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CONVEX REARRANGEMENTS OF LÉVY PROCESSES
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Abstract. In this paper we study asymptotic behavior of convex rearrangements of Lévy processes.
In particular we obtain Glivenko-Cantelli-type strong limit theorems for the convexifications when the
corresponding Lévy measure is regularly varying at 0+ with exponent α ∈ (1, 2).
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1. Introduction

Let ξ = {ξ(t), t ≥ 0} be a stochastic process taking on real values and such that ξ(0) = 0 almost surely. For
any i = 1, 2, ..., let Xi be the increment

Xi = ξ(i) − ξ(i− 1).

Given n, letX1:n ≤ ... ≤ Xn:n be the order statistics ofX1, ..., Xn. We connect the points (0, 0),
(
k,

∑k
i=1Xi:n

)
,

k = 1, 2, ..., n, using straight lines and obtain the curve

Cn(x) =

⎧⎨⎩
∑[x]

i=1Xi:n + (x− [x])X[x]+1:n, if 0 ≤ x < n,∑n
i=1Xi:n (=

∑n
i=1Xi = ξ(n)) , if x = n.

(1.1)

The function Cn is called the convex rearrangement of ξ on the interval [0, n], in view of the fact that it is
convex on the interval. Since both the function Cn and its domain of definition depend on n, it is natural and
convenient to redefine Cn as follows:

C0
n(t) = Cn(nt), 0 ≤ t ≤ 1. (1.2)

The function C0
n possesses the geometric properties of the original one, Cn. If, however, the stochastic process

ξ is defined on the compact interval [0, 1], then instead of the above Xi’s we use the following increments

Xi,n = ξ

(
i

n

)
− ξ

(
i− 1
n

)
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to define both Cn and C0
n. The important difference between the present situation and the previous one is that

the random variables Xi,n are now dependent on n. When needed, in both [0,∞) and [0, 1] cases we use the
notation C0

n[ξ] to indicate the dependence of C0
n on ξ. The following general definition of convex rearrangements

is given in [8].

Definition 1.1. Let f be a measurable real function on [0, 1]. A function Tf is said to be the monotone
rearrangement of f , if it is monotonic increasing, continuous from the right, and has the same distribution as
f it means that λf−1 = λ(Tf)−1, where λ denotes the Lebesgue measure. The operator V defined on the set
of absolutely continuous functions on [0, 1] by the formula

V f(t) = f(0) +
∫ t

0

T (f ′)(s) ds

is said to be the operator of convex rearrangement.

It is evident that V f is convex and takes on the same values at the endpoints of [0, 1] as the function f . Let
ξ = {ξ(t), t ∈ [0, 1]} and consider the sequences of polygonal approximations of ξ determined by the uniform
partitions of the interval [0, 1] as follows:

ξn(t) = ξ

(
i

n

)
+

(
t− i

n

)
Xi,n, t ∈ [i/n, (i+ 1)/n].

Then, for each t ∈ [0, 1],
V ξn(t) = C0

n[ξ](t).
Recently, asymptotic behavior of C0

n[ξ] has been established for various families of stochastic processes. For
example, strong limit theorems have been obtained when ξ is a random walk [13], strictly stable process [8], and
Gaussian process [14]. Moreover, it has been noted in [11] that the asymptotic behavior of convexifications is
closely related to the behavior of oscillations of smoothed processes, a topic extensively studied in [1] and [22].
It is worthwhile to note that the knowledge of asymptotic behaviour of C0

n[ξ] gives useful information about the
oscillations of the original process and can be used in various applications. It also serves as a starting point of
a non-standard approach to the estimation problem of parameters of the process. For example, based on [11], a
new method for estimating the Hurst index of self similar Gaussian processes has been proposed in [20]. Based
on these considerations a statistical index for measuring the fluctuations of stochastic processes was proposed
in [10]. In addition, a connection between convex rearrangements and econometric theory (cf. e.g., a survey
paper [15] for more detail) was investigated in [14] by noting that the limiting curves in the aforementioned
strong theorems are generalized Lorenz curves, which is a class of well known functions in econometrics. For an
account of various properties of convex rearrangements, results, and applications, we refer to [15].

In the present work we study convex rearrangements when ξ = {ξ(t), t ∈ [0, 1]} is a Lévy process, which is,
by definition, a stochastic process with stationary and independent increments. If the Gaussian component is
absent, and if the Lévy measure – which appears in the characteristic function of the random variable ξ(t) – is
regularly varying with exponent α ∈ (1, 2) at 0+, then we obtain a strong limit theorem (cf. Th. 2.1 below).
The limiting curve is non-random. More precisely, the limiting curve is a generalized Lorenz curve defined by
a strictly stable random variable with exponent α ∈ (1, 2). This result relates very nicely to the result of [8].
Intuitively, the result should not be surprising because the aforementioned condition of regular variation means
that the process we consider is locally α-stable.

We restrict ourselves to the study of the case α ∈ (1, 2) only, due to the following reason. It is not difficult
to see (cf., e.g., [8]) that almost sure convergence of C0

n[ξ] is equivalent, loosely speaking, to the strong law
of large numbers (SLLN) for triangular arrays of i.i.d. random variables that are generated by appropriately
normalized increments of the process. This SLLN requires the existence of the first moment. Hence, α must
be larger than 1. If α ≤ 1, we cannot have, in principle, more than weak convergence. We refer to [13] and [9]
for detail, where this type of convergence has been studied for convexifications of i.i.d. sequences. Even though
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such results are not too difficult to obtain, they are beyond the scope of the present work. Other possible topics
of interest include establishing rates of convergence. In some cases, the central limit theorem for C0

n[ξ] has been
obtained. For example, in [14] we find a CLT in the case of the fractional Brownian motion. We also refer to
[23] for related results for increments of smoothed Levy processes and to [4–7] for the rate of convergence to
Lorenz curve in the i.i.d. case. All these extensions and generalizations are interesting research topics, but they
are beyond the scope of the present paper.

The rest of this papers is organized as follows. In Section 2 we state and discuss the main result, which is
Theorem 2.1. In Section 3 we formulate and prove a number of lemmas that play crucial roles in establishing
Theorem 2.1. The proof of Theorem 2.1 itself is given in the second half of Section 3.

2. Main result

Let ξ = {ξ(t), t ∈ [0, 1]} be a Lévy process defined on a probability space (Ω,A,P) and taking on real values.
The Lévy-Khintchine representation for the characteristic function Φt of the random variable ξ(t) can be written
as (cf., e.g., [2] p. 11)

Φt(θ) = exp {−tΨ(θ)} , θ ∈ R,

where

Ψ(θ) = −iγθ +
1
2
σ2θ2 +

∫
R

(
1 − eiθu + iθu1I(−1,1)(u)

)
Π(du)

with γ ∈ R and σ ∈ R+ := [0,+∞[. The Π in the formula above is a Borel measure on the real line such that,
Π({0}) = 0, Π({u : u ≥ a}) <∞ for every a > 0, and

∫
|u|<1

u2Π(du) < ∞. Assume also that
∫
|u|>1

|u|Π(du) <
∞. From Theorem 8 in [21], the above assumptions ensure that E|ξ(1)| < ∞. We still need to introduce
additional notation. Let

G(u) := Π(u,+∞) + Π(−∞,−u), u ∈ R+.

Moreover, let f−1 be the generalized inverse of a monotone function f , that is, f−1(u) = inf{t : f(t) ≥ u}. For
the Lévy process ξ = {ξ(t), t ∈ [0, 1]} we impose the following assumptions:

H : There exists an α ∈ (1, 2), a slowly varying function � at the origin and functions C+(u), C−(u) such
that:

• Π(u,+∞) = C+(u)u−α�(u);
• Π(−∞,−u) = C−(u)u−α�(u);
• C+(u) → C+ when u ↓ 0;
• C−(u) → C− when u ↓ 0;
• C+ + C− = 1.

Theorem 2.1. Let ξ = {ξ(t), t ∈ [0, 1]} be a Lévy process satisfying assumption H. If σ = 0, then for all
t ∈ [0, 1] we have

lim
n→∞

1
an

C0
n[ξ](t) = L(1)

α (t) (2.1)

almost surely, where an := nG−1(n) and the limit L(1)
α (t) :=

∫ t

0 F−1
α (s)ds is the Lorenz curve corresponding to

the distribution Fα of a strictly α-stable random variable (1 < α < 2) whose characteristic function is

φα(θ) := exp
{
i(C− − C+)α

α− 1
θ −

∫ +∞

−∞

(
1 − eiuθ + iuθ1I(−1,1)(u)

)Lα(du)
}

(2.2)

with Lα(du) = α|u|−α−1
(
C+1I{u>0} + C−1I{u<0}

)
. If, however, σ �= 0, then for all t ∈ [0, 1] we have that

lim
n→∞

1√
n

C0
n[ξ](t) = L(2)

σ (t) (2.3)
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almost surely, where L(2)
σ (t) :=

∫ t

0 Φ−1
σ (s)ds with Φσ denoting the centered normal distribution with the variance

σ2.

Actually, Theorem 2.1 implies stronger statements than those in (2.1) and (2.3). Namely, since for each n ≥ 1
the function C0

n[ξ](t) is convex, any of the two statements (2.1) and (2.3) implies that the convergence is, in
fact, uniform in t ∈ [0, 1].

3. Proof of Theorem 2.1

Consider the decomposition of ξt as a sum of independent processes (cf., e.g., [18] p. 258 for more details):

ξt = γt+ σWt + Yt, (3.1)

where Yt =
∫
|x|≥1 xνt(dx) +

∫
|x|<1 xν

∗
t (dx), W is a standard Wiener process, (νt(dx), t ≥ 0) is the Poisson

random measure of discontinuities, and ν∗t = νt(B) − tΠ(B) for every Borel set B on the real line such 0 /∈ B.
Moreover {Wt, t ≥ 0} and {νt(·), t ≥ 0} are independent.

Now we recall the following result proved in [12]. If Xt is a stochastic process such that C0
n[X ](t) converges to

some limit L(t) and if f is an absolutely continuous function on [0, 1], then C0
n[f +X ](t) also converges to L(t).

That implies that we can assume γ to be zero without loss of generality when studying the convexifications of
ξ. Consequently throughout the rest of this section we assume γ = 0.

3.1. Preliminary results

Lemma 3.1. Let g be a function defined on [0, 1] and taking on non-negative values. Furthermore, let g be
regularly varying at 0+ with exponent ρ. Then we have the following two statements:

1. If ρ < −1 or if ρ = −1 and
∫ 1

0
g(x)dx = ∞, then we have that yg(y)/

∫ 1

y
g(x)dx −→ −(ρ + 1), when

y → 0.
2. If ρ > −1 or if ρ = −1 and

∫ 1

0
g(x)dx <∞, then we have yg(y)/

∫ y

0
g(x)dx −→ (ρ+ 1), when y → 0.

Proof. See Section VIII. 9, p. 280, in [17]. �

Lemma 3.2. Let Θ be an arbitrary set, and let {ζθ}θ∈Θ be a family of random variables defined on a probability
space (Ω,B,P). For each θ ∈ Θ, let ζ1

θ and ζ2
θ be two independent copies of ζθ. Put ζ̃θ := ζ1

θ − ζ2
θ (symmetrized

version of ζθ). Suppose that

1. {ζ̃θ}θ∈Θ is uniformly integrable, and
2. supθ∈Θ P (|ζθ| > a) −→ 0 when a→ +∞.

Then the family {ζθ}θ∈Θ is uniformly integrable.

Proof. The proof is quite easy by dealing with standard arguments around uniformly integrablility. �

Lemma 3.3. Let F be a symmetric probability distribution with characteristic function φ(t), t ∈ R. For any
λ ∈ (0, 2)and for all C > 0, we have the bound

∫
|x|>C

|x|λF (dx) ≤ 1
Q(1)

∫ 1/C

0

t−λ−1[1 − φ(t)]dt, (3.2)

where Q(u) =
∫ u

0 y
−λ−1(1 − cos y)dy.

Proof. The proof is a direct adaptation of proof of Theorem 5. a in [21]. �
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3.2. Case σ = 0

Lemma 3.4. Let ξ = {ξ(t), t ≥ 0} be a Lévy process such that γ = σ = 0, and let H hold. We have that

1
b(t)

ξ(t) =⇒ ηα when t→ 0, (3.3)

where =⇒ denotes weak convergence, b(t) := G−1(1/t), and ηα is a strictly α-stable random variable with
1 < α < 2. Furthermore, we have that

E
( 1
b(t)

ξ(t)
)
−→ E(ηα) when t→ 0, (3.4)

where E denotes the mathematical expectation on (Ω,A,P).

Before proving Lemma 3.4, we make a comment on statement (3.3). Namely, we note that in [16] necessary
and sufficient conditions in term of the characteristic function of the Lévy process are given for having the
convergence of suitably normalized X(t) to a normal distribution when t goes to zero. Moreover note also
that (3.3) is an immediate consequence of Theorem 1 in [22] where Case 3 corresponds exactly to σ = 0 and H.

Proof of statement (3.3). The characteristic function of the random variable ξ(t)/b(t) is given by

Φt

( θ

b(t)

)
= exp

{
− t

∫
R

(
1 − exp iu

θ

b(t)
+ iu

θ

b(t)
1I(−1,1)(u)

)
Π(du)

}
.

The change of variable y = u/b(t) gives

Φt

( θ

b(t)

)
= exp {−ψt(θ)},

where

ψt(θ) =
∫

R

(
1 − eiθy + 1I{|y|<1}

)Pt(dy) + iθ

∫
R

y1I{1<|y|<1/b(t)}Pt(dy),

and Qt := Πg−1
t with gt(u) := u/b(t) and Pt := tQt.

Hence, statement (3.3) will be proved as soon as we show that for each θ ∈ R, the quantity Φt

(
θ

b(t)

)
converges

to φα(θ) defined in (2.2) when t goes to zero. For any fixed t ∈ [0, 1], it is well known that the law of the random
variable ξt is infinitely divisible. Hence, from a well known criterion about infinitely divisible distributions (cf.
e.g. [19], Th. 5.6.2 and Prop. 5.7.4), we have (3.3) if we establish the following three statements:

i) For every ε > 0 we have Pε
t =⇒ Lε

α, when t→ 0, where Pε
t is the restriction of Pt to {u : |u| > ε}.

ii)
∫
R y1I{1<|y|<1/b(t)}(y)Pt(dy) −→

∫
R\(−1,1) yLα(dy), when t→ 0.

iii) limr↓0
{

lim supt↓0
∫
{|y|<r} y

2Pt(dy)
}

= 0.

We shall first prove i). Clearly, hypothesis H implies that G(u) ∼ u−αl(u) when u is sufficiently small. Define

GPt(u) :=
{ Pt ([u,∞)) if u > 0,

Pt ((−∞, u]) if u < 0. (3.5)

If u > 0 is small, then

GPt(u) = Pt [u,∞)) = tΠ
(
g−1

t ([u,∞))
)

= C+u−α �
(
uG−1(1/t)

)
� (G−1(1/t))

·
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Since G−1(1/t) −→ 0 when t ↓ 0, and since � is a slowly varying function at 0+ then

�
(
uG−1(1/t)

)
� (G−1(1/t))

−→ 1 when t→ 0.

Consequently,
GPt(u) −→ C+u−α, t ↓ 0. (3.6)

Similar calculations yields that if u < 0 is sufficiently close to zero, then

GPt(u) −→ C+|u|−α, t ↓ 0. (3.7)

From statements (3.6) and (3.7) we deduce that for all u in a neighborhood of 0,

GPt(u) −→ (
C+1I{u>0} + C−1I{u<0}

) |u|−α, t→ 0.

This yields condition i).
Now we shall show that ii) holds. One easily verifies using the change of variable and the integration by parts
formulas that ∫ 1/b(t)

1

yPt(dy) =
t

b(t)

{
Π([1,∞)) − b(t)Π ([b(t),∞)) −

∫ 1

b(t)

Π([u,∞)) du

}
. (3.8)

As the generalized inverse of a regularly varying function with exponent α is also a regularly varying function
with exponent 1/α (cf., e.g., [3] p. 17, for more details), there exists a slowly varying function �̃ such that
b(t) = G−1(1/t) = t−1/α�̃(t). This yields

t

b(t)
Π ([1,∞)) = C+�(1)

t

b(t)
= C+�(1)t1−1/α�̃(t) −→ 0, t ↓ 0. (3.9)

In addition, by properties of slowly varying functions we easily obtain that

t · Π([b(t),∞)) −→ C+, t ↓ 0. (3.10)

Moreover, from the first part of Lemma 3.1 we obtain that∫ 1

b(t)

Π([u,∞)) du = C+

∫ 1

b(t)

u−α�(u)du ∼ C+

α− 1
(b(t))1−α �(b(t)), t ↓ 0.

Hence, we have
t

b(t)

∫ 1

b(t)

Π([u,∞)) du ∼ C+

α− 1
· (3.11)

In view of (3.9), (3.10) and (3.11), we deduce from (3.8) that∫ 1/b(t)

1

yPt(dy) ∼ −C+ − C+

α− 1
= − αC+

α− 1
, t ↓ 0.

Similar calculations give ∫ −1

−1/b(t)

yPt(dy) ∼ αC−

α− 1
, t ↓ 0.
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Consequently, ∫
R

y1I{1<|y|<1/b(t)}Pt(dy) ∼ α(C− − C+)
α− 1

, t ↓ 0.

This completes the proof of ii).
To prove iii), let r > 0. Then using integration by parts we get∫ r

0

y2Pt(dy) = tr2Π([rb(t),∞)) − 2t (b(t))−2
∫ rb(t)

0

uΠ([u,∞)) du,

Note that
tr2Π([rb(t),∞)) ∼ C+r2−α, t ↓ 0.

Using Lemma 3.1, we obtain that

2t (b(t))−2
∫ rb(t)

0

uΠ([u,∞)) du ∼ 2C+

2 − α
r2−α, t ↓ 0.

Consequently, ∫ r

0

y2Pt(dy) ∼ C+

(
α

α− 2

)
r2−α.

Similar arguments lead to the statement∫ 0

−r

y2Pt(dy) ∼ −C−
(

α

α− 2

)
r2−α.

Hence, for every r > 0, we have that∫
|y|<r

y2Pt(dy) ∼ (C+ − C−)
(

α

α− 2

)
r2−α. (3.12)

Statement (3.12) and the fact that α ∈ (1, 2) yield iii). Taking all these pieces together, we complete the proof
of statement (3.3).

Proof of statement (3.4). In view of statement (3.3), it suffices to show that
{

1
b(t)ξ(t)

}
t∈[0,1]

is uniformly

integrable. We first do it in the symmetric case. Then we have

ψt(θ) =
∫

R

(1 − cos θy)Pt(dy).

Let Pξ(t)/b(t) be the probability distribution of the random variable ξ(t)
b(t) . By Lemma 3.3 we have that, for

all A > 0, ∫ ∞

A

|x|Pξ(t)/b(t)(dx) ≤ 1
Q(1)

∫ 1/A

0

θ−2(1 − Φt(θ))dθ. (3.13)

Fix t ∈ [0, 1]. Then for each θ ∈ R we have

1 − Φt(θ) =
1 − |Φt(θ)|2
1 + |Φt(θ)| ≤ 1 − |Φt(θ)|2.
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However, if 1/2 ≤ a ≤ 1, we have 1 − a ≤ − log a. Therefore for θ close to 0 and such that |Φt(θ)|2 ≥ 1/2, we
have the bound

1 − |Φt(θ)|2 ≤ −2 log |Φt(θ)|.
Consequently, if A is large enough, then we have that∫ ∞

A

|x|Pξ(t)/b(t)(dx) ≤ 2
Q(1)

∫ 1/A

0

θ−2ψt(θ)dθ. (3.14)

By the change of variables formula and the Fubini’s theorem, we get that∫ 1/A

0

θ−2ψt(θ)dθ =
∫ 1/A

0

[∫
R

(1 − cos θy)
θ2

]
Pt(dy)dθ =

∫
R

yh
( y
A

)
Pt(dy),

where h(u) =
∫ u

0
1−cos θ

θ2 dθ for all u ∈ R. Observe the following three properties:

a) h(x) −→ 0 when x→ 0;
b) there exists K such that 0 ≤ h(x) ≤ K for all x ∈ R+;
c) there exists K ′ such that h(x) ≤ K ′|x| for all x ∈ R.

Now, for all sufficiently large A > 0 we have the bound∫ 1/A

0

θ−2ψt(θ)dθ =
∫
|y|≤√

A

yh
( y
A

)
Pt(dy) +

∫
|y|>√

A

yh
( y
A

)
Pt(dy)

=: I1 + I2. (3.15)

Property c) gives the bound I1 ≤ K′
A

∫
|y|<√

A
y2Pt(dy). Applying (3.12) with r =

√
A, we get that, when t is

sufficiently small,

I1 ≤ K ′′(C+ − C−)
(

α

α− 2

)
A−α/2,

where K ′′ > 0 is a constant. Because α > 0, we have

sup
t∈[0,1]

I1 −→ 0 when A→ ∞. (3.16)

In addition, from property b) we deduce that

I2 ≤ 2K
∫

y>
√

A

yHt(dy),

where Ht(u) = tQ ([u,∞)) = tΠ([ub(t),∞)). Consequently, we have the equality∫
y>

√
A

yHt(dy) =
t

b(t)

∫ ∞
√

A/b(t)

uΠ(du). (3.17)

Similar calculations as in (3.9) allow us to conclude that

sup
t∈[0,1]

I2 −→ 0 when A→ ∞. (3.18)
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From (3.14), (3.15), (3.16) and (3.18) we deduce that

sup
t∈[0,1]

∫
|ξ(t)/b(t)|>A

∣∣∣ξ(t)
b(t)

∣∣∣dP −→ 0, when A→ ∞.

Hence,
{

1
b(t)ξ(t)

}
t∈[0,1]

is uniformly integrable. This completes our proof of statement (3.4) in the symmetric
case.
Now we remove the assumption about the symmetry of the law of ξ(1). The weak convergence established in
(3.3) shows that if t0 is sufficiently small, then

sup
0≤t≤t0

P
(∣∣∣ξ(t)
b(t)

∣∣∣ > a

)
−→ 0 when a→ ∞.

Consequently, from Lemma 3.2 we conclude the proof of statement (3.4). �
In order to formulate our next lemma, we need the following definition.

Definition 3.1. We say that a sequence {gn}n≥1 of measurable functions on [0, 1] converges weakly on(
[0, 1],B[0,1], λ

)
to g if λgn

−1 =⇒ λg−1. We shall write this as gn
[0,1]
=⇒ g.

The next result is proved in [8].

Lemma 3.5. Let {fn}n≥1 be a sequence of absolutely continuous functions. Then the following statements are
equivalent:

A1. There exists a convex function f such that V fn(t) −→
n→∞ f(t), ∀t ∈ [0, 1].

A2. The limit a = limn→∞ fn(0) exists and is finite. Furthermore there exists a function g such that

a) f ′
n

[0,1]⇒ g;

b)
∫ 1

0 (f ′
n)± dλ −→

n→∞
∫ 1

0 g± dλ.

In addition, a = f(0) holds and one can take g = f ′.

By applying this result to the sequences of polygonal approximations of ξ we follow the method proposed in [8]
where it is noted that A1 and A2 can be reduced to LLN-type results for appropriately normalized increments
of the process under considerations. Indeed, for this we have to first show that

(1/an)(V ξn)′
[0,1]⇒ F−1

α a.s. (3.19)

and then verify the convergence
1
an

∫ 1

0

(V ξn)′± dλ −→
∫ 1

0

(
F−1

α

)
± ds. (3.20)

For statement (3.19) note that the distribution of ξ′n and Tξ′n coincide. Hence, it is sufficient to prove that

(1/an)(ξ′n)
[0,1]⇒ F−1

α a.s.

Consider now the Fourier transform fn of the measure λ ((1/an)ξ′n)−1. We have

fn(t) =
1
n

n∑
i=1

h1(βnj) + i
1
n

n∑
i=1

h2(βnj),
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where βnj = nXj,n/an for all j = 1, ..., n, and h1(x) = cos(tx), h2(x) = sin(tx). Similarly, the integrals
in (3.20) are transformed into the sums 1

n

∑n
j=1 h(βnj) with h(x) = x±. For any n ≥ 1, the random variables

{βnj , j = 1, ..., n : n ∈ N} are independent identically distributed. However, the rows of the array are not
independent. This is why we cannot apply the standard strong law of large numbers. Consequently, Theorem 2.1
will be proved with the help of the following lemma.

Lemma 3.6. Consider the triangular array βni = Xi,n/G
−1(n), where i ∈ {1, ..., n}. Let h be a continuous

function such that
|h(s)| ≤ C1|s| + C2 (3.21)

with two positive constants C1 and C2. Then we have that with probability 1,

1
n

n∑
i=1

h(βni) −→ Eh(ηα), n→ ∞. (3.22)

Proof. Put Dn = nδ, δ ∈ (1/α, 1), hn(s) = h(s)1[0,Dn](|h(s)|) and ĥn(s) = hn(s) − E(hn(βn1)). Obviously,

1
n

n∑
i=1

h(βni) = Σ1 + Σ2 + Σ3,

where Σ1 = 1
n

∑n
i=1 ĥn(βni), Σ2 = 1

n

∑n
i=1 Ehn(βni), Σ3 = 1

n

∑n
i=1 (h(βni) − hn(βni)).

Since for each i ∈ {1, ..., n} the random variables βni and βn1 are equal in law by the definition of hn, we deduce
from statement (3.4) that

Σ2 −→ Eh(ηα) when n→ ∞. (3.23)
Consider the sum Σ1. By definition of hn for all x ∈ R we have the bound |hn(x)| ≤ nδ. Consequently,
E|hn(x)| ≤ nδ, and so we have the bound

|ĥn(x)| ≤ 2nδ. (3.24)
Now put τi := ĥn(βni). Applying the Rosenthal’s inequality with power 2m to the sequence (τi)i we obtain
that there exists a constant Km > 0 such that

E|Σ1|2m ≤ Km

{
1

n2m−1
E|τ1|2m +

1
nm

(
E|τ1|2

)m
}
. (3.25)

Since E|ξ(1)| < ∞, we have E|τ1| < ∞. Consequently, by bound (3.24) there exists a constant M1 > 0 such
that

E|τ1|2 = E|τ1| · |τ1| ≤ 2E|τ1|nδ < M1n
δ.

Similar argument gives the existence of a constant M2 > 0 such that

E|τ1|2m ≤M2n
(2m−1)δ.

From bound (3.25) we deduce that

E|Σ1|2m ≤ Km

{
M2 · n(2m−1)(δ−1) +M1 · nm(δ−1)

}
.

Since δ < 1 for all sufficiently large m, it follows that E|Σ1|2m ≤ K ′
mn

−κ, where K ′
m > 0 is a constant and

κ > 1. Using the Borel-Cantelli lemma in a standard way, we obtain that Σ1 −→ 0, a.s.
Now we consider Σ3. Evidently, Σ3 = Σ+

3 + Σ−
3 , where

Σ+
3 :=

1
n

n∑
i=1

h(βni)1I]Dn,∞[(h(βni)) and Σ−
3 :=

1
n

n∑
i=1

h(βni)1I]−∞,−Dn[(h(βni)).
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In accordance with (3.21), there exists c > 0 such that

Σ+
3 ≤ Λ1 + Λ2,

with the notation

Λ1 :=
C2

n

n∑
i=1

1I]cnδ−1/α·	̃(n);+∞[(n
−1/α�̃(n)βni)

and

Λ2 :=
C1

n1−1/α · �̃(n)

n∑
i=1

(n−1/α · �̃(n)βni)1I]cnδ−1/α·	̃(n);+∞[(n
−1/α�̃(n)βni).

Since �̃ is a slowly varying function at 0+, for each ε > 0 we have n−ε < �̃(n) < nε if n is large enough. Choosing
ε > 0 such that δ − 1/α− ε > 0, we get that

cnδ−1/α−ε < cnδ−1/α�̃(n).

Consequently,

Λ1 ≤ C2

n

n∑
i=1

1I]1,+∞[(Xn,i) (3.26)

and

Λ2 ≤ C1

n1−1/α−ε

n∑
i=1

(Xn,i)1I]1;+∞[(Xn,i). (3.27)

The sum on the right-hand side of (3.26) is bounded by the number of jumps of ξ greater than 1 and is therefore
finite a.s. Indeed, it is easy to show that, for each ε > 0,

lim sup
n

n∑
i=1

1I[1+ε,+∞)(Xn,i) ≤ Nε,

where Nε is the number of jumps greater than 1+ ε. By similar arguments, the right-hand side of (3.27) can be
bounded by the sum of jumps and is therefore finite. Thus Σ+

3 −→ 0 almost surely. The convergence Σ3 −→ 0
follows in the same way. �

3.3. Case σ �= 0

Suppose now that σ �= 0 and γ = 0. In view of decomposition (3.1) we are interested in the asymptotic
behavior of ξ(t) = σWt +Yt. Clearly, we can let σ = 1 without loss of generality. It is shown in [8] that for each
t ∈ [0, 1],

1√
n

C0
n[W ](t) −→ L(2)

1 (t) a.s.

In addition, from the case σ = 0 we deduce

1
n1− 1

α �̃(n)
C0

n[Y ](t) −→ L(1)
α (t) a.s.,

when n → ∞. Fix t ∈ [0, 1]. We have to investigate 1√
n
C0

n[W + Y ](t) when n → ∞. A well known property
of operator T is ‖Tf − Tg‖1 ≤ ‖f − g‖1 where ‖ · ‖1 is the usual L1-norm (cf. [8] for references). Observe also
that T (Wn + Yn)′ = T (W ′

n + Y ′
n). These notes imply the equality

1√
n

C0
n[W + Y ](t) =

1√
n

∫ t

0

T (W ′
n + Y ′

n)(s)ds
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and the bounds∣∣∣∣ 1√
n

∫ t

0

T (W ′
n + Y ′

n)(s)ds− 1√
n

∫ t

0

T (W ′
n)(s)ds

∣∣∣∣ ≤ 1√
n

∫ 1

0

|T (W ′
n + Y ′

n)(s) − TW ′
n(s)|ds

≤ 1√
n

∫ 1

0

|Y ′
n(s)|ds = n1− 1

α− 1
2 �̃(n) · 1

n1− 1
α �̃(n)

∫ 1

0

|Y ′
n(s)|ds. (3.28)

From Lemma 4.2 we have that 1

n1− 1
α 	̃(n)

∫ 1

0
|Y ′

n(s)|ds converges to
∫ 1

0
|F−1

α (s)|ds. Since 1 < α < 2, this implies

that 1

n1− 1
α 	̃(n)

∫ 1

0
|Y ′

n(s)|ds is finite a.s. and also that n1− 1
α− 1

2 �̃(n) tends to zero. Hence, the last inequality above

shows that, for each t ∈ [0, 1],∣∣∣∣ 1√
n

∫ t

0

T (W ′
n + Y ′

n)(s)ds− 1√
n

∫ t

0

T (W ′
n)(s)ds

∣∣∣∣ −→ 0 a.s.

when n→ ∞. The proof of Theorem 2.1 is now complete. �
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