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Abstract. We investigate the optimal alignment of two independent random sequences of length n.
We provide a polynomial lower bound for the probability of the optimal alignment to be macroscop-
ically non-unique. We furthermore establish a connection between the transversal fluctuation and
macroscopic non-uniqueness.
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1. Introduction

In computational genetics and computational linguistics one of the basic problem is to find an optimal
alignment between two given sequences X := X1 . . . Xn and Y := Y1 . . . Yn. This requires a scoring system
which can rank the alignments. Typically a substitution matrix gives the score for each possible pair of letters.
The total score of an alignment is the sum of terms for each aligned pair of residues, plus terms for each gap.

In this paper we take the texts X and Y to be i.i.d. and independent of each other. One may immediately
remark that, for most of the applications in computer science and biology, one normally assumes a much more
complicated relationship between X and Y than this i.i.d. setup. However, the mathematical problems arising
in the sequence alignment theory are usually very difficult, and even the theory of the i.i.d. case is far from
being complete. Therefore, we study the i.i.d. case since it can be considered as the first step in understanding
sequence alignments for more complex situations, which one may encounter in practice.

One of the main purposes of this paper is to try to understand what causes the optimal alignment to be non-
unique on portions of the texts of length of order n (we call that macroscopic non-uniqueness). In Theorem 2.1,
we prove that macroscopic non-uniqueness happens with probability at least 1/(n + 1). This seems to suggest
that typically the optimal alignment is non-unique on stretches of order at least n0.5−ε, see Remark 2.1. For
two sequences which have been obtained from one common ancestor by transformation, we expect the non-
uniqueness stretches to be of order at most lnn. This difference could prove to be useful to determine if the
sequences are related or not. Our present result sheds some new light on the question of non-uniqueness.
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Previously, Hauser and Matzinger [7] proved a result that goes in the opposite direction. They showed that
typically, for large gap penalty, the optimal alignment is unique in most points.

The second main result of this paper is that a small probability of macroscopic non-uniqueness implies a
large transversal fluctuation. More precisely, a lower bound (3.2) for the interquartile distance of the transversal
fluctuation is derived. Roughly speaking, this lower bound equals the inverse of the probability of macroscopic
non-uniqueness. Macroscopic non-uniqueness is present when we observe simultaneously two close-to-optimal
alignments differing on a stretch of order n.

Optimal alignment can be viewed formally as a Last Passage Percolation (LPP) problem with correlated
weights. The weights depend on the one-dimensional texts X and Y . This confers a different structure than in
standard LPP and many of the techniques of percolation (BK and FKG inequalities do not work for example).
For standard LPP the question of the order of the transversal fluctuation has long been open [8].

Let us present an example to illustrate the practical usefulness of optimal sequence alignment.

Let us explain how an automatic spell-checker works. The spell-checker has to identify misspelled words. For
each misspelled word it should give a list of similar words from a lexicon. In this list, one hopes to find the
word which was originally meant to be written. Take, for example, the word Y = probability and the misspelled
word X = prbobilite. One could try to align the two words to detect similarities. We obtain the alignment

p r o b a b i l i t y

p r b o b i l i t e

The computer counts two matching letters. These are the first two letters: pr. Here, the computer is unable to
detect the great degree of similarity between X and Y by this simple alignment.

A better approach consists in aligning the words X and Y while allowing the existence of gaps in the
alignment. We search for the alignment with gaps yielding the maximum number of matching letters. In our
example, such an alignment with gaps maximizing the number of matches is given by:

p r o b a b i l i t y

p r b o b i l i t e
(1.1)

We count 8 matched letters. These 8 letters form the Longest Common Subsequence (LCS) of X and Y (the
longest sequence which is a subsequence of X and of Y ). That is, the LCS is prbbilit. The length of the LCS is
a score which measures the degree of similarity between X and Y . We call the alignment (1.1) optimal since
it gives the maximal number of coinciding letters. Note that (1.1) is not the only optimal alignment. Another
optimal alignment is:

p r o b a b i l i t y

p r b o b i l i t e
(1.2)

The alignment (1.2) matches 8 letters correctly. Note that the fifth letter in X is aligned to different letters
of text X depending on the optimal alignment we chose. We say that the optimal alignment is non-unique in
the fifth letter of X. In this paper, we investigate the possibility for two long independent random texts to
have long stretches where the optimal alignment is non-unique. The type of alignment scores we consider are
fairly general. We also allow for the alignment of non-identical letters. In our example, we could reward the
alignment of identical, respectively, similar letters with a score of 1, respectively, 0.5. Using this scoring scheme
and assuming that y and e are similar letters, the optimal alignment becomes

p r o b a b i l i t y

p r b o b i l i t e
(1.3)

with a score of 8.5.

At present let us mention a little more on the history of mathematical problems related to optimal sequence
alignments. The optimal alignment problem, as we mentioned, belongs to the area of First Passage and Last
Passage Percolation. In general, the exact order of transversal fluctuation is not known for standard First
Passage Percolation (FPP) and LPP. In standard FPP the properties of the optimal path were also studied.
Typically the interesting object of research there is, for example, the total number of edges in an optimal path.
The convergence of this number properly rescaled is an open problem [8]. For optimal alignment an interesting
question about the optimal path is to which extend it is unique. This is one of the questions investigated in
this paper.
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Let Ln designate the length of the LCS of two independent i.i.d. sequences of length n. Using a subadditivity
argument, Chvàtal and Sankoff [5] proved that the limit

γ := lim
n→∞

E[Ln]
n

exists. They consider two binary sequences (this is the standard setting for this problem). The constant γ is
called the Chvàtal-Sankoff constant and its value is unknown. Neither is the exact order of the fluctuation of
the LCS length known. Steele [14] proved that Var[Ln] ≤ n. In [15], Waterman conjectured that in many cases
the variance of Ln grows linearly. Matzinger and Lember [11] proved that indeed this is the right order in an
important case.

In LPP language, the fluctuation of Ln is called longitudinal fluctuation (the fluctuation under investigation
in this paper is the transversal fluctuation).

The determination of the Chvàtal-Sankoff constant and the order of the longitudinal and transversal fluctu-
ations for the LCS problem are long standing open problems. Montecarlo simulations lead Chvàtal and Sankoff
to conjecture that Var[Ln] = o(n

2
3 ). This order of magnitude is similar to the order for the longest increasing

subsequence (LIS) of random permutations (see Baik, Deift and Johansson [4] and also Aldous and Diaconis [1]).
This similarity of the order of magnitudes is not a complete surprise. The LIS problem is asymptotically equiv-
alent to a Poisson-graph based LPP model. For standard LPP the order of magnitude of these fluctuations has
been open for decades despite LPP being one of the central research areas in discrete probability. The only case
for which the order of magnitude of these fluctuations is exactly known, is for the Poisson-based model used for
the solution of the LIS-problem. There, the precise order of the transversal fluctuation has been established by
Johansson [10].

Waterman and Arratia [3] derive a law of large deviations for Ln for fluctuations on scales larger than
√

n.
In their ground breaking article [3], they show the existence of critical phenomena (i.e., whether Ln is positive
linear in n or not).

For a general discussion on the relevance of string comparison for biology and on other similar problems in
computational biology the reader can refer to the standard texts [13] and [6].

This paper is organized as follows. In Section 2, first, we give some formal definitions necessary to formulate
our results. Then, we derive a lower bound for the probability of the macroscopical non-uniqueness (Th. 2.1) and
after that, we improve this bound, which requires however a plausible, but still unproven, assumption (Th. 2.2).
In Section 3 we establish a relation between the transversal fluctuation and the probability of macroscopic
non-uniqueness (Th. 3.1). Proofs are given in Section 4.

2. A lower bound for probability of macroscopical non-uniqueness

Now, let us proceed to the formal definitions. In everything that follows, {Xi}i∈N and {Yi}i∈N are two
processes independent of each other. We assume that the Xi’s are i.i.d. and that the Yi’s are i.i.d., and they
are all drawn from a finite alphabet A.

Definition 2.1. An alignment of length k is a couple (π, η) consisting of two increasing sequences of length k
each, such that 1 ≤ π(1) < π(2) < . . . < π(k) ≤ n and 1 ≤ η(1) < η(2) < . . . < η(k) ≤ n.

The interpretation is the following: the alignment (π, η) aligns the π(i)-th letter of the the first text with the
η(i)-th letter of the second text, i = 1, . . . , k.

Let us give an example of an alignment. In this example we align the English word “think” with its German
translation “denke”. A possible alignment is

t h i n k −
d e n k e

the alignment is there to show which letters are related. The letters which are aligned with a gap are supposed
to be missing in one of the two words. The “t” of “think” is aligned with the “d” of “denke”. The first letter of
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the first string is aligned with the first letter of the second string. According to our notation, this means that
π(1) = η(1) = 1. Next, the “i”of “think” is aligned with the first “e” of “denke”. Hence, the third letter of
the first string is aligned with the second letter of the second string. This implies that π(2) = 3 and η(2) = 2.
Eventually, the third aligned letter, that is the “n”’s appear in the fourth position, respectively, third position.
Hence, π(3) = 4 and η(3) = 3. The last letter to get aligned are the “k”’s in both texts. We find π(4) = 5 and
η(4) = 4.

The total number of aligned pairs of letters (letters that are not aligned with gaps) is 4. Hence the length
of the alignment (π, η) is equal to 4.

In many cases, it can be useful to view an alignment as a two dimensional table. For this the x entries are
given by the first string whilst the second string gives the y entries. A “•” sign shows every pair of aligned
letters. The alignment considered in this example then becomes:

e

k •
n •
e •
d •

t h i n k

Let s(a, b) be the score obtained by aligning a with b. Denote by s = (s(a, b))a,b∈A the substitution matrix
and by q the gap penalty. Let (π, η) be an alignment of length k.

Definition 2.2. The score S(π, η) of the alignment (π, η) is defined to be equal to:

S(π, η) :=
k∑

i=1

s(Xπ(i), Yη(i)) − 2q(n − k).

In the above definition, s(Xπ(i), Yη(i)) is the contribution which we obtain for aligning letter Xπ(i) from the first
text with letter Yη(i) of the second text. The quantity 2q(n−k) is the total gap penalty since there are 2(n−k)
letters which are not aligned.

Let L denote the maximal alignment score of the two texts X and Y , i.e.,

L = L(X, Y ) := max
(π,η)

S(π, η),

where the maximum is taken over all alignments of the text X with the text Y .

Definition 2.3. An optimal alignment of the texts X and Y is an alignment (π, η) that has maximal alignment
score, i.e., such that

L = S(π, η).

Naturally, there may exist several optimal alignments.

Let us look at our alignment of the word “think” with the word “denke”. Assume that s(·, ·) is such that for
identical letters the score is 1, whilst for similar letters the score is 0.5. Let the score for a pair of dissimilar
aligned letters be −0.5, and the gap penalty be 0.5. We assume that “t” and “d” are similar to each other and
that so are “e” and “i”. The score of the alignment

t h i n k −
d e n k e

is then 2(0.5) + 2 − 2(0.5) = 2. In this alignment there are two pairs of similar letters and two pair of identical
letters which get aligned. One can check that this is also the alignment with maximum score. Hence, the
alignment (π, η) where (π(1), π(2), π(3), π(4)) = (1, 3, 4, 5) and (η(1), η(2), η(3), η(4)) = (1, 2, 3, 4) is an optimal
alignment of the word “think” with the word “denke”.
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We defined L to be the the maximal alignment score of the two texts X and Y . To indicate that the texts
have length n, we may sometimes write Ln for L. Throughout this paper, we suppose that the following holds:

Assumption. We are in the linear phase (see Arratia and Waterman [3]), and so

lim
n→∞

Ln

n
> 0. (2.1)

Suppose that (π, η) is an alignment of length k. Let f be the continuous map obtained by linear interpolation
from the discrete map:

π(i) �→ η(i).

We call f the path associated with (π, η). More precisely, f is the continuous map from [π(1), π(k)] to [η(1), η(k)],
such that both of the following conditions hold:

• For all i ∈ {1, 2, . . . , k}, we have: f(π(i)) = η(i).
• For all i ∈ {1, 2, . . . , k − 1} and all t ∈ [π(i), π(i + 1)], we have:

f(t) = η(i) + (t − π(i))
η(i + 1) − η(i)
π(i + 1) − π(i)

·

Let f : [a1, b1] → R
+ and g : [a2, b2] → R

+ be two continuous maps. Let x ∈ [a1, b1] ∩ [a2, b2]. We say that f
and g cross at the point x iff f(x) = g(x). We say that f and g do not cross on an interval I if there exists no
point x ∈ I ∩ [a1, b1] ∩ [a2, b2] such that f(x) = g(x).

Let us introduce the following important notations: first, let I1 denote the interval I1 := [0, (n + 1)/2) and
let I2 := ((n + 1)/2, n].

Definition 2.4. We say that an alignment (π′, η′) is close to optimal, if

|S(π′, η′) − L| ≤ 2 max
a,b∈A

|s(a, b)| + 4q.

Let A be the event defined as follows:

A = {there exist an optimal alignment (π, η) of X and Y and
a close-to-optimal alignment (π′, η′) which do not cross

on at least one of the two intervals I1, I2}. (2.2)

The next theorem is one of the two main results of this paper. It gives a lower bound for the probability that
there exist simultaneously two close-to-optimal alignments which do not cross each other on a long stretch.

Theorem 2.1. We have that

P (A) ≥ 1
1 + n

· (2.3)

Let
r1 := max

(π,η)
π(1)

where the maximum is taken over all optimal alignments (π, η) of the texts X and Y . We will show in the next
proposition that with high probability, the interval [r1, (n + 1)/2] has length of linear order in n. If |r1 −n/2| is
not of linear order in n, then the statement “there exist two close-to-optimal alignments which do not cross on
[0, n/2]” does not convey a lot of information: they do not cross simply because they are not defined on most
of that interval.
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Note that |r1 −n/2| is of linear order only when we are in the linear phase, that is when we have (2.1). This
is why throughout this paper we assume that (2.1) holds.

Proposition 2.1. There exist a constant cLD > 0 not depending on n, (but depending on the scoring function
and the gap penalty), such that

P (r1 ≥ 0.4n) ≤ 2n−cLD ln n. (2.4)

Although Theorem 2.1 gives a lower bound for the probability of macroscopic non-uniqueness, we do not believe
that the inequality (2.3) is the best possible. In the rest of this section we will try to strengthen this inequality,
assuming a fact about the so-called mean curve that we believe is true.

Let us define the mean curve. Let p ∈ [−1, 1]. We define Ln(p) to be the optimal alignment score when
we align two independent i.i.d. sequences with unequal lengths n(1 + p) and n(1 − p) (to simplify notations we
assume that np and n(1 − p) are integers). Hence:

Ln(p) := L(X1X2 . . .Xn(1+p); Y1Y2 . . . Yn(1−p)).

(Recall that, for two sequences V and W , we denoted by L(V ; W ) the optimal alignment score of V and W .)
By subadditivity, the limit

γ(p) := lim
n→∞

E[Ln(p)]
n

exists. The curve p �→ γ(p) is called the mean curve and is concave and symmetric around the origin. Concavity
follows from a subadditivity argument. Not a lot is known, however, about differentiability and curvature
properties of the mean curve, although simulations seem to indicate non-zero curvature everywhere.

In FPP language (recall that optimal alignment is a FPP problem), the mean curve corresponds to the
asymptotic shape (rescaled limit) of the wet region. There are known special examples for which that shape
contains segments of straight lines (what we actually need is that the mean curve does not contain a segment of
straight line at p = 0). It is not assumed that this is typical, although nothing on this is known rigorously [8].
Hence, the exact geometry of the mean curve is an extremely hard question. For general first passage and last
passage percolation this has been open for decades. (Recall that optimal alignment is a last passage percolation
with correlated weights.) Note that in [9] and [12], Howard and Newman as well as Newman and Piza also use
an assumption similar to ours (of Th. 2.2) to establish an upper bound for transversal fluctuation.

We established Theorem 2.1 using that Z and Z̃ take values in [0, n]. If the values taken by Z and Z̃ lie with
high enough probability in an interval of smaller order, then the lower bound (2.3) can be improved. This is
the idea behind the next theorem:

Theorem 2.2. Assume that p �→ γ(p) has continuous second derivative in an open neighborhood of p = 0 and
γ(p)′′ < 0 (positive curvature at p = 0). Then,

P (A) ≥ 1
2n0.75 ln n

, (2.5)

for all n large enough.

We believe that one should be able to prove that the polynomial lower bounds (2.3) and (2.5) imply also
a similar bound for two macroscopically different optimal alignments. (In this paper the result is for one
optimal and one close to optimal alignment, which is somewhat weaker.) We plan to investigate this issue in a
forthcoming paper.

Remark 2.1. Using the polynomial lower bound for the probability of macroscopically different close to optimal
alignments, there is a heuristic argument which suggests that the path of the optimal alignments is typically
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non-unique on stretches of size n0.5+ε, where ε > 0. To see this, divide the intervals [1, n] into n0.5+ε pieces of
length n0.5−ε each. According to Theorem 2.1, the probability that the optimal path in non-unique on one of
the stretches of length n0.5−ε is larger than n−0.5+ε. Since there are n0.5+ε of them, the expected number of
stretches of length n0.5−ε where the optimal alignment is non-unique is at least n2ε. In other words, typically,
the optimal alignment is non-unique on a stretch of polynomial length in polynomially many places.

This is in stark contrast to what we expect when X and Y are not independent but were obtained by random
mutations from a common ancestor (computational biology). Then, it is believed that in many cases the optimal
alignment should be non-unique on stretches of length of at most logarithmic order in n. This very different
behaviour should be useful for distinguishing if two sequences are related or not.

3. Transversal fluctuation and the probability of macroscopic

non-uniqueness

Let Z be the smallest value in the point (n + 1)/2 taken by the path associated with an optimal alignment
of the texts X and Y . More precisely:

Z := min
f

f((n + 1)/2),

where the minimum is taken over all paths f associated with an optimal alignment (π, η) of X and Y .
Note that the fluctuation of Z in First and Last Passage Percolation language is called transversal fluctuation.
For a random variable W we define the interquartile distance by

qw = F−1
W (3/4) − F−1

W (1/4),

where F−1
W (.) designates the inverse distribution function of W .

We are now ready to state the second main result of this paper. This result says that if the probability that
there exists two close-to-optimal alignments different on large stretches is small, than the fluctuation of Z is
large.

Recall that A is the event that there exist simultaneously two close-to-optimal alignments different on a large
stretch. The event A was defined just before Theorem 2.1.

Theorem 3.1. Let α ∈ [0, 1] and C > 0. Assume that

P (A) ≤ Cn−α, (3.1)

then

qZ ≥ (2(Cn−α + n−1))−1 − 4, (3.2)

where qZ is the interquartile distance of the random variable Z.

We saw in Theorem 2.1 that P (A) ≥ n−1. Hence we are only interested in the case when α < 1. For
α ∈ (0, 1], the order of the expression in the right-hand side of (3.2) is nα. In other words, we get a lower bound
on the transversal fluctuation of order equal to the inverse of the probability P (A).

The result of Theorem 3.1 can also be described in the following way: a small quenched fluctuation implies
a large annealed fluctuation. To see this, assume that we hold X and Y fixed and select one optimal path at
random. The “fluctuation” between one optimal path and the other for X and Y fixed, can be interpreted as
quenched fluctuation. If the different optimal paths do not differ a lot macroscopically then this fluctuation
is small. We think of the annealed fluctuation as of how much the optimal paths changes when we redraw X
and Y . The fluctuation of Z is a good measure of these fluctuations.
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4. Proofs

4.1. Main idea: a measure-preserving transformation

The main technique used in this paper is introducing a measure preserving map (transformation) ∼. This
map is defined as follows: we transform the text Y by removing the first letter of Y and placing it at the end.
The text obtained in this way is denoted by Ỹ . More precisely:

• For i with 0 ≤ i < n, we define Ỹi := Yi+1.
• We define Ỹn := Y1.

Obviously, the transformation ∼ does not change the distribution, since we assumed that the texts are i.i.d.
We denote by S̃(π, η) the score obtained when we use the alignment (π, η) to align the texts X and Ỹ :

S̃(π, η) :=
k∑

i=1

s(Xπ(i), Ỹη(i)) − 2q(n − k).

Let L̃ denote the optimal alignment score of the texts X and Ỹ :

L̃ := max
(π,η)

S̃(π, η)

where the maximum is taken over all alignments of the text X with the text Ỹ .

Again, let us look at the numerical example where X is the word “think” and Y is equal to “denke”. Take the
scoring scheme as described in the numerical example before. In this case, we find that the transformed text Ỹ
is equal to “enked”. We obtain this by removing the “d” at the beginning of “denke” and moving it to the end
of the word.

The optimal alignment of X and Ỹ is:

t h i n k

e n k e d

In this alignment there is one pair of similar letters aligned, and two identical letters aligned. Four letters are
aligned with gaps. The score of the above alignment is hence equal to 0.5 + 2 − 4(0.5) = 0.5. This is the

maximum possible alignment score and hence L̃ = 0.5.
Note that between Y and Ỹ the only difference is the first letter of Y and the last letter of Ỹ . The above

alignment of X with Ỹ can be obtained from the alignment of X with Y presented previously. For this we
simply align all the letters of Ỹ , except Y1, with the same letter as before. The last letter of Ỹ gets aligned
with a gap. In this way every alignment of X with Y induces an alignment of X with Ỹ . We denote by (π̃, η̃)

the alignment of X with Ỹ induced by the alignment (π, η) of X with Y .
The difference in score of the two alignments is at most the maximum possible score for a pair of letters,

plus twice the gap penalty.

Let (π, η) be an alignment of length k (recall that we think of (π, η) as an alignment of X with Y ). As
mentioned in the previous paragraph, we write (π̃, η̃) for the alignment of the text X with the text Ỹ , induced
by the alignment (π, η). By this we mean that, except for the letter Y1, the two alignments align the same pair
of letters. More precisely: Let 1∗ := 2 if η(1) = 1 and 1∗ := 1 otherwise. We define π̃ to be the increasing
sequence:

π(1∗) < π(1∗ + 1) < . . . < π(k).
Let η̃ be the increasing sequence

η(1∗) − 1 < η(1∗ + 1) − 1 < . . . < η(k) − 1.

It is straightforward to note that the length of alignment (π̃, η̃) is k − 1 if η(1) = 1 and k if η(1) > 1. Similarly,
we define the alignment π̂, η̂ to be the alignment of length k − 1 defined by the equation

(π̂(i), η̂(i)) := (π(i), η(i) + 1),
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which is to hold for every i ∈ [1, k − 1]. If we think of (π, η) as an alignment of X with Ỹ , then (π̂, η̂) aligns
the texts X and Y in such a way that, roughly, the same letters get aligned for both alignments. The only
exception is the last aligned pair of letters aligned by (π, η).

The next lemma states what we already saw in the last numerical example: the difference in score between
an alignment and its induced alignment is less than the maximal score for a pair of letters, plus twice the gap
penalty.

Lemma 4.1. Let (π, η) be an alignment. We have that

|S(π, η) − S̃(π̃, η̃)| ≤ q∗ (4.1)

and
|S̃(π, η) − S(π̂, η̂)| ≤ q∗ (4.2)

whilst
|L − L̃| ≤ q∗, (4.3)

where
q∗ := max

a,b∈A
|s(a, b)| + 2q (4.4)

(compare with Def. 2.4).

Proof. The alignment (π̃, η̃) contains one pair of aligned letters less than (π, η). The loss incurred for that is at
most maxa,b∈A |s(a, b)|. If two letters are matched with gaps the additional penalty occurring is 2q. Hence,

S(π̃, η̃) ≥ S(π, η) − q∗,

whilst, by definition, we have
S(π, η) ≥ S(π̃, η̃).

Therefore, (4.1) follows. Similarly we prove (4.2).
For every alignment (π, η) we have that (π̃, η̃) is well defined. Hence, we know that for every alignment (π, η)

of X and Y , there is an alignment of X and Ỹ with a score closer than q∗ from the score S(π, η). The converse
is also true. Hence (4.3). �

Recall that Z was defined as the smallest value in the point (n + 1)/2 taken by a path associated with an
optimal alignment of the texts X and Y , i.e.,

Z := min
f

f((n + 1)/2),

where the minimum is taken over all paths f associated with optimal alignments of the two texts. Similarly,
we define Z̃:

Z̃ := min
f

f((n + 1)/2),

where the minimum is taken over the set of all paths associated with an optimal alignment (π, η) of X and Ỹ
(we could take any other point instead of (n + 1)/2, which is at linear distance from 1 and n, to make the same
argument).

Let us come back to our numerical example where X = think and Y = denke, whilst Ỹ = enked. The optimal
alignment of X and Y is:

e

k •
n •
e •
d •

t h i n k
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The optimal alignment of X with Ỹ is

d

e

k •
n •
e •

t h i n k

In this case we have that n = 5 and (n + 1)/2 = 3. In each case, for both Y and Ỹ , the optimal alignment is

unique. It follows that Z and Z̃ are equal to the value at 3 of the paths associated with the respective optimal
alignments. We find Z = 2 and Z̃ = 1. Note that, in this case, Z̃ = Z − 1.

Look at the •’s in the two diagrams above. As mentioned, they represent pairs of aligned letters. Between
the first alignment and the second most points are moved downwards by one unit. The only exception is the
first •. As we will argue later, this is a typical situation: the transformation ∼ has in most cases the effect of
moving down the map associated with the optimal alignment except possibly at its beginning and end.

Note that (X, Y ) has the same distribution as (X, Ỹ ). Hence, Z and Z̃ have the same distribution. It follows
that

E[Z] = E[Z̃]. (4.5)

This implies that the equation
Z̃ = Z − 1

can not hold with a too large probability. This is one of the main ideas of this paper.
We saw that in many cases, Z̃ = Z − 1. Hence, in many cases Z̃ > Z − 1 does not hold. The next lemma

gives a necessary condition for the inequality Z̃ > Z − 1 to hold. Roughly speaking, this condition is that there
exist a close-to-optimal alignment whose path does not cross the optimal alignment on a large interval. Recall
the notations I1 = [0, (n + 1)/2) and I2 = ((n + 1)/2, n].

Lemma 4.2. If
Z̃ 	= Z − 1, (4.6)

then there exist:

• an optimal alignment (π, η) of X and Y , and
• another alignment (π′, η′),

such that the following two conditions are satisfied:

(1) We have that the alignment (π′, η′) is close to optimal (recall Def. 2.4 and (4.4)):

|S(π′, η′) − L| ≤ 2q∗. (4.7)

(2) If f designates the path associated with (π, η) and h′ designates the path associated with (π′, η′), then f
and h′ do not cross on at least one of the intervals I1, I2 (i.e., the event A of (2.2) occurs).

In other words, inequality (4.6) implies that there exist two close-to-optimal alignments which are macroscopi-
cally different on the scale n.

Proof. We use the following notation. Let f be a continuous strictly increasing map with convex domain in
[1, n] and image space [1, n]. We write S[f ] for the score obtained by aligning the texts X and Y along f . More
precisely:

S[f ] :=

(∑
i

s(Xi, Yf(i))

)
− r · q, (4.8)

where the sum is taken over those i’s in the domain of f for which f(i) is an integer and r is equal to the
number of non-matched letters. Note that r is equal to 2n minus twice the number of terms in the sum (4.8).
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Similarly, let S̃[f ] denote the score obtained by aligning X with Ỹ along f . More precisely,

S̃[f ] :=

(∑
i

s(Xi, Ỹf(i))

)
− r · q, (4.9)

where again the sum is taken over those i’s in the domain of f for which f(i) is an integer and r is equal to the
number of non-matched letters.

Let 1 ≤ c < d ≤ n. We write Sd
c (f) for the score obtained by aligning X with Y but calculated only on

the interval [c, d]. Hence, Sd
c (f) is equal to (4.8), where the sum is taken over all i ∈ [c, d] such that f(i) is an

integer, and r is the sum of(
the number of i’s in [c, d] such that f(i) is not an integer

)
and (

the number of j’s in [f(c), f(d)] such that f−1(j) is not an integer
)
.

We write S̃d
c (f) for the score obtained by aligning X with Ỹ but calculated only on the interval [c, d].

For a map f we denote by f|[a,b] the restriction of f to [a, b].
Let (π, η) denote an optimal alignment of X and Y . Let f be the path associated with (π, η). We assumed

that (π, η) minimizes f(n/2) among all optimal paths. Hence, we have that f(n/2) = Z.
Let g denote the path associated with (π̃, η̃). Let h denote the path associated with an optimal alignment

of X with Ỹ which is minimal in the point n/2. Hence, h(n/2) = Z̃. Let h′ be the path which is defined on the
interval h−1([0, n − 1]) by the equation h′(x) := h(x) + 1.

Now comes an important point: assume that every optimal path and every close to optimal path cut each
other on I1 and on I2. In other words, we assume that any optimal alignment (π, η) of X and Y and every
alignment (π′, η′) satisfying (4.7), cross each other on I1 and on I2.

Then: Since f is the path of an optimal alignment of X and Y , since furthermore h is an optimal alignment
of X and Ỹ , Lemma 4.1 implies that

|S[f ]− S̃[h]| ≤ q∗. (4.10)

By an argument similar to the one used in Lemma 4.1, one obtains

|S[h′] − S̃[h]| ≤ q∗. (4.11)

Combining (4.10) and (4.11), we obtain that

|S[f ] − S[h′]| ≤ 2q∗. (4.12)

Because of our assumption, f and h′ cut each other on I1 and on I2. Hence, g and h also cut each other on I1

and on I2.
Denote by a = (a1, a2) the point where g and h cut each other to the left of n/2. Hence, a1 < n/2 and

h(a1) = g(a1) = a2. Denote by b = (b1, b2) the point where g and h cut each other to the right of n/2. We have
that n/2 < b1 and h(b1) = g(b1) = b2. Between a and b, we can replace the path h by g. In this way we obtain
a new path (increasing continuous function) which is equal to g on [a1, b1] and is equal to h outside [a1, b1].
This yields an admissible alignment. Since h is the path of an optimal alignment of X and Ỹ we find

S̃b1
a1

[g] ≤ S̃b1
a1

[h]. (4.13)

By definition of (π̃, η̃), we have that f(a1) = g(a1) + 1 and f(b1) = g(b1) + 1. We can thus replace the path f
on the interval [a1, b1] by h′. In this manner, we get an admissible path which is equal to h′ on [a1, b1] and is
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equal to f outside [a1, b1]. Since f is an optimal alignment of X with Y , we get

Sb1
a1

[f ] ≥ Sb1
a1

[h′],

which is equivalent to
S̃b1

a1
[g] ≥ S̃b1

a1
[h]. (4.14)

Together, (4.13) and (4.14) imply

S̃b1
a1

[g] = S̃b1
a1

[h]. (4.15)

From (4.15) it follows that on [a1, b1] we can replace the path h by g and still get an optimal alignment of X

and Ỹ . Thus if we take the alignment which is equal to g on [a1, b1] and is equal to h outside [a1, b1], this gives
an optimal alignment of X with Ỹ . Hence, by definition of Z̃ we obtain that at the point n/2 that alignment
does not go below Z̃:

g(n/2) ≥ Z̃.

From the last inequality above and the facts that g(n/2) = f(n/2) − 1 and f(n/2) = Z, we find

Z − 1 ≥ Z̃. (4.16)

We can now use a similar argument and, in the path f , replace the part on [a1, b1] by h + 1. This yields an
alignment which is equal to h + 1 on [a1, b1] and is equal to f outside [a1, b1]. With the same line of argument
as before, we find that this new alignment is an optimal alignment for X and Y . Hence its value at n/2 cannot
be below Z. This gives

Z ≤ h(n/2) + 1

and hence
Z − 1 ≤ Z̃. (4.17)

Together, (4.16) and (4.17) imply

Z − 1 = Z̃. (4.18)

We have just proven that if every optimal and close to optimal alignment of X and Y cut each other on I1 and
on I2, then (4.18) follows. This implies that when

Z − 1 	= Z̃

holds, then there exists a close to optimal alignment and an optimal alignment which do not cut each other on
either I1 or I2. �

4.2. Proof of Theorem 2.1

Proof. Let W be the random variable
W := Z̃ − Z + 1.

Since Z̃ and Z have same distribution, we find that

E[W ] = 1. (4.19)

Note that, since Z and Z̃ take values in [0, n], we have that

P (W ∈ [−n + 1, n + 1]) = 0.
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Let pi be equal to the probability pi := P (W = i). We have

1 = E[W ]

=
∑

i∈[−n+1,n+1]

ipi

≤
∑

i∈[1,n+1]

ipi

≤
∑

i∈[1,n+1]

(n + 1)pi

≤ (n + 1) · P (W > 0).

The last inequality implies that

P (W > 0) ≥ 1
n + 1

· (4.20)

Now, W > 0 is equivalent to Z̃ > Z − 1. But, we saw in Lemma 4.2, that if Z̃ > Z − 1, then A holds. Hence,
W > 0 implies the event A, so that (4.20) implies that

P (A) ≥ 1
n + 1

· �

4.3. Proof of Proposition 2.1

Proof. In order to simplify the notations, we assume that 0.25n is an integer.
Note that r1 > 0.4n is equivalent to

Ln = L(X0.4nX0.25n+1 . . . Xn; Y ). (4.21)

Let L∗ be defined by
L∗ := L(X0.4nX0.25n+1 . . . Xn; Y ).

We have that
E[L∗] = E[L(X1X2 . . . X0.6n; Y ) = E[L0.8n(0.25)]. (4.22)

Furthermore,
L∗ = 0.8nγ(0.25) + (E[L∗] − 0.8nγ(0.25)) + (L∗ − E[L∗]) ,

and with (4.22) we find

L∗ = 0.8nγ(0.25) + (E[L0.8n(0.25)] − 0.8nγ(0.25)) + (L∗ − E[L∗]) . (4.23)

By definition
lim

n→∞ E[L0.8n(0.25)]/(0.8n) = γ(0.25). (4.24)

The speed of convergence in the limit (4.24) is faster than ln n√
n

, as proved by Alexander [2]. Hence, for n large
enough:

|E[L0.8n(0.25)] − γ(0.25)| ≤ √
n ln n. (4.25)

We know that the map p �→ γ(p) is concave and symmetric in p = 0. It follows that

γ(0) ≥ γ(0.25). (4.26)

Let Fn be the event that
|L∗ − E[L∗]| ≤ √

n ln n.
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When Fn holds, with the help of (4.23), (4.25) and (4.26), we obtain that

L∗ ≤ 0.8nγ(0) + 2
√

n ln n. (4.27)

Similarly, by the speed of convergence result [2] we obtain that for all n large enough

|E[Ln] − nγ(0)| ≤ √
n ln n. (4.28)

Let Bn be the event that
|Ln − E[Ln]| ≤ √

n ln n.

When Bn occurs, we find with the help of (4.28) that

Ln ≥ nγ(0) − 2
√

n ln n. (4.29)

We made the assumption that we are in the linear phase, i.e., that

γ(0) = lim
n→∞E[Ln]/n > 0.

From γ(0) > 0, it follows that for all n large enough: the equations (4.27) and (4.29) jointly imply Ln > L∗.
But when Ln > L∗ holds, then r1 < 0.4n. Hence, Fn and Bn imply r1 < 0.4n. Thus,

(Fn ∩ Bn) ⊂ {r1 < 0.4n},

from which it follows that
P (r1 ≥ 0.4n) ≤ P (Fnc) + P (Bnc), (4.30)

where Fnc, respectively, Bnc denotes the complement of Fn, respectively, Bn. By a large deviation result of
Arratia and Waterman [3] we have that there exist a constant cLD > 0 not depending on n, such that

max{P (Fnc), P (Bnc)} ≤ n−cLD ln n

for all n. The last inequality together with (4.30) implies (2.4). �

4.4. Proof of Theorem 2.2

First, the question is when is Z typically taking values in an interval of smaller order than n. We know of
degenerate situations when this is not true. On the other hand, if we assume the mean curve to have non zero
curvature at the origin, one can prove that Z typically takes values in an interval of size order n0.75.

Lemma 4.3. Assume that p �→ γ(p) has continuous second derivative in a open neighborhood of p = 0 and
γ(p)′′ < 0. Then, we find that for all n large enough

P ( Z /∈ [n − n0.75 ln n, n + n0.75 ln n] ) ≤ 2n2−c lnn, (4.31)

where c > 0 is a constant not depending on n and (i, j).

Proof. Let L(i, j) denote the optimal score obtained by aligning X1X2 . . . Xi with Y1Y2 . . . Yj :

L(i, j) := L(X1 . . .Xi; Y1 . . . Yj).

Let
L̄(i, j) := L(Xi+1 . . . Xn; Yj+1 . . . Yn).
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Let a > 0 be an integer with a ≤ n/2. We have that

L(n/2, n/2− a) = 0.5(n − a)γ(pa)
+ E[L(n/2, n/2− a)] − 0.5(n− a)γ(pa)
+ L(n/2, n/2− a) − E[L(n/2, n/2− a)], (4.32)

where
pa =

a

0.25(n− a)
·

According to our notation, we have that

L(n/2, n/2− a) = L0.5(n−a)(pa).

Using the fact that the convergence of Ln(p) is faster than ln n√
n

, we obtain

| E[L(n/2, n/2− a)] − 0.5(n − a)γ(pa) | ≤ √
n ln n (4.33)

for n large enough (the inequality (4.33) holds true because it is possible to find a uniform bound for all
a ∈ [0, n]).

Let F (i, j) be the event that
|L(i, j) − E[L(i, j)| ≤ √

n ln n.

Similarly, we define F̄ (i, j) to be the event that

|L̄(i, j) − E[L̄(i, j)| ≤ √
n ln n.

Let Fn
tot be the event:

Fn
tot :=

⋂
i,j∈[0,n]

(F (i, j) ∩ F̄ (i, j)).

Assume that
a ≥ n0.75 · ln n. (4.34)

The map p �→ γ(p) is convex and symmetric around the origin. We assumed that it has strictly positive
curvature at p = 0. Hence, γ(0)′ = 0 and there exists an open neighbourhood O such that 0 ∈ O and for all
p ∈ O we have

γ(0) ≥ γ(p) + κ · p2, (4.35)
where κ > 0 is a constant not depending on p ∈ O. Let p0 designate the value of pa when a is taken equal to
n0.75 · ln n. Assuming that (4.34) holds, and that n is large enough so that p0 ∈ O, we find that

γ(0) ≥ γ(p0) + κ · p0
2. (4.36)

Since the map p �→ γ(p) is concave and symmetric around the origin, it follows that on [0, 1] it must be
decreasing. Hence, when (4.34) holds, we have that γ(p0) ≥ γ(pa), so that inequality (4.36) becomes

γ(0) ≥ γ(pa) + κ · p0
2. (4.37)

Hence, when the event Fn
tot holds, we find using (4.32), (4.33) and (4.37) that

L(n/2, n/2− a) ≤ 0.5(n − a)γ(0) − 0.5(n − a)κ · p0
2 + 2

√
n ln n. (4.38)

Let
p̄a =

−a

0.25(n + a)
·
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Let p̄0 denote the value of p̄a when a is equal to n0.75 ln n. According to our notation, we have that

E[L̄(n/2, n/2 − a)] = E[L0.5(n+a)(p̄a)].

Using the same rate of convergence as we did in (4.33), we obtain the inequality

|E[L̄(n/2, n/2 − a)] − 0.5(n + a)γ(p̄a)| ≤ √
n ln n. (4.39)

With a similar argument as was used for (4.38), we obtain that if the event Fn
tot holds together with (4.34), then

L̄(n/2, n/2 + a) ≤ 0.5(n + a)γ(0) − 0.5(n + a)κ(∗)2 + 2
√

n ln n. (4.40)

The inequalities (4.38) and (4.40) together imply:

L(n/2, n/2− a) + L̄(n/2, n/2 + a)
≤ nγ(0) − 0.5κ((n − a)(p0)2 + (n + a)(∗)2 + 4

√
n ln n, (4.41)

and hence
L(n/2, n/2− a) + L̄(n/2, n/2 + a) ≤ nγ(0) − 0.5κ(n + a)(∗)2 + 4

√
n ln n. (4.42)

Note that
(∗)2 = (ln n)2 · n−0.5 1

0.625(1 + n−0.25 ln n)2
· (4.43)

Also, when n is large enough, we get

1 ≤ 1
0.625(1 + n−0.25 ln n)2

· (4.44)

Since a > 0, we have that n + a ≥ n. Combining this with the formulas (4.42), (4.43) and (4.44), we obtain

L(n/2, n/2− a) + L̄(n/2, n/2 + a) ≤ nγ(0) − 0.5κ(lnn)2
√

n + 4
√

n ln n. (4.45)

Similarly, when Fn
tot holds, we find that

Ln ≥ nγ(0) − 2
√

n ln n. (4.46)

Together, (4.45) and (4.46) imply

Ln − (L(n/2, n/2− a) + L̄(n/2, n/2 + a)
) ≥ 0.5κ(lnn)2

√
n − 6

√
n ln n. (4.47)

For n large enough, we have
0 < 0.5κ(lnn)2

√
n − 6

√
n ln n,

so that
Ln > L(n/2, n/2− a) + L̄(n/2, n/2 + a). (4.48)

But if (4.48) holds, then there is no path f of an optimal alignment such that f(n/2) ∈ [n − a, n − a + 1).
Hence, when (4.47) holds for all a ≥ n0.75 ln n, then there is no path f of an optimal alignment such that
f(n/2) ∈ [0, n − n0.75 ln n] and hence Z ≥ n − n0.75 ln n. Summarizing, we have proved that for all n large
enough

Fn
tot ⊂ {Z ≥ n − n0.75 ln n}.

By symmetry we obtain also
Fn

tot ⊂ {Z ≤ n + n0.75 ln n}.
The two last inclusions finally imply that

Fn
tot ⊂ {Z ∈ [n − n0.75 ln n, n + n0.75 ln n]},
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so
P (Z /∈ [n − n0.75 ln n, n + n0.75 ln n]) ≤ P (Fnc

tot). (4.49)

Note also that
P (Fnc

tot) ≤
∑

i,j∈[0,n]

( P (F c(i, j)) + P (F̄ c(i, j)) ). (4.50)

By the large deviation result of Arratia and Waterman [3], we find that

max{P (F c(i, j)), P (F̄ c(i, j))} ≤ n−c ln n, (4.51)

where c > 0 is a constant not depending on n. Using (4.51) in (4.50), we obtain

P (Fnc
tot) ≤ 2n2−c ln n. (4.52)

Inequalities (4.49) and (4.52) together imply (4.31). �

Now, we are able to prove Theorem 2.2.

Proof of Theorem 2.2. Let W be the random variable

W := Z̃ − Z + 1.

Since Z̃ and Z have the same distribution, we find that

E[W ] = 1. (4.53)

Note that W takes values in [−n + 1, n + 1] and that due to (4.31):

P (W ∈ [−2n0.75 ln n, 2n0.75 ln n]) ≥ 1 − 4n2−c ln n. (4.54)

Let I denote the interval I := [1, 2n0.75 ln n]. Let pi be equal to the probability pi := P (W = i). We have

1 = E[W ]

=
∑

i∈[−n+1,n+1]

ipi

≤
∑
i>0

ipi

≤
∑
i∈I

(2n0.75 ln n)pi + (n + 1) · P (W > 2n0.75 ln n).

From the last inequality and with the help of (4.54), we find:

1 ≤ P (W > 0)(2n0.75 ln n) + 4(n + 1)n2−c ln n. (4.55)

Note that
lim

n→∞ 4(n + 1)n2−c ln n = 0,

so that for n large enough we have

4(n + 1)n2−c lnn ≤ 1
2
· (4.56)
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Using (4.55) and (4.56), we find that

1 ≤ P (W > 0)(2n0.75 ln n) +
1
2
, (4.57)

from which it follows that
1

4n0.75 ln n
≤ P (W > 0). (4.58)

But W > 0 is equivalent to Z̃ > Z − 1. If Z̃ > Z − 1, then the event A occurs, as was proven in Lemma 4.2.
Hence

{Z̃ > Z − 1} ⊂ A,

so that

P (A) ≥ P (Z̃ > Z − 1) = P (W > 0) ≥ 1
4n0.75 ln n

· �

4.5. Proof of Theorem 3.1

We saw that Z and Z̃ have the same distribution, but yet in many cases Z̃ = Z − 1. There is another
important consequence which follows from this seeming contradiction. For two variables V and W with the
same distribution, the only possibility that the equation V = W − 1 holds with high probability is when the
fluctuation of V is large.

Let us give two examples to illustrate this. First let the distribution L(V ) be mono-atomic. Then, if L(V ) =
L(W ), we find that

P (V = W − 1) = 0.

On the other hand, if V and W have both uniform (discrete or continuous) distributions in the interval [0, n],
then it is possible to couple V and W in such a way that

P (V = W − 1) ≥ 1 − 1

n
·

The next lemma show that a high probability for V = W − 1 to hold, implies a large fluctuation of V when the
two variables have same distribution.

Lemma 4.4. Assume that V and W are two random variables with identical distribution such that

P (V = W − 1) ≥ 1 − Cn−α, (4.59)

and such that
P (V ∈ [0, n]) = P (W ∈ [0, n]) = 1.

Then, the interquartile distance qw satisfies

qw > (2(Cn−α + n−1))−1 − 4. (4.60)

Proof. We begin by recalling a simple fact about discrete probability distributions. For two distributions µ
and ν on a finite (or countable) set B, define the total variation distance by

‖µ − ν‖ =
1
2

∑
z∈B

|µ(z) − ν(z)|.

It is well-known that
‖µ − ν‖ = inf P (U1 	= U2), (4.61)
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where the infimum is taken over all possible couplings of variables U1 (having distribution µ) and U2 (with
distribution ν). Now, denote pi = P (V ∈ (i − 1, i]), for i = 1, . . . , n, and let p0 = P (V = 0). From (4.59)
and (4.61) it is straightforward to obtain that

n∑
i=1

|pi − pi−1| ≤ Cn−α. (4.62)

Let k0 = argmin pk, k1 = arg max pk; without restriction of generality we now suppose that k0 < k1. Clearly,
pk0 < n−1, so we obtain from (4.62) that

pk1 = pk1 − pk0 + pk0 ≤ pk0 +
k1∑

i=k0+1

|pi − pi−1| ≤ Cn−α + n−1,

which means that
pk ≤ Cn−α + n−1 for all k = 0, . . . , n. (4.63)

Now, let Q1 and Q3 be the first and the third quartiles of the random variable V (and W ). Suppose that
Q1 ∈ (m0 − 1, m0], Q3 ∈ (m1, m1 + 1] for some m0 ≤ m1. By (4.63), we have that P (V ∈ [Q1, Q3]) ≥
1
2 − 2(Cn−α + n−1), so

P (V ∈ (m0, m1]) ≥ 1
2
− 4(Cn−α + n−1). (4.64)

On the other hand, again by (4.63),

P (V ∈ (m0, m1]) ≤ (m1 − m0)(Cn−α + n−1). (4.65)

Thus, by (4.64) and (4.65),

qw ≥ m1 − m0 ≥ 1
2(Cn−α + n−1)

− 4. �

Now, we are ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. We apply Lemma 4.4. For this we take the variables Z and Z̃ as the variables V and W
of Lemma 4.4. Note that Z and Z̃ have the same distribution. Furthermore, we showed in Lemma 4.2 that,
if A does not hold, then Z̃ = Z − 1. Hence, inequality (3.1) implies that

P (Z̃ = Z − 1) ≥ 1 − Cn−α.

The last inequality above is the condition (4.59) of Lemma 4.4. Thus, all the conditions of Lemma 4.4 hold,
and we obtain (3.2). �
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