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APPROXIMATION OF THE FRACTIONAL BROWNIAN SHEET VIA

ORNSTEIN-UHLENBECK SHEET

Laure Coutin1 and Monique Pontier1

Abstract. A stochastic “Fubini” lemma and an approximation theorem for integrals on the plane are
used to produce a simulation algorithm for an anisotropic fractional Brownian sheet. The convergence
rate is given. These results are valuable for any value of the Hurst parameters (α1, α2) ∈]0, 1[2, αi �= 1

2
.

Finally, the approximation process is iterative on the quarter plane R
2
+. A sample of such simulations

can be used to test estimators of the parameters αi, i = 1, 2.

Mathematics Subject Classification. 60G60, 60G15, 62M40.

Received November 16, 2005. Revised April 21 and July 22, 2006.

1. Introduction

The aim of this paper is to produce and to study a simulation algorithm for an anisotropic fractional Brownian
sheet. An important application of such a simulation is to supply a sample of fractional Brownian sheet almost
sure approximations: thus estimators like these defined in [13] can be tested. Recall that the non necessarily
Gaussian random fields were started by Samorodnitsky and Taqqu [17] and developed by Cohen [8]. For the
1−dimensional fractional Brownian motion, Meyer et al. [15], Ayache and Taqqu [3] study an approximation of
the fractional Brownian motion with Hurst parameter α, using a wavelet decomposition. Ayache et al. [2] also use
a wavelet decomposition but for the anisotropic fractional Brownian sheet. Besides, Bardet et al. [4] did a careful
comparison between the different algorithms. Here we recall and develop the results of [7], but there all the proofs
are omitted. For the sake of completeness, and because these proofs enlighten the more general cases, we give
them in Section 3. The scheme of [7] is as follows: Fubini’s Lemma allows to get a representation of the fractional
Brownian motion as a deterministic integral of Ornstein-Ulhenbeck processes; this integral is approximated by
a finite sum over a geometric subdivision; besides, [7] introduce some operators on Hölder functions which
– applied to the Brownian motion – give the integrands under the deterministic integral. This step allows
them to obtain some fine results about these integrands regularity; they obtain a time iterative algorithm using
Markov properties of Ornstein-Ulhenbeck processes. Gathering this algorithm and the deterministic integral
approximation, they produce an approximation of the fractional Brownian motion. The rate convergence of this
algorithm is studied in [7] (cf. p. 162) but without a temporal approximation nor an accuracy evaluation. Here
we add the temporal approximation. Their rate convergence is about O(logNN1+ β

1+β ) where β = α ∧ (1
2 − α).

More precisely concerning our algorithm, if we choose a simulation accuracy of about N−η, 0 < η < 1
2 , to
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produce an I size image, we need to generate I independent random variables and a 2n Gaussian vector where
n = O(Nη logN) and the algorithm complexity is O(N1+η logN).

This study is to be done in higher dimensions. For the 2−dimensional case and when the value of one of
the Hurst parameters (α1, α2) is more than 1

2 , for computation reasons and not because of the model, Chan et
Wood’s algorithms [19] failed. S. Léger used them in [13] to test some estimators of parameters αi successfully
when αi <

1
2 . But, when α1 ∨ α2 >

1
2 , the extended 2–dimension circulant embedding of the covariance matrix

should be theoretically non negative definite, but practically it is not; these matrices are not well-conditioned
and so Choleski’s method can’t be used.

The generalization from 1−dimension to 2−dimension is not so easy: for instance, Taylor’s formula in
2−dimension involves the cross derivatives and to control the constants we need to detail the computations.
Moreover, as is pointed out in [10], in the one dimensional case, our method can be applied to any Gaussian
sheet. It could also be used for any process written as a multiple integral of any function satisfying smooth
assumptions. For instance look at

∫
[0,+∞[2 g(x, y)µ(dx, dy) where µ is a random measure and g is a Laplace

transform. The aim here is to approximate this double integral.
Concerning our algorithm, if we choose a simulation accuracy of about I−η, 0 < η < 1

2 , to produce a I2 size
image, we need to generate I2 independent random variables, a 2n× 2n Gaussian matrix, I(1 + I) 2n-Gaussian
vectors where n is about [log I]Iη, then the algorithm complexity is O([log I]2I2(1+η)).

The paper is organized as follows: first the problem is set, the 2−dimensional Liouville Brownian sheet is
defined, as is the 2−dimensional fractional Brownian sheet that we want to simulate. In Section 3, we first recall
a set of deterministic tools built in [7] in order to obtain a discrete approximation of the 1−dimensional Brownian
process. We follow the same scheme as the one in [7]: Section 4 extends all these results to our 2−dimensional
Brownian sheet; first a theorem for deterministic integrals on the plane is proved, then operators on the set
of Hölder 2−dimensional functions are defined and their properties are studied. All this is used to produce a
discrete approximation of the 2−dimensional Brownian sheet and the errors are controlled. Finally, an iterative
algorithm of the 2−dimensional Brownian sheet synthesis is given thanks to a kind of Markov property. This
property relies on the fact that the fractional Brownian motion can be considered as an Ornstein-Uhlenbeck
process superposition (cf. [5]). The rate of its convergence is given in Section 5 with a constant which is a
random variable, the law of which is known (its extreme values have very low probability). This constant also
belongs to any Lp so, as a byproduct, the approximating sheet uniformly converges to the fractional Brownian
sheet in any Lp. The algorithm parameters are chosen with respect to a given accuracy of the approximation.
The limit of this algorithm is stressed when the parameters α are very near 1

2 , 0, 1. The largest proofs are
provided in Section 7.

2. Problem setting

Let (Ω,A,P) be a probability space and dB a white noise sheet on it. The “rectangular” fractional Brownian
sheet Wα1,α2 is defined in [13] or [14]:

Wα1,α2
s,t =

∫
R

2
[(s− u)α1− 1

2
+ − (−u)α1− 1

2
+ ][(t− v)α2− 1

2
+ − (−v)α2− 1

2
+ ]dBu,v, (1)

(α1, α2) ∈ ]0, 1[2 and (s, t) ∈ R
2
+. This random field is null on the axes. Similarly we introduce the Liouville

Brownian sheet defined when (s, t) ∈ R
2
+ by

V α1,α2
s,t =

∫
[0,s]×[0,t]

(s− u)α1− 1
2 (t− v)α2− 1

2 dBu,v, (2)
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but this one doesn’t have stationary increments. Recall these two expressions in one-dimension:

Wα
t =

∫
R

[(t− u)α− 1
2

+ − (−u)α− 1
2

+ ]dBu, V α
t =

∫ t

0

(t− u)α− 1
2 dBu, t ∈ R. (3)

We can’t here approximate them directly by a sum since a recursive computation is not feasible (cf. Taqqu
[17]). To produce an iterative process of the trajectories of these two random fields, we generalize Carmona
et al.’ method [7] to the 2−dimensional case. For the sake of clearness, we start with the Liouville Brownian
sheet.

2.1. Liouville Brownian sheet as a superposition of Ornstein-Uhlenbeck processes

Recall the equality for 0 < α < 1
2 :

(s− u)α− 1
2 =

1
Γ(1

2 − α)

∫ ∞

0

x−α− 1
2 e−x(s−u)dx, s > u. (4)

The key is the following so called stochastic Fubini lemma (cf. Carmona et al. [7] for instance). Let (n, p) ∈ N
2,

the mixed Lebesgue space and its norm [18] are:

‖f‖p1,p2 =

(∫
R

n

(∫
R

p
|f(u, a)|p1du

)p2
p1

da

) 1
p2

(5)

Lp1,p2(R
p × R

n) = {f : R
p × R

n → R, Borelian , ‖f‖p1,p2 < +∞}.

Let us remark that if f ∈ L1,2(R
n × R

p) using the Cauchy-Schwartz’ inequality:

‖f‖2
1,2 =

(∫
R

p

(∫
R

n
|f(u, a)|da

)2

du

)
=
∫
R

n

∫
R

n

∫
R

p
|f(u, a)||f(u, b)|dudadb ≤ ‖f‖2

2,1,

so yields the inclusion L2,1(R
p × R

n) ⊂ L1,2(R
n × R

p).

Lemma 2.1. Let f ∈ L2,1(R
p × R

n) and dB be a white noise sheet on R
p
, then almost surely :

∫
R

n
(
∫
R

p
f(u, a)dBu)da =

∫
R

p
(
∫
R

n
f(u, a)da)dBu. (6)

Proof. The map Y1 : f 	→ ∫
R

n

∫
R

p f(u, v)dBudv is a continuous linear map on the step functions in L2,1 taking
its values in L2(Ω). The set of these step functions is dense in L2,1 (cf. Lem. 6.2.11 p. 124 [18]) so this map
admits a unique continuous linear extension on L2,1.

Let the map Y2(f) : f 	→ ∫
R

p

∫
R

n f(u, v)dvdBu. It is a linear continuous map on L2,1(R
p×R

n) ⊂ L1,2(R
n×

R
p) with a norm 1 from L1,2(R

n × R
p) to L2(Ω) so ‘a fortiori’ on L2,1(R

p × R
n):

‖Y2(f)‖2
2 =

∫
R

p
(
∫
R

n
f(u, a)da)2du = ‖f‖2

1,2 ≤ ‖f‖2
2,1.

Finally, the maps Yi, i = 1, 2, are well defined and coincide on the step functions. �

A similar lemma is given in [11] (Lem. 4.1, p. 116) but the assumptions are quite different and are not satisfied
in our cases.
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This lemma and (4) allow us to prove:

Proposition 2.2. Let (α1, α2) ∈]0, 1
2 [2; the process V α1,α2 admits the following representation ∀(s, t) ∈ R

2
+,

almost surely:

V α1,α2
s,t =

1
Γ(1

2 − α1)
1

Γ(1
2 − α2)

∫
R

2

+

x−α1− 1
2 y−α2− 1

2X(x, y, s, t)dxdy (7)

where
X(x, y, s, t) =

∫
[0,s[×[0,t[

e−x(s−u)e−y(t−v)dBu,v. (8)

Proof. The stochastic Fubini Lemma 2.1 applied to (s, t) ∈ R
2
+, n = p = 2, u = (u, v), a = (x, y) and to

f(u, v, x, y) = x−α1−1/2y−α2−1/2e−x(s−u)−y(t−v)1[0,t](v)1[0,s](u)1]0,+∞[2(x, y), is correct since

‖f‖2,1 =
∫
R

2

+

x−α1−1/2y−α2−1/2

√∫ t

0

∫ s

0

e−x2(s−u)−y2(t−v)dudvdxdy

=
∫
R+

x−α1−1/2

√
1 − e−2xs

2x
dx
∫
R+

y−α2−1/2

√
1 − e−2yt

2y
dy < +∞,

and −αi − 1/2 ∈ ] − 1,− 1
2 [, i = 1, 2, −αi − 1 < −1, i = 1, 2. �

Now for α ∈ ]12 , 1[ and s ≥ u, use the identity:

(s− u)α− 1
2 =

∫ s

u

(
α− 1

2

)
(r − u)α− 3

2 dr = − 1
Γ(1

2 − α)

∫
R

+
x

1
2−α

∫ s

u

e−x(r−u)drdx. (9)

In the case α1 ∨ α2 ∈ ] 12 , 1[, let us introduce the notation

ai = αi +
1
2
.sign

(
1
2
− αi

)
, i = 1, 2. (10)

Proposition 2.3. Let α1∨α2 ∈]12 , 1[. The process V α1,α2 admits the following representation on (R+)2, ∀(s, t),
almost surely:

V α1,α2
s,t =

1
Γ(1

2 − α1)
1

Γ(1
2 − α2)

∫
R

2

+

x−a1y−a2U(x, y, s, t)dxdy (11)

where U = Y, T or Z and Y, T, Z are given by:

Y (x, y, s, t) =
∫

[0,s[×[0,t[

X(x, y, r1, r2)dr1dr2, if αi >
1
2
, i = 1, 2,

T (x, y, s, t) =
∫ t

0

X(x, y, s, v)dv, if α1 <
1
2
< α2, (12)

Z(x, y, s, t) =
∫ s

0

X(x, y, u, t)du if α1 >
1
2
> α2. (13)

Proof. We only detail the proof when αi >
1
2 , i = 1, 2. Once again, the stochastic Fubini Lemma 2.1 is used

((s, t) being fixed) with n = p = 2, u = (u, v) ∈ [0, s] × [0, t], a = (x, y) ∈ R
2
+ and

f(u, v, x, y) = x
1
2−α1y

1
2−α2

∫ s

u

∫ t

v

e−x(r−u)−y(z−v)drdz
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since V α1,α2
s,t = Y2(f) and ‖f‖2,1 <∞. Thus V α1,α2

s,t = Y1(f), meaning that

V α1,α2
s,t =

∫
R

2

+

(
∫ s

0

∫ t

0

f(u, v, x, y)dBu,v)dxdy.

But ∫ s

0

∫ t

0

f(u, v, x, y)dBu,v = x
1
2−α1y

1
2−α2

∫ s

0

∫ t

0

(∫ s

u

∫ t

v

e−x(r−u)e−y(z−v)drdz
)

dBu,v.

Using once again Lemma 2.1 (here the integrand is continuous with compact support):

∫ s

0

∫ t

0

(∫ s

u

∫ t

v

e−x(r−u)e−y(z−v)drdz
)

dBu,v =
∫ s

0

∫ t

0

X(x, y, r, z)drdz,

and the proof is concluded. When α1 ∈]12 , 1[ or α2 ∈]12 , 1[, the proof is almost the same. �
Remark 2.4. The process X is continuous with respect the four parameters. Moreover, T, Z, Y are also
continuous with respect the four parameters as integrals of X on the compact sets [0, t] or [0, s] or [0, s]× [0, t].

Proof. cf. Section 7. �
These processes, made discrete with respect to (s, t), look like ARMA processes. These fields can be seen

as extended 2–dimensions Ornstein-Uhlenbeck processes in the sense of Proposition 2.5. Thus, the fractional
Brownian sheet can be seen as a Ornstein-Uhlenbeck processes superposition.

Proposition 2.5. Let (x, y) ∈ R
2
+, U = X,Y, Z or T then U(x, y, ., .) is solution to the integral equation:

U(x, y, s, t) = U(0, 0, s, t) + xy

∫ s

0

∫ t

0

U(x, y, z, τ)dzdτ

−x
∫ s

0

U(x, 0, z, t)dz − y

∫ t

0

U(0, y, s, τ)dτ, (s, t) ∈ R
2
+. (14)

For instance, U(x, 0, s, t) = U(0, 0, s, t) − x
∫ s

0 U(x, 0, z, t)dz and U(0, y, s, t) = U(0, 0, s, t) − ∫ s

0 U(0, y, s, τ)dτ,
where

U(0, 0, s, t) = Bs,t1α1∨α2< 1
2

+
∫ t

0

Bs,udu1α1< 1
2 <α2

+
∫ s

0

Bu,tdu1α2< 1
2 <α1

+
∫ s

0

∫ t

0

Bu,vdudv1α1∧α2> 1
2
.

Proof. Above, we proved that any Gaussian field in this proposition admits a continuous modification. So it is
enough to prove the result (s, t) being fixed.

Remark the identity when 0 ≤ u ≤ s, 0 ≤ v ≤ t:

e−x(s−u)e−y(t−v) − 1 = xy

∫ s

u

∫ t

v

e−x(z−u)e−y(τ−v)dzdτ − x

∫ s

u

e−x(z−u)dz − y

∫ t

v

e−y(τ−v)dτ.

This identity is integrated on [0, s]× [0, t] with respect to the white noise sheet dB. Using the stochastic Fubini
Lemma 2.1 we invert the two integrals (the lemma assumptions are satisfied: the integrands have compact
support and are continuous).

So the first term in the decomposition of X(x, y, s, t) −Bs,t is:

xy

∫ s

0

∫ t

0

(∫ s

u

∫ t

v

e−x(z−u)e−y(τ−v)dzdτ
)

dBu,v = xy

∫ s

0

∫ t

0

(∫ z

0

∫ τ

0

e−x(z−u)e−y(τ−v)dBu,v

)
dzdτ
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which is xy
∫ s

0

∫ t

0
X(x, y, z, τ)dzdτ. The two following terms are identified with −x ∫ s

0
X(x, 0, z, t)dz and

−y ∫ t

0 X(0, y, s, τ)dτ. This yields (14) for U = X. We now integrate this identity with respect to the two
last arguments on [0, s] × [0, t], (respectively with respect to the last argument on [0, t] or the third argument
on [0, s]), yields (14) for U = Y, Z, T. �

2.2. Fractional Brownian sheet

Similar results can be obtained for the fractional Brownian sheet due to the equality, s > u, 0 < α < 1
2 :

(s− u)α− 1
2

+ − (−u)α− 1
2

+ =
1

Γ(1
2 − α)

∫ ∞

0

x−α− 1
2 [e−x(s−u)1{u<s} − exu1{u<0}]dx. (15)

This equality allows us to show:

Proposition 2.6. Let (α1, α2) ∈]0, 1
2 [2; the process Wα1,α2 admits the following representation ∀(s, t) ∈

R
2
+, almost surely:

Wα1,α2
s,t =

1
Γ(1

2 − α1)
1

Γ(1
2 − α2)

∫
R

2

+

x−α1− 1
2 y−α2− 1

2 X̃(x, y, s, t)dxdy, (16)

where

X̃(x, y, s, t) =
∫
R

2
fs(x, u)ft(y, v)dBu,v (17)

and fs(x, u) = 1[0,s](u)e−x(s−u) + 1
R−

(u)exu(e−xs − 1).

Remark 2.7. The product expansion fs(x, u)ft(y, v) yields that X̃(x, y, s, t) could also be defined as following:

X(x, y, s, t) +X2(x, y, s, t) +X3(x, y, s, t) +X4(x, y, s, t)

where

X2(x, y, s, t) = (e−xs − 1)
∫

]−∞,0[×]0,t[

exue−y(t−v)dBu,v,

X3(x, y, s, t) = (e−yt − 1)
∫

]0,s[×]−∞,0[

e−x(s−u)eyvdBu,v, (18)

X4(x, y, s, t) = (e−xs − 1)(e−yt − 1)
∫

]−∞,0[×]−∞,0[

exueyvdBu,v.

Proof. The function fs,t : (u, v, x, y) 	→ x−α1− 1
2 y−α2− 1

2 fs(x, u)ft(y, v) belongs to L2,1(R
2
,R

2
+) (cf. (5)),

(s, t) being fixed (indeed ‖fs,t‖2,1 =
∫
R+

x−α1− 1
2

√
1−e−xs

x dx.
∫
R+

y−α2− 1
2

√
1−e−yt

y dy < ∞) and we apply
Lemma 2.1 to this function. �

In the case 1
2 < α < 1, the relation (9) is applied to s ≥ u and s = 0, and solving the integrals with respect

to r yields:

(∗) (s− u)α− 1
2

+ − (−u)α− 1
2

+ = −
∫
R

+

x
1
2−α

Γ(1
2 − α)

[
1[0,s](u)

1 − e−x(s−u)

x
+ 1

R−
(u)exu 1 − e−xs

x

]
dx.
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This relation allows us to prove:

Proposition 2.8. Let α1 ∨α2 ∈]12 , 1[; the process Wα1,α2 admits the following representation on R
2
+, denoting

ai = αi + 1
2sign(1

2 − αi), almost surely:

Wα1,α2
s,t =

1
Γ(1

2 − α1)
1

Γ(1
2 − α2)

∫
R

2

+

x−a1y−a2U(x, y, s, t)dxdy, (19)

where U(x, y, s, t) =
∫
R

2 h1
s(x, u)h2

t (y, v)dBu,v, hi = f if αi < 1
2 , and hi = g if αi > 1

2 , gs(x, u) =

1[0,s](u)1−e−x(s−u)

x + 1
R−

(u)exu 1−e−xs

x , f is defined in Proposition 2.6.

Definition 2.9. Let us denote Ỹ (x, y, s, t) = B(gs(x, .)gt(y, .)), Z̃(x, y, s, t) = B(gs(x, .)ft(y, .)), and
T̃ (x, y, s, t) = B(fs(x, .)gt(y, .)).

Using Remark 2.4, these fields X̃, Ỹ , Z̃, T̃ are continuous with respect to the four parameters, as sum of
continuous fields.

2.3. Algorithm

In Section 5, we will provide a recursive algorithm to approximate Wα1,α2
s,t by the following

Definition 2.10. Let n ∈ N
∗
, r, h, k > 0:

Ŵα1,α2
n,r,h,k(ih, jk) =

n∑
j1,j2=−n+1

c1j1c
2
j2U

h,k(rj1−1, rj2−1, ih, jk)

where cljl
= 1

Γ( 1
2−αl)

(r1−al−1)
1−al

r(1−al)(jl−1), al is defined in (10) and Uh,k will be defined below depending on the

position of αi with respect to 1
2 .

Uh,k = X̃h,k1]0, 12 [2(α) + Ỹ h,k1] 12 ,1[2(α) + T̃ h,k1]0, 12 [×] 12 ,1[(α) + Z̃h,k1] 12 ,1[×]0, 12 [(α). (20)

The key of the recursive algorithm is Proposition 2.5. Let (Bhk
ij , (i, j) ∈ N

2) be a Gaussian white noise with
variance hk, (Bk

2 (x), x ∈ R
+) and (Bh

3 (y), y ∈ R
+) be Gaussian vectors with covariance function equal to k

x+x′

respectively h
y+y′ Concerning the first term in Uhk (cf. (18)), we need a double induction as following, given

x = rj1−1, y = rj2−1, ji ∈ {−n+ 1, · · · , n}, i = 1, 2:

∀j ∈ N, X (x, 0, jk) = 0,

X (x, ih, jk) = e−xhX (x, (i − 1)h, jk) +
1 − e−xh

xh
Bh,k

ij ,

X̂ (x, ih, jk) =
1
x

[Bh,k
ij − X (x, ih, jk)].

In a second step, we set ∀i ∈ N, X(x, y, ih, 0) = Z(x, y, ih, 0) = 0:

X(x, y, ih, (j + 1)k) = e−ykX(x, y, ih, jk) +
1 − e−yk

yk
X (x, ih, jk),

(
α1 ∨ α2 <

1
2

)
, (21)

Z(x, y, ih, (j + 1)k) = e−ykZ(x, y, ih, jk) +
1 − e−yk

yk
X̂ (x, ih, jk),

(
α2 <

1
2
< α1

)
, (22)



122 L. COUTIN AND M. PONTIER

Y (x, y, ih, (j + 1)k) =
1
y

[
j+1∑
l=1

X̂ (x, ih, jk) − Z(x, y, ih, (j + 1)k)

]
,

(
α1 ∧ α2 >

1
2

)
. (23)

We now deal with the three other terms in (18) but only in case α1 ∨ α2 <
1
2 .

Concerning the fourth term in (18), an exact simulation is possible since X4(x, y, ih, jk) = (1 − e−xih)(1 −
e−yjk)B4(x, y) where B4 is a centered Gaussian matrix with covariance function Γ4(x, x′, y, y′) = 1

x+x′
1

y+y′ .

The two other terms in (18), denoted as X2 and X3, are symmetrically obtained by induction:

∀i, X2(x, y, ih, 0) = 0,

X2(x, y, ih, (j + 1)k) = e−ykX2(x, y, ih, jk) − 1 − e−yk

yk
(1 − e−xih)Bk

2 (x),

∀j, X3(x, y, 0, jk) = 0,

X3(x, y, (i+ 1)h, jk) = e−xhX3(x, y, ih, jk) − 1 − e−xh

xh
(1 − e−yjk)Bh

3 (x).

Finally, X̃hk is defined as the sum (X+X2+X3+X4)(x, h, ih, jk) (there is similar definitions of Ỹ hk, T̃ hk, Z̃hk)
and the following will be proved in Theorem 5.3.

Theorem. For all ε > 0 there exist n, r, h, k so, ∀T > 0, there exists a random variable Cn,r,h,k admitting
exponential moments such that the error is uniformly bounded:

sup
s,t∈[0,T ]2

|Wα1,α2(s, t) − Ŵα1,α2
r,n,h,k(s, t)| ≤ εCn,r,h,k. (24)

3. Approximation of a fractional Brownian motion

This section develops results of [7] where all the proofs are omitted. Moreover here we bound the temporal
approximation error. Using Fubini’s Lemma, we get the representations of the Liouville Brownian motion.
Almost surely, ∀α ∈ ]0, 1

2 [, ∀t ∈ R+:

V α
t =

1
Γ(1

2 − α)

∫
R+

x−α− 1
2X(x, t)dx where X(x, t) =

∫
[0,t[

e−x(t−u)dBu; (25)

∀α ∈ ]12 , 1[, ∀t ∈ R+:

V α
t =

1
Γ(1

2 − α)

∫
R+

x
1
2−αY (x, t)dx where Y (x, t) =

∫
[0,t[

X(x, z)dz. (26)

Then, we have similar results concerning the fractional Brownian motion, which has stationary increments.
Almost surely, ∀α ∈ ]0, 1

2 [, ∀t ∈ R+:

Wα
t =

1
Γ(1

2 − α)

∫
R+

x−α− 1
2 X̃(x, t)dx (27)

where
X̃(x, t) =

∫
[0,t[

e−x(t−u)dBu + (e−xt − 1)
∫

[−∞,0[

exudBu; (28)

∀α ∈]12 , 1[ ∀t ∈ R+:

Wα
t =

1
Γ(1

2 − α)

∫
R+

x
1
2−αỸ (x, t)dx (29)
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where

Ỹ (x, t) = Y (x, t) +
1 − e−xt

x

∫
[−∞,0[

exudBu. (30)

The aim here is to approximate the integrals in the representations (27), (29) summarized as

Wα
t =

1
Γ(1

2 − α)

∫
R+

x−aU(x, t)dx, (31)

where U = X̃1]0, 1
2 [(α) + Ỹ 1] 12 ,1[(α) and a is α+ 1

2 .sign(1
2 −α). We can deduce from the equation (25) that the

process X(x, .) is an Ornstein-Uhlenbeck process:

X(x, t) = Bt − x

∫ t

0

X(x, u)du, t ≥ 0. (32)

3.1. Approximation of a deterministic integral

We recall Lemma 13 in [7] using the norm ‖.‖∞,d,e, (d, e) ∈ [0, 1]2, d < e, on C(]0,+∞[,R) and the measure
µd,e on R

+ which defines the L1-norm ‖f‖d,e:

‖g‖∞,d,e = sup
x∈]0,+∞[

[xd1{x<1} + xe1{x≥1}]|g(x)|, µd,e(dx) = min(x−d, x−e).dx.

Proposition 3.1. Let (d, e) ∈ [0, 1]2, d < e, a function f ∈ L1([0,+∞[,R+
, µd,e), and g ∈ C2(]0,+∞),R) such

that the norms ‖.‖∞,d,e of the maps g and hg : x 	→ |x∇g(x)| + |D2g(x)|x2 are finite. Let r ∈]1, 2[, n ∈ N∗ to
define a geometric subdivision of ]0,+∞[ , π = (r−n, · · · , rn): Ij = [rj−1, rj ] and:

cj =
∫

Ij

f(x)dx, j = −n+ 1, · · · , n.

Then: ∣∣∣∣∣∣
∫

[0,+∞[

g(x)f(x)dx −
n∑

j=−n+1

cjg(rj)

∣∣∣∣∣∣ ≤ 1
4
re(r − 1)‖hg‖∞,d,e‖f‖µd,e

+‖g‖∞,d,e‖f(1]0,r−n] + 1]rn,+∞[)‖µd,e
. (33)

This proposition will be applied to f : x 	→ x−a, a = α + 1
2 .sign(1

2 − α), g(x) = X̃(x, t) or Ỹ (x, t), to
approximate Wα(t), respectively when α < 1

2 , α >
1
2 .

The proof is omitted: it is quite similar to Theorem 4.1 proof (cf. Sect. 7).
The following corollary will be useful for the time discretization.

Corollary 3.2. Let (d, e, f) and g, h satisfying the assumptions of Proposition 3.1, then∣∣∣∣∣
n∑

i=−n+1

ci[g(ri) − h(ri)]

∣∣∣∣∣ ≤ re‖f‖µd,e
‖g − h‖∞,d,e, (34)

where n et r are defined in Proposition 3.1.

Proof. Let Di = [g(ri) − h(ri)]|ci|. Using the norm ‖g − h‖∞,d,e definition, we bound Di by

|ci|(r−id1{ri<1} + r−ie1{ri≥1})‖g − h‖∞,d,e ≤ |ci|(ri−1)−d ∧ (ri−1)−e.‖g − h‖∞,d,e. (35)
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But ci =
∫
[ri−1,ri]

f(x)dx and µd,e(dx) = x−d ∧ x−edx so

|Di| ≤ re

∫
[ri−1,ri]

f(x)µd,e(dx)‖g − h‖∞,d,e.

To sum these bounds with respect to i get the conclusion. �

3.2. 1–dimensional operators on the Hölder functions

In the aim to compute by approximation the fractional Brownian process Wα
t (31), t being fixed, we use

Proposition 3.1 with g(x) = U(x, t), f(x) = x−a, (d, e) such that a+ d < 1 < a+ e. First, we have to study the
smoothness of the Gaussian processes U and the associated functions hU , and their norm ‖.‖∞,d,e. That is to
show the existence of (d, e) as above and moreover that:

(i) U = X̃, Ỹ belongs to C2(R∗
+), t fixed;

(ii) sup
x∈R

∗
+
(xd1x<1 + xe1x≥1)|xi∂i

xiU(x, t)| <∞, i = 0, 1, 2 (∂i
xiU denotes ∂i

∂xiU).

The point (i) will be a consequence of the fact that X is the image of the Brownian motion by an operator ψ
defined below and some similar tricks to be shown for the other processes. The point (ii) (see Corollary 3.10
below) relies on deterministic properties of the operators ψ and θ defined below and on path-wise properties of
the Brownian motion B. These operators are defined on the set of Hölder functions polynomially increasing at
−∞ (for instance as are the Brownian motion paths).

Define the set of α-Hölder functions on I ⊂ R, taking value 0 at 0:

H0
α(I) =

{
f : f(0) = 0, sup

s,s′∈I2,s�=s′

|f(s) − f(s′)|
|s− s′|α <∞

}
.

Finally, the Banach space Sα is defined as the subset of the functions in C(] −∞, T ],R) such that:

Sα =
{
f ∈ C(] −∞, T ],R), sup

x≤−1

|f(x)|
|x|1−α

<∞
}
∩H0

α([−1, T ]),

and if f ∈ Sα let us denote the norm:

‖f‖α = sup
s,s′∈[−1,T ]2,s�=s′

|f(s) − f(s′)|
|s− s′|α + sup

x≤−1

|f(x)|
|x|1−α

·

Remark that if f ∈ Sα, ∀u ≤ −1, |f(u)| ≤ ‖f‖α|u|1−α and ∀u ≥ −1, |f(u)| ≤ ‖f‖α|u|α.
For instance, the Brownian motion process Bt =

∫ t

0 dBu belongs to Sα, ∀α < 1
2 . (cf. Revuz and Yor [16],

Th. 2.2 in I.2 and Prop. 1.10(iv) in I.1.)
We introduce two linear operators on Sα, useful to manage the Liouville process since the Fubini Lemma

shows that X(x, s) = ψ(B)(x, s) and we will see below that Y (x, s) = ψ̂(B)(x, s) where:

ψ(f) : (x, s) 	→ f(s)e−xs + x

∫ s

0

e−xr[f(s) − f(s− r)]dr,

ψ̂(f) : (x, s) 	→
∫ s

0

e−x(s−u)f(u)du.

We now study the smoothness of these functions and we bound their partial derivatives with respect to x,
uniformly on R

∗
+ × [0, T ].



APPROXIMATION OF THE FRACTIONAL BROWNIAN SHEET VIA ORNSTEIN-UHLENBECK SHEET 125

Proposition 3.3. Let f ∈ C((−∞, T ],R).
(i) For any (x, s) ∈ [0,+∞) × [0, T ], ψ(f)(x, s) = f(s) − xψ̂(f)(x, s);
(ii) for any (x, s) ∈ [0,+∞[×[0, T ], ψ(

∫ .

0 f(u)du)(x, s) = ψ̂(f)(x, s) =
∫ s

0 ψ(f)(x, u)du.

Proof. cf. Section 7. �
Remark 3.4. In the case f = B, the Brownian motion, notice that (i) and (ii) show that X = ψ(B) and
Y = ψ̂(B).

Note that (i) and (ii) imply the integral equation: function ψ(f)(x, .) is solution to the integral equation
y(.) = f(.) − x

∫ .

0 y(u)du.
Finally, when x �= 0, (i) implies that ψ̂(f)(x, t) = 1

x (f(t) − ψ(f)(x, t)).

Corollary 3.5. For any function f ∈ C([0, T ],R), the map ψ(f) is indefinitely differentiable with respect to x,
is continuous on [0,+∞[×[0, T ] and so are its partial derivatives, ∀n ∈ N,

∂n
xnψ(f)(x, s) = (−s)ne−xsf(s) +

∫ s

0

[n(−r)n−1 + x(−r)n]e−xr(f(s) − f(s− r))dr.

Proof. We merely differentiate x 	→ ψ(f)(x, s) under the integral and we use the n-th derivative of x 	→ xe−xr

which is (n(−r)n−1 + x(−r)n)e−xr. �
Then we establish the continuity properties of these linear operators. So let L(Sα;R), the set of linear maps

from Sα to R, endowed with the norm: when A ∈ L(Sα;R),

‖|A‖| = sup
f∈Sα,0<‖f‖α≤1

|A(f)|
‖f‖α

·

Theorem 3.6. For any α ∈]0, 1],

ψ : R
∗
+ × [0, T ] → L(Sα;R)
(x, s) 	→ ψ(x, s) : (f 	→ ψ(f)(x, s))

is a map on R
∗
+ × [0, T ], indefinitely differentiable with respect to x. It and its derivatives are continuous.

Moreover, let C0 = Γ(α+ 1)∨ Tα, and ∀n ≥ 1, Cn = (2n+α)(n+α−1
e )n+α−12n+α(1∨ T

2 ), then for any function
f ∈ Sα with the Hölder norm ‖f‖α,

∀(x, t) ∈ [0,+∞[×[0, T ], xn|∂n
xnψ(f)(x, t)| ≤ Cn‖f‖α[1{x<1} + x−α1{x≥1}].

Proof. Corollary 3.5 and the assumptions on f get

|∂n
xnψ(f)(x, s)| ≤ ‖f‖α[e−xssn+α + x

∫ s

0

(r)n+αe−xrdr + n

∫ s

0

(r)n+α−1e−xrdr].

The integration by part formula shows that the sum of the first two terms is (n + α)
∫ s

0
(r)n+α−1e−xrdr. Then

we obtain xn|∂n
xnψ(f)(x, s)| ≤ ‖f‖α(2n+ α)

∫ s

0 x
nrnrα−1e−xrdr.

When n = 0, the bound becomes

|ψ(f)(x, s)| ≤ ‖f‖ααx
−α

∫ s

0

(xr)α−1e−xrxdr

and αx−α
∫ s

0 (xr)α−1e−xrxdr ≤ x−αΓ(α+ 1)1{x≥1} + Tα1{x<1}.
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When n > 0, using that the map y 	→ yγe−y, γ > 0, is bounded on [0,+∞[ by a constant cγ = (γ
e )γ , then,

with y = xr/2,

xn|∂n
xnψ(f)(x, s)| ≤ ‖f‖α(2n+ α)

(n
e

)n

2n

∫ s

0

rα−1e−xr/2dr

≤ ‖f‖α(2n+ α)
(

2n
e

)n [
Tα

α
1{x≤1} + (

x

2
)−αΓ(α)1{x>1}

]

so Cn = (2n+ α)(2n
e )n max(T α

α , 2αΓ(α)) with the convention (2n
e )n = 1 if n = 0. �

Note that C1 = 2α
e (2αΓ(α+ 1) ∨ T α

α ), C2 = (4 + α)(4
e )222+α(T α

α ∨ 2αΓ(α)).
Notice that f ∈ Sα implies that t 	→ ∫ t

0
f(u)du is a Lipschitz-function with Lipschitz constant Tα‖f‖α. This

fact and the point (ii) of Proposition 3.3 (ψ̂(f) = ψ(
∫
f)) and Theorem 3.6 applied to α = 1 yield:

Corollary 3.7. For any α ∈]0, 1],

ψ̂ :
R

∗
+ × [0, T ] → L(Sα,R)
(x, s) 	→ ψ̂(x, s) : (f 	→ ψ̂(f)(x, s))

is a map R
∗
+× [0, T ], indefinitely differentiable with respect to x. It and its derivatives are continuous. Moreover,

∀n ∈ N, for any function f ∈ Sα, with the Hölder norm ‖f‖α,

∀(x, s) ∈ R
∗
+ × [0, T ], xn|∂n

xn ψ̂(f)(x, s)| ≤ TαCn‖f‖α[1{x<1} + x−11{x≥1}].

We now introduce two other operators on Sα to get the fractional Brownian motion increments stationary, since
the Fubini Lemma shows that X̃(x, s) = (ψ + θ)(B)(x, s):

θ(f) : (x, s) 	→ −(e−xs − 1)x
∫ 0

−∞
exuf(u)du,

θ̂(f) : (x, s) 	→ − 1
x
θ(f)(x, s). (36)

Theorem 3.8. For any α ∈]0, 1
2 [,

θ : R
∗
+ × [0, T ] → L(Sα;R)
(x, s) 	→ θ(x, s) : (f 	→ θ(f)(x, s))

is a map on R
∗
+ × [0, T ], indefinitely differentiable with respect to x. It and its derivatives are continuous.

Moreover, ∀n ∈ N, there exists a constant C′′
n such that for any function f ∈ Sα, with the Hölder norm ‖f‖α,

∀(x, s) ∈ R
∗
+ × [0, T ], xn|∂n

xnθ(f)(x, s)| ≤ C′′
n‖f‖α[xα1{x<1} + x−α1{x≥1}].

Proof. cf. Section 7. �
Note that C′′

0 = 1 ∨ T, C′′
1 = 10 ∨ 6T, C′′

2 = 50 ∨ 26T.
Using Leibnitz rule and the fact that α > 0 implies 1

x [xα1{x<1} + x−α1{x≥1}] ≤ [xα−11{x<1} + x−11{x≥1}],
we get:

Corollary 3.9. For any α ∈]0, 1
2 [,

θ̂ :
R

∗
+ × [0, T ] → L(Sα;R)
(x, s) 	→ θ̂(x, s) : (f 	→ − 1

xθ(f)(x, s))
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is a map on R
∗
+ × [0, T ], indefinitely differentiable with respect to x. It and its derivatives are continuous.

Moreover, ∀n ∈ N, there exists a constant C′′′
n such that for any function f ∈ Sα, with the Hölder norm ‖f‖α,

∀(x, s) ∈ R
∗
+ × [0, T ], xn|∂n

xn θ̂(f)(x, s)| ≤ C′′′
n ‖f‖α[xα−11{x<1} + x−11{x≥1}].

More precisely, C′′′
n =

∑n
k=0

n!
k!C

′′
k .

We now deduce the following corollary to summarize Theorems 3.6, 3.8 and Corollaries 3.7 and 3.9:

Corollary 3.10. Let α ∈]0, 1
2 [. For any n ∈ N, there exists a constant Dn = Cn +C′′

n such that for any f ∈ Sα,
x ∈ R

+
∗ , s ∈ [0, T ],

xn|∂n
xn(ψ + θ)(f)(x, s)| ≤ Dn‖f‖α[1{x<1} + x−α1{x≥1}].

For any n ∈ N there exists a constant D′
n = Cn + C′′′

n such that f ∈ Sα, x ∈ R
+
∗ , s ∈ [0, T ],

xn|∂n
xn(ψ̂ + θ̂)(f)(x, s)| ≤ D′

n‖f‖α[xα−11{x<1} + x−11{x≥1}].

This corollary shows the smoothness of the maps X(., s), X̃(., s), Y (., s), Ỹ (., s), and controls their growth
and the one of their derivatives. More precisely, if we apply Corollary 3.10 to the Brownian motion f = B,
yields ∀x ∈ R

+
, ∀e ∈]0, 1

2 [ and ∀d ∈]12 , 1[:

‖X̃(x, s)‖∞,0,e ≤ D0‖B‖e, ‖hX̃(x, s)‖∞,0,e ≤ D2‖B‖e, (37)

‖Ỹ (x, s)‖∞,d,1 ≤ D′
0‖B‖1−d, ‖hỸ (x, s)‖∞,d,1 ≤ D′

2‖B‖1−d.

3.3. 1-dimensional temporal approximation

Since ψ(f) is solution to an integral equation (cf. Rem. 3.4), we can produce an iterative algorithm to define
a function approximating ψ(f)(x, t).

Concerning θ(f)(x, t), in case of f = B, an exact simulation is possible since θ(B)(x, t) = (e−xt − 1)X0(x)
where X0 is a centered Gaussian process with covariance 1

x+x′ . Let π = {ti = ih, 0 ≤ i ≤ N}, h = T/N, be a
subdivision of the interval [0, T ]. We define the linear interpolation of a function f ∈ C([0, T ]), f(0) = 0:

∀t ∈ [ih, (i+ 1)h], fh(t) = f(ih) +
t− ih

h
[f((i+ 1)h) − f(ih)].

This function fh is a piece-wise linear function and so belongs to the set H0
1. Using (ii) in Proposition 3.3 we

obtain

ψ(fh)(x, t) =
∫ t

0

e−x(t−s)(fh)′(s)ds

and so yields the induction for i = 0, · · · , N − 1:

ψ(fh)(x, 0) = 0 ; (38)

ψ(fh)(x, (i + 1)h) = e−xhψ(fh)(x, ih) +
1 − e−xh

xh
[f((i+ 1)h) − f(ih)]

since

ψ(fh)(x, (i + 1)h) =
∫ ih

0

e−x(ih+h−s)(fh)′(s)ds+
∫ (i+1)h

ih

e−x(ih+h−s) f((i+ 1)h) − f(ih)
h

ds.

We now study the smoothness of the function f − fh when f is β-Hölder.
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Proposition 3.11. Let f ∈ H0
β([0, T ]), β ∈]0, 1[ and 0 < η < β. Then f−fh ∈ H0

β−η([0, T ]) and ‖f−fh‖H0
β−η

≤
4hη‖f‖H0

β
.

Proof. cf. Section 7. �
Remark 3.12. When f ∈ H0

β([0, T ]) and 0 < η < β, f ∈ H0
β−η, and we can bound ‖fh‖H0

β−η
by 4hη‖f‖H0

β
+

‖f‖H0
β−η

≤ [4hη + (1 + T )η]‖f‖H0
β
.

From Theorem 3.6 and Corollary 3.7, we deduce:

Corollary 3.13. ∀β ∈]0, 1
2 [, 0 < η < β, f ∈ H0

β , h ≤ 1, then ∀(x, t) ∈ [0,∞[×[0, T ],

‖ψ(f − fh)‖∞,0,β−η = max(1, xβ−η)|(ψ)(f − fh)(x, t)| ≤ C0(4hη)‖f‖H0
β
.

Similarly: ‖ψ̂(f − fh)‖∞,1,0 = max(x, 1)|(ψ̂)(f − fh)(x, t)| ≤ C′
0(4h

η)‖f‖H0
β
.

3.4. Simulation of the fractional Brownian motion

As an application of the previous subsections to the function f = B, the Brownian motion, we propose the
following algorithms, depending on two cases, if α < 1

2 or α > 1
2 , using the formula (38) respectively Remark

3.4 and Definition (36).

Definition 3.14. Let (Bh
i , i ∈ Z) be a Gaussian white noise, with variance h.

Let a = α+ 1
2 sign(1

2 − α), r ∈]1, 2[, n ∈ N
∗ and cj = 1

Γ( 1
2−α)

r(j−1)(1−a) r1−a−1
1−a .

When α < 1
2 , we get ∀t = ih,

Ŵα
n,r,h(t) :=

n∑
j=−n+1

cj [ψ(Bh)(rj−1, t) + (e−rj−1t − 1)
∫ 0

−∞
erj−1udBu]

where ψ(Bh)(rj−1, 0) = 0,
∫ 0

−∞ e.udBu is a centered Gaussian process with covariance function Γ(x, x′) = 1
x+x′ .

Note that ψ(Bh)(x, .) satisfies the following induction:

ψ(Bh)(rj−1, (i+ 1)h) = e−rj−1hψ(Bh)(rj−1, ih) +
1 − e−rj−1h

rj−1h
Bh

i , i ≥ 0. (39)

When α > 1
2 , we get ∀t = ih,

Ŵα
n,r,h(t) :=

n∑
j=−n+1

cj [ψ̂(Bh)(rj−1, t) +
1 − e−rj−1t

rj−1

∫ 0

−∞
erj−1udBu],

where

ψ̂(Bh)(rj−1, t) =
1

rj−1

[
i∑

l=1

Bh
l − ψ(Bh)(rj−1, t)

]
. (40)

Using the Orstein-Uhlenbeck stochastic differential equation (32) and the link X̃(x, t) = X(x, t) + (ext −
1)
∫ 0

−∞ exudBu as the sum of two independent parts we get a simulation algorithm.
From the SDE we get for X = ψ(Bh):

X(x, t+ h) = e−xhX(x, t) +
1 − e−xh

xh
(Bt+h −Bt)
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and for X̃

X̃(x, t+ h) = X(x, t+ h) + (e−x(t+h) − 1)
∫ 0

−∞
exudBu,

X(x, t) = X̃(x, t) − (e−xt − 1)
∫ 0

−∞
exudBu,

X̃(x, t+ h) = e−xhX̃(x, t) +
1 − e−xh

xh
(Bt+h − Bt) + (e−xh − 1)X0(x),

the initial position is X̃(x, 0) = 0 (cf. (28)).
Finally, using Proposition 3.1, Corollary 3.2, Corollary 3.10, (37), we get

Proposition 3.15. The approximation Ŵα
n,r,h(ih) converges almost surely to Wα(ih) uniformly when i =

1, · · · , I, when n goes to infinity, r − 1 and h go to zero. More precisely, if α < 1
2 , η < α, 1

2 − η < e < 1
2 , then

the error is uniformly bounded ∀t = ih:

|Wα(t)− Ŵα
n,r,h(t)| ≤ 4(2D0 +D1 +D2)

(
1

1
2 − α

+
1

e+ α− 1
2

)
re[r− 1 + r−n( 1

2−α) + r−n(e+α− 1
2 ) + hη]‖B‖e+η.

The rate convergence of such algorithm is studied in [7] (cf. p. 162) but without a temporal approxima-
tion nor an accuracy evaluation. Here we add the temporal approximation. Their rate convergence is about
O(N1+ β

1+β logN) where β = α∧(1
2 −α). Concerning our algorithm, if we choose a simulation accuracy of about

N−η, 0 < η < 1
2 , to produce an I size image, we need to generate I independent random variables and a 2n

Gaussian vector where n = O(Nη logN) and the algorithm complexity is O(logNN1+η).
In [4], the authors have compared several methods for generating discretized simple path of long-range

dependent processes such as fractional Brownian motion. They pointed out that the method summarized here
is not exact but it is easy to implement and need not too much time.

4. Approximation of a sheet, 2 or more dimension

The generalization from 1−dimension to 2−dimension is not so easy: for instance, Taylor’s formula in
2−dimension involves the cross derivatives and, to control the constants, we need to detail the computations.
Moreover, note that this section can be applied to any Gaussian sheet. It also could be used for any process
written as Wα1,α2

s,t can be, as a multiple integral of any function satisfying the assumptions of Lemma 2.1
and belonging to a space H0,r

α,β (cf. 4.4). For instance look at
∫
[0,+∞[2

g(x, y)f1(x)f2(y)dxdy with suitable
assumptions on fi and g = B, the Brownian sheet. Here the aim here is to approximate the double integral in
the representations (7), (11), (16) or more generally (19) summarized as

Wα1,α2
s,t =

1
Γ(1

2 − α1)Γ(1
2 − α2)

∫ ∫
R

2

+

x−a1y−a2U(x, y, s, t)dxdy, (41)

where U will be specified below depending on the cases and ai = αi + 1
2 .sign(1

2 − αi), i = 1, 2.
The tools are the composition of functional operators defined above in 3.2 and, as a by-product, we will

obtain the error order and the convergence speed.
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4.1. Approximation of a deterministic integral, dimension 2

In the following, we generalize the results in [1] recalled in Section 3.1. For any (d, e) ∈ [0, 1]4, di < ei, i = 1, 2,
we define the norm ‖.‖∞,d,e, on C(]0,+∞[2,R) as follows:

‖g‖∞,d,e = sup
(x,y)∈]0,+∞[2

[xd11{x<1} + xe11{x≥1}][yd21{y<1} + ye21{y≥1}]|g(x, y)|,

and the measure on (R+)2 µd,e(dx) defined as Πi=1,2 min(x−di

i , x−ei

i )dx.

Theorem 4.1. Let α ∈]0, 1[2, αi �= 1
2 , ai = αi + 1

2sign(1
2 − αi), βi ∈]| 12 − αi|, 1

2 [, (d, e) ∈ [0, 1]4, with
(di, ei) = (0, βi) when αi <

1
2 , and (di, ei) = (1 − βi, 1) when αi >

1
2 , γ = inf{βi − |12 − αi|, |12 − αi|, i = 1, 2},

ε > 0, r = 1 + ε, n = [ − log ε
γ log(1+ε) ], c

i
j = r(1−ai)(j−1) r1−ai−1

1−ai
, (j = −n+ 1, · · · , n) ; (i = 1, 2).

Let g and f be two functions in C2[(R+
∗ )2,R] such that the norm ‖.‖∞,d,e of the maps f, g, ∆g : (x, y) 	→

x|∂xg(x, y)| + y|∂yg(x, y)| and hg : (x, y) 	→ |∂x2g(x, y)|x2 + 2|∂x,yg(x, y)|xy + |∂y2g(x, y)|y2 are finite. Let
Cα = 20

γ2 , Dα = 16
γ2 , then:

(i)

∣∣∣∣∣∣
∫

[0,+∞[2
g(x, y)x−a1y−a2dxdy −

n∑
j1,j2=−n+1

c1j1c
2
j2g(r

j1−1, rj2−1)

∣∣∣∣∣∣
≤ εCα[‖g‖∞,d,e + ‖∆g‖∞,d,e + ‖hg‖∞,d,e]

(ii)

∣∣∣∣∣∣
n∑

j1,j2=−n+1

c1j1c
2
j2 [g(r

j1−1, rj2−1) − f(rj1−1, rj2−1)]

∣∣∣∣∣∣ ≤ Dα‖g − h‖∞,d,e.

Proof. cf. Section 7. �

4.2. Operators on Hölder functions depending on two variables

We now extend Theorems and Corollaries 3.6 to 3.9 to the two-dimensional case.
Define the operators Di, i = 1, 2, ∆:

D1(f) : t 	→ f(s, t) − f(s′, t), D2(f) : s 	→ f(s, t) − f(s, t′), ∆ = D1 ◦D2. (42)

Then let H0
β1,β2

be the set of real maps, continuous on (−∞, T ]2, null on the axes, such that there exists a
constant C satisfying: ∀(s, t) ∈ [−1, T ]2, (u, v) ∈ [−1, 0[2:

|∆f | ≤ C Πsi �=ti |si − ti|βi , (43)

with the norm defined by:
‖f‖H0

β1,β2
= inf{C > 0, C satisfying (43)}.

Now let Sβ1,β2 ⊂ H0
β1,β2

be the Banach space with the norm:

‖f‖β1,β2 = inf{C > 0, C satisfying (43) and (44)},

where

|D2f(u, s2, t2)| ≤ C |u|1−β1 |s2 − t2|β2 ,
|D1f(s1, t1, v)| ≤ C |v|1−β2 |s1 − t1|β1 ,

|f(u, v)| ≤ C |u|1−β1 |v|1−β2 .
(44)
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Remark 4.2. Here and in the whole paper, the norms like ‖B‖β or ‖B‖H0
β1,β2

admit an exponential moment
so belong to any Lp: it is a consequence of Theorem 0.3.3 page 7 in Fernique [9], applied to the semi-norm sup
of Gaussian processes.

We will apply all this section to the Brownian sheet B or to any other f ∈ Sβ1,β2 .
On this vector space we define the eight operators:

Φ1(f) : (x, s, t) 	→ ψ(f(., t))(x, s); Φ2(f) : (y, s, t) 	→ ψ(f(s, .))(y, t);

Φ̂1(f) : (x, s, t) 	→ ψ̂(f(., t))(x, s); Φ̂2(f) : (y, s, t) 	→ ψ̂(f(s, .))(y, t);
Θ1(f) : (x, s, t) 	→ θ(f(., t))(x, s); Θ2(f) : (y, t, s) 	→ θ(f(s, .))(y, t);

Θ̂1(f) : (x, s, t) 	→ θ̂(f(., t))(x, s); Θ̂2(f) : (y, t, s) 	→ θ̂(f(s, .))(y, t).

Let us denote Ai, i = 1, 2 the two operators sets above and the possible compositions:

Φ = (Φ1 + Θ1) ◦ (Φ2 + Θ2),

Φ̄ = (Φ̂1 + Θ̂1) ◦ (Φ2 + Θ2),

Φ = (Φ1 + Θ1) ◦ (Φ̂2 + Θ̂2),

Φ̂ = (Φ̂1 + Θ̂1) ◦ (Φ̂2 + Θ̂2).

In Lemma 4.6 and Corollary 4.7, we will show that these operators applied to the Brownian sheet respectively
define the fields X̃, Z̃, T̃ , Ỹ .

The operators Φ, Φ̂, Φ̄, Φ smoothness derives from the one-dimensional results and the following lemma.

Lemma 4.3. Let Ak ∈ Ak and Ã(x, y, s, t) = A1(x, s) ◦ A2(y, t). Then the map Ã is indefinitely differentiable
with respect to (x, y), and ∀(i, j) ∈ N

2
,

∂i+j
xiyj Ã(x, y, s, t) = ∂i

xiA1(x, s) ◦ ∂j
yjA2(y, t) = ∂j

yjA2(y, t) ◦ ∂i
xiA1(x, s). (45)

Proof. cf. Section 7.

Theorem 4.4. Let β ∈]0, 1
2 [2. The maps Φ, Φ̂, Φ, Φ̄ from (R∗

+)2×] − ∞, T ]2 to L(Sβ1,β2 ;R) are indefi-
nitely differentiable with respect to x et y. Moreover for any (i, j) ∈ N

2
, there exists a constant Ci,j such

that ∀(x, y, s, t) ∈ (R∗
+)2 × [0, T ]2:

xiyj‖|∂i+j
xiyj Φ(x, y, s, t)‖| ≤ Ci,j [1{x<1} + x−β11{x≥1}][1{y<1} + y−β21{y≥1}],

xiyj‖|∂i+j
xiyj Φ̂(x, y, s, t)‖| ≤ Ci,j [xβ1−11{x<1} + x−11{x≥1}][yβ2−11{y<1} + y−11{y≥1}],

xiyj‖|∂i+j
xiyj Φ̄(x, y, s, t)‖| ≤ Ci,j [xβ1−11{x<1} + x−11{x≥1}][1{y<1} + y−β21{y≥1}],

xiyj‖|∂i+j
xiyjΦ(x, y, s, t)‖| ≤ Ci,j [1{x<1} + x−β11{x≥1}][yβ2−11{y<1} + y−11{y≥1}].

Proof. It is a consequence of Corollary 3.10, Lemma 4.3 and operators Φ, Φ̂, Φ, Φ̄ definitions.
More precisely, we note that Ci,j = sup{DiDj , D

′
iD

′
j , D

′
iDj , DiD

′
j}. �
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4.3. Approximation of the fractional Brownian sheet as a finite superposition
of Ornstein-Uhlenbeck processes

The aim is to approximate the fractional Brownian sheet Wα1,α2
s,t (1), so we use Theorem 4.1 with g(x, y) =

U(x, y, s, t). First, we have to study the smoothness of the Gaussian sheets U and the associated functions ∆U,
hU , and their norm ‖.‖∞,d,e, (with (d, e) as in Th. 4.1) and prove that uniformly in (s, t):
(i) U = X̃, Ỹ , T̃ , Z̃ belongs to C2[(R∗

+)2];
(ii) sup

x,y∈(R
∗
+)2

(xd11x<1 + xe11x≥1)(yd21y<1 + ye21y≥1)|xiyj∂i+j
xiyjU(x, y, s, t)| <∞, i+ j = 0, 1, 2.

The point (i) will be a consequence of the fact that X̃ is the image of the Brownian sheet by the operator
Φ defined above and some similar tricks to be shown for the other processes. The point (ii) will be solved by
Theorem 4.8 below.

So, (s, t) being fixed, we apply Theorem 4.1 to g = U(., ., s, t), U being the image, by one of the operators
studied in the Section 4.2, of the continuous function B on ] −∞, T ]2:

B(s, t) =
∫ s

0

∫ t

0

dBu,v.

Lemma 4.5. For any β ∈]0, 1
2 [2, B admits a modification belonging to Sβ1,β2 .

Proof. We apply Kolmogorov Theorem to Brownian sheet (B(s, t), (s, t) ∈ [−T, T ]2) and we note that the
following processes follow the same law as B:
(tB(s, 1

t ), (s, t) ∈ [0,+∞[2), (sB(1
s , t), (s, t) ∈ [0,+∞[2) et (stB(1

s ,
1
t ), (s, t) ∈ [0,+∞[2),

(cf. [6]). �

Lemma 4.6. Almost surely for any (x, y, s, t) ∈ [0,+∞[2×[0, T ]2,

X(x, y, s, t) = Φ1 ◦ Φ2(B)(x, y, s, t),
X2(x, y, s, t) = Θ1 ◦ Φ2(B)(x, y, s, t), (46)
X3(x, y, s, t) = Φ1 ◦ Θ2(B)(x, y, s, t),
X4(x, y, s, t) = Θ1 ◦ Θ2(B)(x, y, s, t).

As a summary, the sum of the previous equalities yields X̃(x, y, s, t) = Φ(B)(x, y, s, t).

Proof. The two sides of the equalities (46) are continuous with respect to the four parameters so it is enough
to set this identity almost surely with fixed (x, y, s, t).

The first equality is obtained using the remark that e−x(s−u) = e−xs + x
∫ s

s−u e−xrdr and the stochastic
Fubini Lemma 2.1.

The three other equalities are deduced from the identities

exue−y(t−v) = xe−yt

∫ u

−∞
exrdr + xy

∫ u

−∞

∫ t

t−v

exr−yzdrdz and exueyv = xy

∫ u

−∞

∫ v

−∞
exr+yzdrdz.

We integrate them with respect to the Brownian sheet and once again we use the stochastic Fubini Lemma 2.1
since the maps (u, r) 	→ exr1{r≤u≤0}, u 	→ exu1(−∞,o](u), (v, z) 	→ e−yz1[t−v,t](z) ∈ L2,1. �

Successively using the definition of the fields Ỹ , T̃ , Z̃ (cf. Def. 2.9), the operators Φ, Φ̂, Φ̄, Φ definitions,
Lemmae 4.5, 4.6, the point (ii) in Proposition 3.3, yield
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Corollary 4.7. P almost surely, for any (x, y, s, t) ∈ (R∗
+)2 × [0, T ]2,

X̃(x, y, s, t) = Φ(B)(x, y, s, t), Ỹ (x, y, s, t) = Φ̂(B)(x, y, s, t),

Z̃(x, y, s, t) = Φ̄(B)(x, y, s, t), T̃ (x, y, s, t) = Φ(B)(x, y, s, t).

Globally denote the operator

Ψ = Φ1]0, 12 [2(α) + Φ̂1] 12 ,1[2(α) + Φ1] 12 ,1[×]0, 12 [(α) + Φ1]0, 12 [×] 12 ,1[(α). (47)

Lemma 4.6, Corollary 4.7 and Theorem 4.4 imply

Theorem 4.8. Let (d, e) ∈ [0, 1]4, di < ei, defined as (0, 0, e1, e2)1]0, 1
2 [2(α) + (d1, d2, 1, 1)1]12 ,1[2(α)

+(d1, 0, 1, e2)1] 12 ,1[×]0, 12 [(α) + (0, d2, e1, 1)1]0, 12 [×] 12 ,1[(α). Then ∀p > 0, the norms ‖.‖∞,d,e of Ψ(B), ∆Ψ(B)
and hΨ(B) belong to Lp and these random variables admit an exponential moment.

Proof. The field B ∈ Sβ , ∀β ∈]0, 1
2 [2 (cf. Lem. 4.5) and P−almost surely, ∀(x, y, s, t) ∈ (R∗

+)2 × [0, T ]2,
X̃ = Φ(B)(x, y, s, t) (cf. Lem. 4.6).

We then apply Theorem 4.4 first to X̃ : ∀(x, y, s, t) ∈ (R∗
+)2 × [0, T ]2,

xiyj |∂i+j
xiyj X̃(x, y, s, t)| ≤ Ci,j [1{x<1} + x−e11{x≥1}][1{y<1} + y−e21{y≥1}]‖B‖e1,e2 .

The case of the processes Ỹ , Z̃, T̃ is solved substituting Lemma 4.6 by Corollary 4.7.
The theorem proof is concluded using Remark 4.2. �
This result shows the point (ii) asked at the top of this subsection as a corollary, choosing (d, e) as in

Theorem 4.1:

Corollary 4.9. Let β ∈]0, 1
2 [2 and (di, ei) = (0, βi) when αi <

1
2 , (di, ei) = (1 − βi, 1) when αi >

1
2 , the fields

Ψ(B) satisfy the following:

‖Ψ(B)‖∞,d,e ≤ C0,0‖B‖β; ‖∆Ψ(B)‖∞,d,e ≤ (C1,0 + C0,1)‖B‖β;

‖ hΨ(B)‖∞,d,e ≤ (C2,0 + C1,1 + C0,2)‖B‖β.

We can apply Theorem 4.1 to the four parameters sets defined in Theorem 4.8 depending on the position of α1

and α2 with respect to 1
2 . Recall the notations:

ai = αi +
1
2
.sign(

1
2
− αi), α = (α1, α2). (48)

We now get a corollary which defines an approximation converging to the fractional Brownian sheet almost
surely uniformly and in any Lp.

Corollary 4.10. Let Wα1,α2
s,t as defined in Section 2 (1). For any (α1, α2) ∈]0, 1[2, αi �= 1

2 , βi ∈]| 12 −αi|, 1
2 [, i =

1, 2, (d, e) ∈ [0, 1]4 such that (di, ei) = (0, βi) when αi <
1
2 , (di, ei) = (1 − βi, 1) when αi >

1
2 , and γ =

inf(βi − |12 − αi|, |12 − αi|, i = 1, 2).
For any ε > 0, let r = 1 + ε, n = [ − log ε

γ log(1+ε) ], define the quantities (cij = 1
Γ( 1

2−αi)
r(1−ai)(j−1) r1−ai−1

1−ai
, i = 1, 2,

j = −n+ 1, · · · , n) (cf. Th. 4.1) and the process

Ŵα1,α2
n,r (s, t) :=

n∑
j1,j2=−n+1

c1j1c
2
j2Ψ(B)(rj1−1, rj2−1, s, t).
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Then almost surely for all (s, t) ∈ [0, T ]2:

|Wα1,α2
s,t − Ŵα1,α2

n,r (s, t)| ≤ εCα

2∑
i+j=0

Ci,j‖B‖β

where Cα defined in Theorem 4.1.

Proof. The chosen pair (d, e) allows us to use Theorem 4.1. So we get:

|Wα1,α2
s,t − Ŵα1,α2

n,r (s, t)| ≤ εCα[‖U‖∞,d,e + ‖∆U‖∞,d,e + ‖hU‖∞,d,e],

where U = Ψ(B). Moreover Corollary 4.9 controls the norms ‖ . ‖∞,d,ε of U,∆U and hU (which belong to any
Lp, ∀p), so yields the result. �

4.4. 2-dimensional temporal approximation

The tools built in this section allow us to produce an iterative algorithm of the fractional Brownian sheet.
So we obtained an approximation of Wα1,α2

s,t on a grid {ih, jk} by induction.

Definition 4.11. Let (h, k) be a double interpolation step on the plane, Fh
i the linear approximation with

respect to the ith component; we denote the “double” linear approximation: fh,k(s, t) = Fh
1 ◦ F k

2 (f)(s, t).

We mean that, if Ii = [ih, (i+ 1)h], Jj = [jk, (j + 1)k], ∆i,j(f) is the rectangular increment on Ii × Jj , then
∀(s, t) ∈ Ii × Jj ,

fh,k(s, t) = f(ih, jk) +
s− ih

h
[f((i+ 1)h, jk) − f(ih, jk)]

+
t− jk

k
[f(ih, (j + 1)k) − f(ih, jk)] +

s− ih

h

t− jk

k
∆i,j(f).

Proposition 4.12. Let (β1, β2) ∈]0, 1
2 [2 and (ε1, ε2), εi < βi, i = 1, 2. The map f 	→ f − fh,k is a continuous

linear map from H0
β1,β2

taking its values in H0
β1−ε1,β2−ε2

. More precisely the norm ‖f − fh,k‖H0
β1−ε1,β2−ε2

is
bounded by:

[4hε1(1 + T )ε2 + 4kε2 [(1 + T )ε1 + 4hε1 ]]‖f‖H0
β1,β2

.

Proof. Recall the operators Di, i = 1, 2, ∆:

D1(f) : t 	→ f(s, t) − f(s′, t), D2(f) : s 	→ f(s, t) − f(s, t′), ∆ = D1 ◦D2.

To bound the norm of a function g in H0
β1,β2

, it is enough to bound quotients such as:

∆g(s, s′, t, t′)
|s− s′|β1 |t− t′|β2

, s �= s′, t �= t′,

where (s, s′) ∈ [0, T ]2, (t, t′) ∈ [−1, T ]2.
So we get f − fh,k = (I − Fh

1 ◦ F k
2 )(f). The triangle inequality yields

‖(I − Fh
1 ◦ F k

2 )(f)‖H0
β1−ε1,β2−ε2

≤ ‖(I − Fh
1 )(f)‖H0

β1−ε1,β2−ε2
+ ‖Fh

1 ◦ (I − F k
2 )(f)‖H0

β1−ε1,β2−ε2
.

Proposition 3.11 and the fact that the operators D2 and D1 ◦ (I − Fh
1 ) commute yield the bound:

‖(I − Fh
1 ◦ F k

2 )(f)‖H0
β1−ε1,β2−ε2

≤ 4hε1‖f‖H0
β1,β2−ε2

+ 4kε2‖Fh
1 (f)‖H0

β1−ε1,β2
.
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Remark 3.12 says that the H0
β−ε-norm of fh is bounded by ‖f‖H0

β
[(T + 1)ε + 4hε], so ‖Fh

1 (f)‖H0
β1−ε1,β2

≤
[(T + 1)ε1 + 4hε1 ]‖f‖H0

β
, moreover ‖f‖H0

β1,β2−ε2
≤ (T + 1)ε2‖f‖H0

β
. �

Corollary 4.13. Let α ∈]0, 1[2, αi �= 1
2 , βi ∈]| 12 − αi|, 1

2 [, i = 1, 2, εi < βi, and (di, ei) = (0, βi − εi) when
αi <

1
2 , (di, ei) = (1 − βi + εi, 1) when αi >

1
2 . Let

Ψi = Φi1]0, 1
2 [(αi) + Φ̂i1] 12 ,1[(αi).

For any f ∈ H0
β1,β2

, the norms ‖Ψ1 ◦ Ψ2(f − fh,k)‖∞,d,e, are uniformly bounded: almost surely, for any
(s, t) ∈ [0, T ]2

‖Ψ1 ◦ Ψ2(f − fh,k)‖∞,d,e ≤ C0,0[4hε1(1 + T )ε2 + 4kε2((1 + T )ε1 + 4hε1)]‖f‖H0
β1,β2

.

Proof. Since f − fh,k ∈ H0
β1−ε1,β2−ε2

and Ψ1 ◦ Ψ2 is a linear operator, then Theorem 4.4 (i + j = 0) and
Proposition 4.12 show the result. �

Now we can apply this corollary to f = B thusXh,k(x, y, s, t) = Φ1◦Φ2(Bh,k), Y h,k(x, y, s, t) = Φ̂1◦Φ̂2(Bh,k),
and so on, and we obtain the convergence with respect to the norm ‖.‖∞,d,e and its speed.

Corollary 4.14. Let ε > 0. Using the same notations as in Corollary 4.13, let h = ε1/ε1 , k = ε1/ε2 . Let B be
the Brownian sheet. Then almost surely for any (s, t) ∈ [0, T ]2,

‖Ψ1 ◦ Ψ2(B −Bh,k)(., ., s, t)‖∞,d,e ≤ εD‖B‖H0
β1,β2

where D = 4C0,0((1 + T )ε2 + (1 + T )ε1 + 4ε). Notice that ‖B‖H0
β1,β2

is in Lp, ∀p.

5. Simulation algorithm

Finally, we gather all the results to propose a recursive algorithm to approximate the fractional Brownian
sheet. Actually the trick here is that the fields X, Y, Z, T have a kind of Markov property as it will be seen
using the induction formulae below.

5.1. The induction

Let f ∈ H0,r
β , β ∈]0, 1

2 [2. We obtain an approximation of Ψ(f) by a recursive algorithm on a grid ((ih, jk),
i ≥ 0, j ≥ 0).

The linear interpolation fh,k is a piece-wise C2−class function on the quadrant [0, T ]2. We use the operator
Φ1 then Φ2 and we get as for the operator ψ:

Φ1 ◦ Φ2(fh,k)(x, y, s, t) =
∫ s

0

∫ t

0

e−x(s−u)e−y(t−v)∂2
1,2f

h,k(u, v)dudv, (49)

meaning that
Φ1 ◦ Φ2(fh,k)(x, y, s, t) = ψ[ψ(fh,k(., t))(x, s)](y, t).

We use the notations Di and ∆ (42):

X (x, ih, jk) = ψ(D2(fh,k)(ih, jk))(x, ih),

X̂ (x, ih, jk) = ψ̂(D2(fh,k)(ih, jk))(x, ih),
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where X satisfies the following induction (cf. (38)) ∀x, ∀j ∈ N, X (x, 0, jk) = 0:

X (x, ih, jk) = e−xhX (x, (i − 1)h, jk) +
1 − e−xh

xh
∆(fh,k)(ih, jk) (50)

and X̂ (x, ih, jk) is defined as 1
x [D2(fh,k)(ih, jk) −X (x, ih, jk)].

We compose with ψ (respectively ψ̂) on the second fh,k component, ∀x, ∀y, ∀i ∈ N, X(x, y, ih, 0) =
Z(x, y, ih, 0) = Y (x, y, ih, 0) = 0:

X(x, y, ih, (j + 1)k) = e−ykX(x, y, ih, jk) +
1 − e−yk

yk
X (x, ih, jk), (51)

Z(x, y, ih, (j + 1)k) = e−ykZ(x, y, ih, jk) +
1 − e−yk

yk
X̂ (x, ih, jk), (52)

Y (x, y, ih, (j + 1)k) =
1
y
[
j+1∑
l=1

X̂ (x, ih, jk) − Z(x, y, ih, (j + 1)k)]. (53)

Now we apply this induction to Brownian sheet f = B to approximateWα1,α2(ih, jk). Remark that (∆(Bh,k)(ih, jk))
is exactly the white noise (Bhk

i,j ) introduced after Definition 2.10.

Definition 5.1. At any point (ih, jk) of the grid, i, j ≥ 0, Wα1,α2 defined by

Wα1,α2
ih,jk =

∫
R

+

∫
R

+

x−a1y−a2

Γ(1
2 − α1)Γ(1

2 − α2)
U(x, y, ih, jk)dxdy

is approximated by

Ŵα1,α2
n,r,h,k(ih, jk) =

n∑
j1,j2=−n+1

c1j1c
2
j2U

h,k(rj1−1, rj2−1, ih, jk) (54)

where n > 0, r ∈]1, 2[, h, k > 0, cljl
= 1

Γ( 1
2−αl)

(r1−al−1)
1−al

r(1−al)(jl−1) and Uh,k is defined as

Uh,k = Ψ1 ◦ Ψ2(Bh,k) + [T1 ◦ Ψ2 + Ψ1 ◦ T2 + T1 ◦ T2](Bhk), (55)

Ψi being defined in Corollary 4.13 and similarly Ti = Θi1]0, 12 [(αi) + Θ̂i1] 12 ,1[(αi) i = 1, 2.

Concerning T1 ◦ T2(B), an exact simulation is possible since

Θ1 ◦ Θ2(B)(x, y, ih, jk) = (1 − e−xih)(1 − e−yjk)B4(x, y)

where B4 is a centered Gaussian matrix with covariance function Γ4(x, x′, y, y′) = 1
x+x′

1
y+y′ . To obtain T1 ◦

T2(B) more generally, using (36), we get T1 ◦ T2(B)(x, y, ih, jk) = −1/xΘ1 ◦ Θ2(B)(x, y, ih, jk) or −1/yΘ1 ◦
Θ2(B)(x, y, ih, jk) or 1/xyΘ1 ◦ Θ2(B)(x, y, ih, jk).

Besides, the terms Ti ◦ Ψj(B) are obtained recursively. For instance, let Θ1 ◦ Ψ2: operator ψ is applied to a
centered Gaussian process and we get

Θ1 ◦ Ψ2(B)(x, y, ih, (j + 1)k) = e−ykΘ1 ◦ Ψ2(B)(x, y, ih, jk) − (1 − e−xih)
1 − e−yk

yk

∫ 0

−∞
xexu

∫ (j+1)k

jk

dBuv,

the last term is approximated by (1 − e−xih)1−e−yk

yk times the centered Gaussian vector Bk
2 (x) introduced in

Section 2.3.

Remark 5.2. Such an algorithm could be used for any stationary increments field belonging to H0
β1,β2

as B is.
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5.2. Precision and complexity of the algorithm

We give the error in this approximation, gathering the results in Theorem 4.1, Corollaries 4.10 and 4.14 and
using the same notations as in Corollary 4.13.

Theorem 5.3. Let ε > 0, r = 1 + ε, βi ∈]|αi − 1
2 |, 1

2 [, η < βi, i = 1, 2, γ = inf{|12 − αi|, βi − |12 − αi|, i =
1, 2}, n = [ − log ε

γ log(1+ε) ], h = k = ε1/η.

At any point (s, t) ∈ [0, T ]2, |Wα1,α2(s, t) − Ŵα1,α2
r,n,h,k(s, t)| is uniformly bounded by

ε

⎡
⎣Cα

2∑
i+j=0

Ci,j‖B‖β +DαD‖B‖H0
β1,β2

⎤
⎦ (56)

where Cα = 20
γ2 , Dα = 16

γ2 , D = 4C0,0((1 + T )η + (1 + T )η + 4ε), I = T/h, J = T/k.

Finally, for any p,

‖ sup
(s,t)∈[0,T ]2

|Wα1,α2(s, t) − Ŵα1,α2
r,n,h,k(s, t)|‖p ≤ ε

⎡
⎣Cα

2∑
i+j=0

Ci,j‖‖B‖β‖p +DαD‖‖B‖H0
β1,β2

‖p

⎤
⎦ .

Proof. At any point (ih, jk) of a grid, the fractional Brownian sheet Wα1,α2(ih, jk) is approximated by:

n∑
j1,j2=−n+1

c1j1c
2
j2U

h,k(rj1−1, rj2−1, ih, jk).

Two types of errors occur: one of the integral approximation, one of the time interpolation.
(i) Corollary 4.10 gives the error bound uniformly when (s, t) ∈ [0, T ]2:

|Wα1,α2(s, t) − Ŵα1,α2
n,r (s, t)| ≤ εCα

∑
i+j=2

Ci,j‖B‖β

with Ŵα1,α2
n,r (s, t) =

∑n
j1,j2=−n+1 c

1
j1
c2j2Ψ(B)(rj1−1, rj2−1, s, t).

(ii) The definition Ŵα1,α2
n,r,h,k(s, t) =

∑n
j1,j2=−n+1 c

1
j1
c2j2U

h,k(rj1−1, rj2−1, s, t) implies an error specified in (ii)
Theorem 4.1:∣∣∣∣∣∣

n∑
j1,j2=−n+1

c1j1c
2
j2Ψ1 ◦ Ψ2(B −Bh,k)(rj1−1, rj2−1, s, t)

∣∣∣∣∣∣ ≤ Dα‖Ψ1 ◦ Ψ2(B −Bh,k)‖∞,d,e,

with (d, e) defined as in Corollary 4.13. The last norm is controlled in Corollary 4.14 using the choice of
parameters in Corollary 4.13 and the fact that B ∈ H0

β , ∀β ∈]0, 1
2 [2:

‖Ψ1 ◦ Ψ2(B −Bh,k)‖∞,d,e ≤ εD‖B‖H0
β1,β2

, D = 4C0,0((1 + T )η + (1 + T )η + 4ε).

The choice of r, n, h, k yields the conclusion since T = hI = kJ . �
Remark 5.4. At last, it remains to know how many terms are to be computed with respect to the convergence
speed: let N > 0, and choose an accuracy of about ε = N−η. Then n, r, h, k are deduced:

n ∼ η

γ
Nη logN, h = k = N−1, I = J = N.
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Moreover, to produce an I2 size image, we need to generate I2 independent random variables, a 2n×2n Gaussian
matrix, (1+ I)I Gaussian vectors in R

2n. Finally, looking at (50) to (54) the computations complexity is about
O(n2IJ), or (with respect to N):

O([logN ]2N2(1+η)).

As an example, let ε = 0.1 and αi = 3/4, βi = 0.495 and let us choose η = εi = 0.49. Then, n is about
1
γ 10 log 10 and even γ is very small, n could be not so huge.

6. Conclusion

Chan and Wood presented in [19] the failing cases when the circulant matrix deduced from the covariance
Toeplitz matrix is not definite positive (see also Stéphanie Léger’s thesis [13] where the author tried this
algorithm) because of numerical computations (and not because of the model). A job is now to be done and
is in progress: after managing this simulation, we verify this simulation robustness with numerical estimations
on this fractional Brownian sheet synthesis. In a first approach, this seems to be better than these obtained by
Stéphanie Léger in [13].

Acknowledgements. We sincerely thank the anomymous referee and the associated editor: their remarks and comments
are very helpful. We also thank all the colleagues who listened to our presentations, especially Serge Cohen for his warm
encouragements.

7. Annex

Proof of Remark 2.4. To show the continuity of X , we first prove a so-called “Kolmogorov’ Lemma”. Perhaps
it is well known, but for the moment we miss a precise reference. The standard result (cf. for instance [12]
pp. 53–55) can be written in multi-indices case using rectangular increments as follows. Let σj the elements
of S = {−1,+1}d, and a random field X on [0, 1]d, s and t ∈ [0, 1]d, let αj the parity of the sequence σj ,

σj(s, t) = (sσj(i)
i t

1−σj(i)
i , i = 1, · · · , d) let the operator ∆:

∆Xs,t =
∑

σj∈S
(−1)αjXσj(s,t) = Dd(Dd−1(· · · (D1X) · · · )), (57)

where Di is the finite difference operator on the ith coordinate. In the case d = 2, look at Theorem 5.1 p. 1266
in Bernam [6]; this theorem can be written in multi-indices case using ∆X (57):

Let X a stochastically continuous separable d-indices process and there exist positive constants r, C, ε, such that:

E[|∆X |r] ≤ CΠsi �=ti |ti − si|1+ε, (58)

then X is almost surely continuous on [0, 1]d.
If these assumptions are satisfied by the field X (8), this one is continuous in L2, so separable. Since X is a

Gaussian field, it also satisfies the stochastic continuity.
By definition, X(x, y, s, t) = B(f(x, s, .)f(y, t, .)) with f(x, s, u) = 1[0,s](u)e−x(s−u): between two points in

R
4
, the L2(Ω)-norm of ∆X is the L2(R2)−norm of ∆[f(x, s, .)f(y, t, .)] that we can summarize as the double

variation: ∆f(x, s, .)f(y, t, .) = ∆s(∆x(f)).∆t(∆y(f)).
This increment is the product of two increments on different spaces so it is enough to verify the assump-

tions (58) for one of the factors.
Let us remark that f(x, s, u) = f1(x, s, u)f2(s, u), f1(x, s, u) = e−x(s−u), f2(s, u) = 1[0,s](u) with |fi| ≤ 1.
Thus, |∆s(f)| ≤ |∆s(f1)| + |∆s(f2)| and the L2-norm is bounded: ‖∆s(f)‖2 ≤ C

√|∆s| since f1 is C∞-class
and ∆s(f2) = 1[s′,s](u). Moreover ∆X law is Gaussian so: E[|∆sX |3] ≤ C|∆s|3/2.
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Moreover the fact that f1 is C∞-class yields |∆x(f)| = |f2.∆x(f1)| ≤ C|∆x| so: E[|∆sX |]2 = ‖∆x(f)‖2 ≤
C|∆x|.

Finally, |∆s(∆x(f))| = |∆s(∆x(f1)f2)| ≤ |∆s∆x(f1)| + |∆x(f1).∆s(f2)|, get the L2-norm bound:

‖∆x∆sX‖2 = ‖∆s∆x(f)‖2 ≤ ‖∆s∆x(f1)‖2 + ‖∆x(f1).∆s(f2)‖2 ≤ C∆x(∆s +
√

∆s).

Bernam’s theorem with r = 3, ε = 1
2 shows that X admits a continuous modification with respect to the four

parameters. �

Proof of Proposition 3.3.
(i) ψ(f)(x, s) can be written f(s)[e−xs + x

∫ s

0
e−xrdr] − x

∫ s

0
e−xrf(s− r)dr or f(s)− x

∫ s

0
e−x(s−u)f(u)du

after a change of variables.
We now use the following steps:

(a) the operators ψ and ψ̂ commute: ψ̂ ◦ ψ = ψ ◦ ψ̂,

(b) the function ψ̂(f) is C1−class on [0,+∞[×[0, T ] and ∂xψ̂(f) = −ψ̂ ◦ ψ̂(f) ; ∂sψ̂(f) = ψ(f), and when
f is derivable satisfying f(0) = 0, ψ(f) = ψ̂(f ′),

(c) the function ψ(f) is differentiable with respect to x and ∂xψ(f) = −ψ̂ ◦ ψ(f) = −ψ ◦ ψ̂(f),

(a) follows from the point (i) and Fubini theorem.

(b) The map (x, s) 	→ ψ̂(f)(x, s) admits partial derivatives respectively with respect to s and x:

∂sψ̂(f)(x, s) = f(s) − x

∫ s

0

e−x(s−u)f(u)du = ψ(f)(x, s),

∂xψ̂(f)(x, s) = −
∫ s

0

(s− u)e−x(s−u)f(u)du = −ψ̂ ◦ ψ̂(f)(x, s).

(c) Moreover (x, s) 	→ ψ(f)(x, s) admits partial derivative with respect to x:

∂xψ(f)(x, s) = −ψ̂(f)(x, s) − x∂xψ̂(f)(x, s) = −ψ̂(f)(x, s) − xψ̂ ◦ ψ̂(f)(x, s)

which coincide with −ψ ◦ ψ̂(f)(x, s) so (c) yields.

(ii) Let the function F : s 	→ ∫ s

0 f(u)du, the point (b) applied to F proves (ii). �

Proof of Theorem 3.8. We will use the fact that f ∈ Sα implies that ∀u ≤ −1, |f(u)| ≤ ‖f‖α|u|1−α and
∀u ≥ −1, |f(u)| ≤ ‖f‖α|u|α.

When n = 0, we get:

|θ(f)(x, s)| ≤ ‖f‖αx(1 − e−xs)[
∫ 1

0

|u|αe−xudu+
∫ ∞

1

|u|1−αe−xudu].

The second term integral in the right hand is less than Γ(2 − α)xα−2, and the first term integral is less than
Γ(1+α)x−α−1. Since α ∈]0, 1

2 [, Γ(α+1) and Γ(2−α) ≤ Γ(1)∨Γ(2) = 1. So the bound is ‖f‖α(1−e−xs)[xα−1 +
x−α].

Since α < 1
2 , if x ≥ 1, (1− e−xs)xα−1 ≤ x−α, and if x < 1, (1− e−xs)x−α ≤ xα−1xT = Txα, so the theorem

is proved for n = 0, and C′
0 = 2 ∨ (1 + T ).
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Besides, when n ≥ 1, let us note that (1 − e−xs)exu = x
∫ u

u−s
exrdr. So we get

θ(f)(x, s) = x(1 − e−xs)
∫ 0

−∞
f(u)exudu =

∫ 0

−∞
f(u)(

∫ u

u−s

x2exrdr)du.

We now use Leibnitz rule and Lebesgue derivation theorem to get:

∂n
xnθ(f)(x, s) =

∫ 0

−∞
f(u)(

∫ u

u−s

(x2rn + 2nxrn−1 + n(n− 1)rn−2)exrdr)du.

Using that f ∈ Sα and switching the variables u and −u, r and −r, we get:

xn|∂n
xnθ(f)(x, s)| ≤ ‖f‖αx

n

∫ ∞

0

(uα1u≤1 + u1−α1u>1)
(∫ u+s

u

(x2rn + 2nxrn−1 + n(n− 1)rn−2)e−xrdr
)

du.

Note that the map on R
+
, u 	→ uγe−u, when γ > 0, is bounded by cγ = (γ

e )γ , for instance c1 = e−1 < 1
2 , c2 =

4e−2 ≤ 1. This remark and careful bounds prove the theorem. We detail the proof only in cases n = 1 and
n = 2.

When n = 1, the bound is

‖f‖αx

∫ ∞

0

(uα1u≤1 + u1−α1u>1)
∫ u+s

u

(x2r + 2x)e−xrdr)du.

First, as in the case n = 0, x
∫∞
0

(uα1u≤1 + u1−α1u>1)(
∫ u+s

u
2xe−xrdr)du ≤ 4x−α1{x≥1} + 2(1 + T )xα1{x<1}.

The first term in the integrand x2re−xr = 2xe−xr/2(xr/2)e−xr/2 ≤ 2xe−xr/2e−1 so we get the bound

x

∫ ∞

0

(uα1u≤1 + u1−α1u>1)(
∫ u+s

u

x2re−xrdr)du ≤ 2x2e−1

∫ ∞

0

(uα1u≤1 + u1−α1u>1)(
∫ u+s

u

e−xr/2dr)du =

4e−1x

∫ ∞

0

(uα1u≤1 + u1−α1u>1)(1 − e−xs/2)e−xu/2du ≤ 4e−1x(1 − e−xs/2)[(2/x)α+1 + (2/x)2−α] ≤

16x−α1{x≥1} + 8(1 + T )xα1{x<1}.

Globally,
x|∂xθ(f)(x, s)| ≤ 10(2 ∨ (1 + T ))‖f‖α(x−α1{x≥1} + xα1{x<1}).

When n = 2, the bound is

‖f‖αx
2

∫ ∞

0

(uα1u≤1 + u1−α1u>1)(
∫ u+s

u

(x2r2 + 2xr + 2)e−xrdr)du.

The last term is the same as in the case n = 1, so we get:

x2

∫ ∞

0

(
uα1u≤1 + u1−α1u>1

)(∫ u+s

u

2e−xrdr
)

du ≤ 2(1 − e−xs)x−α ≤ 4x−α1{x≥1} + 2(1 + T )xα1{x<1}.

The second term is twice the first of the case n = 1, so we get:

x2

∫ ∞

0

(
uα1u≤1 + u1−α1u>1

)(∫ u+s

u

2xre−xrdr
)

du ≤ 32x−α1{x≥1} + 16(1 + T )xα1{x<1}.
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The bound of the first term is quite similar: x2r2e−xr = 4e−xr/2(xr/2)2e−xr/2 ≤ 4c2e−xr/2 ≤ 4e−xr/2, so

x2

∫ ∞

0

(uα1u≤1 + u1−α1u>1)
(∫ u+s

u

x2r2e−xrdr
)

du ≤ x2

∫ ∞

0

(uα1u≤1 + u1−α1u>1)
(∫ u+s

u

4e−xr/2drdu
)

=

8x
∫ ∞

0

(uα1u≤1 + u1−α1u>1)(1 − e−xs/2)e−xu/2du ≤

8x(1 − e−xs/2)[(2/x)α+1 + (2/x)2−α] ≤ 32(2x−α1{x≥1} + 1(+T )xα1{x<1}.
Globally, we get x2|∂2

x2θ(f)(x, s)| ≤ 50(2 ∨ (1 + T ))‖f‖α(x−α1{x≥1} + xα1{x<1}). �

Proof of Proposition 3.11. We have to bound the difference |f(s)−fh(s)−f(t)+fh(t)| with respect to |s−t|β−η.
So let

Q =
|f(s) − fh(s) − f(t) + fh(t)|

|s− t|β−ηhη‖f‖H0
β

·

Suppose that s < t, s ∈ Ii, t ∈ Ik. Three cases occur.
(i) i = k: t− s ≤ h so the numerator of Q is:

|f(t) − f(s) +
s− t

h
(f((i+ 1)h) − f(ih))| bounded by ‖f‖H0

β
[(t− s)β + (t− s)hβ−1]·

Thus Q ≤ [( t−s
h )η + ( t−s

h )1−β+η] ≤ 2.
(ii) i < k and t− s ≥ h: the numerator of Q is:

|f(ih) − f(s) +
s− ih

h
(f((i+ 1)h) − f(ih)) − [f(kh) − f(t) +

t− kh

h
(f((k + 1)h) − f(kh))]|;

the first term is bounded by ‖f‖H0
β
[(s− ih)β + (s− ih)hβ−1] ≤ 2hβ‖f‖H0

β
, the second one is bounded similarly

and so Q ≤ 4( h
t−s )β−η ≤ 4.

(iii) i < k and t − s < h: here we write the linear interpolation fh(s) with respect to the common point
(i+ 1)h:

fh(s) = f((i+ 1)h) +
(i+ 1)h− s

h
(f((i+ 1)h) − f(ih)).

Let us remark that (i+ 1)h− s ≤ t− s ≤ h so yields the bound:

|fh(s) − f(s)| ≤ |f((i+ 1)h) − f(s)| + (i+ 1)h− s

h
|f((i+ 1)h) − f(ih)| ≤ ‖f‖H0

β
[(t− s)β + (t− s)hβ−1].

The bound of the second term is the same since t− (i+ 1)h ≤ t− s ≤ h.

So Q ≤ 2( t−s
h

η + t−s
h

1+η−β) ≤ 4. �

Proposition 7.1. Let (d, e) ∈ [0, 1]4, two functions fk ∈ L1([0,+∞[,R+
, µdk,ek

), k = 1, 2, and g ∈ C2(]0,+∞)2,R)
such that the norm ‖.‖∞,d,e of the maps g and

hg : (x, y) 	→ |∂x2g(x, y)|x2 + 2|∂x,yg(x, y)|xy + |∂y2g(x, y)|y2

are finite. Let r ∈]1, 2[, n ∈ N∗ to define a geometric subdivision of ]0,+∞[ , π = (t−n, · · · , tn), ti = ri:
Ij = [tj−1, tj ]; let:

cij =
∫

Ij

fi(x)dx ; ηj
i =

∫
Ij
xfi(x)dx∫

Ij
fi(x)dx

, j = −n+ 1, · · · , n ; i = 1, 2.
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Then ∣∣∣∣
∫

[0,+∞[2
g(x, y)f1(x)f2(y)dxdy −

n∑
i,j=−n+1

c1i c
2
jg(η

i
1, η

j
2)
∣∣∣∣

≤ 3
2
r2(r − 1)2‖hg‖∞,d,e‖f1‖µd1,e1

‖f2‖µd2,e2
+ C‖g‖∞,d,e[

∑
k=1,2

‖fk(1]0,t−n] + 1]tn,+∞[)‖µdk,ek
]

where C = max[‖f1‖µd1,e1
, ‖f2‖µd2,e2

].

Proof. First the integral of the function (x, y) 	→ g(x, y)f1(x)f2(y) on ]0,+∞[×[0, r−n], ]0,+∞[×[rn,+∞[,
[0, r−n]× [0,+∞[ et [rn,+∞[×]0,+∞[ is bounded as follows; for instance, the assumptions on fk, k = 1, 2 and
g yield

∫ r−n

0

∫ ∞

0

g(x, y)f1(x)f2(y)dxdy =

∫ r−n

0

∫ 1

0

xd1yd2g(x, y)x−d1f1(x)y−d2f2(y)dxdy +
∫ r−n

0

∫ ∞

1

xd1yε2g(x, y)x−d1f1(x)y−ε2f2(y)dxdy

which is bounded by:
‖g‖∞,d,ε‖f2‖µd2,ε2

‖f11]0,r−n]‖µd1,ε1
.

Similarly we get: ∫
[rn,∞)×]0,+∞[

g(x, y)f1(x)f2(y)dxdy ≤ ‖g‖∞,d,ε‖f2‖µd2,ε2
‖f11]rn,∞]‖µd1,ε1

.

The other bounds are obtained by inverting the indices 1 and 2.
Secondly we manage a bound of the difference on each Ii × Ij now called as [a, b]× [c, d], dropping the indices

i et j. Let to bound :

D = |
∫

[a,b]×[c,d]

g(x, y)f1(x)f2(y)dxdy −
∫

[a,b]

f1(x)dx
∫

[c,d]

f2(x)dxg(η1, η2)|.

To do that we introduce two independent random variables Xk, k = 1, 2, with a support respectively in [a, b]
and [c, d] and a density with respect to Lebesgue measure fk∫

fk(x)dx
. We develop the function g with order 2

between points X = (X1, X2) and η = (η1, η2):

g(X)− g(η) =
∑

k=1,2

(Xk − ηk)∂kg(η1, η2) +
1
2

∫ 1

0

D2g(θX + (1 − θ)η)(X − η,X − η)dθ.

In this difference, the 1-order term is null because of the definition of ηk. The 2-order term, denoting Y = (Yi =
θXi + (1 − θ)ηi, i = 1, 2), is:

∂x2g(Y )Y 2
1

(X1 − η1)2

Y 2
1

+ ∂y2g(Y )Y 2
2

(X2 − η2)2

Y 2
2

+ 2∂x,yg(Y )Y1Y2
(X1 − η1)(X2 − η2)

Y1Y2
·

The first term factor can be written

∂x2g(Y )Y 2
1 = Π2

i=1(Y
di

i 1Yi<1 + Y εi

i 1Yi≥1)∂x2g(Y )Y 2
1 Π2

i=1Y
−di

i ∧ Y −εi

i .
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The sum of the absolute value of the two first terms is then bounded by

‖hg‖∞,d,ε

[
(X1 − η1)2

a2
+

(X2 − η2)2

c2

]
(a−d1 ∧ a−ε1)(c−d2 ∧ c−ε2),

since Y takes its values in [a, b] × [c, d].
The absolute value of the last term is also bounded by

‖hg‖∞,d,ε

[
(X1 − η1)2

2a2
+

(X2 − η2)2

2c2

]
(a−d1 ∧ a−ε1)(c−d2 ∧ c−ε2).

Globally, we obtain the following bound to the expectation of g(X) − g(η):

D ≤ 3
2

∫
[a,b]

f1(x)(a−d1 ∧ a−ε1)dx
∫

[c,d]

f2(x)(c−d2 ∧ c−ε2)dx‖hg‖∞,d,ε

(
V (X1)
a2

+
V (X2)
c2

)
.

Let us note that the variance maximum of random variables with a support in an interval is the squared length
half of this interval:

D ≤ 3
4

∫
[a,b]

f1(x)(a−d1 ∧ a−ε1)dx
∫

[c,d]

f2(x)(c−d2 ∧ c−ε2)dx‖hg‖∞,d,ε

[
(b− a)2

a2
+

(d− c)2

c2

]
.

Moreover, in one hand when a = ri, b = ri+1, (b−a)2

a2 = (r − 1)2, and in the other hand
∫
[a,b] f1(x)(a

−d1 ∧
a−ε1)dx ≤ rε1

∫
[a,b] f1(x)dµd1,ε1(x), thus

D ≤ 3
2
rε1+ε2(r − 1)2

∫
[a,b]

f1(x)dµd1,ε1(x)
∫

[c,d]

f2(x)dµd2,ε2(x)‖hg‖∞,d,ε.

We now sum all these bounds on all Ii × Ij plus the edge terms:

∣∣∣∣
∫

[0,+∞[2
g(x, y)f1(x)f2(y)dxdy −

n∑
i,j=1

ci,jg(ηi
1η

j
2)
∣∣∣∣

≤ 3
2
rε1+ε2(r − 1)2‖hg‖∞,d,ε‖f1‖µd1,ε1

‖f2‖d2,ε2 + C‖g‖∞,d,ε[
∑

k=1,2

‖fk1]0,t−n]‖µdk,εk
+ ‖fk1]t−n,+∞[‖µdk,εk

]

since the sum of
∫

Ii
f1(x)dµd1,ε1(x)

∫
Ij
f2(x)dµd2,ε2(x) is equal to ‖f1‖µd1,ε1

‖f2‖µd2,ε2
. �

The following corollaries are deduced; they are useful for the time discretization.

Corollary 7.2. Let (d, e, f1, f2) and g satisfying ‖∆g‖∞,d,e <∞ and the assumptions of Proposition 7.1, then

|
n∑

i,j=−n+1

c1i c
2
j [g(η

i
1, η

j
2) − g(ri−1, rj−1)]| ≤ (r − 1)r2‖f1‖µd1,e1

‖f2‖µd2,e2
‖∆g‖∞,d,e,

where cki , η
i
k, k = 1, 2, i = −n+ 1, · · · , n, n et r are defined in Proposition 7.1.

Proof. Let Di,j = c1i c
2
j [g(η

i
1, η

j
2) − g(ri−1, rj−1)] and use Taylor theorem:

|Di,j | ≤ |c1i c2j | sup
x∈Ii,y∈Ij

{|∂xg(x, y)||ηi
1 − ri−1| + |∂yg(x, y)||ηj

2 − rj−1|}.
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Note that |ηi
1 − ri−1| is less than (r − 1)ri−1 and that x ∈ Ii implies that ri−1 ≤ x so:

|Di,j | ≤ (r − 1)|c1i c2j | sup
x∈Ii,y∈Ij

{x|∂xg(x, y)| + y|∂yg(x, y)|}.

Using ‖∆g‖∞,d,e definition we get

|Di,j | ≤ (r − 1)|c1i c2j |(ri)−d1 ∧ (ri)−e1 .(rj)−d2 ∧ (rj)−e2‖∆g‖∞,d,e.

But cik =
∫
[rk−1,rk]

fi(x)dx and µdk,ek
(dx) = x−dk ∧ x−ekdx so

|Di,j | ≤ (r − 1)re1+e2

∫
[ri−1,ri]

f1(x)µd1,e1(dx)
∫

[rj−1,rj]

f2(x)µd2,e2(dx)‖∆g‖∞,d,e.

To sum these bounds with respect to i and j get the conclusion. �

Corollary 7.3. Let (d, e, f1, f2, g, h) satisfying the assumptions of Proposition 7.1, then
∣∣∣∣∣∣

n∑
i,j=−n+1

c1i c
2
j [g(r

i−1, rj−1) − h(ri−1, rj−1)]

∣∣∣∣∣∣ ≤ r2‖f1‖µd1,e1
‖f2‖µd2,e2

‖g − h‖∞,d,e,

where cki , n et r are defined in Proposition 7.1.

Proof. Let Di,j = |[g(ri−1, rj−1) − h(ri−1, rj−1)]c1i c
2
j |. Using the norm ‖g − h‖∞,d,e definition, we bound Di,j

by
|c1i c2j |Π2

k=1(r
i−1)−d1 ∧ (ri−1)−e1 .(rj−1)−d2 ∧ (rj−1)−e2‖g − h‖∞,d,e. (59)

But cki =
∫
[ri−1,ri] fk(x)dx and µdk,ek

(dx) = x−dk ∧ x−ekdx so

Di,j ≤ re1+e2

∫
[ri−1,ri]

f1(x)µd1,e1(dx)
∫

[rj−1,rj]

f2(x)µd2,e2(dx)‖g − h‖∞,d,e.

To sum these bounds with respect to i and j get the conclusion. �

Proof of Theorem 4.1. The chosen pair (d, e) allows us to use Proposition 7.1 and Corollary 7.2 with

fi(x) = x−ai , i = 1, 2.

(i) First we get

D = |
∫

[0,+∞[2
g(x, y)f1(x)f2(y)dxdy −

n∑
j1,j2=−n+1

c1j1c
2
j2g(r

j1−1, rj2−1)|

≤ 3
2
r2(r − 1)2‖hg‖∞,d,e‖f1‖µd1,e1

‖f2‖µd2,e2
+ C‖g‖∞,d,e[

∑
k=1,2

‖fk(1]0,r−n] + 1]rn,+∞[)‖µdk,ek
]

+(r − 1)r2‖f1‖µd1,e1
‖f2‖µd2,e2

‖∆g‖∞,d,e. (60)

Besides, we compute
‖fk(1]0,r−n] + 1]rn,+∞[)‖µdk,ek

.
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An integration computation shows when αk <
1
2 :

‖fk1]0,r−n]‖µdk,ek
=

1
1
2 − αk

r−n( 1
2−αk); ‖fk1[rn,∞)‖µdk,ek

=
1

αk + βk − 1
2

r−n(αk+βk− 1
2 )

and when αk >
1
2 :

‖fk1]0,r−n]‖µdk,ek
=

1
−αk + βk + 1

2

r−n(−αk+βk+ 1
2 ); ‖fk1[rn,∞)‖µdk,ek

=
1

αk − 1
2

r−n(αk− 1
2 ).

So the sum on k = 1, 2 is bounded by 4
γ r

−γn using the γ definition. Getting r = 1 we easily deduce that

‖fi‖µdi,ei
=

2
|1 − 2αi| +

1
βi − |12 − αi|

≤ 2
γ
·

Thus, recalling that r = 1 + ε ≤ 2, the first term in the right bound of (60) is less than

6ε2Πi=1,2

(
2

|1 − 2αi| +
1

βi − |12 − αi|
)
‖hg‖∞,d,e ≤ ε2

24
γ2

‖hg‖∞,d,e.

Then recalling that C defined in Proposition 7.1 is maxi=1,2 ‖fi‖µdi,ei
and that r−nγ ∼ ε, the second term in

the right bound of (60) is less than

ε
2
γ

max
i=1,2

(
2

|1 − 2αi| +
1

βi − |12 − αi|
)
‖g‖∞,d,e ≤ ε

4
γ2

‖g‖∞,d,e.

Finally, the third term in the right bound of (60) is less than

ε4Πi=1,2

(
2

|1 − 2αi| +
1

βi − |12 − αi|
)
‖∆g‖∞,d,e ≤ ε

16
γ2

‖∆g‖∞,d,e.

So yields the constant Cα = 20
γ2 .

(ii) Let
Ej1,j2 = |c1j1c2j2(g(rj1−1, rj2−1) − h(rj1−1, rj2−1))|.

We use Corollary 7.3 to bound Ej1,j2 by

|c1j1c2j2 |(rj1−1)−d1 ∧ (rj1−1)−e1 .(rj2−1)−d2 ∧ (rj2−1)−e2‖g − h‖∞,d,e.

But ckjk
=
∫
[rjk−1,rjk ] fk(x)dx and µdk,ek

(dx) = x−dk ∧ x−ekdx so

Ej1,j2 ≤ re1+e2

∫
[rj1−1,rj1 ]

f1(x)µd1,e1(dx)
∫

[rj2−1,rj2 ]

f2(x)µd2,e2(dx)‖g − h‖∞,d,e.

To sum these bounds with respect to j1 and j2 get Dα = r2Πk=1,2‖fk‖µdk,ek
≤ 16

γ2 , so yields the conclusion. �

Proof of Lemma 4.3. The key of the proof is the commutativity of any operator in A1 with any operator in A2.
For any f ∈ Sα1,α2 , (x, y, s, t) ∈ (R∗

+)2× ]−∞, T ]2, ∂j
yjA2(f)(y, t) belongs to Sα1 similarly ∂i

xiA1(f)(x, s) ∈
Sα2 , so the operators compositions can be done. Then we do an induction on (i, j).

The result is true for i = j = 0 since any operator in A1 commute with any operator in A2 (it is a tedious
but straightforward formal verification).
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We now suppose that the result is proved for (i, j) and we prove it for (i, j + 1). The same will be true for
(i+ 1, j). Let (x, y, s, t) ∈ (R∗

+)2×] −∞, T ]2. On one hand by definition for any f ∈ Sα1,α2

∂i+j+1
xi,yj+1Ã(x, y, s, t)(f) = lim

ε→0

1
ε
[∂i

xiA1(∂
j
yjA2(f)(y + ε, t))(x, s) − ∂i

xiA1(∂
j
yjA2(f)(y, t))(x, s)].

But the operator ∂i
xiA1(x, s) is continuous linear so it commutes with the limit, this limit moreover belongs to

Sα1,α2 :

∂i+j+1
xi,yj+1Ã(x, y, s, t)(f) = ∂i

xiA1

(
lim
ε→0

1
ε
[∂j

yjA2(f)(y + ε, t) − ∂j
yjA2(f)(y, t)]

)
(x, s),

= ∂i
xiA1(∂

j+1
yj+1A2(f)(y, t))(x, s),

so we get ∂i+j+1
xiyj+1Ã(x, y, s, t) = ∂i

xiA1(x, s) ◦ ∂j+1
yj+1A2(y, t).

On the other hand using the induction assumption:

∂i+j+1
xi,yj+1Ã(x, y, s, t)(f) = lim

ε→0

1
ε
∂j

yjA2(∂i
xiA1(f)(x, s))(y + ε, t) − ∂j

yjA2(∂i
xiA1(f)(x, s))(y, t),

= ∂j+1
yj+1A2(∂i

xiA1(f(., t)(x, s))(y, t)

and the lemma is proved. �

References

[1] J. Audounet, G. Montseny and B. Mbodje, A simple viscoelastic damper model — application to a vibrating string. Analysis
and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992),
Lect. Notes Control Inform. Sci. 185, Springer, Berlin (1993) 436–446.
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