Fact 4. There exists ε′′0 > 0 such that for all ε < ε′′0

P

(
∃ λ ∈ [0, s1] , sup

0≤η≤θ1

∣∣Y η(λ)
∣∣ ≤ (1 +

√
α1) εr′

)
≤ cpε

p,

for all p ≥ 2.
For their proofs, we can follow Lemmas 3.21 and 3.22 of [2], respectively.
Let us return to Y· (λ). The processes Yu(λ), Au(λ) and Tu(λ), have jointly continuous sample paths in

(u, λ), a.s. Thus, for ω ∈ F0, for all (u, λ) ∈ [0, s1]
2, Y u(λ, ω) = Yu(λ, ω).
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Consider the set

G0 = F0 ∩
{
∀ λ ∈ [0, s1] , sup

0≤η≤Π1(λ)

|Yη(λ)| > (1 +
√
α1) εr′

}
.

As in [2], one checks that G0 = ∅. Consequently, with the result stated in Fact 4, we end the proof of the
lemma. �

3. Proof of Theorem 1.1

Proof. To simplify the notation, we omit the summation sign on repeated indices. Using the classical approach
going back to Malliavin –and also by Bismut, Ikeda and Watanabe, Stroock, Bouleau and Hirsch, etc.– (see for
instance [7]), the proof of the theorem consists of checking that

(i) X i
z ∈ D

∞, for all 1 ≤ i ≤ m;
(ii) detC−1

z ∈ Lp, for all p ≥ 2, where Cz is the m×m matrix whose entries are

Cij
z =

∫
Rz

(Dl
rX

i
z)(D

l
rX

j
z )dr.

Proving (i) is straightforward. Indeed, due to the condition (h2), one can proceed as in [8], Proposition 3.3.
To prove (ii), it suffices to show that for any p ≥ 2 there exists ε0(p) such that for every ε ≤ ε0 (p)

sup
|v|=1

P
{
vTCzv ≤ ε

} ≤ εp (30)

(see e.g. [7]).
We next give some preparations for the proof of (30), valid in each one of the set of assumptions of Theo-

rem 1.1. Following similar arguments as in [8], pp. 585–586, we write

vTCv =
d∑

l=1

∫
Rz

〈v, ξ (r, z)Al (r,Xr)〉2 dr,

where v ∈ R
m, and for r ∈ RS,T , ξi

j(r, z), r � z, 1 ≤ i, j ≤ m, is the solution to

ξi
j(r, z) = δi

j +
∫

[r,z]

∂x
kA

i
l (u,Xu) ξk

j (r, u)dW l
u +

∫
[r,z]

∂x
kA

i
0 (u,Xu) ξk

j (r, u)du. (31)

Then, for any v ∈ Sm−1, 0 < ε < 1, 0 < µ < 1, we have

P
{
vTCzv ≤ ε

} ≤ P(E0) + P(B),

where

E0 =

{
d∑

l=1

∫ s

0

〈v,Al (η, t,Xη,t)〉2 dη ≤ 4εµ

}
,

B =

{
d∑

l=1

∫ s

0

∫ t

t−ε1−µ

〈v,Al (η, t,Xη,t) − ξ (η, τ, s, t)Al (η, τ,Xη,τ )〉2 dηdτ > ε

}
.
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Combining results of [8] and the assumption (h1), we can obtain an upper bound like in (30) for P (B), as
follows. Applying Chebyshev and Cauchy-Schwarz inequalities yields

P {B} ≤ Cε−µq sup
(η,τ)∈[0,s]×[t−ε1−µ,t]

max
1≤l≤d

E ‖Al (η, t,Xη,t) − ξ (η, τ, s, t)Al (η, τ,Xη,τ )‖2q
.

Clearly,

E ‖Al (η, t,Xη,t) − ξ (η, τ, s, t)Al (η, τ,Xη,τ )‖2q ≤ CE ‖Al (η, t,Xη,t) −Al (η, τ,Xη,t)‖2q

+ CE ‖Al (η, τ,Xη,t) −Al (η, τ,Xη,τ )‖2q

+ CE ‖Al (η, τ,Xη,τ ) − ξ (η, τ, s, t)Al (η, τ,Xη,τ )‖2q
.

From (h1), we have
E ‖Al (η, t,Xη,t) − Al (η, τ,Xη,t)‖2q ≤ K2q

γ |t− τ |2qγ (32)
By the mean value theorem in the spatial component and Lemma 3.1 in [8] applied to (1),

E ‖Al (η, τ,Xη,t) −Al (η, τ,Xη,τ )‖2q ≤ C|t− τ |q. (33)

Finally, the Cauchy-Schwarz inequality and Lemma 3.1 in [8] applied to (31) yield

E ‖Al (η, τ,Xη,τ ) − ξ (η, τ, s, t)Al (η, τ,Xη,τ )‖2q

= E ‖(Im − ξ (η, τ, s, t))Al (η, τ,Xη,τ )‖2q

≤ C |(s− η) (t− τ)|q .

Consequently,

P {B} ≤ Cε{(1−2µ)∧(2γ−(2γ+1)µ)}q.

If µ < 1
2 ∧ 2γ

2γ+1 then (1 − 2µ) ∧ (2γ − (2γ + 1)µ) > 0. Thus, in this case,

P {B} ≤ C(K,Kγ , S, T, d, p)εp,

for all p = {(1 − 2µ) ∧ (2γ − (2γ + 1)µ)} q ≥ 2.
We devote the remaining of the section to estimate the term P(E0).
For any k = 0, 1, . . . , N , v ∈ Sm−1, define

Ek :=

{ ∑
V ∈Σk

∫ s

0

〈v, V (η, t,Xη,t)〉2 dη ≤ 4εm(k)

}

and E =
N∩

k=0
Ek, where the m(k) are positive constants to be fixed later.

As usually, for N ≥ 1 we consider the decomposition E0 ⊂ (E0 ∩Ec
1) ∪ (E1 ∩ Ec

2) ∪ · · · ∪ (EN−1 ∩ Ec
N ) ∪ E,

yielding

P(E0) ≤ P(E) +
N−1∑
k=0

P
(
Ek ∩ Ec

k+1

)
. (34)

We are going to estimate each term of this sum under the different set of assumptions of the theorem.
Assume (h3); we shall prove that P(E) ≤ Cεp, for any ε > 0 small enough, where C depends on t, p, m, K

and R.
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Consider the stopping time S with respect to the family of σ-algebras {Fη,t, η ≥ 0} (associated to the
Brownian sheet) defined as

S = inf

{
η ≥ 0 : sup

θ≤η; τ≤t
|Xθ,τ − x0| ≥ R

}
∧ s ∧ s0.

We write P (E) ≤ P (E ∩ {S ≥ ες}) + P (S < ες) , with 0 < ς < M = min
k=0,...,N

m(k).

For ε small enough, the set E ∩ {S ≥ ες} is empty. In fact, assume S ≥ ες ; from (4) we have

N∑
k=0

∑
V ∈Σk

∫ s

0

〈v, V (η, t,Xη,t)〉2 dη ≥ cNε
ς .

On the set E,
N∑

k=0

∑
V ∈Σk

∫ s

0

〈v, V (η, t,Xη,t)〉2 dη ≤ 4 (N + 1) εM .

Thus, for all ε < ε0 =
(

cN

4(N+1)

) 1
M−ς

, E ∩ {S ≥ ες} = ∅.
Applying Chebychev, Burkholder-Davis-Gundy and Hölder inequalities, Gronwall’s lemma and Lemma 3.1

in [8] to (1), yields P (S < ες) ≤ Cε
p′ς
2 , for all p′ ≥ 2. Thus, taking p = p′ς

2 ≥ 2, for all ε < ε0

P (E) ≤ P (S < ες) ≤ Cεp,

where C depends on p, t, m, K and R.
Assume N = 0. Then E = E0; therefore, for the elliptic case the proof is complete.

The smooth case

In addition to the results proved so far, we have to study P(Ek ∩ Ec
k+1), k = 0, . . . , N − 1. Clearly,

Ek ∩Ec
k+1 ⊂ ∪V ∈Σk

B, where

B =

{∫ s

0

〈v, V (η, t,Xη,t)〉2 dη ≤ 4εm(k),

d∑
l=1

∫ s

0

〈
v,A∇

l V (η, t,Xη,t)
〉2

dη >
4εm(k+1)

Γ

}
,

and Γ = max
k=0,...,N−1

card (Σk).

Moreover, B ⊂ B1 ∪B2, with

B1 :=

{∫ s

0

〈v, V (η, t,Xη,t)〉2 dη ≤ 4εm(k),

d∑
l=1

∫ s

0

∫ t

0

〈
v,Al (η, τ,Xη,τ )∇ V (η, t,Xη,t)

〉2

dηdτ ≥ εϑm(k+1)

Γ

}
,

B2 :=

{
d∑

l=1

∫ s

0

∫ t

0

〈
v,Al (η, τ,Xη,τ )∇ V (η, t,Xη,t)

〉2

dηdτ <
εϑm(k+1)

Γ
,

d∑
l=1

∫ s

0

〈
v,A∇

l V (η, t,Xη,t)
〉2

dη >
4εm(k+1)

Γ

}
,

where ϑ is an arbitrary positive real constant.
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Let us estimate P(B2). Firstly, one easily checks that B2 ⊂ B2′ with

B2′ =

{
d∑

l=1

∫ s

0

∫ t

t−ε(ϑ−1)m(k+1)

〈
v, {Al (η, t,Xη,t) −Al (η, τ,Xη,τ )}∇ V (η, t,Xη,t)

〉2

dηdτ >
εϑm(k+1)

Γ

}
.

Applying Chebyshev’s and the Cauchy-Schwarz inequalities, yields

P(B2′) ≤ Cε−qm(k+1) sup
η∈[0,s]

τ∈[t−ε(ϑ−1)m(k+1),t]

max
1≤l≤d

1≤j≤m

{E ‖Al (η, t,Xη,t) −Al (η, τ,Xη,τ )‖4q
E
∥∥∂x

j V (η, t,Xη,t)
∥∥4q

} 1
2
.

We have E
∥∥∂x

j V (η, t,Xη,t)
∥∥4q ≤ K4q. Moreover, owing to (32) and (33),

E ‖Al (η, t,Xη,t) −Al (η, τ,Xη,τ )‖4q ≤ 24q−1
(
K4q

γ |t− τ |4qγ + C (K,S, T, q) |t− τ |2q
)
.

Thus, P(B2) ≤ Cε{(2(ϑ−1)γ−1)∧(ϑ−2)}qm(k+1). Taking ϑ >
(

1
2γ + 1

)
∨2, we obtain {(2 (ϑ− 1) γ − 1) ∧ (ϑ− 2)} >

0. Hence, P(B2) ≤ Cεp, for all p = {(2 (ϑ− 1) γ − 1) ∧ (ϑ− 2)} qm(k + 1) ≥ 2.
It remains to study the term P(B1). For fixed t, consider the one-parameter semimartingale (Xs,t, s ∈ [0, S])

with respect to the filtration {Fη,t, η ≥ 0}.
An application of the Itô formula yields

〈v, V (s, t,Xs,t)〉 = 〈v, V (0, t, x0)〉 +
∫ s

0

〈v, ∂ηV (η, t,Xη,t)〉dη

+
d∑

l=1

∫ s

0

∫ t

0

〈
v,Al (η, τ,Xη,τ )∇ V (η, t,Xη,t)

〉
dW l

η,τ

+
∫ s

0

∫ t

0

〈
v,A0 (η, τ,Xη,τ )∇ V (η, t,Xη,t)

〉
dηdτ

+
1
2

∫ s

0

∫ t

0

〈
v, ∂x

j ∂
x
kV (η, t,Xη,t)A

j
l (η, τ,Xη,τ )Ak

l (η, τ,Xη,τ )
〉

dηdτ. (35)

We can now use the arguments of [8]. More precisely, we apply Lemma 4.2 in [8] to the continuous semimartingale
Ys := 〈v, V (s, t,Xs,t)〉, which decomposition follows from (35). This finishes the proof in the regular case.

The estimate of P (E0) in the factorable case can be obtained using the same method as for the regular
case. We skip the details of the proof to avoid repetitions.

The regular Hölder case

Under this set of assumptions, the expression (35) does not make sense, because the vector fields V (η, t, x) are
not differentiable with respect to the variable η. Instead, we consider the process (〈v, V (λ, t,Xη,t), η ∈ [0, s]),
where V ∈ Σk, k = 0, . . . , N − 1, and λ ≥ 0, t ∈ [0, T ], are fixed, and apply the Itô formula. We obtain

〈v, V (λ, t,Xs,t)〉 = 〈v, V (λ, t, x0)〉 +
d∑

l=1

∫ s

0

∫ t

0

〈
v,Al (η, τ,Xη,τ )∇ V (λ, t,Xη,t)

〉
dW l

η,τ

+
∫ s

0

∫ t

0

〈
v,A0 (η, τ,Xη,τ )∇ V (λ, t,Xη,t)

〉
dηdτ

+
1
2

∫ s

0

∫ t

0

〈
v, ∂x

j ∂
x
kV (λ, t,Xη,t)A

j
l (η, τ,Xη,τ )Ak

l (η, τ,Xη,τ )
〉

dηdτ. (36)
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Set

Ys (λ) = 〈v, V (λ, t,Xs,t)〉 , Y0 (λ) = 〈v, V (λ, t, x0)〉 ,

Ψj
η (λ) =

〈
v, ∂x

j V (λ, t,Xη,t)
〉
, M̃ j

s =
∫ s

0

∫ t

0

Aj
l (η, τ,Xη,τ ) dW l

η,τ ,

Θj,k
η =

∫ t

0

d∑
l=1

Aj
l (η, τ,Xη,τ )Ak

l (η, τ,Xη,τ ) dτ,

Φη (λ) =
∫ t

0

〈
v,A0 (η, τ,Xη,τ )∇ V (λ, t,Xη,t)

〉
dτ

+
1
2

∫ t

0

〈
v, ∂x

j ∂
x
kV (λ, t,Xη,t)A

j
l (η, τ,Xη,τ )Ak

l (η, τ,Xη,τ )
〉

dτ,

and α1 = 4, α2 = 1
Γ .

These processes satisfy the assumptions of Lemma 2.1. Fix ν > 3
2β−1 , then 3 + 2ν < ρ. Set m(0) = µ and

m(k) = µ
(θρ)k , k = 0, . . . , N . With Lemma 2.1, we obtain the desired estimate for P (B1) and we finish the

proof.

The irregular Hölder case

We apply Lemma 2.2 to the same processes as we did in the regular Hölder case. Notice that the assumptions
of this lemma are satisfied. Fix ρ >

(
11
2 + 4

β′

)(
1 + 1

β′

)
. Set m(0) = µ and m(k) = µ

(ϑρ)k , k = 0, . . . , N . Then,

for ε small enough we obtain the suitable estimate for P (B1), and therefore the proof is complete. �
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