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ON POINTWISE ADAPTIVE CURVE ESTIMATION BASED
ON INHOMOGENEOUS DATA

Stéphane Gäıffas1

Abstract. We want to recover a signal based on noisy inhomogeneous data (the amount of data can
vary strongly on the estimation domain). We model the data using nonparametric regression with
random design, and we focus on the estimation of the regression at a fixed point x0 with little, or
much data. We propose a method which adapts both to the local amount of data (the design density
is unknown) and to the local smoothness of the regression function. The procedure consists of a local
polynomial estimator with a Lepski type data-driven bandwidth selector, see for instance Lepski et al.
[15]. We assess this procedure in the minimax setup, over a class of function with local smoothness
s > 0 of Hölder type. We quantify the amount of data at x0 in terms of a local property on the design
density called regular variation, which allows situations with strong variations in the concentration of
the observations. Moreover, the optimality of the procedure is proved within this framework.
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1. Introduction

1.1. The model

We observe n pairs of random variables (Xi, Yi) ∈ R × R independent and identically distributed satisfying

Yi = f(Xi) + ξi, (1.1)

where f : [0, 1] → R is the unknown signal to be recovered, the variables (ξi) are centered Gaussian with known
variance σ2 and independent of the design X1, . . . , Xn. The variables Xi are distributed with respect to an
unknown density µ. We want to recover f at a fixed point x0.

The classical way of considering the nonparametric regression model is to take deterministic Xi = i/n: in
this model with an equispaced design, the observations are homogeneously distributed over the unit interval. If
we take random Xi, we can model cases with inhomogeneous observations as the design distribution is “far”
from the uniform law. In particular, in order to include situations with little or much data in the model, we
allow the density µ to be degenerate (vanishing or exploding) at x0. In this problem, we are interested in the
adaptive estimation of f at x0, both adaptive to the smoothness of f and to the inhomogeneity of the data.
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1.2. Motivations

The adaptive estimation of the regression is a well-developed problem. Several adaptive procedures can be
applied for the reconstruction of a signal with unknown smoothness: nonlinear wavelet estimation (thresholding),
model selection, kernel estimation with a variable bandwidth (the Lepski method), and so on. Recent results
dealing with the adaptive estimation of the regression function when the design is not equispaced or random
include Antoniadis et al. [1], Baraud [2], Brown and Cai [4], Wong and Zheng [21], Maxim [17], Delouille et al.
[7], Kerkyacharian and Picard [12], among others.

Here, we focus on a slightly different problem: our aim is to recover the signal locally, based on data which
can be eventually very inhomogeneous. More precisely, we want to handle simultaneously situations where
the observations are very concentrated at the estimation point, or conversely, very deficient, with the aim to
illustrate the consequences of inhomogeneity on the accuracy of estimation within the theory. The minimax
rates associated to this estimation problem are computed in Gäıffas [10], under several types of behaviours for
the design density. The estimator proposed therein adapts to the inhomogeneity of the data, but not to the
smoothness of the regression. Therefore, the results presented here extend Gäıffas [10], since the procedure
constructed in the next section has both properties of smoothness adaptation, and “design adaptation”.

1.3. Organisation of the paper

In the next section, we construct the adaptive estimator, and we assess this estimator in Section 3. First, we
give an upper bound in Theorem 1 which is stated conditionally on the design. Then, we propose in Section 3.2
a way of quantifying the local inhomogeneity of the data with an appropriate assumption on the local behaviour
of the design density. Under this assumption, we provide another upper bound in Theorem 2. In Section 4, we
discuss the optimality of the estimator, and we prove in Theorem 3 that the convergence rate from Theorem 2 is
optimal. Section 5 is devoted to the proofs and some well-known analytic facts are briefly recalled in appendix.

2. Construction of the adaptive procedure

The procedure described here is a local polynomial estimator with an adaptive data-driven selection of the
bandwidth (the design density and the smoothness are both unknown). For any ∆ ⊂ [0, 1], we define the
empirical sample measure

µ̄n(∆) :=
1
n

n∑
i=1

1∆(Xi),

where 1∆ is the indicator of ∆, and if µ̄n(∆) > 0, we introduce the pseudo-inner product

〈f , g〉∆ :=
1

µ̄n(∆)

∫
∆

fg dµ̄n, (2.1)

and ‖g‖∆ := 〈g , g〉1/2
∆ the corresponding pseudo-norm.

2.1. Local polynomial estimation

We fix K ∈ N and an interval I ⊂ [0, 1], which is a smoothing parameter that we call bandwidth. The idea is
to look for the polynomial f̄I of order K which is the closest to the data in the least square sense, with respect
to the localised design-adapted norm ‖ · ‖I :

f̄I := argmin
g∈VK

‖Y − g‖2
I , (2.2)

where VK is the set of all real polynomials of order at most K. We can rewrite (2.2) in a variational form, in
which we look for f̄I ∈ VK such that for any φ ∈ VK ,

〈f̄I , φ〉I = 〈Y , φ〉I , (2.3)
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where it suffices to consider only the power functions φp(·) = (· − x0)p, 0 � p � K. The coefficients vector
θ̄I ∈ R

K+1 of the polynomial f̄I is therefore solution, when it makes sense, of the linear system

XIθ = YI ,

where for 0 � p, q � K:
(XI)p,q := 〈φp , φq〉I and (YI)p := 〈Y , φp〉I . (2.4)

The parameter f(x0) is then estimated by f̄I(x0). This linear method of estimation, called local polynomial
estimator is well-known, see for instance Stone [19], Fan and Gijbels [8, 9] and Tsybakov [20] among many
others.

In this paper, we work with a slightly modified version of the local polynomial estimator, which is convenient
in situations with little or much data. When the smallest eigenvalue of the non-negative matrix XI is too small,
we add a correcting term allowing to bound it from below: we introduce

X̄I := XI + (nµ̄n(I))−1/2IdK+11Ωc
I
,

where IdK+1 is the identity matrix in R
K+1 and

ΩI :=
{
λ(XI) > (nµ̄n(I))−1/2

}
, (2.5)

where λ(M) stands for the smallest eigenvalue of a matrix M . The quantity (nµ̄n(I))−1/2 comes from the
variance of f̄I , and this particular choice preserves the convergence rate of the method. Then, when µ̄(I) > 0,
we consider the solution θ̂I of the linear system

X̄Iθ = YI , (2.6)

and denote by f̂I ∈ VK the polynomial with coefficients θ̂I . When µ̄n(I) = 0, we take simply f̂I := 0.
The local polynomial estimator is convenient when dealing with a random design, as shown in Fan and

Gijbels [9], since its pointwise error has a very tractable decomposition. Conditionally on the design, we can
decompose the pointwise error |f̂I(x0) − f(x0)| between a bias term of order |I|s (|I| standing for the length
of I) when f is s-Hölder and a variance term of order (nµ̄n(I))−1/2, for a general design, in a non-asymptotic
way (see Lemma 3 below). Since the optimal bandwidth I makes the balance between the bias and the variance
of f̂I , it depends on the local smoothness of f via the bias term. Therefore, an adaptive technique is required
when the smoothness is unknown, which is the case in practical situations.

2.2. Adaptive bandwidth selection

The adaptive procedure described here is based on a method introduced by Lepski [14], see also Lepski
et al. [15], and Lepski and Spokoiny [16]. If a family of linear estimators can be “well-sorted” by their respective
variances (e.g. kernel estimators in the white noise model, see Lepski and Spokoiny [16]), the Lepski procedure
selects the largest bandwidth such that the corresponding estimator does not differ “significantly” from estima-
tors with a smaller bandwidth. Following this principle, we construct a method which adapts to the unknown
smoothness, and additionally to the original Lepski method, to the distribution of the data (the design density
is unknown), in particular in cases with little or much data. Bandwidth selection procedures in local polynomial
estimation can be found in Fan and Gijbels [8], Goldenshluger and Nemirovski [11] or Spokoiny [18].

The idea of the adaptive procedure is the following: when f̂I is close to f (that is, when I is well-chosen),
we have in view of (2.3)

〈f̂J − f̂I , φ〉J = 〈Y − f̂I , φ〉J ≈ 〈Y − f , φ〉J = 〈ξ , φ〉J ,
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for any J ⊂ I, φ ∈ VK , where the right-hand side is a noise term. Then, in order to “remove” this noise, we
select the largest I such that this noise term remains smaller than an appropriate threshold, for any J ⊂ I and
φ = φp, 0 � p � K. The bandwidth is selected in a fixed set of intervals Gn called grid (which is a tuning
parameter of the procedure that we describe below) as follows:

În := argmax
I∈Gn

{
µ̄n(I) | ∀J ∈Gn, J ⊂ I, ∀m ∈ {0, . . . , K},

|〈f̂J − f̂I , φm〉J | � ‖φm‖JTn(I, J)
}

, (2.7)

where
Tn(I, J) := σ

[( 2 log n

nµ̄n(I)

)1/2

+ DCK

( log(nµ̄n(I))
nµ̄n(J)

)1/2]
, (2.8)

with CK := 1 + (K + 1)1/2 and D > 0 is specified later on. The estimator is then given by

f̂n(x0) := f̂În
(x0). (2.9)

The threshold choice (2.8) can be understood in the following way: since the variance of f̂I is of order
(nµ̄n(I))−1/2, we see that the two terms in Tn(I, J) are ratios between a penalizing log term and the variance
of the estimators compared by the rule (2.7). The penalization term is linked with the number of comparisons
necessary for selecting the bandwidth.

Within the procedure, we have mainly two choices of grid. The first one is the following: we sort the (Xi, Yi)
into (X(i), Y(i)) such that X(i) < X(i+1). Then, we consider j such that x0 ∈ [X(j), X(j+1)] (if necessary, we
take X(0) = 0 and X(n+1) = 1) and for some a > 1 we introduce

Gn :=
[loga(j+1)]⋃

p=0

[loga(n−j)]⋃
q=0

{[
X(j+1−[ap]), X(j+[aq ])

]}
. (2.10)

The selection of the bandwidth within this grid is fast, since its cardinality is O((log n)2). Another example of
grid is given by

Gn :=
⋃

1�p<q�n

{[
x0 − |X(p) − x0|, x0 + |X(q) − x0|

]}
, (2.11)

where the cardinality is O(n2), which increases rapidly with the sample size.

Remark. The estimator f̂n(x0) only depends on K and on the grid Gn (which are parameters chosen by the
statistician). It does not depend within its construction on µ nor the smoothness of f . In this sense, this
estimator is both smoothness-adaptive and design-adaptive.

3. Assessment of the procedure: upper bounds

3.1. Conditionally on the design

When no assumption is made on the local behaviour of the design density µ, we can work conditionally on
the design. The procedure is assessed in the following way: first, we consider an ideal oracle interval given by

I∗n,f := argmax
I⊂[0,1], x0∈I

{
µ̄n(I) | osc f(I) � σ

( 2 logn

nµ̄n(I)

)1/2}
, (3.1)

where osc f(I) is the local oscillation of f in I, defined by

osc f(I) := inf
P∈VK

sup
y∈I

|f(y) − P (y)|, (3.2)
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where we recall that VK is the set of all real polynomials with order at most K. The local oscillation is a
common way of measuring the smoothness of a function.

The interval I∗n,f , which is not necessarily unique, makes the balance between the bias and the log n-penalised
variance of f̂I . Therefore, it can be understood as an ideal adaptive bandwidth, see Lepski and Spokoiny [16]
and Spokoiny [18]. The log n term in (3.1) is the payment for adaptation, see Section 4.1. We use the word
“oracle” since this interval depends on f directly. This oracle interval is used to define

Rn,f := σ
( log n

nµ̄n(I∗n,f )

)1/2

, (3.3)

which is a random normalisation (it depends on the local amount of data) assessing the adaptive procedure in
Theorem 1 below. We introduce also

Īn,f := argmax
I∈Gn

{
µ̄n(I) | osc f(I) � σ

( 2 log n

nµn(I)

)1/2}
, (3.4)

which is an oracle interval in the grid, and we define the matrices

ΛI := diag(‖φ0‖−1
I , . . . , ‖φK‖−1

I ) and EI := ΛIX̄IΛI . (3.5)

We denote by Xn the sigma-algebra generated by X1, . . . , Xn, by E
n
f,µ the expectation with respect to the joint

law P
n
f,µ of the observations (1.1) and by λ(M) the smallest eigenvalue of a matrix M . We recall that ΩI is

defined by (2.5).

Theorem 1. When ‖f‖∞ < +∞, we have on ΩĪn,f
∩

{
nµ̄n(Īn,f ) � 2

}
for any p > 0, n � K + 1 and

D � 4(p + 1)1/2 (see (2.8)):

E
n
f,µ

{
|f̂n(x0) − f(x0)|p|Xn

}
� CRp

n,f

[
λ(EĪn,f

)−p + (‖f‖∞ ∨ 1)p
]
,

where C is a constant depending on p, K, a.

Remark. The fact that Theorem 1 is stated over ΩĪn,f
∩ {nµ̄n(Īn,f ) � 2} put some constraints between f ,

n and µ̄n. Indeed, on this set, we have that roughly, the local oscillation of f cannot be too large when the
local amount of data is too small. In the next section, we show that for n large enough, this event has a large
probability under appropriate assumptions on the design density and the smoothness of f .

Remark. The upper bound in Theorem 1 is non-asymptotic since it holds for any n � K +1. When n < K +1,
XI is degenerate and ΩI is empty for any I, since XI = FIF′I where FI is the matrix of size n× (K + 1) with
entries (FI)i,m = (Xi − x0)m for 0 � i � n and 0 � m � K.

3.2. How to quantify the local inhomogeneity of the data?

In this section, we propose a way of modeling situations where the amount of data is large or little at the
estimation point x0. The idea is simple: we allow the design density µ to be vanishing or exploding at x0 with a
power function behaviour type, which is quantified by a coefficient β called index of regular variation. Regular
variation is a well-known notion, commonly used for quantifying the asymptotic behaviour of probability queues.
It is also intimately linked with the theory of extreme values. On regular variation, we refer to Bingham et al.
[3].

Definition 1 (regular variation). A function g : R
+ → R

+ is regularly varying at 0 if it is continuous on
(0, +∞), and if there is β ∈ R such that

∀y > 0, lim
h→0+

g(yh)/g(h) = yβ . (3.6)
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We denote by RV(β) the set of all such functions. A function in RV(0) is slowly varying.

Remark. While a function g ∈ RV(β) goes to 0 at 0 when β > 0, or to +∞ when β < 0, a slowing varying
function (β = 0) can go to 0, to +∞ or to some positive constant. Indeed, a typical example of slowly varying
function is (log(1/h))b, which is slowly varying at 0 for any b ∈ R. Some properties of regularly varying functions
are given in appendix.

The assumption on µ is the following: we assume that there is ν > 0 and β > −1 such that for any
x, |x − x0| � ν:

µ(x0 + x) = µ(x0 − x) and µ(x0 + · ) ∈ RV(β). (3.7)

This assumption means that µ is symmetrical within a neighbourhood of x0, and varies regularly (on both
sides). Note that this assumption includes the classical case where µ is positive and continuous at x0, and
that in this case, β = 0. The local symmetry assumption is not necessary, but made in order to simplify the
presentation of the material.

3.3. Function class

In what follows, we use the notation Ih := [x0 − h, x0 + h]. For measuring the local smoothness, we consider
the class of signals with local oscillation bounded by a function in RV(s), for s > 0.

Definition 2. If ω ∈ RV(s) for some s > 0 and Q, δ > 0, we introduce

Fδ(ω, Q) :=
{
f : R → R s.t. ‖f‖∞ � Q and ∀h � δ, osc f(Ih) � ω(h)

}
,

where we recall that osc f(I) is the local oscillation of f around x0, see (3.2).

This function class contains Hölder balls. Indeed, the set of all the functions f , ‖f‖∞ � Q, such that for the
largest integer k < s:

|f (k)(x) − f (k)(x0)| � L|x − x0|s−k, ∀x, |x − x0| � δ, (3.8)

where f (k) is the k-th derivative of f is included in Fδ(ω, Q) for ω(h) = Lhs/k!, which is in particular s-regularly
varying. The parameter δ, assumed to be small (eventually going to 0 with n, see Th. 2 below), is the length
of the interval in which the smoothness assumption is made: this assumption is local, since we are interested in
pointwise estimation. The parameter Q can be arbitrary large, but fixed. We need such a parameter since the
upper bound is stated uniformly over a collection of such classes (see Th. 2 below).

3.4. Minimax adaptive upper bound

In this section, we assess the adaptive procedure f̂n in the minimax adaptive framework under assump-
tion (3.7), which is an assumption quantifying the local amount the data. Throughout what follows, we use the
notation µ(I) :=

∫
I
µ(t)dt. We introduce hn(ω, µ) as the smallest solution to

ω(h) = σ
( log n

nµ(Ih)

)1/2

. (3.9)

This quantity is well defined as n is large enough, since h �→ ω(h)2µ(Ih) is continuous and vanishing at 0. This
equation is the deterministic counterpart (among symmetrical intervals) of the bias-variance equation (3.1). We
introduce also

rn(ω, µ) := ω(hn(ω, µ)), (3.10)

which is the minimax adaptive convergence rate over the classes Fδ(ω, Q), see Theorem 2 for the upper bound,
and Theorem 3 below for the lower bound. When ω ∈ RV(s) and µ satisfies (3.7), we have in view of the
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properties (A.2) and (A.4) concerning regularly varying functions that h �→ ω(h)2µ(Ih) ∈ RV(1+2s+β). Then,
using together (A.2) and (A.5), we can find a slowly varying function 
ω,µ such that

rn(ω, µ) = (log n/n)s/(1+2s+β)
ω,µ(log n/n). (3.11)

The design effect on this rate (via the parameter β) is comparable to that of a dimensionality parameter, or to
the smoothing degree of an operator “blurring” the original signal f , when considering inverse problems. Note
that in the classical case, that is over a s-Hölder ball (ω(h) = hs) and when µ is positive and continuous at
x0, (3.11) simplifies to

rn(ω, µ) = (log n/n)s/(1+2s),

which is the usual pointwise adaptive minimax rate, see Lepski [13] and Brown and Low [5].

Theorem 2. If
• µ satisfies (3.7);
• ω ∈ RV(s) for some s ∈ (0, K + 1];
• p, Q > 0 and (δn) is a positive sequence such that δn � ρhn(ω, µ), where ρ > 1 is a fixed constant ;

the adaptive estimator f̂n(x0) defined by (2.9), with D � 4(p + 1/2)1/2 and grid choice

Gn :=
⋃

1�i�n

{[
x0 − |Xi − x0|, x0 + |Xi − x0|

]}
(3.12)

satisfies
sup

f∈Fδn(ω,Q)

E
n
f,µ

{
|f̂n(x0) − f(x0)|p

}
= O(rn(ω, µ)p) (3.13)

for n large enough, where rn(ω, µ) is given by (3.10) and (3.11).

Remark. In this theorem, we assess the adaptive estimator constructed in Section 2 over classes with smooth-
ness s ∈ (0, K + 1], where K is a tuning constant of the procedure. In the minimax framework considered here,
the assumption of knowing an upper bound for s is usual in the study of adaptive methods, and somehow, un-
avoidable. For instance, when considering adaptive wavelet methods, the “maximum smoothness” corresponds
to the number of vanishing moments of the mother wavelet.

Remark. The reason of considering the grid (3.12) in Theorem 2 is linked with the uniform control of the
smallest eigenvalue of EĪn,f

, which is necessary for the proof of the upper bound since the method involves
the resolution of the linear system (2.6) (see Th. 1). We can prove this theorem with the grid (2.10), which
is more convenient in practice, with the extra assumption that λ(En,f ) � λ for some λ > 0, uniformly over
Fδ(ω, Q) for ω ∈ RV(s), 0 < s � K + 1. However, we have chosen to provide the upper bound under the only
assumption (3.7) on the design, which is used to quantify the local amount of data.

Remark. If there are β−, β+ > −1 such that µ(x0 + ·) ∈ RV(β+) and µ(x0 − ·) ∈ RV(β−), the result stated
in Theorem 2 is the same. The convergence rate still satisfies (3.11), with β = min(β−, β+), which means that
the side with the largest amount of data “dominates” (asymptotically) the other one.

3.5. Explicit examples of rates

In this section, we give some explicit rate examples, obtained by solving equation (3.9). Note that each
example below is indeed of the form (3.11), and that they are optimal, see Section 4 below.

Example. Let µ be positive and continuous at x0. Over a s-Hölder ball (see (3.8)), by solving (3.9) with
ω(h) = hs we find back the usual pointwise minimax adaptive rate (see Lepski [14], Brown and Low [5])

(log n/n)s/(1+2s).
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If ω(h) = hs(log(1/h))−s (ω ∈ RV(s)), that is, we have locally more smoothness than in the s-Hölder case, the
pointwise minimax adaptive rate over Fδ(ω, Q) is

n−s/(1+2s).

If G is a continuous function, we denote by G← its pseudo-inverse, defined by G←(y) := inf{h � 0|G(h) � y}.
We need the following lemma, which is proved in Gäıffas [10].

Lemma 1. Let a ∈ R and b > 0. If G(h) = hb(log(1/h))a, we have

G←(h) ∼ ba/bh1/b(log(1/h))−a/b as h → 0+.

Example. Let µ be such that
∫ h

0 µ(x0 + t)dt = hβ+1(log(1/h))α for any h in a neighbourhood of 0 and
ω(h) = hs(log(1/h))γ where β > −1 , s > 0, α, γ ∈ R. If G(h) := h1+2s+β(log(1/h))2γ+α, equation (3.9) can be
written as G(h) = tn where tn := σ2 log n/n. Using Lemma 1 we obtain that

(
n(log n)α−1−γ(1+β)/s

)−s/(1+2s+β) (3.14)

is the pointwise minimax adaptive rate over Fδ(ω, Q). This rate has to be compared with the pointwise minimax
rate from Gäıffas [10]: (

n(log n)α−γ(1+β)/s
)−s/(1+2s+β)

,

where the only difference with (3.14) is α instead of α − 1 in the logarithmic exponent. This loss, often called
payment for adaptation in the literature, is unavoidable in view of Theorem 3 below. Over the set of functions
with bounded s-th derivative (s integer), since in this case ω(h) = hs, the rate (3.14) becomes

(
n(log n)α−1

)−s/(1+2s+β)
,

again when µ is such that
∫ h

0
µ(x0 + t)dt = hβ+1(log(1/h))α for any h in a neighbourhood of 0.

4. Minimax adaptive optimality of the estimator

4.1. Payment for adaptation

When µ satisfies (3.7) and if ω ∈ RV(s), we know from Gäıffas [10] that the minimax rate over Fδ(ω, Q) is
equal to

n−s/(2s+1+β)
ω,µ(1/n), (4.1)

where 
ω,µ is a slowly varying function characterized by ω and µ. In Theorem 2, we proved that the adaptive
estimator converges with the rate (3.11) which is slower than (4.1) because of the extra log n term. The aim of
this section is to prove that this extra term in unavoidable.

In a model with homogeneous information (for instance white noise or regression with equidistant design),
we know that adaptive estimation to the unknown smoothness without loss of efficiency is not possible for
pointwise risks, even when we know that the unknown signal belongs to one of two Hölder classes, see Lepski
[14], Brown and Low [5] and Lepski and Spokoiny [16]. This means that local adaptation cannot be achieved for
free: we have to pay an extra factor in the convergence rate, at least of order (log n)2s/(1+2s) when estimating a
function with Hölder smoothness s. The authors call this phenomenon payment for adaptation. Here, we intend
to generalize this result to inhomogeneous data.
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4.2. A minimax adaptive lower bound

First, let us denote by H(s, L) the Hölder ball with smoothness s and radius L, see (3.8). Then, let L′ > L > 0
and s > s′ > 0, where s′ and s have the same integer part. We introduce A := H(s′, L′) and B := H(s, L). We
denote by an and bn the minimax rates over A and B respectively, given by

an = n−s′/(1+2s′+β)
′(1/n), bn = n−s/(1+2s+β)
(1/n),

where 
′ and 
 are slowly varying, and by αn the adaptive rate over A, given by

αn = (log n/n)−s′/(1+2s′+β)
′(log n/n).

Theorem 3. If an estimator f̃n satisfies the two following upper bounds for some p > 1 (that is, it is asymp-
totically minimax over A and B):

limsupn sup
f∈A

E
n
f,µ

{(
a−1

n |f̃n(x0) − f(x0)|
)p}

< +∞, (4.2)

limsupn sup
f∈B

E
n
f,µ

{(
b−1
n |f̃n(x0) − f(x0)|

)p}
< +∞, (4.3)

then:
liminfn sup

f∈A
E

n
f,µ

{(
α−1

n |f̃n(x0) − f(x0)|
)p}

> 0. (4.4)

Note that (4.4) contradicts (4.2) since limn an/αn = 0. The consequence is that there is no pointwise minimax
adaptive estimator over two such classes A and B and that the best achievable rate is αn.

5. Proofs

5.1. Preparatory results and proof of Theorems 1 and 2

For the sake of simplicity, we denote by C a positive constant that can vary from place to place, and which
can depend on the parameters K, D, p, σ and Q. We remove also some subscripts from the notations: we write
Ī instead of Īn,f (see (3.4)), Î instead of În and I∗ instead of I∗n,f . We denote by |E| the cardinality of a set E
and we introduce

Gn(I) := {J ∈ Gn such that J ⊂ I}.
We denote by Xn the sigma-field generated by X1, . . . , Xn. We recall that XI is defined by (2.4) and that
ΩI = {λ(XI) > (nµ̄n(I))−1/2} where λ(XI) is the smallest eigenvalue of XI . The following proposition is the
main tool for proving Theorems 1 and 2.

Proposition 1. Let I ∈ Gn be such that

osc f(I) � σ
( 2 logn

nµ̄n(I)

)1/2

, (5.1)

where we recall that osc f(·) stands for the local oscillation of f , see (3.2). When ‖f‖∞ < +∞, we have on
ΩI ∩ {nµ̄n(I) � 2} for any p > 0 and n � K + 1:

E
n
f,µ

{
|f̂n(x0) − f(x0)|p|Xn

}
� C

( log n

nµ̄n(I)

)p/2(
λ(EI)−p + (‖f‖∞ ∨ 1)p|Gn(I)|1/2 (nµ̄n(I))p−D2/16

(log n)p/2

)
,

where λ(EI) is the smallest eigenvalue of EI , see (3.5), and D is a constant from the threshold (2.8).
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Proof of Proposition 1. Let us introduce

T (I, J, m) :=
{
|〈f̂J − f̂I , φm〉J | � σ‖φm‖JTn(I, J)

}
,

T (I, J) := ∩0�m�KT (I, J, m),

T (I) := ∩J∈Gn(I)T (I, J).

By definition (2.7) of Î, we have that on T (I), the bandwidth I is selected if it maximises µ̄n(I). Thus, if we
introduce

T(I) :=
{
µ̄n(I) � µ̄n(Î)

}
,

we have T(I)c ⊂ T (I)c. When ‖f‖∞ < +∞, we have for any p > 0 and J ⊂ [0, 1]:

E
n
f,µ

{
|f̂J(x0)|p|Xn

}
� C(‖f‖∞ ∨ 1)p(nµ̄n(J))p/2. (5.2)

This inequality shows that the estimator cannot be too large in expectation, its proof is given below. We
need the following lemma, which is of special importance, since it provides a control on the probability for a
bandwidth to be selected by the procedure.

Lemma 2. If I ∈ Gn satisfies (5.1), we have on ΩI ∩
{
nµ̄n(I) � 2

}
:

P
n
f,µ{T (I)c|Xn} � |Gn(I)|(K + 1)(nµ̄n(I))−D2/8,

where D is a constant from the threshold Tn(I, J), see (2.8).

The proof of this lemma is given below. Together with (5.2), Lemma 2 entails

E
n
f,µ

{(
|f̂n(x0) − f(x0)|

)p
1T(I)c |Xn

}
� C

[(
E

n
f,µ

{
|f̂n(x0)|2p|Xn

})1/2
+ ‖f‖p

∞
](

P
n
f,µ{T (I)c|Xn}

)1/2

� C(‖f‖∞ ∨ 1)p|Gn(I)|1/2(nµ̄n(I))p/2−D2/16. (5.3)

The next lemma is a version of the bias-variance decomposition of the local polynomial estimator, which is
classical: see for instance Fan and Gijbels [8,9], Goldenshluger and Nemirovski [11], Spokoiny [18] and Tsybakov
[20], among others. We recall that the matrix EI is defined in (3.5).

Lemma 3. If I is such that µ̄n(I) > 0 and x0 ∈ I, we have on ΩI that

|f̂I(x0) − f(x0)| � Cλ(EI)−1
(
osc f(I) + σ(nµ̄n(I))−1/2|γI |

)
, (5.4)

where γI is, conditionally on Xn, centered Gaussian with E
n
f,µ{γ2

I |Xn} � 1.

The proof of this lemma is given below. For completing the proof of Proposition 1, we need also the following
inequality, which is proven below: if I ∈ Gn and J ∈ Gn(I), we have on T (I, J) ∩ ΩJ

|f̂I(x0) − f̂J(x0)| � Cλ(EJ )−1
(
log n/(nµ̄n(J))

)1/2
. (5.5)

By the definition of Î, we have
T(I) ⊂ T (Î , I),

and using (5.5) we obtain that on T(I) ∩ ΩI ,

|f̂Î(x0) − f̂I(x0)| � Cλ(EI)−1
(
log n/(nµ̄n(I))

)1/2
.
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In view of lemma 3 and since I satisfies (5.1) we obtain:

|f̂I(x0) − f(x0)| � Cλ(EI)−1
(
osc f(I) + σ(nµ̄n(I))−1/2|γI |

)
� Cλ(EI)−1

(√
2 + (log n)−1/2|γI |

)(
log n/(nµ̄n(I))

)1/2
,

and then, on T(I) ∩ ΩI , we have

|f̂n(x0) − f(x0)| � Cλ(EI)−1
(√

2 + (log n)−1/2|γI |
)(

log n/(nµ̄n(I))
)1/2

.

Finally, using this inequality together with (5.3), Proposition 1 follows by integrating with respect to P
n
f,µ(·|Xn).

�

Proof of Theorem 1. Let j be such that x0 ∈ [X(j), X(j+1)], where X(i) � X(i+1) for any 1 � i � n (eventually,
we take X(0) := 0 and X(n+1) := 1). First, we consider the procedure tuned with geometrical grid (2.10). Let
I− be the largest interval in Gn such that I− ⊂ I∗. Since osc f(I)2µ̄n(I) increases as I increases, we have

osc f(I−) � σ
(
2 log n/(nµ̄n(I−))

)1/2
,

thus µ̄n

(
I−

)
� µ̄n

(
Ī
)
, where we recall that Ī is given by (3.4). If p and q are such that

I− = [X(j+1−[ap]), X(j+[aq ])],

where a > 1 is the grid parameter, see (2.10), and if u, v are such that [X(u), X(v)] ⊂ I∗ and µ̄n([X(u), X(v)]) =
µ̄n(I∗), we have

µ̄n

(
[X(j+1−[ap]), X(j+[aq ])]

)
� µ̄n

(
[X(u), X(v)]

)
� µ̄n

(
[X(j+1−[ap+1]), X(j+[aq+1])]

)
,

thus µ̄n(I∗) � a2µ̄n(I−) � a2µ̄n(Ī), and

µ̄n(I∗)/a2 � µ̄n(Ī) � µ̄n(I∗). (5.6)

Moreover, again for the grid choice (2.10), we have

|Gn(I)| �
(
log(nµ̄n(I))/ log a

)2
, (5.7)

then, using Proposition 1, and since D � 4(p + 1)1/2, we obtain Theorem 1 when the grid is (2.10). When
we use the grid (2.11) in the procedure, we have |Gn(I)| � (nµ̄n(I))2, and µ̄n(Ī) = µ̄n(I∗), thus using again
Proposition 1, we conclude the proof of Theorem 1. �

In the following, we denote by PI the projection onto the space VK of all real polynomials of degree at most
K, with respect to for the inner product 〈· , ·〉I , see (2.1). As stated in Section 2.1, we have

f̂I = f̄I = PIY (5.8)

on the event ΩI = {λ(XI) > (nµ̄n(I))−1/2}. We denote respectively by 〈· , ·〉 and by ‖ · ‖ the Euclidean
inner product and the Euclidean norm in R

K+1. We denote by ‖ · ‖∞ the sup norm in R
K+1. We define

e1 := (1, 0, . . . , 0) ∈ R
K+1.
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Proof of Lemma 3. On ΩI , we have f̂I = f̄I since X̄I = XI , and λ(XI) > (nµ̄n(I))−1/2 > 0, thus XI and EI

are invertible (see (3.5)). By definition of osc f(I), we can find a polynomial P ε
I ∈ VK such that

sup
x∈I

|f(x) − P ε
I (x)| � osc f(I) + ε/

√
n,

for any fixed ε > 0. If we denote by θI ∈ R
K+1 the coefficients vector of P ε

I then

|f̂I(x0) − f(x0)| � |〈Λ−1
I (θ̂I − θI) , e1〉| + osc f(I) + ε/

√
n

= |〈E−1
I ΛIXI(θ̂I − θI) , e1〉| + osc f(I) + ε/

√
n.

In view of (2.3), we have on ΩI for any m = 0, . . . , K:

(XI(θ̂I − θI))m = 〈f̂I − P ε
I , φm〉I

= 〈Y − P ε
I , φm〉I

= 〈f − P ε
I , φm〉I + 〈ξ , φm〉I ,

thus, XI(θ̂I −θI) = BI +VI where BI,m := 〈f −P ε
I , φm〉I and VI,m := 〈ξ , φm〉I , which correspond respectively

to bias and variance terms. We have

|〈E−1
I ΛIBI , e1〉| � (K + 1)1/2‖E−1

I ‖‖ΛIBI‖∞,

and
|(ΛIBI)m| = ‖φm‖−1|〈f − P ε

I , φm〉I | � ‖f − P ε
I ‖I � osc f(I) + ε/

√
n

for m ∈ {0, . . . , K}. Since λ(M)−1 = ‖M−1‖ for any symmetrical and positive matrix M , and since ‖Λ−1
I ‖ � 1,

we have ‖E−1
I ‖ � λ(XI)−1 � (nµ̄n(I))1/2 � n1/2, thus

|〈E−1
I ΛIBI , e1〉| � (K + 1)1/2

(
‖E−1

I ‖ osc f(I) + ε
)
.

Conditionally on Xn, the random vector VI is centered Gaussian with covariance matrix σ2(nµ̄n(I))−1XI . Thus
E−1

I ΛIVI is again centered Gaussian, with covariance matrix

σ2(nµ̄n(I))−1E−1
I ΛIXIΛIE−1

I = σ2(nµ̄n(I))−1E−1
I ,

and 〈E−1
I ΛIVI , e1〉 is then centered Gaussian with variance

σ2(nµ̄n(I))−1〈e1 , E−1
I e1〉 � σ2(nµ̄n(I))−1‖E−1

I ‖.

Now, since λ(EI) = inf‖x‖=1〈x , EIx〉 � ‖EIe1‖ � (K + 1)1/2, we have ‖E−1
I ‖ � (K + 1)1/2‖E−1

I ‖2, and the
lemma follows. �
Proof of (5.2). If µ̄n(J) = 0, we have f̂J = 0 by definition and the result is obvious, thus we assume µ̄n(J) > 0.
Since λ(X̄J ) � (nµ̄n(J))−1/2 > 0, X̄J and ΛJ are invertible and EJ also is. Thus,

f̂J(x0) = 〈Λ−1
J θ̂J , e1〉 = 〈E−1

J ΛJX̄J θ̂J , e1〉 = 〈E−1
J ΛJYJ , e1〉.

For any 0 � m � K, we have

|(ΛJYJ )m| � ‖φm‖−1
J

(
|〈f , φm〉J | + |〈ξ , φm〉J |

)
� ‖f‖∞ + ‖φm‖−1

J |〈ξ , φm〉J |
=: ‖f‖∞ + |VJ,m|.
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Conditionally on Xn, the vector VJ with entries (VJ,m; 0 � m � K) is centered Gaussian with variance
σ2

(
nµ̄n(J)

)−1
ΛJXJΛJ , thus 〈E−1

J VJ , e1〉 is centered Gaussian with variance

σ2
(
nµ̄n(J)

)−1〈e1 , Λ−1
J X̄−1

J XJX̄−1
J Λ−1

J e1〉 � σ2
(
nµ̄n(J)

)−1‖Λ−1
J ‖2‖X̄−1

J ‖2‖XJ‖
� σ2(K + 1),

since ‖XJ‖ � K+1, ‖Λ−1
J ‖ � 1 and ‖X̄−1

J ‖ = λ(X̄J )−1 �
(
nµ̄n(J)

)1/2. Moreover, ‖E−1
J ‖ � ‖Λ−1

J ‖‖X̄−1
J ‖‖Λ−1

J ‖ �(
nµ̄n(J)

)1/2, thus

|f̂J(x0)| � (K + 1)1/2(‖f‖∞ ∨ 1)
(
nµ̄n(J)

)1/2(1 + σ|γJ |
)
,

where γJ is, conditionally on Xn, centered Gaussian with variance smaller than 1. Then, (5.2) follows by
integrating with respect to P

n
f,µ(·|Xn). �

Proof of Lemma 2. Let 0 � m � K and J ∈ Gn(I). In view of (2.3) and (5.8), we have on ΩI :

〈f̂J − f̂I , φm〉J = 〈Y − f̂I , φm〉J
= 〈f − f̂I , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J + 〈PIf − f̂I , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J + 〈PI(f − Y ) , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J − 〈PIξ , φm〉J + 〈ξ , φm〉J
:= A + B + C.

By the definition of osc f(I) we can find a polynomial P ε
I ∈ VK such that

sup
x∈I

|f(x) − P ε
I (x)| � osc f(I) + εn,

where εn := σDCK(log 2)/(4n), with CK = 1+(K+1)1/2. Thus, since J ⊂ I, P ε
I ∈ VK and PI is an orthogonal

projection with respect to 〈· , ·〉I ,

|A| � ‖f − PIf‖J‖φm‖J � ‖φm‖J‖f − P ε
I − PI(f − P ε

I )‖I

� ‖φm‖J‖f − P ε
I ‖I

� ‖φm‖J(osc f(I) + εn)

� ‖φm‖J

[
σ(2 log n/(nµ̄n(I))1/2 + εn

]
, (5.9)

where we used (5.1). Conditionally on Xn, B and C are centered Gaussian. Clearly, C is centered Gaussian
with variance σ2‖φm‖2

J/(nµ̄n(I)). Since PIξ has covariance matrix σ2PIP′I = σ2PI (PI is an orthogonal
projection), the variance of B is equal to

E
n
f,µ

{
〈PIξ , φm〉2J |Xn

}
� ‖φm‖2

JE
n
f,µ{‖PIξ‖2

J |Xn}
= ‖φm‖2

J Tr
(
Var(PIξ|Xn)

)
/(nµ̄n(J))

= σ2‖φm‖2
J Tr(PI)/(nµ̄n(J)),

where Tr(M) stands for the trace of a matrix M . Since PI is the projection onto VK , it follows that Tr(PI) �
K + 1, and that the variance of B is smaller than

σ2‖φm‖2
J(K + 1)/(nµ̄n(J)).
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Then,
E

n
f,µ{(B + C)2|Xn} � σ2‖φm‖2

JC2
K/(nµ̄n(J)). (5.10)

Since nµ̄n(I) � 2 and µ̄n(J) � 1, we have

εn � σDCK

[
log(nµ̄n(I))/(4nµ̄n(J))

]1/2
. (5.11)

Then, the definition of the threshold (2.8) together with (5.9) and (5.11) entail{
‖φm‖−1

J |〈f̂I − f̂J , φm〉J | > Tn(I, J)
}

⊂
{ ‖φm‖−1

J |B + C|
σ(nµ̄n(J))−1/2CK

> D
[
log(nµ̄n(I))

]1/2
/2

}
.

Since

T (I, J)c =
K⋃

m=0

{
‖φm‖−1

J |〈f̂I − f̂J , φm〉J | > Tn(I, J)
}
,

we obtain using (5.10) and the fact that P{|N(0, 1)| > x} � exp(−x2/2):

P
n
f,µ{T (I)c|Xn} �

∑
J∈Gn(I)

K∑
m=0

exp
(
− D2 log(nµ̄n(I))/8

)
� |Gn(I)|(K + 1)(nµ̄n(I))−D2/8,

which concludes the lemma. �
Proof of (5.5). Let us define HJ := ΛJXJ . On ΩJ , we have:

|f̂I(x0) − f̂J(x0)| = |(θ̂I − θ̂J )0|
� ‖Λ−1

J (θ̂I − θ̂J)‖∞
� ‖E−1

J HJ(θ̂I − θ̂J)‖∞
� (K + 1)1/2λ(EJ)−1‖HJ(θ̂I − θ̂J )‖∞.

Since on ΩJ , 〈f̂I − f̂J , φm〉J/‖φm‖J = (HJ (θ̂I − θ̂J))m, and since J ⊂ I, we obtain on T (I, J):

|f̂I(x0) − f̂J(x0)| � Cλ(EJ )−1Tn(I, J)

� Cλ(EJ )−1
[
log n/(nµ̄n(J))

]1/2
,

thus (5.5). �
Let us denote by P

n
µ the joint probability of the variables [Xi; 1 � i � n] and let us recall the notation

µ(I) =
∫

I µ(t)dt. We recall that Ih = [x0 − h, x0 + h] and that hn(ω, µ) is defined by (3.9). We introduce

Hn(ω, µ) := argmin
h∈[0,1]

{
ω(h) � σ

( log n

nµ̄n(Ih)

)1/2}
, (5.12)

which is an approximation of hn(ω, µ) when µ is unknown. In what follows, we omit the dependence upon ω
and µ to avoid overloaded notations. If 0 < ε < 1, we introduce the event

Cn(ε) := {(1 − ε)hn < Hn � (1 + ε)hn},
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which has probability going to 1 very fast, see Lemma 4 below.

Proof of Theorem 2. For the grid choice (3.12), we have |Gn(I)| � nµ̄n(I). We recall that f ∈ Fδn(ω, Q), see
Definition 2 and that by assumption, δn > ρhn for some fixed ρ > 1. We consider ε ∈ (0, ρ − 1], so that on
Cn(ε), we have δn � Hn and since f ∈ Fδn(ω, Q), we have either

osc f(IHn) � ω(Hn) = σ
( log n

nµ̄n(IHn)

)1/2

or

� σ
( log n

nµ̄n(IHn) − 1

)1/2

,

which entails that in both cases

osc f(IHn) � σ
( 2 logn

nµ̄n(IHn)

)1/2

.

Then, using Proposition 1 and since D � 4(p + 1/2)1/2, we have for any f ∈ Fδn(ω, Q):

E
n
f,µ

{
|f̂n(x0) − f(x0)|p|Xn

}
� C

( log n

nµ̄n(IHn)

)p/2(
λ(EIHn

)−p + (Q ∨ 1)p
)

(5.13)

on Cn(ε) ∩ ΩIHn
∩ {nµ̄n(IHn) � 2}. Let us introduce

ea,b =
(1 + (−1)a)(b + 1)

a + b + 1
,

and the matrix E := ΛXΛ where X is the symmetrical matrix with entries (X)p,q := ep+q,β for 0 � p, q � K
and

Λ := diag
[
e
−1/2
0,β , e

−1/2
2,β , . . . , e

−1/2
2K,β

]
,

where we recall that β is the index of regular variation of µ, see (3.7). E is the limit in probability of EHn

as n → +∞. Λ and X are invertible thus E also is. Indeed, we have λ(X) > 0, otherwise, defining p(t) :=
(1, t, . . . , tK), we have

0 = λ(X) = 〈x , Xx〉 =
∫ 1

−1

(x′p(t))2|t|βdt,

where x ∈ R
K+1 is non-zero vector, which leads to a contradiction, since t �→ x′p(t) is a polynomial (x′ stands

for the transposition of x). The following lemma provides some approximations necessary for the proof of
Theorem 2, its proof is given below.

Lemma 4. If ω ∈ RV(s), s > 0 and µ satisfies (3.7), we can find an event Sn(ε) ∈ Xn such that for any
ε ∈ (0, 1/2],

Sn(ε) ⊂
{
|λ(EHn) − λ(E)| � ε

}
∩

{
|µ̄n(IHn)/µ(Ihn) − 1| � ε

}
∩ Cn(ε) (5.14)

for n large enough, and
P

n
µ

{
Sn(ε)c

}
� C exp

(
− DS r−2

n

)
, (5.15)

where rn = rn(ω, µ) is given by (3.10) and C, DS are positive constants.

On Sn(ε), we have nµ̄n(IHn) � (1− ε)nµ(Ihn) → +∞ as n → +∞, thus Sn(ε) ⊂ ΩIHn
∩ {nµ̄n(IHn) � 2} for

n large enough. Then, using together (5.13), (5.14) and (3.9), (3.10), and integrating with respect to P
n
µ, we

have uniformly for f ∈ Fδn(ω, Q):

E
n
f,µ

{
|f̂n(x0) − f(x0)|p1Sn(ε)

}
� Crp

n.
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On the complement Sn(ε)c, using together (5.2) and (5.15), , we obtain that uniformly for f ∈ Fδn(ω, Q):

E
n
f,µ

{(
r−1
n |f̂n(x0) − f(x0)|

)p
1Sn(ε)c

}
� Cr−p

n

[(
E

n
f,µ

{
|f̂n(x0)|2p

})1/2 + Qp
](

P
n
µ{Sn(ε)c}

)1/2

� Cr−p
n np/2

(
P

n
µ{Sn(ε)c}

)1/2 = on(1),

which concludes the proof of Theorem 2. �

Proof of Lemma 4. The proof of the lemma is divided into several steps. We denote An(ε) :=
{
|λ(EHn) −

λ(E)| � ε
}

and for a ∈ N we introduce

Bn,a(ε) :=
{∣∣∣ 1

µ(Ihn)

∫
IHn

( · − x0

hn

)a

dµ̄n − ea,β

∣∣∣ � ε

}
.

Step 1. Since EHn and E are symmetrical,⋂
0�p,q�K

{∣∣(EHn − E)p,q

∣∣ � ε/(K + 1)2
}
⊂ An(ε),

where we used the fact that λ(M) = inf‖x‖=1〈x , Mx〉 for any symmetrical matrix M . Then, if ε1 :=
min

[
ε ; ε(β + 1)/((K + 1)2(2K + β + 1))

]
, we have

Bn,p+q(ε1) ∩ Bn,2p(ε1) ∩ Bn,2q(ε1) ⊂
{∣∣(EHn − E)p,q

∣∣ � ε/(K + 1)2
}

for any 0 � p, q � K and then
2K⋂
α=0

Bn,α(ε1) ⊂ An(ε).

Step 2. For a ∈ N, h > 0 and ε > 0, we define

Dn,a(ε, h) :=
{∣∣∣ 1

µ(Ih)

∫
Ih

( · − x0

h

)a

dµ̄n − ea,β

∣∣∣ � ε

}
.

We show that, for any ω ∈ RV(s), s > 0 and 0 < ε2 � 1/2 there exists 0 < ε3 � ε2 such that

Dn,0(ε3, (1 − ε2)hn) ∩ Dn,0(ε3, (1 + ε2)hn) ⊂ Cn(ε2) (5.16)

for n large enough. In view of (5.12), we have{
Hn � (1 + ε2)hn

}
=

{
nµ̄n(I(1+ε2)hn

)/ logn � σ2ω((1 + ε2)hn)−2
}
.

We introduce ε3 := min
[
ε2 ; 1 − (1 − ε2

2)
−2(1 + ε2)−2s

]
, which is positive for ε2 small enough, and 
ω(h) :=

h−sω(h) which is slowly varying, since ω ∈ RV(s). Since (A.1) holds uniformly over each compact set in (0, +∞),
we have for any y ∈ [1/2, 3/2]

(1 − ε2
2)
ω(hn) � 
ω(yhn) � (1 + ε2

2)
ω(hn) (5.17)
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for n large enough, so (5.17) with y = 1 + ε (ε � 1/2) entails together with (3.9) and since h �→ µ(Ih) is
increasing:

(1 − ε3)nµ(I(1+ε2)hn
)/ logn � (1 − ε2

2)
−2(1 + ε2)−2sσ2ω(hn)−2

= σ2
(
(1 + ε2)hn

)−2s(1 − ε2
2)
−2
ω(hn)−2

� σ2ω((1 + ε2)hn)−2.

Thus {
µ̄n(I(1+ε2)hn

) � (1 − ε3)µ((1 + ε2)hn)
}
⊂

{
Hn � (1 + ε2)hn

}
,

and similarly on the other side, we have for n large enough:{
µ̄n(I(1−ε2)hn

) � (1 + ε3)µ((1 − ε2)hn)
}
⊂ {(1 − ε2)hn < Hn},

hence (5.16).
Step 3. We prove (5.14). Let us define ε2 := ε1/(2(1+ ε1)2K+1) and let ε3 be such that (1 + ε3)β+3/(1− ε3) �
1 + ε2 and 0 < ε3 � ε2. Since h �→ µ̄n(Ih) is increasing, we have

Cn(ε3) ⊂
{
µ̄n(I(1−ε3)hn

) � µ̄n(IHn) � µ̄n(I(1+ε3)hn
)
}
,

and using (5.16), we can find 0 < ε4 � ε3 such that

Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn) ⊂ Cn(ε3).

In view of (A.1) and since 
µ(h) := h−(β+1)µ(Ih) is slowly varying, we have for any 0 < ε3 � 1/2:


µ((1 + ε3)hn) � (1 + ε3)
µ(hn) and 
µ((1 − ε3)hn) � (1 − ε3)
µ(hn) (5.18)

as n is large enough, thus the previous embeddings entail

Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn) ∩ Dn,0(ε3, hn) ⊂
{∣∣∣ µ̄n(IHn)

µ̄n(Ihn)
− 1

∣∣∣ � ε2

}
.

In view of the previous embeddings, we have on Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn) ∩ Dn,0(ε3, hn):

1
µ(Ihn)

∣∣∣ ∫
IHn

( · − x0

hn

)α

dµ̄n −
∫

Ihn

( · − x0

hn

)α

dµ̄n

∣∣∣
�

(Hn ∨ hn

hn

)α µ̄n(Ihn)
µ(Ihn)

∣∣∣ µ̄n(IHn)
µ̄n(Ihn)

− 1
∣∣∣

� (1 + ε3)α(1 + ε3)ε2 � (1 + ε1)2K+1ε2 = ε1/2.

Then, putting all the previous embeddings together, we obtain

Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn)

∩ Dn,0(ε4, hn) ∩ Dn,α(ε1/2, hn) ⊂ Bn,α(ε1),

and finally, (5.14) follows if we choose

Sn(ε) := Dn,0(ε4, (1 − ε3)hn) ∩ Dn,0(ε4, (1 + ε3)hn) ∩ Dn,0(ε4, hn)

∩
⋂

0�α�2K

Dn,α(ε4, hn).
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Step 4. We prove (5.15). We show that if µ satisfies (3.7), we have for any positive sequence (γn) going to 0
and any α ∈ N, ε > 0:

P
n
µ

{
Dn,α(ε, γn)c

}
� 2 exp

(
− ε2

8(1 + ε/3)
nµ(Iγn)

)
, (5.19)

when n is large enough. We define Qi :=
(

Xi−x0
γn

)α
1Xi∈Iγn

and Zi := Qi − E
n
µ{Qi}. In view of (3.7), we can

find N such that n � N entails γn � ν and

1
µ(Iγn)

E
n
µ{Qi} =

1 + (−1)α

2
γβ+1

n 
µ(γn)∫ γn

0 tβ
µ(t)dt

∫ γn

0 tα+β
µ(t)dt

γα+β+1
n 
µ(γn)

,

where for h � ν, 
µ(h) := h−βµ(x0 + h) = h−βµ(x0 − h) is slowly varying. Then, in view of (A.4):

lim
n→+∞

1
µ(Iγn)

E
n
µ{Qi} = eα,β ,

which entails that for n large enough:

Dn,α(ε, γn)c ⊂
{

1
nµ(Iγn)

∣∣∣ n∑
i=1

Zi

∣∣∣ > ε/2
}

. (5.20)

Note that E
n
µ{Zi} = 0, |Zi| � 2,

∑n
i=1 E

n
µ{Z2

i } � nE
n
µ{Q2

i } � nµ(Iγn) and that the [Zi ; 1 � i � n] are
independent. Thus, using Bernstein inequality to the sum of the Zi we obtain (5.19).

Now, using together (3.9), (3.10) and (5.19), we obtain (5.15), which concludes the proof of Lemma 4. �

5.2. Preparatory results and proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 3 in Brown and Low [5]. It is based on the next
theorem which can be found in Cai et al. [6]. This result is a general constrained risk inequality which is useful
for several statistical problems, for instance superefficiency, adaptation and so on.

Let p > 1 and q be such that 1/p + 1/q = 1 and X be a real random variable having distribution Pθ with
density fθ. The parameter θ can take two values θ1 or θ2. We want to estimate θ based on X . The risk of an
estimator δ based on X is given by

Rp(δ, θ) := Eθ{|δ(X) − θ|p}.
We define s(x) := fθ2(x)/fθ1(x) and ∆ := |θ2 − θ1|. Let

Iq = Iq(θ1, θ2) :=
(
Eθ1{sq(X)}

)1/q
.

Theorem 4 (Cai, Low and Zhao [6]). If δ is such that Rp(δ, θ1) � εp and if ∆ > εIq, we have:

Rp(δ, θ2) � (∆ − εIq)p � ∆p
(
1 − pεIq

∆

)
.

The next proposition is a generalization of a result by Brown and Low [5] for the random design model, when
the data is inhomogeneous. Of course, in the classical case with µ continuous at x0 and such that µ(x0) > 0,
the result is barely the same as in Brown and Low [5] with the same rates. This proposition is a lower bound for
a superefficient estimator which implies directly the adaptive lower bound stated in Theorem 3. Let us recall
that an is the minimax rate over A and that αn is the minimax adaptive rate over A, see Section 4.2.

Proposition 2. If an estimator f̃n based on (1.1) is asymptotically minimax over A, that is :

limsupn sup
f∈A

E
n
f,µ

{(
a−1

n |f̃n(x0) − f(x0)|
)p}

< +∞,
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and if this estimator is superefficient at a function f0 ∈ A, in the sense that for some γ > 0:

limsupn E
n
f0,µ

{(
a−1

n nγ |f̃n(x0) − f0(x0)|
)p}

< +∞, (5.21)

then we can find another function f1 ∈ A such that

liminfn E
n
f1,µ

{(
α−1

n |f̃n(x0) − f1(x0)|
)p}

> 0.

Proof of Proposition 2. Since limsupn E
n
f0,µ

{(
a−1

n nγ |f̃n(x0) − f0(x0)|
)p} = C < +∞, there is N such that for

any n � N :
E

n
f0,µ

{(
|f̃n(x0) − f0(x0)|

)p} � 2Cap
nn−γp.

Let k′ = �s′� be the largest integer smaller than s′. Let g be k′ times differentiable with support included in
[−1, 1], and such that g(0) > 0 and for any |x| � δ, |g(k′)(x) − g(k′)(0)| � k′!|x|s′−k′

. Such a function clearly
exists. We define

f1(x) := f0(x) + L′ρs′
n g

(x − x0

ρn

)
,

where ρn is the smallest solution to

L′hs′
= σ

( b log n

nµ(Ih)

)1/2

,

where b := 2(p − 1)γ/g2∞, g∞ := supx |g(x)|. We clearly have f1 ∈ A. Let P
n
0 , Pn

1 be the joint laws of the
observations (1.1) when respectively f = f0, f = f1. A sufficient statistic for {P

n
0 , Pn

1} is given by Tn :=
log

(
dP

n
0/dP

n
1

)
, and

Tn
(law)
=

⎧⎨⎩N
(
−vn

2
, vn

)
under P

n
0 ,

N
(vn

2
, vn

)
under P

n
1 ,

where, by definition of ρn:

vn =
n

σ2
‖f0 − f1‖2

L2(µ) =
n

σ2

∫
(f0(x) − f1(x))2µ(x)dx

� nL′2ρ2s′
n µ(Iρn )g2

∞/σ2 = 2(p − 1)γ log n.

Since
Iq = exp

(
vn(q − 1)/2

)
� nγ ,

taking δ := f̂n(x0), θ2 := f1(x0), θ1 := f0(x0) and ε := an within Theorem 4 entails

Rp(δ, θ2) �
(
L′ρs′

n g(0) − 2Cann−γnγ
)p � Cρs′p

n ,

since limn an/ρs′
n → 0, and the proposition follows.

�
Proof of Theorem 3. Since B ⊂ A, equations (4.2) and (4.3) entail that f̃n is superefficient at any function
f0 ∈ B. More precisely, f̃n satisfies (5.21) with

γ =
(s − s′)(β + 1)

2(1 + 2s′ + β)(1 + 2s + β)
> 0

for any f0 ∈ B. The conclusion follows from Proposition 2. �
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Appendix A. Some facts on regular variation

We recall briefly some properties of regularly varying functions. The results stated in this section can be
found in Bingham [3]. In all the following, let 
 be a slowly varying function. An important fact is that the
property

lim
h→0+


(yh)/
(h) = 1 (A.1)

actually holds uniformly for y in any compact set of (0, +∞). If R1 ∈ RV(α1) and R2 ∈ RV(α2), we have

R1 × R2 ∈ RV(α1 + α2) and R1(R2(·)) ∈ RV(α1 × α2). (A.2)

If R ∈ RV(γ) with γ ∈ R − {0}, we have

R(h) →
{

0 if γ > 0,

+∞ if γ < 0,
(A.3)

as h → 0+. If γ > −1, we have: ∫ h

0

tγ
(t)dt ∼ (1 + γ)−1h1+γ
(h) as h → 0+, (A.4)

and h �→
∫ h

0
tγ
(t)dt is regularly varying with index 1 + γ. This result is known as the Karamata theorem. Let

us define (R is continuous)
R←(y) = inf{h � 0 such that R(h) � y},

which is the generalized inverse of R. If R ∈ RV(γ) for some γ > 0, there exists R− ∈ RV(1/γ) such that

R(R−(h)) ∼ R−(R(h)) ∼ h as h → 0+, (A.5)

and R− is unique up to an asymptotic equivalence. Moreover, one version of R− is R←.
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Grenoble 1 (2003).
[18] V.G. Spokoiny, Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Ann.

Statist. 26 (1998) 1356–1378.
[19] C.J. Stone, Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 (1980) 1348–1360.
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