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PRICING RULES UNDER ASYMMETRIC INFORMATION

SHIGEYOSHI OGAWA'! AND MONIQUE PONTIER?

Abstract. We consider an extension of the Kyle and Back’s model [Back, Rev. Finance Stud. 5
(1992) 387-409, Kyle, Econometrica 35 (1985) 1315-1335], meaning a model for the market with a
continuous time risky asset and asymmetrical information. There are three financial agents: the market
maker, an insider trader (who knows a random variable V' which will be revealed at final time) and
a non informed agent. Here we assume that the non informed agent is strategic, namely he/she uses
a utility function to optimize his/her strategy. Optimal control theory is applied to obtain a pricing
rule and to prove the existence of an equilibrium price when the insider trader and the non informed
agent are risk-neutral. We will show that if such an equilibrium exists, then the non informed agent’s
optimal strategy is to do nothing, in other words to be non strategic.
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1. INTRODUCTION

The purpose of this paper is to extend Kyle and Back’s model [3,18]. Firstly in 1985 Kyle [18] defined an
equilibrium problem. On a Gaussian financial market in discrete time, there are three agents: a market maker,
an insider trader, a non informed agent (noise trader). The market maker has to define a pricing rule in such
way that an equilibrium does exist between the traders. Back [3] extended this model to continuous time. Then
El Karoui and Cho [5] relaxed the Gaussian hypothesis in Kyle’s model using fine tools in stochastic control
[8,10]. Finally, Cho [6] delivered a new version of Back’s model, also relaxing the Gaussian hypothesis. In these
four papers, the non informed agent is supposed to be non strategic and so he/she is called “noise trader”. As
in Cho [6], we like to ask the question: what happens if the non informed agent tries to be strategic instead of
being only “a noise trader”?

On such a model, let us mention Guillaume Lasserre’s thesis [20] and [21] which extended this problem to
multivariate case in continuous time, the agents using a non specified utility function.

Among previous models of insider trading, let us mention [1,2,11-14,19,23]. But these models are quite
different: the main tools are enlargement of filtration [1,2,7,16,17,24] and change of probability measure [9].

Finally, Kyle and Back’s equilibrium model has to be distinguished from other models such that Arrow-Debreu
or Arrow-Radner ones. These equilibrium were studied in an asymmetric information context by Pikovski and
Karatzas (no published preprint) and Hillairet in her thesis (¢f. also [15]).
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2. THE MODEL

At time t € [0, 1], the insider trader holds X; units on risky asset, the non informed agent receives a random
endowment I; and holds Z;. Let Y; = X; + Z;, which is observed by the market maker. In order to discover
price P; of the risky asset, the following hypotheses are done:

There exists a C*2 function H on |0, 1[x[R such that price P; satisfies:

P, =H(t,Y:), Vt,  — H(t,x) is non decreasing, 9, H > 0. (1)

On the filtered probability space (Q, (FZ,t € [0,T]),P) associated to B, a standard Brownian motion, we get
a random variable V' independent of B and we suppose that the insider knows V' (which could be the price at
time 1, more precisely V = Py ) so:

dX; = ot,Y,,V)dt, X, € L' (a(V)), (2)
where « is a measurable function such that
Vz,af.,x,V) is cadlag and = +— «(s, z, V) is uniformly Lipschitz, on [0,1] x R. (3)

We will call such function f(¢,z,v) (or f(t,z) resp.) with 3 (or 2) variables (t,z,v) (or (¢,z)) regular when it
satisfies the same condition (3) in (¢, ) for each fixed v.
The non informed agent buys Z; and consumes the remainder of her/his endowment denoted as F:

dE; = e(t,Y;)dt 4+ od By, where o > 0,
where e is regular in the above sense (3), and
A%, = —B,Y)dt +dE, Z, € R, (4)

where [ is regular. Notice that § represents the non informed agent’s consumption speed. He/she invests
his/her endowment minus his/her consumption.
So, we can introduce the following filtration:

F = (o{V,(Bs,s < t)},t €[0,1]), (5)

obviously, the filtration (F%),t € [0, 1]) is completed and get right continuous (¢f. [1]): it satisfies the “usual”
properties” (see for instance [22]). We can consider that F; is the insider’s information at time ¢.

More generally, FM denotes the complete right continuous filtration generated by the process M. For instance,
FY is the market maker’s information at time ¢, the public information. Under the hypothesis that 0,H > 0,
the knowledge on Y and P are the same, hence the filtrations F¥ and F* are identical.

Proposition 2.1. Under hypotheses (1) to (4), the following stochastic differential equation admits a unique
strong solution:
aY; = [a(t, Vs, V) + e(t,Y;) — B(t, V)]t + 0d By, t € [0,T), Yo # 0. (6)

This solution is an F-Markov process.

Proof. The hypotheses are such that (6) satisfies the existence and uniqueness hypotheses (¢f. [22] Th. 6 p. 194
for instance).
This equation is a diffusion equation with an initial c—algebra non trivial:

Fo=Nso(a(V) v FP). O
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Corollary 2.2. The filtration generated by the process Y and V is the same as the filtration F:
Fi= ﬂs>t(U(V) V}—ay)

Proof. By construction, the unique solution to (6) is F-adapted, and so, Vt, 7} C F; ; by definition, o(V) C F;
and we get Ngs¢(FY Va(V)) C NestFs = Fi.
Reciprocally, since ¢ > 0 and

odB; = dY; — [Oé(t, }/ta V) + e(ta }/t) - ﬂ(tv Y%)]dtv

Vt, By is Y V o(V)-measurable, and we conclude the proof. O
Let us remark that the independence between V' and B implies that B is also a (F,[P) Brownian motion (cf.
[7] or [16] for instance). So we get the following:

Proposition 2.3. Conditionally in V,Y is a FY -Markov process, i.e. Vf there exists a measurable function h
on [0,1] x R x R such that almost surely:

E[/tl f(S,YS7V)dS/.7'—t] = h(ta}/tav)

Proof. 1t is a consequence of Proposition 2.1 and Corollary 2.2. We obtain that Y is a F-Markov process, so
we get the conclusion. O

Remark 2.4. The F-Markov process Y is associated with the infinitesimal generator
a3 1 292
A% z[a—l—e—ﬁ]@x—l—aaé)m.

3. THE PRICING RULE

The market maker observes the filtration ¥, so that he/she can make price H (t,Y;).
Definition 3.1. The function H, mentioned in the hypothesis (1), is called the pricing rule.

The insider trader has to choose a strategy «, and the non informed agent has to choose a strategy 5. The
“admissible” strategies «, 3, satisfy Hypotheses (2), (4) and then the stochastic differential equation (6) admits
a unique strong solution. So we define:

Definition 3.2. The set of the regular functions «(¢, z, v) is denoted by S, whose element is called admissible
strategy for the insider trader.

On the other hand, &’ the set of the regular functions 3(t, z), which is the set of admissible strategies for
the non insider trader.

Definition 3.3. (1) A strategy §* € &’ is optimal if

6* € argmax {5 —F [ / Py [(e(s.2) — B, Y2)ds] + / V(e B)(s Y;.>ds} Be 8’}

where ¢ is measurable satisfying Vz,d(.,x) is cadlag and z +— §(s, ) is uniformly Lipschitz on [0, 1] taking its
values in 10, 1].
(2) A strategy o* € S is optimal if

o € argmax{a B [/Ol(v - Ps)a(s,Y;,V)ds/a(V)} Lae s} .
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Remark that the coefficient § is an “impatience coefficient”, it means that it delays the agent’s profit. Think
of [4] where entrepreneur and financiers are differently impatient.

Besides, in [20], the insider’s terminal wealth is Wy + fol XsdPs + (V — Pp) X4, but using Ito formula this is
the same since in our case (X, P) = 0.
The market maker’s aim is to discover a pricing rule H satisfying (1) and such that optimal strategies exist in
S, S’. Moreover, the price has to be rational (P is a FY -martingale):

P =H(t,Y;) = E[V/F], t € [0,1].
Non necessarily V' is equal to Py (¢f. [3] or [20]), it could be V = Py .
Remark that, as in filtering theory, we can introduce the innovation process which is a F¥ —Brownian motion,
1.€.
dl; =dB; + o~ '(a + e — - a),dt where &y = Epla(t,Y;, V)/F'] + (e = B)(t, Ya),
in other words dY; = odl; + a.dt.

4. RISK NEUTRAL AGENTS, u = Id

Bellman’s principle is to optimize between ¢ and terminal time 1 supposing we know how to optimize between
0 and ¢ (for instance look at [8] p. 95 et sq). Let the value functions:

7o) = / (V — H(s,Y.))a(s, Yo, V)ds (7)

1
~+ess sup {E {/ (V — Ps)y(s,Ys, V)ds/]:t} , YES, Yl = al[oyt]} )
t

7w = b|f (65, YoV — P)(e — B)(s, Ya)ds/ FY ] ®)
sesssup {2 | [ (B YV — P (e — ) (s, Y2)ds) [FY . e 110 =100}

Remark that in the first term above V' can be get out the integral and replaced by P, its conditional expectation
with respect to FY .
The following is a consequence of Proposition 2.3.

Proposition 4.1. Vy € S, ( € &', there exist measurable functions f-, gc such that:

E [ / WV H (s V(s Y V>ds/ft] — YLV,

E [ [ 6. Y0V = Pt = o) Ypsas) /7Y } — g (LY.
‘We now denote

1
W (t,Y:, V) = ess sup {E {/ (V. —H(s,Ys))v(s, Ys, V)ds/ft} Y ES, Y0 = al[ojt]} , (9)
t

and
1
Uﬁ(t,Y}) = ess sup {E [/ (6(s,Y5)V — P)(e — fy)(s,}/;)sds)/f,}/] Y ES, Y0y = 61[07,5]} . (10)
t
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Remark that
t
50 = [V = Hs. Yoads + WOt Y:, V),
0
and

¢
JP(t) / —H{(s,Ys)(e — B)(s,Ys)ds + H(t, Yt)/ 8(s,Ys)(e — B)(s,Yy)ds + UP(t, V7). (11)
0
Moreover, we have boundary conditions: We(1,z,v) =0, U%(1,z) = 0, V(v,z) € R?.

Let us use Nicole El Karoui’s result ([9], Th. 3.10, page 180): Vo, V3, J* is a (F,[P) super-martingale
and J# is a (FY,P) super-martingale. Moreover, a* € S,3* € S’ are optimal if and only if J% is a local
(F,P) martingale and J'? is a local (FY,IP) martingale. So we get a tool to manage the existence of a couple
of optimal strategies. With Ito’s derivation formula — dropping « and j for simplicity and denoting d:(e — 5);
instead of §(t, Y:)(e — B)(t, Y;) — we get:

dJe(t) (V — H(t,Y;))adt + o, Wdt + A“PWdt 4 60, WdB;.
dJP(s) = —H(t,Y:)(e— B)edt + H(t,Y;)d:(e — B)dt (12)

t
+/ Ss(e — B)sds [atH(t, Yy)dt + 0. H(t, Y:) e + e — (] dt + %cﬁxHant}
0
t
+0,Udt + A%PUAt + o [&CU +/ ds(e — B)sds x &cH(t,Yt)} dB;.
0

We have to write the process J’8 with respect to the (FY,P)-Brownian motion I:
dJP(s) = —H(t,Y;)(e — B)edt + H(t,Y;)d:(e — B)edt (13)

/ 5s(e — B)sds [é)tH + 0, Héy + 585951{02} (t,Y;)dt
1 t
+ [atU + 0, Udy + 58@&#] (t,Y;)dt + o [&;U + / ds(e — B)sds x O, H(t, Yt)] dI,.
0

First of all, the super-martingale property implies the two following inequalities Vo, V3:

t 1
— H(t,Y:)(e— B) + H(t,Y;)d: (e — B)¢ + / 5s(e — B)sds [&H + 0, Héy + 503901%2] (t,Y:)
0
+ [atU + 0, Uédy + %aﬁzwﬂ] (t,Y:) <0,(V — H(t,Y;))a + o Wdt + APW < 0. (14)

The first inequality has to be satisfied Vo, V3, so it has to be Va. But this expression is linear with respect to
a@. So we get:

t
/ Sole — B)ods x B H(t,Yy) + U (L Yy) = 0, (15)
0

and the optimality of § is equivalent to:
¢ 1 1
(0 — 1)(e — B)eH(t,Y?) +/ ds(e — B)sds {&H + Eaﬁxﬂﬁ] (t,Y;) + (&U + 5028§QU> (t,Y;) =0.
0

Remark that this system implies that d.J’? is identically null, so J’? is a constant on time.
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Equation (15) implies dt @ dIP almost surely (recall that by hypothesis 9, H > 0):

Aaxemms%%%%%. (16)

Differentiate this equation with respect to time:

Sile — B)edt = (17)

R2U  0,U0%H 0,U 1, [(0.U
( ol * G > (t,Y,)dt — 0, ((%H) (1. Y)dY; — 50°07, ((%H) (t,Yy)dt.

So the local martingale part is null, that is to say, since Y is a Brownian diffusion,

8,U
Vt,Va, 0= 0, (c%H) (t,z), (18)

and consequently % does not depend on x so

0. U
0 H

vt, dP a.s., (6(e —PB))(t,Y:) = —0; ( ) (t,Y;) (denoted as — f'(t))

only depends on time, so does the function d(e — 3). Yields from (18) that 0,U/d, H is a function only of time
and from (16):
.Ut x) = [f(t) — f(0)]0H (¢, x),

and since U(1,z) = 0 Vz we can conclude that
Ut x) = [f(t) = F(O)H (L, x) +g(t) with f(1) = f(0) = g(1) = 0.

Besides we deduce from d,(e — 3); = —f’(t), that:

(e~ B) = ~6;Lf(t) and / 5.(c — B)ods = £(0) — F(0). (19)

We now use Equation (16) and the results in (19), V¢, Va:

L o

0= (6~ 13 A2 + (70) - F0) (0 + 30°0%, 1) (.2)

1
IO = 1) (01 + 30°0H ) (12 + F(OH(.2) + (0
and after cancellations, Vi, V:
5t a) f () H (¢, @) +g'(t) = 0. (20)
Recalling that 6=1(¢,Y;) f'(t) = —(e — B)(¢, V), this yields the optimal strategy for the non informed agent:
(e = B°) (&, YD) H(t,Yy) = g'(1). (21)

By the way, as in the non insider’s case, the super-martingale property:

Vo, (V — H(t, )+ 0W + (a+ e~ 0)0.W + 1002, W <0, (22)
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induces a linear expression with respect to a, so once again we get:
0=V —H(s,z)+ 0, W(s,z,V) (23)
and there exists optimal o* is equivalent to:
1
0=0W(s,z,V)+ 502831.W(3, x, V) + (e — B): 0, W (24)

with boundary condition W (1,z,V) = 0.
In such a case, we get a necessary and sufficient condition for the existence of an optimal o is the system:

0.W (s,z,V) = H(s,x) =V, 02, W(s,z,V) = 0,H(s,x), (25)
oW (s,z,V) = —(e—p)0:W(s,z,V)— 302851.%/(5, z, V), (26)

thus using the expression (19) for (e — ) yields:
W = —H Y(s,2)g'(t)(H(s,2) = V) — %0281H(s, z)=—g'(t)+ g ) H 'V — %0281H~
We differentiate this last equation with respect to x and (25) with respect to time ¢, so we get:
OH =02 W = —¢' (t)H *VO, H — %UQang
and a nonlinear differential equation:
OH = —g'(t)H 2V, H — %&aﬁxﬂ. (27)

But this one is depending on V, so necessarily ¢’ is identically null and thus, recalling (20), f* = 0 and the
optimal strategy is (e — 3)(t,Y;) = 0, that is to say

the better the noise trader has to do is to do nothing. (28)

So we now came back to Cho’s paper [6]. But we have stress that a non informed trader has not to invest to
do the best.

Using Ito formula, we get H(¢,Y;) as a semi-martingale, but by definition, t — H(t,Y;) is a
(FY IP)—martingale so it has to be driven by the innovation process I:

1
dH(t,Y;) = |0:H + &40, H + 502859511 (t,Y;)dt + 00, H(t,Y;)dl,,
thus t — H(t,Y;) is a (FY,P)—martingale is equivalent to a new partial differential equation
1
O H + 60, H + 502%11 =0. (29)

The comparison with the previous one (27) shows that actually if « is optimal, & has to be null, i.e. a result
shown by Cho. Remark that in such a case dY; = odl; and o~ 'Y is a (FY,[P) Brownian motion.
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5. MODIFICATION

So far we have discussed the problem in its simplified situation, that is: we supposed the market maker
observes the sum Y; = X; + Z; to make price. In other words we developed the discussion by treating the
intensity of both traders’ activities, insider and non-informed, with equal weight. But there may be an idea
saying that such situation may not be close to the reality. Let us consider for example an extreme case where
the activity X; of the insider is very small and almost negligeable before the overwhelming activity of majority
noise traders. Then we wonder if our result can still hold true for such case.

As a first step toward the amelioration in this point of our model, we try to take into acount the portion
between the intensities of these two traders, say A (€]0, 1[) and we suppose that for the price making the market
maker observes the amount,

Vi =AX:+ (1 - A)Z,.

Combining this with the equations (2),(4) we find the following equation for the Y}, instead of the equation (6).
dY; = [Aa(t, Y, V) + (1 — A){e(t,Yy) — B(t, Vi) }dt + (1 — A)od B, Y, #0. (30)

Now with this model we like to repeat the discussion. But this is quite easy because we need not to do
other things but to follow the same discussion only by changing the coefficients a(t,y,v), (e — 5)(t,y), o to the
Aa(t,y,v), (1—A)(e—B)(t,y), (1 — A)o respectively. By consequence we readily find that our result about the
optimal policy for noise trader (28) still holds true in this modified model, but the equation (29) for the price
function should be modified into the following form:;

1
O H + Ad0, H + 5(1 — A)?0%02 H =0. (31)

Recall that &; = E[a(t,Y:,V)/FY] so actually Ad; is to be null. Either A = 0 or a; = 0. The first case A =0
means that there is no insider traders and it is another problem. The alternative is &y = 0 and we come back
to the previous section and Cho’s paper [6].

Finally, what happens if A goes to 1 7 meaning that the percent of insider traders is increasing. Then since
dY; = Ad:dt + (1 — A)odl; and the insider’s optimal strategy satisfies &; = 0, Y; goes to be a constant when A
goes to 1. Recalling that dY; = Aaydt+ (1 — A)odB; it means that also a should be null. This could mean that
the existence of noise traders is indispensable for the trading to be done in the market. On the other hand, if A
goes to 1, the consequence in Equation (31) is that 0, H goes to 0, the price H becomes a constant, and these
two facts (constant price and no trading) are consistent.
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