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APPROXIMATION OF THE FRACTIONAL BROWNIAN SHEET VIA
ORNSTEIN-UHLENBECK SHEET

LAURE COUTIN! AND MONIQUE PONTIER'

Abstract. A stochastic “Fubini” lemma and an approximation theorem for integrals on the plane are
used to produce a simulation algorithm for an anisotropic fractional Brownian sheet. The convergence
rate is given. These results are valuable for any value of the Hurst parameters (a1, a2) €]0, 1, a; # %
Finally, the approximation process is iterative on the quarter plane R+. A sample of such simulations
can be used to test estimators of the parameters a;,7 =1, 2.
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1. INTRODUCTION

The aim of this paper is to produce and to study a simulation algorithm for an anisotropic fractional Brownian
sheet. An important application of such a simulation is to supply a sample of fractional Brownian sheet almost
sure approximations: thus estimators like these defined in [13] can be tested. Recall that the non necessarily
Gaussian random fields were started by Samorodnitsky and Taqgqu [17] and developed by Cohen [8]. For the
1—dimensional fractional Brownian motion, Meyer et al. [15], Ayache and Taqqu [3] study an approximation of
the fractional Brownian motion with Hurst parameter «, using a wavelet decomposition. Ayache et al. [2] also use
a wavelet decomposition but for the anisotropic fractional Brownian sheet. Besides, Bardet et al. [4] did a careful
comparison between the different algorithms. Here we recall and develop the results of [7], but there all the proofs
are omitted. For the sake of completeness, and because these proofs enlighten the more general cases, we give
them in Section 3. The scheme of [7] is as follows: Fubini’s Lemma allows to get a representation of the fractional
Brownian motion as a deterministic integral of Ornstein-Ulhenbeck processes; this integral is approximated by
a finite sum over a geometric subdivision; besides, [7] introduce some operators on Holder functions which
— applied to the Brownian motion — give the integrands under the deterministic integral. This step allows
them to obtain some fine results about these integrands regularity; they obtain a time iterative algorithm using
Markov properties of Ornstein-Ulhenbeck processes. Gathering this algorithm and the deterministic integral
approximation, they produce an approximation of the fractional Brownian motion. The rate convergence of this
algorithm is studied in [7] (¢f. p. 162) but without a temporal approximation nor an accuracy evaluation. Here

5
we add the temporal approximation. Their rate convergence is about O(log NN'775 ) where 8 = a A (1 — a).

More precisely concerning our algorithm, if we choose a simulation accuracy of about N770 < n < %, to
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produce an [ size image, we need to generate I independent random variables and a 2n Gaussian vector where
n = O(N"log N) and the algorithm complexity is O(N!*7log N).

This study is to be done in higher dimensions. For the 2—dimensional case and when the value of one of
the Hurst parameters («q, az) is more than %, for computation reasons and not because of the model, Chan et
Wood’s algorithms [19] failed. S. Léger used them in [13] to test some estimators of parameters «; successfully
when «a; < % But, when a1 V as > %, the extended 2-dimension circulant embedding of the covariance matrix
should be theoretically non negative definite, but practically it is not; these matrices are not well-conditioned
and so Choleski’s method can’t be used.

The generalization from 1—dimension to 2—dimension is not so easy: for instance, Taylor’s formula in
2—dimension involves the cross derivatives and to control the constants we need to detail the computations.
Moreover, as is pointed out in [10], in the one dimensional case, our method can be applied to any Gaussian
sheet. It could also be used for any process written as a multiple integral of any function satisfying smooth
assumptions. For instance look at f[07+00[2 g(z,y)pu(dz, dy) where p is a random measure and ¢ is a Laplace
transform. The aim here is to approximate this double integral.

Concerning our algorithm, if we choose a simulation accuracy of about I="7,0 <n < %, to produce a I? size
image, we need to generate I? independent random variables, a 2n x 2n Gaussian matrix, I(1+ I) 2n-Gaussian
vectors where n is about [log I]I", then the algorithm complexity is O([log I]2I2(1+m).

The paper is organized as follows: first the problem is set, the 2—dimensional Liouville Brownian sheet is
defined, as is the 2—dimensional fractional Brownian sheet that we want to simulate. In Section 3, we first recall
a set of deterministic tools built in [7] in order to obtain a discrete approximation of the 1—dimensional Brownian
process. We follow the same scheme as the one in [7]: Section 4 extends all these results to our 2—dimensional
Brownian sheet; first a theorem for deterministic integrals on the plane is proved, then operators on the set
of Holder 2—dimensional functions are defined and their properties are studied. All this is used to produce a
discrete approximation of the 2—dimensional Brownian sheet and the errors are controlled. Finally, an iterative
algorithm of the 2—dimensional Brownian sheet synthesis is given thanks to a kind of Markov property. This
property relies on the fact that the fractional Brownian motion can be considered as an Ornstein-Uhlenbeck
process superposition (¢f. [5]). The rate of its convergence is given in Section 5 with a constant which is a
random variable, the law of which is known (its extreme values have very low probability). This constant also
belongs to any LP so, as a byproduct, the approximating sheet uniformly converges to the fractional Brownian
sheet in any LP. The algorithm parameters are chosen with respect to a given accuracy of the approximation.
The limit of this algorithm is stressed when the parameters a are very near %,0, 1. The largest proofs are
provided in Section 7.

2. PROBLEM SETTING

Let (2, A, P) be a probability space and dB a white noise sheet on it. The “rectangular” fractional Brownian
sheet W12 ig defined in [13] or [14]:

Wi = [l =2 = (0 =03 = (oAb, 1)

(a1, a2) €]0,1[% and (s,t) € Ri_. This random field is null on the axes. Similarly we introduce the Liouville
Brownian sheet defined when (s,t) € Ri by

Vi = [ w0 R, @)
[0,5]x[0,]
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but this one doesn’t have stationary increments. Recall these two expressions in one-dimension:

1 1 t 1
We = /R[(t ST (cw)? T HdB,, VO = / (t—w)=}dB,, t ¢ R. 3)
0

We can’t here approximate them directly by a sum since a recursive computation is not feasible (¢f. Taqqu
[17]). To produce an iterative process of the trajectories of these two random fields, we generalize Carmona
et al.” method [7] to the 2—dimensional case. For the sake of clearness, we start with the Liouville Brownian
sheet.

2.1. Liouville Brownian sheet as a superposition of Ornstein-Uhlenbeck processes

Recall the equality for 0 < o < %:

(s — u)afé = 1700/0 27 2e Ay, s > u (4)

The key is the following so called stochastic Fubini lemma (cf. Carmona et al. 7] for instance). Let (n,p) € N 2,
the mixed Lebesgue space and its norm [18] are:

Sl = (/RW (o 1can)” da>2 ®)

Lo R xR") = {f : R xR" - R, Borelian , || f||p,.p, < +00}.

Let us remark that if f € El,g(Rn x R”) using the Cauchy-Schwartz’ inequality:

2
19122 = ( S (o 1f0-01a0) du) ~ o Jor s sl Bldudact < 1713,

so yields the inclusion £271(Rp xR™ ¢ El,g(Rn x R”).

Lemma 2.1. Let f € EQ,I(RP X Rn) and dB be a white noise sheet on RY, then almost surely :

/Rn(/RP f(u,a)dBy)da = /Rp (/R” f(u,a)da)dB,. (6)

Proof. Themap Y7 : f — fRn pr f(u,v)dB,dv is a continuous linear map on the step functions in £o 1 taking
its values in L?(£2). The set of these step functions is dense in L5 (¢f. Lem. 6.2.11 p. 124 [18]) so this map
admits a unique continuous linear extension on L, ;.

Let the map Ya(f) : f — pr f]R" f(u,v)dvdB,. Tt is a linear continuous map on Lo ;1 (R” x R™) € £1 o(R" x
Rp) with a norm 1 from ELQ(Rn X Rp) to L2() so ‘a fortiori’ on £271(Rp X Rn):

1Va(f)3 = /Rp< /R,L f(u, a)da)du = | f125 < I3

Finally, the maps Y;,i = 1,2, are well defined and coincide on the step functions. O

A similar lemma is given in [11] (Lem. 4.1, p. 116) but the assumptions are quite different and are not satisfied
in our cases.
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This lemma and (4) allow us to prove:

Proposition 2.2. Let (a1, a3) €]0, %[2; the process V122 admits the following representation V(s,t) € Ri,
almost surely:

1 1 1 1
Vo = / TN T2y T2 X (x,y, s, t)daedy 7
!t L(3 —a1) T(3 —a2) JR? ( ) "
where
X(I'; Y, S, t) - / e_x(s_u)e_y(t_v)dBu,v- (8)
[0,s[x[0,¢]

Proof. The stochastic Fubini Lemma 2.1 applied to (s,t) € Ri, n=p=2 u= (u,v), a = (x,y) and to
flu,v,z,y) = x_‘"l_1/2y_“2_1/2e_x(s_“)_y(t_”)1[07t] (v)1[0,5 () 110, 4002 (%, ), is correct since

t s
21 = / R x_a1—1/2y—a2—1/2\// / e—;c2(s—u)—y2(t—’u)dudvdxdy
RY 0 Jo
—2xs o2
/ x—a1—1/2 l—e™™ dl‘/ y—oé2—1/2 1L’ytdy < +o0,
R, V™ 22 R, 2y

and —o; —1/2€]-1,—-1[, i=1,2, —; — 1 < -1, i =1,2. O

/1

Now for « 6]%, 1[ and s > w, use the identity:

1 s 1 3 1 1 s
) E — _ = Wy = 3@ —a(r—u)
(s —u) /u (a 2) (r—u) dr I —a) /R+ x /u e drdz. 9)

In the case a1 V g 6]%, 1], let us introduce the notation

1. 1 .
ai:ai—i—a.&gn (5—041-) ,1=1,2. (10)

Proposition 2.3. Let a1 Vas e]%, 1[. The process V12 admits the following representation on (R+)2, V(s,t),
almost surely:

1 1
Voper = / "%y 2U(z,y, s, t)dzdy 11
,t F(% —Oél)r(% —062) Ri ( ) ( )
where U =Y, T or Z and Y, T, Z are given by:
. 1
Y(:E,y,s,t) = / X(x,y,rl,rg)drldrg, Zfai > 5, 1= 172a
[0, [0,] 2
K 1
T(xaya&t) = / X(m,y,s,v)dv, Z'fal < 5 < ag, (12)
0
s 1
Z(x,y,8,t) = / X(z,y,u,t)du if a; > 5 > ao. (13)
0

Proof. We only detail the proof when a; > 1, i = 1,2. Once again, the stochastic Fubini Lemma 2.1 is used

2
((s,t) being fixed) with n = p =2, u = (u,v) € [0, 8] x [0,t], a = (x,y) € Ri and

s t
f(u,v,x,y) :mé—aly%—az/ / e~ T(r—u)=y(z=v) {rd
u v
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since V'™ = Y5(f) and || f|l2,1 < oo. Thus V'}'** = Y1(f), meaning that

s t
‘/;gtl’a2=/2(/ / fu, v, z,y)dB,, »)dzdy.
’ R: Jo Jo
//fuv:nydBuﬂf:E2 Fy a2//<// —a(r—u)g—y(z— 7’)drdz>dBuﬂj.

Using once again Lemma 2.1 (here the integrand is continuous with compact support):

s t s t s t
/ / (/ / e_x(r_“)e_y(z_”)drdz) dBy,, = / / X(x,y,r z)drdz,
0 0 u Ju 0 0

and the proof is concluded. When a; 6]%, 1] or ap e]%, 1[, the proof is almost the same. O

But

Remark 2.4. The process X is continuous with respect the four parameters. Moreover, T, Z,Y are also
continuous with respect the four parameters as integrals of X on the compact sets [0, ¢] or [0, s] or [0, s] x [0, ?].

Proof. cf. Section 7. O

These processes, made discrete with respect to (s,t), look like ARMA processes. These fields can be seen
as extended 2-dimensions Ornstein-Uhlenbeck processes in the sense of Proposition 2.5. Thus, the fractional
Brownian sheet can be seen as a Ornstein-Uhlenbeck processes superposition.

Proposition 2.5. Let (z,y) € Ri, U=X,Y,Z or T then U(x,y,.,.) is solution to the integral equation:

s t
Ulz,y,s,t) = U(0,0,s,t)—l—xy/ / U(z,y,z,7)dzdr
o Jo

2

s t
fm/ U(z,0,z,t)dz — y/ U(0,y,s,7)dr, (s,t) e R, (14)
0 0

For instance, U(,0,s,t) = U(0,0,s,t) — z [ U(z,0, z,t)dz and U(0,y,s,t) = U(0,0,s,t) — [, U(0,y,s,7)dr,
where

t s s t
U(0,0,5,t) = Bstla,va,<i +/ Bsuduly, o1 cq, +/ Bygduly, c1cq, +/ / By pdudvly png,s1-
0 0 o Jo

Proof. Above, we proved that any Gaussian field in this proposition admits a continuous modification. So it is
enough to prove the result (s,t) being fixed.
Remark the identity when 0 <u < 5,0 <ov <t:

s t
e @(smwemy(t—v) 1*:Ey/ / —olzmw) eyl ”)dszf:c/ e*z(Z*“)dzfy/ A T
u v

This identity is integrated on [0, s] x [0, t] with respect to the white noise sheet dB. Using the stochastic Fubini
Lemma 2.1 we invert the two integrals (the lemma assumptions are satisfied: the integrands have compact
support and are continuous).

So the first term in the decomposition of X (x,y, s,t) — B is:

:cy/ / </ / —2(z—u) g—y(r— 7j)dsz) dB, 7:Ey/ / (/ / m(zu)ey(T”)dBu,v) dzdr
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which is ay [ f(f (z,y,2,7)dzdr. The two following terms are identified with —x [ X(z,0,2,t)dz and
—y fo (0,y,s,7)dr. This yields (14) for U = X. We now integrate this identity with respect to the two

last arguments on [0, s] x [0,t], (respectively with respect to the last argument on [0,¢] or the third argument
on [0, s]), yields (14) for U =Y, Z, T. O
2.2. Fractional Brownian sheet

Similar results can be obtained for the fractional Brownian sheet due to the equality, s > u,0 < o < %:

o0
Z—(-u)y ?= 704)/ x_“_%[e_x(s_”)l{uq} —e™1pyc0y]da. (15)
0

This equality allows us to show:

Proposition 2.6. Let (aq,a2) €]0, 2[ the process W22 qdmits the following representation V(s t) €
Ri, almost surely:

1
’”7041 Q2
s t’ -

> F(% _

/ _0‘1__ 2_%X(x,y, s, t)dady, (16)
a1) I'(3 —a2) JR?
where

X(ﬂ?,y,s,t) = /Rz fs(mau)ft(yav)dBu,v (17)
and fo(z,u) = 1p g (u)e =% 4 1p (u)e™(e™® —1).
Remark 2.7. The product expansion fs(x, u) f:(y, v) yields that X (x,y,s,t) could also be defined as following:

X(Ia Y, Sat) + X2(':Ea Y, Sat) + X3(ﬂ'5,y, S7t) + X4(':Ea Y, Sat)

where
Xo(x,y,8,t) = (e*“fl)/ eme*y(t*”)dBuyv,
]—00,0[x]0,¢
Xy(,y,5,t) = (e7¥ —1) / e et dB,,, (18)
10,s[x]—00,0[
Xy(z,y,8,t) = (e —1)(e ¥ — 1)/ e*“e¥’d B, ..
]—00,0[X]—00,0]

Proof. The function fs; : (u,v,z,y) — 23y =23 f (2 u) fi(y,v) belongs to Lo, 1(R2 Ri) (¢f. (5)),
(s,t) being fixed (indeed || fs 21 = fR :c*m*%,/% dm.fR Yo7, /19—“ dy < oo) and we apply
+ +

Lemma 2.1 to this function. O

In the case % < a < 1, the relation (9) is applied to s > u and s = 0, and solving the integrals with respect
to r yields:
1 1 Ié oY 1 — g—z(s—) 1_e®s
() (s—uw)i > - )5 /R+ (l — {1[0,5] (u)# +1p (u)elui} dz.
2

X
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This relation allows us to prove:

Proposition 2.8. Let a1 Vas G]%, 1[; the process W92 admits the following representation on Ri, denoting
a; = a; + %szgn(% — ), almost surely:

1 1

Iz —o1)T(5 -

araz _
Wep™ =

, r My U (x,y, s, t)dady, 19
-~ /K (2,9, 5.1) (19)

where U(z,y,s,t) = fR2 hi(z,u)hi(y,v)dBuy, h' = [ if a; < &, and B' = g if a; > L, gs(z,u) =
2(s—u)

10,4 (u)l—% +1p (w)e* =" f is defined in Proposition 2.6.

xT )

Definition 2.9. Let us denote Y (z,y,s,t) = B(gs(z,.)g:(y,.)), Z(x,y,s,t) = Blgs(z,.)fi(y,.)), and

T(:U,y, S,t) = B(fs(xa -)gt(ﬁ% ))

Using Remark 2.4, these fields X,Y,Z,T are continuous with respect to the four parameters, as sum of
continuous fields.

2.3. Algorithm
In Section 5, we will provide a recursive algorithm to approximate Wf‘ 1“2 by the following

Definition 2.10. Let n € N*, r b,k > 0:

n
Webod (ih,jk) = Y o G UM p2 7 i, k)
Ji,j2=—n+1
where ¢}, m(rl:i;jl)r(l’“l)(jl’l), a; is defined in (10) and U"* will be defined below depending on the
position of «; with respect to %
Uh"k = Xh"k]_]o,%P (Oé) —+ Yh"k]_]%71[2 (Oé) + Th’kl]o,%[x]%71[(a) -+ Zh*kl]%71[x]07%[(a). (20)

The key of the recursive algorithm is Proposition 2.5. Let (Blhjk, (i,§) € NQ) be a Gaussian white noise with

variance hk, (B5(x),x € R+) and (B (y),y € R*) be Gaussian vectors with covariance function equal to #
h

respectively T Concerning the first term in U™ (¢f. (18)), we need a double induction as following, given

z=r7l oy =27l joe {—n+1,--- n}i=1,2

vjeN, X(z,0,jk) = 0,
1— —zxh
X(w,ih k) = e X, (i = Dhyjk) + ———Bj",
T
~ o . 1 h,k .
X(:L’,Zh,jk) - _[Bij *X(:L’,Zh,jk)].
T
In a second step, we set Vi € N, X(z,vy,ih,0) = Z(z,y,ih,0) = 0:
. . —yk . . 1-— e_yk . . 1
X(xaya2h7(.7+1)k):e Y X(l‘,y,lh,jk)+TX(Q’J,Z}L,]]C), ap Vag < 5 ; (21)

1—e ¥ 1
Z(a,y.ih. (G + DR = ¢ Z (@, ih, k) + =R (w,ih, k), (az <3< al) : (22)
Y
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Jj+1
Y (x,y,ih, (j + 1)k Zx x,ih, jk) — Z(,y,ih, (j + 1)k)

, (oq Aag > %) . (23)

We now deal with the three other terms in (18) but only in case a3 V ag < %
Concerning the fourth term in (18), an exact simulation is possible since X4(z,y,ih,jk) = (1 — e~ ¥h)(1 —

e Yk)By(x,y) where By is a centered Gaussian matrix with covariance function I'y(z,z’,y,y’) = xix, ﬁ

The two other terms in (18), denoted as X2 and X3, are symmetrically obtained by induction:

Vi, Xo(z,y,ih,0) = 0,
A R —uk . . 1-— e_yk —zih k
X2(:anazh7 (] + 1)k) = e Xg(l’,y,lh,jk) - 7(1 —e ™ )BQ (l’),
Vj, X3(l‘,y,0,jk) = 0;
1— —xh )
X3($,y, (Z + 1)h5.7k) = e_xhX?)(Ia yalhajk) - Teh(l - e_y]k)Bi};(I)'

Finally, X"* is defined as the sum (X4+Xo+ X3+ X4)(x, h,ih, jk) (there is similar definitions of yhk Thk = Zhk)
and the following will be proved in Theorem 5.3.

Theorem. For all € > 0 there exist n,r, h,k so, YI' > 0, there exists a random variable C, , 1, 1 admitting
exponential moments such that the error is uniformly bounded:

sup  [Wo2(s,t) — W52 (s,1)] < eCh ok (24)
s,t€[0,T]?

3. APPROXIMATION OF A FRACTIONAL BROWNIAN MOTION

This section develops results of [7] where all the proofs are omitted. Moreover here we bound the temporal
approximation error. Using Fubini’s Lemma, we get the representations of the Liouville Brownian motion.
Almost surely, Va € 10, 5[, vt € Ry

Ve = / *a*’X (z,t)dx where X (x,t) = / e *t=WqRB,; (25)
R, [0,¢]

Va € 3,

l\)l»—t

= 7/ :c%*aY(:c,t)d:c where Y (z,t) = X(x,z)dz. (26)
R, [0,]

Then, we have similar results concerning the fractional Brownian motion, which has stationary increments.
Almost surely, Va € 10, 2[, vt € R

e — /R % (2, t)dz (27)

where
X(z,t) = / e *t=WAB, + (e7* — 1)/ e"™dBy; (28)
[0,¢] [—00,0]
Vo €]3,1[ vt € R
1 1~
W = 7/ 22~ (z, t)dz (29)
K I —a) JR,
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where

~ 1— —xt
V1) = ¥ (1) + /[ B (30)

The aim here is to approximate the integrals in the representations (27), (29) summarized as
W = %/ x”U(z, t)dz, (31)
F(§ — Oé) R+

where U = Xl]ojé[(a) + }71]%71[(a) and a is a+ 1.sign(3 — a). We can deduce from the equation (25) that the
process X (z,.) is an Ornstein-Uhlenbeck process:

t
X(x,t) = By — ac/ X(x,u)du, t>0. (32)
0

3.1. Approximation of a deterministic integral

We recall Lemma 13 in [7] using the norm ||.|| s a.e, (d,€) € [0,1]%, d < e, on C(]0, +o0[, R) and the measure
fig.c on R which defines the L'-norm | f|

d,e-

lglloc.de = sup [#"1pcry + 2 Laoyllg(@)], pae(de) = min(z™", 27°).dz.

2€]0,+00
Proposition 3.1. Let (d,e) € [0,1]2,d < e, a function f € L1(]0, 400, R™, fd.e), and g € C?(]0, +00), R) such
that the norms ||.||co,d,e of the maps g and hy : x — |xVg(x)| + |D?*g(x)|2? are finite. Letr €]1,2[, n € N* to
define a geometric subdivision of 10,+oo[ , m = (r=",--- ,r"): I; = [ri=1 rI] and:

cjz/ f(x)dz, j=-n+1,--- n.
I;

Then:

[ a@s@ds= 3 el £ = Dyl fl
[0,400]

j=—n+1
+lglloo,aell f(Ljo,r=n1 + 1jn ool ae - (33)

This proposition will be applied to f : z — 2% a = a + %szgn(% —a), g(z) = X(z,t) or Y(z,t), to

approximate W(t), respectively when a < %, a> %

The proof is omitted: it is quite similar to Theorem 4.1 proof (¢f. Sect. 7).
The following corollary will be useful for the time discretization.

Corollary 3.2. Let (d,e, f) and g, h satisfying the assumptions of Proposition 3.1, then

n

> algtr) = h]| < N llna g = Plloo.des (34)
i=—n+1
where n et r are defined in Proposition 3.1.

Proof. Let D; = [g(r") — h(r")]|¢;|. Using the norm ||g — hl|c,q4,e definition, we bound D; by

il (r™ L gicay + 17 iz ny)llg = Bllso.de < el (771 TIA (T T lg = hlloo,dee- (35)
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But ¢; = f[ri,l piy f(@)dz and pge(dz) = r~ 4 Az~¢dz so

DIe [ @@l Hlae

To sum these bounds with respect to ¢ get the conclusion. (I

3.2. 1-dimensional operators on the Holder functions

In the aim to compute by approximation the fractional Brownian process W (31), t being fixed, we use
Proposition 3.1 with g(x) = U(z,t), f(x) = 27%,(d, e) such that a + d < 1 < a + e. First, we have to study the
smoothness of the Gaussian processes U and the associated functions hy, and their norm ||.||eo,q,e. That is to
show the existence of (d, e) as above and moreover that:

(i) U= X,Y belongs to C2(R}), ¢ fixed;

(ii) Sup, R: (2%1gc1 + 2151)[2°0%, U2, t)| < 00,i=0,1,2 (0%, U denotes 2-U).
The point (i) will be a consequence of the fact that X is the image of the Brownian motion by an operator
defined below and some similar tricks to be shown for the other processes. The point (ii) (see Corollary 3.10
below) relies on deterministic properties of the operators v and 6 defined below and on path-wise properties of
the Brownian motion B. These operators are defined on the set of Holder functions polynomially increasing at

—oo (for instance as are the Brownian motion paths).
Define the set of a-Holder functions on I C R, taking value 0 at O:

H&(I){f L f(0)=0,  sup M<oo}.

5,8 €12 s#s! |5—Sl|a

Finally, the Banach space S, is defined as the subset of the functions in C(] — oo, T],R) such that:

Soz = {f € C(] - OO,T],R), sup |f(x)|

<1 ||t

< oo} AHO (-1, 7]),

and if f € S, let us denote the norm:

f(s)— f(s flz
1l = sup 1f(s) /Ex )| + sup | (1_)1,
5,8 €[-1,T]2,s#s” |5 — 5] 2<o1 |7

Remark that if f € So, Vu < —1, [f(u)] < || flla|u/*=% and Yu > —1, [f(u)] < [|f]lafu|®

For instance, the Brownian motion process B; = fot dB, belongs to S,, Va < % (¢f. Revuz and Yor [16],
Th. 2.2 in 1.2 and Prop. 1.10(iv) in I.1.)

We introduce two linear operators on S,, useful to manage the Liouville process since the Fubini Lemma
shows that X (z,s) = ¢(B)(x, s) and we will see below that Y (z,s) = 1)(B)(x, s) where:

B (@5) o fls)e ™ 4 a / " (s) — f(s — P)dr.
) 0
B - (@s) /O e~ f(u)du.

We now study the smoothness of these functions and we bound their partial derivatives with respect to z,
uniformly on R, x [0, 7.
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Proposition 3.3. Let f € C((—o0,T], R).

(1) For any (l‘,S) € [Oa +OO) X [OvT]a l/f(f)(ﬂfvs) = f(S) - ?L‘l[}(f)(l‘,s),
(ii) for any (Ia S) € [Oa +OO[X[Oa T]7 w(fo f(u)du)($7 S) = ¢(f)(30a 5) = fos w(f)($7u)du

Proof. cf. Section 7. (]
Remark 3.4. In the case f = B, the Brownian motion, notice that (i) and (ii) show that X = ¢(B) and
Y = 4(B).

Note that (i) and (ii) imply the integral equation: function ¥(f)(x,.) is solution to the integral equation
y() = £() - o y(u)du. A

Finally, when z # 0, (i) implies that ¢(f)(z,t) = 1(f(¢) — ¥(f)(=,t)).
Corollary 3.5. For any function f € C([0,T],R), the map ¥(f) is indefinitely differentiable with respect to x,
is continuous on [0, +o0o[x[0,T] and so are its partial derivatives, Vn € N,

Inp(f)(@,8) = (=8)"e” " f(s) + /OS[N(—?“)”_1 +a(=r)"]e™ " (f(s) = f(s —r))dr.

Proof. We merely differentiate x — ©(f)(x, s) under the integral and we use the n-th derivative of x +— ze™*"

which is (n(—r)""! + x(—r)")e ", O

Then we establish the continuity properties of these linear operators. So let £(S,;R), the set of linear maps
from S, to R, endowed with the norm: when A € £(S,;R),

1411 = AU

sup .
7€8u,0<|flla<t I flla

Theorem 3.6. For any a €]0, 1],

R x[0,7] — L(Sa;R)

K (2, 5) = Yz, s) 1 (f = (f)(z,9))

is a map on Ri x [0,T], indefinitely differentiable with respect to x. It and its derivatives are continuous.
Moreover, let Co =T(a+1)V T, and Vn > 1, C,, = (2n+ o) (2te=Lynta—lgnta(y v L) then for any function
f € S with the Héolder norm || f||a,

V(x,t) € [0, +00[x[0, T, z"|07n (f) (2, )| < Cullflla[l{z<ry + 27" Liaz1y)-
Proof. Corollary 3.5 and the assumptions on f get
e T T A
0 0

The integration by part formula shows that the sum of the first two terms is (n + ) [; (r)"**~*e~*"dr. Then

we obtain "|0%.¢(f)(z, s)| < [|f[la(2n + a) [; 2" ro~ e dr.

When n = 0, the bound becomes
9w 8)| < Ifllac [ @y te=madr
0

and az~® [ (zr)* te ™ adr < 27T (a4 1)1gs1y + T oy
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When n > 0, using that the map y — y7e™¥, v > 0, is bounded on [0, +oo[ by a constant ¢, = ()7, then,
with y = xr/2,

n n o— —ITr
()] < flan+a) (2)"2 J/ teer/2gy
€ 0
2 T
< Aflla@n+a) { _1{x<1} + ( ) “T(a)Lz>1y
so Cp, = (2n + a)(22)" max(%a, 2°T'(ar)) with the convention (22)" =1 if n = 0. O

Note that C7 = 22(2°T(a+ 1) vV L), Co = (4 + a)(4)22%F2 (L2 v 20T (a)).
Notice that f € S, implies that t — fg (u)dw is a Lipschitz-function with Lipschitz constant T%|| f||,. This
fact and the point (ii) of Proposition 3.3 (¢(f) = ¢ ([ f)) and Theorem 3.6 applied to o = 1 yield:

Corollary 3.7. For any a €]0,1],
- RY x[0,7] — A E(SQ,R)
(z,s) = (@, s) o (f = 0(f)(,8))

is @ map R: x [0, T, indefinitely differentiable with respect to x. It and its derivatives are continuous. Moreover,
vn € N, for any function f € S., with the Hélder norm || f|la,

V(z,s) € Ry x [0, 7], 21073 ()(x, 5)| < T*CullfllalLzcry + 27 Lgpsny).

We now introduce two other operators on S, to get the fractional Brownian motion increments stationary, since
the Fubini Lemma shows that X (z,s) = (¢¥ + 0)(B)(z, s):

www>H4thf;wwm
00 (9) = —20())(as). (36)
Theorem 3.8. For any a €0, 3],
g R} x[0,T] — L(Sa;R)

(z,5) = 0(x,5)  (f—0(f)(x,9))

is a map on Ri x [0,T], indefinitely differentiable with respect to x. It and its derivatives are continuous.
Moreover, ¥n € N, there exists a constant C! such that for any function f € S, with the Hélder norm || f||a,

¥(z,5) € R % [0,T], 2™(03:0(f)(, 5)| < O fllale®Liocry + 27 Ly,

Proof. cf. Section 7. (|

Note that CJ =1V T, C{ =10V 6T, C¥ =50V 26T.
Using Leibnitz rule and the fact that a > 0 implies 2[z%L, <1y + 27 “Lpony] < [ eny + 27 s,
we get:

Corollary 3.9. For any o €0, 3],

J. Ry x[0,T] — L(Sa;R)
(Jc,s) = G(I,S) (fH—%G(f)(x,S))
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is a map on Ri x [0,T], indefinitely differentiable with respect to x. It and its derivatives are continuous.
Moreover, Vn € N, there exists a constant C!"" such that for any function f € S, with the Holder norm || f| a,

V(z,s) € Ry x [0,7], 2"107.0(f)(w,5)] < O [ fllale®  Lppcry + 27 Lpanny)-

: " __ n n!
More precisely, C}," = > ;o 7 Cr-

We now deduce the following corollary to summarize Theorems 3.6, 3.8 and Corollaries 3.7 and 3.9:

Corollary 3.10. Let « €]0, %[ For any n € N, there exists a constant D,, = C,, +C! such that for any f € S,
zeRF seo, 1),
20 (¥ + 0)(f)(x, 5)| < Dallfllaliz<ry + 27 1ia>1y).
For any n € N there exists a constant D!, = C,, + C!" such that f € So, x € R se [0, 77,
20 (4 0) (), 5)] < Dyl fllalz® Lpary + 2 ey
This corollary shows the smoothness of the maps X (., s), X(., $),Y(.,8), f/(., s), and controls their growth
and the one of their derivatives. More precisely, if we apply Corollary 3.10 to the Brownian motion f = B,

yields Vo € R, Ve €]0, 3[ and vd €], 1[:

1X (2, 8)llx.0.e < DollBlle, [lhg (@ 5)lloc.0.e
1Y (2, 8)llo0.a1 < DolIBll-a, [|hy (2, )lloc.a.1

Do Ble, (37)
Ds||Bll1-a-

3.3. 1-dimensional temporal approximation

Since ¥(f) is solution to an integral equation (c¢f. Rem. 3.4), we can produce an iterative algorithm to define
a function approximating ¥ (f)(x,t).

Concerning 0(f)(z,t), in case of f = B, an exact simulation is possible since 6(B)(x,t) = (e™** — 1) Xy(x)
where X is a centered Gaussian process with covariance ﬁ Let m = {t; = ih,0<i < N}, h=T/N, be a
subdivision of the interval [0,T]. We define the linear interpolation of a function f € C([0,T]), f(0) = 0:

t—ih

Vt € [ih, (i + 1)h], fi(t) = f(ih) + [f((i + 1)h) — f(ih)].

This function f” is a piece-wise linear function and so belongs to the set HY. Using (ii) in Proposition 3.3 we
obtain

t
vt = [y s)as
and so yields the induction for ¢ =0,--- N — 1:
w(f")(,0)
SN (@, @+ 1Dh) = e "Y(f*)(x,ih) +

0; (38)

1—e%h
e MGEAMEND)

since

v e+ om) = [ " s gy (s + / T et L D) — SR )

0 ih h

We now study the smoothness of the function f — f* when f is 3-Holder.
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Proposition 3.11. Let f € HJ([0,T]), 5 €]0,1[ and 0 < n < 3. Then f—f" € Hp_,([0,T]) and Hf*thHgﬂ] <
AR s
Proof. cf. Section 7. O
Remark 3.12. When f € H}([0,7]) and 0 <7 < 3, f € H}_,, and we can bound ||fh||H%7n by 4h’7|\f|\H% +
1l < 4B+ (1 + D)) e

From Theorem 3.6 and Corollary 3.7, we deduce:

Corollary 3.13. VB €]0,3[, 0<n <8, f € HY, h <1, then V(z,t) € [0,00[x[0,T],
19(f = F")loe,0,5-y = max(L, 2"~ [()(f — f*) (@, )] < Co(4h") | f s,

Similarly: |4 (f = f")lse,1,0 = max(a, D)|($)(f = f") (@, 1) < CoART)[|f s,
3.4. Simulation of the fractional Brownian motion

As an application of the previous subsections to the function f = B, the Brownian motion, we propose the
following algorithms, depending on two cases, if a < % or a > %, using the formula (38) respectively Remark
3.4 and Definition (36).

Definition 3.14. Let (B! i € Z) be a Gaussian white noise, with variance h.

Let a = o+ sign(2 — ), 7 €]1,2[, n € N" and ¢; = F(ll_a)r(j_l)(l_“)%.
2

When a < %, we get Vt = ih,

n 0

@ a0 = 3 GREE L+ e ) / e B,

j=—n+1 -

where ¢ (B")(r171,0) = 0, f?oo e™dB, is a centered Gaussian process with covariance function I'(x, z') =

oy
Note that ¢(B")(z,.) satisfies the following induction:
) - ) 1— —ri=1p
PBYE (i )R) = e (BN ih) + T B >0, (39)
When o > %, we get Vt = ih,
o n ~h 1 1-— eirjilt 0 j—1
fealt) = 30 B0+ | e an,
j=—n
where .
. o 1 ! .
B0 = oy | D0 BE = v(B( 1,t>] . (10)
=1

Using the Orstein-Uhlenbeck stochastic differential equation (32) and the link X(z,t) = X(z,t) 4+ (e** —
1) ffoo e"™dB, as the sum of two independent parts we get a simulation algorithm.
From the SDE we get for X = (B"):

1— efa:h

X(z,t+h)=e "X (a,t
(z,t+h)=e (w,t) + v

(Bt+h - Bt)
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and for X
0
X(z,t+h) = X(2,t+ h)+ (et _ 1)/ e™dB,,,
—o0
R 0
X(z,t) = X(z,t) — (e7*" — 1)/ e*"dB,,
—o0
. oo 1—eh on
X(z,t+h)=e""X(z,t) + T(Bwh — By) + (7" = 1) Xo(z),

the initial position is X (x,0) = 0 (cf. (28)).
Finally, using Proposition 3.1, Corollary 3.2, Corollary 3.10, (37), we get

Proposition 3.15. The approximation Wr‘j‘mh(ih) converges almost surely to W*(ih) uniformly when i =
1,---, 1, when n goes to infinity, r — 1 and h go to zero. More precisely, if o < %, n <, % —-n<e< %, then
the error is uniformly bounded YVt = ih:

. 1 1
[We(t) — WS, ,(t)| < 4(2Do + Dy + Do) < + 1>re[r1+r”<%a> S BB e
;-0 eta—3

The rate convergence of such algorithm is studied in [7] (¢f. p. 162) but without a temporal approxima-
tion nor an accuracy evaluation. Here we add the temporal approximation. Their rate convergence is about
O(NH% log N) where § = aA (% — ). Concerning our algorithm, if we choose a simulation accuracy of about
N0 <n< %, to produce an [ size image, we need to generate I independent random variables and a 2n
Gaussian vector where n = O(N"log N) and the algorithm complexity is O(log N N1*+7),

In [4], the authors have compared several methods for generating discretized simple path of long-range
dependent processes such as fractional Brownian motion. They pointed out that the method summarized here
is not exact but it is easy to implement and need not too much time.

4. APPROXIMATION OF A SHEET, 2 OR MORE DIMENSION

The generalization from 1—dimension to 2—dimension is not so easy: for instance, Taylor’s formula in
2—dimension involves the cross derivatives and, to control the constants, we need to detail the computations.
Moreover, note that this section can be applied to any Gaussian sheet. It also could be used for any process
written as Wf‘ 1“2 can be, as a multiple integral of any function satisfying the assumptions of Lemma 2.1

and belonging to a space ’Hg’,% (¢f. 4.4). For instance look at f[07+00[2 g(z,y) f1(z) f2(y)dzdy with suitable

assumptions on f; and g = B, the Brownian sheet. Here the aim here is to approximate the double integral in
the representations (7), (11), (16) or more generally (19) summarized as

1 —a —as
z— " Ulz,y,s,t)dxdy, 41
—a)L(§ — a2) //Ri v drdy “

where U will be specified below depending on the cases and a; = «; + %.sign(% —a;), 1=1,2.
The tools are the composition of functional operators defined above in 3.2 and, as a by-product, we will
obtain the error order and the convergence speed.

WCH,CQ —
s,t F(

1
2
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4.1. Approximation of a deterministic integral, dimension 2

In the following, we generalize the results in [1] recalled in Section 3.1. For any (d,e) € [0,1]*,d; < e;,i = 1,2,
we define the norm ||.||oc,d,e, on C(]0, +00[?, R) as follows:

||9Hoo,d,e=( sup [Q[xdll{m}+$611{x21}][yd21{y<1}+y”1{y21}]lg(%y)|7
x,y , T OO0

and the measure on (R—ir)2 fia.e(dz) defined as Tlj—; o min(z; %, z; " )da.
Theorem 4.1. Let o €]0,1[%, a; # %, a; = o + 3sign(3 — ), Bi €]l — ail, 3], (d,e) € [0,1]*, with
(di,e;) = (0,8;) when a; < %, and (d;,e;) = (1 — B4, 1) when a; > %, ~v = inf{f; — |% — a4, |% — a4, 1 =1,2},
. - l—a; __ . .

e>0,r=1+¢, n= [%]7 C} :r(lfai)(Jfl)%’ (] =-n+1,--- 771) ; (Z = ]_,2)

Let g and f be two functions in CQ[(R:)2,R] such that the norm ||.||so,d,e of the maps f, g, Ag : (z,y) —
2|0xg(z,y)| +y10yg(z.y)| and hy : (z,y) = [Ou2g(x,y)|z* + 2|00 y9(z,y)|zy + [0y29(2,y)|y> are finite. Let
Co = %, D, = %, then:

n

(i) /[O+ [2g(x,y)x‘a1y_“2dxdy— S g e
400

J1,j2=—n+1
< eCalllglloo,d,e + 1AGlloo,de + Ihglloo,d.e]

n

(i) Yo e lgtr ) = f ) < Dallg = hllocde.

Ji,j2=—n+1
Proof. cf. Section 7. O

4.2. Operators on Holder functions depending on two variables

We now extend Theorems and Corollaries 3.6 to 3.9 to the two-dimensional case.
Define the operators D;,i = 1,2, A:

Dl(f):t'_)f(sat)ff(slat)v DQ(f) : SHf(Sat)ff(Satl)v A =DyoDs. (42)

Then let H%h 5, be the set of real maps, continuous on (—oo,T]?, null on the axes, such that there exists a
constant C satisfying: V(s,t) € [-1,T]?, (u,v) € [-1,0[*

IAf] < C g, |5i — ta]™, (43)

with the norm defined by:

Ifllze  =inf{C >0, C satisfying (43)}.

81,82
Now let Sg, .5, C H%h& be the Banach space with the norm:

1 fllgy.8, = inf{C >0, C' satisfying (43) and (44)},

where
|Daf (u, s2,t2)] < C |ul*~Pr]sy — ta],
|D1f(s1,t1,0)] < C o'y — 1], (44)
[ (u,0)] < C Ju|'=Fr]o|'=F2,
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Remark 4.2. Here and in the whole paper, the norms like ||B||g or ||B HH% . admit an exponential moment
1:°2

so belong to any LP: it is a consequence of Theorem 0.3.3 page 7 in Fernique [9], applied to the semi-norm sup
of Gaussian processes.

We will apply all this section to the Brownian sheet B or to any other f € Sg, 3,.
On this vector space we define the eight operators:

1(f) = (,8,0) = O(F( D)), 8);  Palf) = (y,8,8) = P(f(s,.))(y, 1);
S1(f) : (@5,0) = DG D)@ s); Pa(f) s (ys,t) = D(f(s,))(y b);
O1(f) : (w,8,8) = O(f(, 1)) (@, 8);  O2f): (y,1,5) = O(f(s,.))(y,1);
O1(f) : (@,5,8) = O(f () (@ 5);  O2(f) : (y,t,8) = O(f(s,.))(y, 1)

O = (D +01) 0 (P + O9),
d= (P +61)0(Py+60y),
@ = (P14 O1) 0 (P2 + O2),
= (B +61) 0 (D + 6y).

In Lemma 4.6 and Corollary 4.7, we will show that these operators applied to the Brownian sheet respectively
define the fields X Z T, Y.

The operators @, <I>, ®, ® smoothness derives from the one-dimensional results and the following lemma.

Lemma 4.3. Let Ay € Ay and A(x,y,s,t) = Ay(x,s) o Ay(y,t). Then the map A is indefinitely differentiable
. . 2
with respect to (z,y), and ¥(i,j) € N7,

0;+yJJA(x, Yy, 8,t) = 9., As(z,8) 0 aij As(y,t) = aij As(y,t) 0 0L Ar(, 8). (45)

Proof. cf. Section 7.

Theorem 4.4. Let 8 €]0,3[2. The maps ®, &, ®, & from (R})?x] — 00, T)? to L(Ss, p,;R) are indefi-
nitely differentiable with respect to x et y. Moreover for any (i,j) € NQ, there exists a constant C;; such
that ¥(z,y, s, t) € (R)? x [0,T]?:

ﬂfiyj|\|a;+;]q)(%y,S,t)||| G, [1{x<1}+9€ 1{3;21}”1{1;<1}+y7ﬁ21{y21}]7
a'y? |05 &

iy 2(2,y, 8, 1)[]] < Ci jlz” 71{x<1}Jrﬂ?*ll{le}][yﬁrll{ya}+y711{y21}],
2y 1055 (g, 5, 0] < Cog [0 L pary + 27 o [Lyaay + 3 P11,

ﬂ?@””aﬂj&(%y,Svt)||| Cij[Lwary + 2 Loy ]y yay +y sy

Proof. 1t is a consequence of Corollary 3.10, Lemma 4.3 and operators ®, ®, ®, ® definitions.
More precisely, we note that C; ; = sup{D;D;, D;D}, D;D;, D;D’}. O
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4.3. Approximation of the fractional Brownian sheet as a finite superposition
of Ornstein-Uhlenbeck processes

The aim is to approximate the fractional Brownian sheet W'}*** (1), so we use Theorem 4.1 with g(z,y) =
U(z,y,s,t). First, we have to study the smoothness of the Gaussian sheets U and the associated functions AU,
hy, and their norm ||.||oo,d,e, (with (d,e) as in Th. 4.1) and prove that uniformly in (s, t):

(i) U = X,Y,T, Z belongs to C?[(R})?];
( ) Supx,ye(R+)2 (1' ]-a:<1 +x €1 19321)(3/ 21y<1 + y621y21)|1.zy]a;+y]J U(l‘, Y, S, t)| < 0, . +] = 07 ]-a 2.

The point (i) will be a consequence of the fact that X is the image of the Brownian sheet by the operator
® defined above and some similar tricks to be shown for the other processes. The point (ii) will be solved by
Theorem 4.8 below.

So, (s,t) being fixed, we apply Theorem 4.1 to g = U(.,., s,t), U being the image, by one of the operators
studied in the Section 4.2, of the continuous function B on | — oo, T]%:

s t
B(s,t):/o /O dBy..

Lemma 4.5. For any ( €]0, [ B admits a modification belonging to Sg, g,-

Proof. We apply Kolmogorov Theorem to Brownian sheet (B(s,t), (s,t) € [~T,T]?) and we note that the
following processes follow the same law as B:

(tB(Sv %)7 (Svt) € [07 +OO[2)a (SB(%at)a (Svt) € [07 +OO[2) et (StB(%a %)a (Sat) € [07 +OO[2)a

(cf. [6]). O

Lemma 4.6. Almost surely for any (z,y,s,t) € [0, +o00[>x[0,T)?,

X(z,y,s,t) = @1 0 Po(B)(z,v, s,t),
Xa(@,y,5,t) = O10 Q2(B)(w,y,s,1), (46)
Xs(z,y,s,t) = P10 Oz(B)(x,y, s, ),
Xy(z,y,s,t) = ©1002(B)(x,y,s,t).

As a summary, the sum of the previous equalities yields f((x,y, s,t) = ®(B)(z,y, s, t).

Proof. The two sides of the equalities (46) are continuous with respect to the four parameters so it is enough
to set this identity almost surely with fixed (x,y, s, t).

The first equality is obtained using the remark that e *(s—%) = ¢=25 4 :Ef:_u e~ *Tdr and the stochastic
Fubini Lemma 2.1.

The three other equalities are deduced from the identities

u u t u v
el y(tY) — :ce*yt/ e dr + :cy/ / e 7Y*drdz and e"e¥’ = :cy/ / e Y2 drdz.
—00 —oo Jt—v —00 J —00

We integrate them with respect to the Brownian sheet and once again we use the stochastic Fubini Lemma 2.1
since the maps (u,7) — e™ 1 <y<oy, U = ™1 o)(u), (v,2) = e V1, 4(2) € La1. O

Successively using the definition of the fields Y, T, Z (¢f. Def. 2.9), the operators @, <i>, ®, & definitions,
Lemmae 4.5, 4.6, the point (ii) in Proposition 3.3, yield
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*
Corollary 4.7. P almost surely, for any (z,y,s,t) € (R})? x [0,T]?,

X(xaya57t) = (I)(B)(Zayasat)a i/(xayasat):qs
Z(x,y,s,t) = (i)(B)(:E,y,S,t), T(x,y,s,t)ZQ(B)(m,y,s,t).

Globally denote the operator

U = @1]0’%[2 (a) + i)l]%,l[z (a) + (I)].]; 1[X]07%[(O¢) + Ql]oyl[x]%’l[(a). (47)

Lemma 4.6, Corollary 4.7 and Theorem 4.4 imply
Theorem 4.8. Let (d,e) € [0,1]%,d; < e;, defined as (0,0,€1,€2)Lyg 12 () + (di,d2,1,1)1y1 4p2()

+(d1, 0,1, e2)1y1 11490,2((@) + (0,d2, €1, 1)1yg 1)1 1((@). Then Vp > 0, the norms ||.||sc,a,e of ¥(B), AV(B)
and hyp) belong to LP and these random variables admit an exponential moment.

Proof. The field B € Sg, VB €]0,1[? (¢f Lem. 4.5) and P—almost surely, ¥(z,y,s,t) € (R})? x [0,T]?,
X = O(B)(z,y, s,t) (cf. Lem. 4.6). )
We then apply Theorem 4.4 first to X: V(z,y,s,t) € (R})? x 0,72,
2y 100 X (2, 5,1)] < Cij[laary + 27 Loz [Aiy<ty + 113 1Blles o

xryl

The case of the processes Y, Z, T is solved substituting Lemma 4.6 by Corollary 4.7.
The theorem proof is concluded using Remark 4.2. 0

This result shows the point (ii) asked at the top of this subsection as a corollary, choosing (d,e) as in
Theorem 4.1:
Corollary 4.9. Let 5 €]0, %[2 and (d;,e;) = (0,5;) when a; < %, (di,ye;) = (1 — B4, 1) when a; > %, the fields
U(B) satisfy the following:

[W(B)lloo,d,e < CoollBllg; [[A¥Y(B)llcc,de < (Cr,0 + Co1)lIBlls;

| huylloo,de < (C20 +Cr1 4 Cop)|Blls.

We can apply Theorem 4.1 to the four parameters sets defined in Theorem 4.8 depending on the position of oy
and ag with respect to % Recall the notations:

1 . 1
a; = oy + 5.51gn(§ —;),a = (g, a9). (48)
We now get a corollary which defines an approximation converging to the fractional Brownian sheet almost
surely uniformly and in any LP.

Corollary 4.10. Let W' as defined in Section 2 (1). For any (o, a2) €]0,1[%, a; # 3,6 €]|5 —ail, 5[,i =
1,2, (d,e) € [0,1]* such that (di,e;) = (0,53;) when o < %, (dise;) = (1 — 3;,1) when o; > 3, and v =
inf(3; — |3 — ail, |3 — i, i=1,2).

Foranye>0,letr=1+¢,n= [ﬁ], define the quantities (¢ = F(%l_ai)r(lfai)(j’l)’“l:i;:l, i=1,2,
j=-n+1,---,n) (cf. Th. 4.1) and the process
W,‘fi;’o‘Q(s,t) = Z c;lcfz‘I/(B)(rjl_l,rjrl,s,t).

J1,j2=—n+1



134 L. COUTIN AND M. PONTIER

Then almost surely for all (s,t) € [0,T]?:

2
Wepe2 — Wi (s,t)| <eCo Y CijllBls
i+5=0

where C,, defined in Theorem 4.1.
Proof. The chosen pair (d, e) allows us to use Theorem 4.1. So we get:
Wop e = W2 (s,1)] < eCalllUllos e + AU llos,d,e + 10 llocael,

where U = ¥(B). Moreover Corollary 4.9 controls the norms || . ||so,4,e of U, AU and hy (which belong to any
LP?, ¥p), so yields the result. O
4.4. 2-dimensional temporal approximation

The tools built in this section allow us to produce an iterative algorithm of the fractional Brownian sheet.
So we obtained an approximation of W'}*** on a grid {ih, jk} by induction.

Definition 4.11. Let (h, k) be a double interpolation step on the plane, Fih the linear approximation with
respect to the i*" component; we denote the “double” linear approximation: f"*(s,t) = FJ' o F¥(f)(s,t).

We mean that, if I; = [ih, (i + 1)h], J; = [jk, (j + 1)k], A; ;(f) is the rectangular increment on I; x J;, then
V(S,t) el; x Jj,

—h
FR(st) = Flih k) + S5 G+ Dbk = £k, 6]
t—jk s—iht— jk
* k h k

[f(ih, (G + 1)k) = f(ih, k)] + Aij(f)-

Proposition 4.12. Let (31, 32) €]0, %[2 and (e1,¢2), & < Bi, i = 1,2. The map f — f — f* is a continuous
linear map from HY 5 taking its values in My __ 5 ... More precisely the norm || f — f**[|50 '

B1—e1,82—¢2
bounded by:
[4h7 (1 4+ T)72 + 4k [(1+ 1) + 4h™ ][ fll 3o

B1.82

Proof. Recall the operators D;,i = 1,2, A:
Dl(f) e f(S,t) - f(S/,t), DQ(f) 1S f(S,t) - f(S,t/), A = D;oDs.
To bound the norm of a function g in H%l, 3, 1t is enough to bound quotients such as:

Ag(s7 SI’ t? tl)

!/ /
|S_S,|Bl|t_t,|ﬁ2) S#S,t?ét,

where (s,s") € [0,T)2, (t,t') € [-1,T)2
So we get f — fM* = (I — F' o F¥)(f). The triangle inequality yields

< = F) ()l

B1—e1,82—¢2

I E o (1= F)(f)llag

B1—e1,82—¢2

(L = F o FF) ()l

B1—e1,82—¢2

Proposition 3.11 and the fact that the operators Dy and Dy o (I — Flh) commute yield the bound:

I = Ff o FF)(Hllres, < 4h7 [ fllng,

—e1,82—¢c2

4 FE (Dl
2 1

B2 —e —€1,82
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Remark 3.12 says that the ’Hgis—norm of f is bounded by ||f||H%[(T + 1) + 4hf], so ||F(f)|eo

B1—e1.82
(T + 1)t + 4h=][| f[l 30, moreover || fll50 < (T + 1)%2[ fllyo-
B B1,B2—e2 B

Corollary 4.13. Let o €]0,1[%, o; # %, Bi €]|% — i, %[, i=1,2, ¢ < B4, and (d;,e;) = (0,53; — €;) when
a; < %, (diyei) = (1 — B; +¢€4,1) when o; > % Let

\I/i = (I)il]07 [(Oéi) + (i)l]_]%71[(051)

1
2
For any f € HY 5, the norms ||[¥1 o Ua(f — fPF)|lso.ae, are uniformly bounded: almost surely, for any
B1,82 .d,

(s,t) € 0,772

110 Wa(f — f"")loo.de < Cool4h™ (1 +T)7 + 4k ((L+ 1) + 45°)] fll2ee

81,82

Proof. Since f — fhF ¢ HgﬁElﬁTQ and ¥y o Uy is a linear operator, then Theorem 4.4 (i + j = 0) and
Proposition 4.12 show the result. (I

Now we can apply this corollary to f = B thus X% (z,y, s,t) = ®10®o(B"F), Yk (x, 1y, 5,t) = &1ody(BMF),
and so on, and we obtain the convergence with respect to the norm ||.||co,4,e and its speed.

Corollary 4.14. Let ¢ > 0. Using the same notations as in Corollary 4.13, let h = /%1, k = ¢'/%2. Let B be
the Brownian sheet. Then almost surely for any (s,t) € [0,T],

121 0 Wa(B — B")(.,..5.1) lsoae < D] Bl

- B2

where D = 4Co,0((1 +T)% + (1 4+ T)= + 4e). Notice that || Blly  is in LP,Vp.
1.P2

5. SIMULATION ALGORITHM

Finally, we gather all the results to propose a recursive algorithm to approximate the fractional Brownian
sheet. Actually the trick here is that the fields X, Y, Z, T have a kind of Markov property as it will be seen
using the induction formulae below.

5.1. The induction

Let f € Hg’r, B €]0, %[2 We obtain an approximation of ¥(f) by a recursive algorithm on a grid ((ih, jk),
i>0,j>0).

The linear interpolation f"* is a piece-wise C%2—class function on the quadrant [0, 7]2. We use the operator
®; then &5 and we get as for the operator :

S t
By 0 o(f1F) (2, y, 5.1) = / / eI 2 (3, ) dudv, (49)
0 0

meaning that
®1 0 a(f"F) (2, y, 5,1) = Y (S D) (2, 9))(y, 1),
We use the notations D; and A (42):

X(x,ih, jk) = (Dz(f**)(ih, jk))(x,ih),

X(x,ih, jk) = O(D2(f"*)(ih, jk))(z,ih),
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where X satisfies the following induction (cf. (38)) Vz,Vj € N, X(z,0, jk) = 0:

1—e7h

X(z,ih, jk) = e """ X (z, (i — 1)h, jk) + —

A(f"*)(in, jk) (50)

and X (z,ih, jk) is defined as L[Dy(f"*)(ih, jk) — X (x,ih, jk)].

We compose with 3 (respectively 1/;) on the second f"* component, Vz,Vy,Vi € N, X(z,y,ih,0) =
Z(z,y,ih,0) =Y (z,y,ih,0) = 0:

_ e Yk
X(’JJ, Y, Z.ha (.7 + 1)k) - eika(:Ea Y, Zha]k) + %X(IL’, Zh7.7k)a (51)
Yy
1—e ¥k
Z(%y, Zha (.7 + 1)k) = e_ykZ(x7ya Zha.jk) + TX(.f,Zh,]k), (52)
]+1
Y(x,y,ih, (j+ 1)k Zz’\f x,ih, jk) — Z(x,y,ih, (§ + 1)k)]. (53)

Now we apply this induction to Brownian sheet f = B to approximate W1:22(ih, jk). Remark that (A(B"*)(ih, jk))
is exactly the white noise (B/') introduced after Definition 2.10.

Definition 5.1. At any point (ih, jk) of the grid, i, > 0, W22 defined by

—a1 —a2
10}4;]2‘2 /R+ /R+ 1l al (% _ 052) U(l‘, Y, Zh,jk)dl‘dy

is approximated by

Wi;gfk(zh,]k) = Z 0]10]2Uh k(rﬁ 1 7,]2 1 Jih, jk) (54)

Ji,j2=—n+1
where n >0, r €]1,2[, h,k >0, ¢, = F(ll 1) (=) (=) and U is defined as
s—ar) l-a
UMk =0y 0 Wa(B"F) + [T} 0 Uy + Wy 0 Ty + T 0 To)(B"), (55)

¥; being defined in Corollary 4.13 and similarly T; = ©;1j9 1(a;) + éil]%yl[(ai) i=1,2.

Concerning T; o T5(B), an exact simulation is possible since

©1 0 Oa(B)(x,y,ih, jk) = (1 — e~ "")(1 — e %/*)By(z,y)

where By is a centered Gaussian matrix with covariance function I'y(z,2’,y,y") = ix m +y To obtain Tj o
T>(B) more generally, using (36), we get Ty o Ta(B)(x, y, ih, jk) = —1/201 0 O3(B)(z,y,ih, jk) or —1/y©; o
©2(B)(z,y,ih, jk) or 1/xy©1 o Ox(B)(x,y,ih, jk).

Besides, the terms T; o U, (B) are obtained recursively. For instance, let ©1 o Uy: operator ¢ is applied to a
centered Gaussian process and we get

yk ik

— 00

1 —e vk g0 (G+1Dk
61 o \IIQ(B)(xvya Zh? (] + 1)k) = eiykel © \IIQ(B)(Zﬂ y,zh,]k) - (1 - eimlh)i/ xexu/ dBuva
J

the last term is approximated by (1 — e_‘”h)lj’—;m times the centered Gaussian vector B(x) introduced in
Section 2.3.

Remark 5.2. Such an algorithm could be used for any stationary increments field belonging to H%h 3, as B is.
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5.2. Precision and complexity of the algorithm

We give the error in this approximation, gathering the results in Theorem 4.1, Corollaries 4.10 and 4.14 and
using the same notations as in Corollary 4.13.

Theorem 5.3. Lete > 0, r = 1+¢, B €lla; — 3],35[, 7 < Bi,i = 1,2, v = inf{|§ — |, B — |3 — |0 =
=1 _ 7. _ -1
1,2}, n = [ptiig) h=k=¢"/"

At any point (s,t) € [0,T)?, [We22(s 1) — Wf‘}z?k(s,tﬂ is uniformly bounded by

2
e |Co Y CijllBlls + DaDl| Bl (56)
i+5=0
where Cy, = %, D, = %, D=4Coo(1+T)"+ (1 +T)"+4e), I =T/h,J =T/k.
Finally, for any p,
2
| sup  Wenes(st) — Wi, 0l <e | Co D2 CosllIBllslly + DaDlIBlags, Il
(s,t)€[0,T7] i+5=0
Proof. At any point (ih, jk) of a grid, the fractional Brownian sheet W12 (ih, jk) is approximated by:
n
Do UM i, k).
Ji,je=—n+1
Two types of errors occur: one of the integral approximation, one of the time interpolation.
(i) Corollary 4.10 gives the error bound uniformly when (s, t) € [0,7]*
(W22 (s, t) — Wit (s, )| < eCa Y Ciy|Blls
itj=2
with Wenee(s,t) =320 . el 2 U(B)(r =t r27 s ).
EEI}Z The (ieiimition Wf;‘fk(s,t) = e mi ¢ 3, UMk (=1 pi2=1 s 1) implies an error specified in (i)
eorem 4.1:
n
> ¢, W0 Wy(B— BMF)(r T r2 7 s )| < Dal|W1 0 Ua(B — B"F)||sc ae,
Ji,j2=—n+1

with (d,e) defined as in Corollary 4.13. The last norm is controlled in Corollary 4.14 using the choice of
parameters in Corollary 4.13 and the fact that B € H%, V3 €]0, %[2:

191 0 Ws(B — B**) e < DBl . D =4Co0((L+T)" + (1+T)" + de).

The choice of 7, n, h, k yields the conclusion since T'= hil = kJ. O

Remark 5.4. At last, it remains to know how many terms are to be computed with respect to the convergence
speed: let N > 0, and choose an accuracy of about ¢ = N~". Then n,r, h, k are deduced:

ne~N"MogN, h=k=N"11=J=N.
v
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Moreover, to produce an I2 size image, we need to generate I? independent random variables, a 2n x 2n Gaussian
matrix, (14 I)I Gaussian vectors in R*". Finally, looking at (50) to (54) the computations complexity is about
O(n?1J), or (with respect to N):

O([log N2 N2(4m),
As an example, let ¢ = 0.1 and o; = 3/4, B; = 0.495 and let us choose n = ¢; = 0.49. Then, n is about
%10 log 10 and even +y is very small, n could be not so huge.

6. CONCLUSION

Chan and Wood presented in [19] the failing cases when the circulant matrix deduced from the covariance
Toeplitz matrix is not definite positive (see also Stéphanie Léger’s thesis [13] where the author tried this
algorithm) because of numerical computations (and not because of the model). A job is now to be done and
is in progress: after managing this simulation, we verify this simulation robustness with numerical estimations
on this fractional Brownian sheet synthesis. In a first approach, this seems to be better than these obtained by
Stéphanie Léger in [13].

Acknowledgements. We sincerely thank the anomymous referee and the associated editor: their remarks and comments
are very helpful. We also thank all the colleagues who listened to our presentations, especially Serge Cohen for his warm
encouragements.

7. ANNEX

Proof of Remark 2.4. To show the continuity of X, we first prove a so-called “Kolmogorov’ Lemma”. Perhaps
it is well known, but for the moment we miss a precise reference. The standard result (¢f. for instance [12]
pp. 53-55) can be written in multi-indices case using rectangular increments as follows. Let o; the elements
of § = {—1,+1}% and a random field X on [0,1]%, s and ¢t € [0,1]%, let a; the parity of the sequence o,

oj(s,t) = (s?j(i)tifaj(i),i =1,---,d) let the operator A:

AXsy = Z (=) Xo, s,y = Da(Da-1(--- (D1X) -+ +)), (57)
0;ES

where D; is the finite difference operator on the ith coordinate. In the case d = 2, look at Theorem 5.1 p. 1266
in Bernam [6]; this theorem can be written in multi-indices case using AX (57):

Let X a stochastically continuous separable d-indices process and there exist positive constants r,C, e, such that:
BIAX]"] < Ty ¢, [t — s, (58)

then X is almost surely continuous on [0, 1]¢.

If these assumptions are satisfied by the field X (8), this one is continuous in L?, so separable. Since X is a
Gaussian field, it also satisfies the stochastic continuity.

By definition, X (z,y,s,t) = B(f(z,s,.)f(y,t,.)) with f(z,s,u) = 1|4 (u)e~*(=%): between two points in
R*, the L2(Q)-norm of AX is the L2(R*)—norm of A[f(z, s,.)f(y,t,.)] that we can summarize as the double
variation: Af(z,s,.)f(y,t,.) = As(Az(f)).-Ae(Ay(f))-

This increment is the product of two increments on different spaces so it is enough to verify the assump-
tions (58) for one of the factors.

Let us remark that f(x,s,u) = fi(x,s,u)f2(s,u), fi(z,s,u) = e 2" fo(s,u) = 1j0,5)(u) with [f;] < 1.

Thus, |As(f)] < |As(f1)| + |As(f2)] and the L2-norm is bounded: ||As(f)]|2 < C+/|As| since f; is C*-class
and A(f2) = [y 4 (u). Moreover AX law is Gaussian so: E[|A X [*] < C|As|3/2.
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Moreover the fact that f; is C*-class yields |A.(f)] = |f2.Ax(f1)| < C|Az| so: E[|[A:X|]2 = [[Az(f)|l2 <
ClAz|.
Finally, [As(Az ()] = |As(Az(f1) f2)| < [AAL(f1)] + |Az(f1)-As(f2)], get the L2-norm bound:

128X |2 = [AsAu(Hl2 < IAA() 2 + 180 (f1)-As(f2) |2 < CAZ(As + VAs).

Bernam’s theorem with r = 3, = % shows that X admits a continuous modification with respect to the four
parameters. 0

Proof of Proposition 3.3.

(i) ¥(f)(z,s) can be written f(s)[e™** +z [5 e~®"dr] —a [J e ™" f(s — r)dr or f(s) —x [; e~*~%) f(u)du
after a change of variables.
We now use the following steps:

(a) the operators 1) and 1& commute: ) o Y=o 1&7

(b) the function ¥ (f) is C'—class on [0, +o0[x[0,T] and 8,¢(f) = — o (f) ; ds0(f) = ¥(f), and when

f is derivable satisfying f(0) =0, ¥(f) = ¥(f’),
(¢) the function ¥ (f) is differentiable with respect to z and 9,0 (f) = — o Y(f) = — 0 P(f),
(a) follows from the point (i) and Fubini theorem.

(b) The map (x,s) — 1 (f)(z, s) admits partial derivatives respectively with respect to s and z:

0:01)(w5) = £(5) = | T f(u)du = p(f)(z, 5),

0i(),s) = = [ (s = e flu)du =~ o D) (0,9).
(¢) Moreover (z,s) — 1(f)(z, s) admits partial derivative with respect to z:
0u(f)(,8) = = (f)(w,8) — 203 (f) (@, 8) = = (f)(w, 5) — a0 b(f)(x, 5)
which coincide with —1 o ¢)(f)(z, s) so (c) yields.
(i) Let the function F': s+ [ f(u)du, the point (b) applied to F proves (ii). O
Proof of Theorem 3.8. We will use the fact that f € S, implies that Yu < —1, |f(u)] < [|f]lalul'~® and

Vu > =1, |f(u)] < [|fllaful®
When n = 0, we get:

1 fe%e]
O < (1 =) [ ale = dut [ el

The second term integral in the right hand is less than I'(2 — a)z®~2, and the first term integral is less than
I(1+a)z=> . Since a €]0, [, I'(a+1) and T'(2—a) < T(1) VI(2) = 1. So the bound is || | (1 —e™®%)[z* ! +
x %]

Sincea < 3, ifz > 1, (1—e ® )2t <27 andifz <1, (1—e * )z~ < 2* 2T = T2, so the theorem
is proved for n =0, and Cj =2V (1 +1T).
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Besides, when n > 1, let us note that (1 —e™*%)e* = :L'f;:s e*"dr. So we get
0 0 u
0(f)(x,s) =x(l — e*“)/ fwe™du = / f(u)(/ z2e™ dr)du.
We now use Leibnitz rule and Lebesgue derivation theorem to get:

0 u
O 0(f)(x,s) = /_ f(u)(/_ »(1’27”71 + 2nar™ 1t 4 n(n — 1)r"2)e* dr)du.

Using that f € S, and switching the variables u and —u, r and —r, we get:

u+s
(z*r™ 4 2nar™t + n(n — 1)7"”2)e”dr> du.

108 0(F) (@, )] < | fllac” / (U T + =1 0nr) < /

Note that the map on R+, u — uYe™™, when v > 0, is bounded by ¢, = (%)”’7 for instance ¢; = e~ ! < %, cy =

4e=2 < 1. This remark and careful bounds prove the theorem. We detail the proof only in cases n = 1 and
n=2.
When n = 1, the bound is

(') u+s
||f||a$/ (uLy<1 + ul_a1u>1)/ (z%r + 2x)e”*"dr)du.
0 u

First, as in the case n =0, z [~ (u®Ly<1 + ul’a1u>1)(f;+s 2ze”*"dr)du < 427 1yp>1y +2(1+ 1)L pcny.
The first term in the integrand 2?re=*" = 2ze~*"/2(xr/2)e~*"/? < 2ze=*"/2¢~! s0 we get the bound

0 u+s o'} u+s
x/ (U<t + ul_“1u>1)(/ 2re” " dr)du < 2x2e_1/ (u1ly<1 + ul_“1u>1)(/ e 2dr)du =
0 u 0 u
4671.%/ (U Ly<y +u' " 1ysr) (1 — efzS/Q)efm/Qdu <deta(l - 637“/2)[(2/9U)wr1 +(2/x)?7?] <
0

162 “Lip>1y +8(1+T)a%1pay-
Globally,
2|0,0(f)(2,5)] <102V (L +T)[flla(@™ Lizz1y + 2% 1gacry)-
When n = 2, the bound is

(') u+s
||f||afﬂ2/ (uLy<1 + u17a1u>1)(/ (222 + 2zr 4 2)e”*"dr)dw.
0 u
The last term is the same as in the case n = 1, so we get:

00 u+s
IQ/ (ualugl + ul_“1u>1) (/ 2€_xrd7“) du < 2(1 — e_“'s)ac_“ < 4I_a1{121} + 2(1 + T)Ia]_{z<1}.
0 u

The second term is twice the first of the case n = 1, so we get:

o) u-+s
:c2/ (u*lu<t +u' " 1ys1) (/ 2xre”dr> du <3207 1>y +16(1+ T)2% 1 pcny.
0 u
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The bound of the first term is quite similar: z2r2e=*" = 4e=*"/2(zr/2)%2e~*"/2 < dege™ /2 < 4e*7/2, 50
o0 u+s o0 u+s
:L'Q/ (uLy<1 + TR PR (/ x2r2e_”dr> du < x2/ (uLy<1 + TR PR (/ 4e_”r/2drdu) =
0 u 0 u

S:E/ (uLy<1 + w51 (1 — e*“/Q)e*m/Qdu <
0

8x(1 — e ™/2)[(2/2)* M + (2/2)*7°] < 32(20 “Lip>1y + 1(+T)2 Ly
Globally, we get m2|8£29(f)(:c, s) <502V (1+ T))||f||a(:£*a1{l.21} + xal{xd}). O

Proof of Proposition 3.11. We have to bound the difference | f(s) — f"(s)— f(t)+ f"(t)| with respect to |s—¢|~".

So let
0= [f(s) = f"(s) = f(&) + f" (1)
s — 117707 T Teg
Suppose that s < t,s € I;,t € I;,. Three cases occur.
(i) i = k: t — s < h so the numerator of Q is:

s—t

F(8) = F(s) + ——(F((i + 1)h) = f(ih)| bounded by £l [(t - s)% + (t — s)hP1).

Thus @ < [(52)7 + (52)' 7+ < 2.
(ii) i < k and ¢t — s > h: the numerator of @ is:

SR+ 1Ry~ ) — [F(kR) — 70+

|f(ih) — f(s) + (f((k+1)h) = f(kR))]];

the first term is bounded by ”f”HOB[(S —ih)P + (s —ih)hP71] < 2hﬁ|\f|\H%, the second one is bounded similarly
and so Q < 4(2)° " < 4.

(iii) 4 < k and t — s < h: here we write the linear interpolation f"(s) with respect to the common point
(i+1)h:

71) = £+ 1)+ TS i m - peany),

Let us remark that (i + 1)h — s <t — s < h so yields the bound:

48) — R < 17+ 0m) — )+ T 5y 1m) - pam) < gl - )7 + (¢ - 9p0 71,

The bound of the second term is the same since t — (i + 1)h <t — s < h.
So Q < 2(t2" 4 =Ty <y, 0

Proposition 7.1. Let (d,e) € [0,1]%, two functions fi, € L*([0, +oo[,R+,udk,ek), k=1,2,andg € C?(]0,+0)% R)
such that the norm ||.||co.d.e of the maps g and

hg : (2,y) = |0p29(x,y)|2® + 2|00 y9(x, y)|zy + [0y29(2, y) |y

are finite. Let r €]1,2[, n € N* to define a geometric subdivision of 10,4o00[ , 7
Ij = [tjfl,tj],' let:

I
—~
i
3
-
3
~
~
N
I
<
©

) ) fl_xfi(x)dac
= file)de ; ) =————,j=-n+1,---,n;i=12.
J /Ij 1( ) f[j fl(x)dx
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Then
n . B
\ [ senn@heay - 3 ddgia)
[0, 400l ij=—n+1
3
< 32 -1y Dol s+ Cllgloentiel 3 1oy + Lo, o)l ..

k=1,2

where C = max[[| filla, o, » /2l g e ]-

Proof. First the integral of the function (z,y) — g(x,y)f1(x)f2(y) on ]0,+o0[x[0,r"], 0, +oo[x[r™

,+OO[,

[0,77™] x [0, 400] et [r™, +00[x]0, +00[ is bounded as follows; for instance, the assumptions on fi, k = 1,2 and

g yield

/M /OO 9(z,y) f1(z) f2(y)dady =

/ /fc y2g(x, y)z= " fr(z)y~ " fa(y) dxdy+/ / My g(z, y)a~ " fi(z)y = f2(y)dady

which is bounded by:
9000, ll f2llpay o | F1 000,071l -
Similarly we get:

”M@,EQ Hfll]r",oo] Hudl,al :

/ g, y) 1o (2) fo (y)deed
[r™,00) x]0,400[

The other bounds are obtained by inverting the indices 1 and 2.

Secondly we manage a bound of the difference on each I; x I; now called as [a, b] X [¢, d], dropping the indices

i et j. Let to bound :

D= /[ g OBV )y — /w f1(2)de /M folw)dag(n.m2)].

To do that we introduce two independent random variables X, k = 1,2, with a support respectively in [a, b]

and [c,d] and a density with respect to Lebesgue measure W. We develop the function g with order 2

between points X = (X1, X5) and n = (91, 72):

900) = gn) = 3 (X = m)hglm.m) + 5 [ D*(6X + (1= Om)(X ~ 0, X ~ )
k=1,2 0

In this difference, the 1-order term is null because of the definition of 7. The 2-order term, denoting ¥ =

o (X1 — 771) 2
7}/1 + 0,29(Y)Y5

X, — 2
(23/72772) +20: 49(Y)Y1Ys
2

(X1 —m)(X2 —n2)

8,29(Y) Y2 e

The first term factor can be written

0,2g(YV)Y? = Iy (V" 1y, c1 + Y Ly >1) 0,29 (V) YPIEL, Y, A Y75

(v =
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The sum of the absolute value of the two first terms is then bounded by

X, — 2 X, — 2
L e L !

since Y takes its values in [a, b] X [¢, d].
The absolute value of the last term is also bounded by

X, — 2 X, — 2
”hglloo,d,e |:( 12a2771) + ( 2262772) :| (a—dl /\a—m)(c—dz /\0_62).

Globally, we obtain the following bound to the expectation of g(X) — g(n):

3 V(X V(X
D<= fi@)(a=h Aa=ot)da fo(@) (™% A c™22)dx|| byl co.d.c (—( 21) + (2 2)) )
2 Jia [e.d) @ ¢

Let us note that the variance maximum of random variables with a support in an interval is the squared length
half of this interval:

D< 3 fl(ac)(a*dl Aa")dx fg(ac)(c*d2 A c2)dx||hgllco,d.e {(b

_ 2 d— 2
4 SaNCELA
[a,b] [e,d]

a? c?

Moreover, in one hand when a = 7%, b = r*+l "’;—3)2 = (r — 1), and in the other hand f[a . fi(@) (@ A

a=*)dz < et [, 4 fi(@)dpa, e, (2), thus

3
D<ort (=17 | fi()dpa e (@) | Fo(@)dpase (@) hglloo,a.e
[a,b] le,d]
We now sum all these bounds on all I; x I; plus the edge terms:

‘/0+ . 9(@,y) (@) f2(y)dady  — Zcmg )

i,j=1

3
S 5T r 2 (1 — 12 hglloode 1 fillay oy 1 folldnies + Cllgllooacl D I felow—llia, oo + 151 toolllia, -, ]
k=1,2
since the sum of f[% fl(x)d:udufl f[ f2 dud2,€2( ) is equal to ||f1Hltd1,al ||f2||Hd2,52' U

The following corollaries are deduced; they are useful for the time discretization.
Corollary 7.2. Let (d,e, f1, f2) and g satisfying ||Agllco,d,e < 00 and the assumptions of Proposition 7.1, then

n

Y cdlomim) — g0 TS 0= D fillay e, 2l o 18 oo,des
i,j=—n+1
where c¥, n,k=1,2i=-n+1,---,n, n etr are defined in Proposition 7.1.

Proof. Let D; j = clc3lg (%, 1) — g(r'=*,7~1)] and use Taylor theorem:

IDij| <leled| sup {|0z9(z,y)lIn} — ' + [9yg(z, y)|lmd — 77|}
xcl;ycl;
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Note that |ni — 71~ is less than (r — 1)r*~! and that = € I; implies that =1 < x so:

|Dij| < (r—1lejci| sup {x|dug(x,y)| + y|dyg(z,y)[}.
zel;,yel;

Using ||Agl/co,d,e definition we get
[Dij| < (r = Dleief| ()= A )7 ()72 A7) 72| Aglloo.ae.

But ¢} = 11[7“"*1,7"’“] fi(z)dx and pg, e, (dz) = 7% Az~ dx so

1Dy j| < (r — Dyreres /

[t

£ (@)t o () / Fol&) iy (A2) Ag e e

[ri=1,r]
To sum these bounds with respect to ¢ and j get the conclusion.

Corollary 7.3. Let (d,e, f1, f2,9,h) satisfying the assumptions of Proposition 7.1, then

n

o aclgtr ) = h IO S il 2l ey 19 = Blloo,des
i,j=—n+1

where c¥, n et r are defined in Proposition 7.1.

77

Proof. Let D; j = [[g(r*~",r7=1) — ("', 777 1)]elc3|. Using the norm [|g — hllso,d,e definition, we bound D;

by
i Gy ()~ A ) (T TR AT T2 g = hl|osde-
But cf = f[rifl,w] fr(x)de and pg, o, (dz) = 7% Az~ dz so
Diy<r e [ A (o) [ oo (@)l ~ Al
[ri=t,ri] [ri=1,rd]
To sum these bounds with respect to ¢ and j get the conclusion.

Proof of Theorem 4.1. The chosen pair (d, e) allows us to use Proposition 7.1 and Corollary 7.2 with
file) =a7% i=1,2.

(i) First we get

n

D = | 9@, ) i@) fo(y)dady — > e g e
[0,+00[2 j1,j2=—n+1

IN

k=1,2
A = D2 filliay ey [ Folliag ey 189100 de-

Besides, we compute
[ fk(L10,0-n1 + Lm0 llaay ey -

3
577 =12l hglloo,dcll fillnay e, | Folliy ey + Cllallooael D 1oy + Lo tocllinay o,

(59)

(60)
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An integration computation shows when oy < %:

L —nd-an). 1 —n(ag+Br—1)
I frly0,r-mllay e, = %_akr 27 | fklpn ooy ey e, = mr RO
and when oy > %:
e Ly0,0-)llsay e, = S 161 00)lpay e, = L pontex=))
7T " , € ) ‘Wr7 , € *
W —ap+ Or+ 3 W — 3

So the sum on k£ = 1,2 is bounded by %7’*7” using the v definition. Getting r = 1 we easily deduce that

2 1

1 fillnay e, = +
e =204 B — |5 — ol

2
<=z
v

Thus, recalling that » = 1 4+ ¢ < 2, the first term in the right bound of (60) is less than

2 n 1
I1—2ai|  Bi—|5— ail

24
62T, 1 » ( ) Il e < <225 gl

Then recalling that C' defined in Proposition 7.1 is max;—; 2 ||fi||ud7,,ei and that r=™ ~ g, the second term in
the right bound of (60) is less than

2 2t ) lgloe.ae < 5l
£— max £— .
vi=1,2 \ |1 — 24| B — |% — Illoo,die = 2 Illoo,d,e
Finally, the third term in the right bound of (60) is less than

2. 1
1= 20i| B~ |5 — il

16
AT < ) 180t < 25180 o

So yields the constant Cy, = %.
(ii) Let ' ' ' '
Ejy ja = lej e, (g(r =Hr2 ™) — h(ri 7 27 h),

71772
We use Corollary 7.3 to bound Ej, ;, by

1,72

AL R (e e s P (e Il PR PP

But ¢ = f[rjk,lﬂ_jk] fr(z)dx and pg, ., (dz) = 27% Az~ dz so

Ej1,j2 < TelJrez/[ L ]fl(x):udhm (dI)/ fQ(I)MdL@(dx)Hg - h”oo,d,e-
ri1—1 i1

[riz—1 pi2]

. < %, so yields the conclusion. [

To sum these bounds with respect to j; and js get D, = TQHk:LQkaHH%
Proof of Lemma 4.3. The key of the proof is the commutativity of any operator in .A; with any operator in As.
For any f € Sayaz (2,4, 5,1) € (RL)?x | =00, T]?, 87, A2(f)(y, 1) belongs to Sa, similarly 9}, A1 (f)(z,s) €
Sas,, S0 the operators compositions can be done. Then we do an induction on (i, ).
The result is true for ¢ = j = 0 since any operator in .4; commute with any operator in Ay (it is a tedious

but straightforward formal verification).
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We now suppose that the result is proved for (i,j) and we prove it for (i,7 + 1). The same will be true for
(t+1,7). Let (z,y,s,t) € (Ri)Qx] — 00, T)?. On one hand by definition for any f € Sa; a»

O3, Ay, 5,0)(f) = lim ~[0k A (0, Aa((F) o+, )z, ) — B A (0, Aa ) (s ), )]

e—0

But the operator GiiAl(x, s) is continuous linear so it commutes with the limit, this limit moreover belongs to
SCH,CQ:

O, Ay, s, 0(f) = 9hAy (hm 07, Ag(f)(y+e,t)—a;,.AQ(f)(y,t)]) (z, 5),
= LA A ) (a,),

so we get -1 7HL A(x,y, 5,1) = 01, Ay (2, 8) 0 8]J+1A2(y, ).

T yJ+1
On the other hand using the mductlon assumptlon.

~ 1 . . ] .
0 Ao, 0(f) = limy 20, Ax(@ A1 () )y +,) = 8y A2(O5e Ar () ) 91 0)
= 9 A0 A (S (1), 9)) (0, )
and the lemma is proved. -
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