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CYCLIC RANDOM MOTIONS IN RE-SPACE WITH n DIRECTIONS

AIME LACHAL!

Abstract. We study the probability distribution of the location of a particle performing a cyclic
random motion in R?. The particle can take n possible directions with different velocities and the
changes of direction occur at random times. The speed-vectors as well as the support of the distribution
form a polyhedron (the first one having constant sides and the other expanding with time t). The
distribution of the location of the particle is made up of two components: a singular component
(corresponding to the beginning of the travel of the particle) and an absolutely continuous component.
We completely describe the singular component and exhibit an integral representation for the ab-
solutely continuous one. The distribution is obtained by using a suitable expression of the location of
the particle as well as some probability calculus together with some linear algebra. The particular case
of the minimal cyclic motion (n = d + 1) with Erlangian switching times is also investigated and the
related distribution can be expressed in terms of hyper-Bessel functions with several arguments.
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1. INTRODUCTION

Historically, Fok [4], Goldstein [5], Griego and Hersh [6], Kac [7] studied the connection between random
evolutions and hyperbolic partial differential equations (see the monograph by Pinsky [20] for more references).
In this domain, 1-D telegrapher’s process which is related to the 1-D waves equation is certainly the most famous
motion.

Many authors attempt to define similar processes in higher dimensions with possibly variable velocities.
Numerous models in the literature deal with random motions with few directions in low dimension (2 or 3),
constant speed and exponential switching times for the changes of direction. We review several of them (the
list is not exhaustive):

e in dimension 2: Di Crescenzo [3], Kolesnik and Orsingher [8], Leorato et al. [11], Orsingher [13,14],
Orsingher et al. [15-18] studied random motions with constant speed with three and four directions,
exponential switching times, the changes of direction obeying various rules (cyclic, reflecting, orthogonal
or random deviations);

e in dimension 3: Leorato and Orsingher [10], Orsingher and Sommella [19] considered random motions
with four directions changing with uniform law.

On the other hand, Di Crescenzo [2] studied a generalization of telegrapher’s process (random motion on the
line) getting rid of constraints on the speed and switching times. He introduced alternating velocities and
considered changes of direction occurring at Erlang distributed times.

Aside from this, the case of higher dimension arose in very few papers: Lachal et al. [9], Samoilenko [21,22]
studied cyclic, minimal random motions in R%, that is with d + 1 directions forming a regular hyper-hedron,
the directions being taken in a deterministic order.

Such evolutions can adequately describe (in simplified versions):

e particles moving in a turbulent medium, for example in the presence of a vortex (see Orsingher and
Ratanov [17]);

e clectrons moving randomly in a conductor and changing direction (with damping of velocities) when
reaching the boundary of the conductor;

e the microscopic behavior of gas particles (or biological microorganisms) changing of direction when
collisions with other particles occur...

More specifically, cyclic random motions can be applied to concrete situations arising in various domains (see [2]):

e in insurance: a company get positive incomes from policyholders and pays indemnities when damages
occur. Incomes are regular but damages occur at random times. The profit gained by the company can
be modeled by a 1-D telegraph-type process with two velocities and random switching times;

e in reliability: consider a system where machines can break down. The profit gained when a machine
works and the cost paid when it is under repair can be modeled by a similar process with two different
random switching times;

e in queues: a single-server queueing system produces a positive gain when the server is busy and have a
cost to pay when the server is idle. This is also an alternating (cyclic) situation. More than two states
(busy-idle) may be considered. We postpone an extension of this example to the application displayed
in Section 2.

Now we describe the cyclic motion which is examined in this paper. Consider a particle moving in the
d-dimensional space R? according to the following rules:

e the particle follows a finite number n of possible directions D1, ..., Dy;

e for each direction, the particle moves with a constant velocity depending on the direction: along the
direction D, its speed-vector is given by the vector ‘_/; with a constant norm V; € (0, +00) depending
only on j, 1 <j <mn;

e the directions change at random instants 71,75, . . . and the laps of time between two switches, Ty41— T},
k > 1, are independent random variables;
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e the motion is cyclic, that is, the particle moves successively in the direction D1, D, ..., Dy, D1, Do, ...
and so on, in this order; actually we shall write Dy, Do, ..., Dy, Dypy1, Dpto,... with Dy = Dy,
Dy, 4o = Dy and so on.

We suppose that the particle starts at the origin O at time 7Ty = 0 with direction D; and velocity V;. This
assumption is not restrictive. Indeed, the results related to another initial direction may be easily deduced from
the case of D; as an initial direction by simply translating the indices of the directions. The initial direction
may be chosen randomly as well; see for instance the case of the famous Goldstein-Kac telegraph process (5]
and Section 4.1). We also suppose that n > d+ 1; the case where n < d is evoked at the beginning of Section 3.

We introduce the points A;, 1 < j < n, defined by O—A; = ‘_/; Let v; = (v14,...,v4;) be the coordinates
of the point A; (or, equivalently, the components of the vector ‘_/;) We also introduce some cyclic notations:
forany ¢ > 0and 1 < j <n, Dinyj = Dj, Aingj = 4Aj, Vznﬂ- = 1_/; and vip4; = v;. We make the following
assumption:

Any ordered cyclic subset {4, ..., A4} of d+1 points within the set {A, ..., A,} form a d-dimensional
polyhedron. By “d-dimensional”, we mean that this set is not contained inside a hyperplane (i.e. an
affine subvariety of dimension d — 1) of R%. Actually, the polyhedron A; - - - A; 4 is convex because d+ 1
points in dimension d always generate a convex polyhedron.

We call, for any j < d+1, PJ(t) the solid (j — 1)-dimensional convex polyhedron (tA;)--- (tA4;), and B, (¢) the
solid d-dimensional convex hull of the polyhedron (¢A4;) - - - (tA,,); note that this last polyhedron may be convex
or not. The sets PJ(t) and P, (t) are analytically defined as

j j
P(t) = {ZtkAk with ¢1,...,t; >0 and Ztkt}, (1.1)

k=1 k=1
n n

P(t) = {ZtkAk with t1,...,t, > 0 and Ztkt}. (1.2)
k=1 k=1

Write, for any ¢ > 0 and 1 < j < n,
Tz(]) — Tin+j _ Tz'nJr(jfl) and Sz(]) — ZTIEJ)
k=0

respectively for the time during which the particle evolves in the direction D; for the (i + 1)th time (the motion
starts in the first cycle, which corresponds to ¢ = 0), and for the total duration that the particle takes the
direction D; up to the (i 4+ 1)th cycle (the last one being included but possibly not completed). The random
variables Ti(j ), 1 > 0, are identically distributed random variables with a probability distribution depending only
on the index j of the direction D; and which is absolutely continuous with support [0, +00).

Let FTO(]')(t) = IP’{TZ-(ﬂ > t} be the survival function of Ti(j) (which does not depend on i) and fs§j>(t) =
P{S§j ) e dt}/dt be the probability density function (pdf) of Si(j ).

—

Let us denote by X (¢) and V(¢) respectively the location and the speed-vector of the particle at time ¢t. We
have

(oo}
— —
V() =Y Ln<i<ny Vi
k=1
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and then, if T,_; < ¢ < T, (with X(0) = O), the location of the particle at time ¢ writes, noting that
11 (T — Th—1) = Ty (since Tp = 0),

X(t)=X(0)+ /0 ‘_/)(s) ds = i(Tk —Te1)vi+ (t —Tpoq)v, = i(Tk —Ti—1) (Vg — V) + tv,.
k=1 k=1

By considering all the possible cycles and putting = in + j (which corresponds to i complete cycles and j di-
rections), this can be rewritten in terms of the n different directions as follows:

Ifi = 0, for t € [Tj—laTj);

j—1
X)) =S TWvy + (t—T;_1)v; (1.3)
k=1
j—1
= To(k)(vk —vj)+tvj. (1.4)
k=1
Ifi>1,forte [nn+j—17Tin+j)7
j—1 n
X(t) =8 v + 3" 8B v+ (t = Ty 1)V (1.5)
k=1 k=7

For j = 1, it should be understood in (1.3), (1.4) and (1.5) that >7_} = 0.
The main purpose of this paper is to describe completely the probability distribution of X (¢) by expressing
it in terms of those of the durations Ti(l), e ,Ti(n) and Si(l), e ,SZ-(FI), SZ-@l, e ,Sff)l. For this, we consider

the distribution of X (¢) subject to follow the j*® direction after having performed i complete cycles:

pij(dx;t) = P{X(t) € dx, ¢ complete cycles and j directions}
- P{X(t) € dX, TinJrjfl <t < zjinJrj}'

Actually, the probability distribution of X (¢) is made up of a singular component and an absolutely continuous
component. Indeed, from (1.2), (1.3) and (1.5), we can see that the particle is located inside the time expanding
convex polyhedron P, (¢) (including its boundary). The particle will produce the singular component at the
beginning of its travel, that is, more precisely, during the first cycle (¢ = 0) with the first d directions (1 < j < d).
By (1.1) and (1.3), the support of this singular component is the hyper-face (tA;) - - - (tAq); this is the (d — 1)-
dimensional polyhedron P, ,(t). The rest of the travel—the end of the first cycle (i = 0) with the (n — d)
last directions (d + 1 < j < n), and the other cycles (¢ > 1)—produce the absolutely continuous part of the
distribution; its support is the d-dimensional polyhedron (tAy) - -- (tA,), that is B, (t).

The pdf of the absolutely continuous component of X (¢), p(x;t) = p(dx;t)/dx, may be then derived by
summing p;;(x;t) = p;j(dx;t)/dx with respect to the indices i and j:

n

pst) =Y pi(xst) + Y pos(xit)

i=1 j=1 j=d+1

whereas the singular part is given by the sum Z?Zl poj (dx; t).

Our method relies on relations (1.3), (1.4) and (1.5) and consists of computing the joint distribution of the
underlying durations ng ). This way has been efficiently used by Di Crescenzo [2,3] in the cases d = 1, n = 2
and d = 2, n = 3. Let us finally mention that a very close approach has also been used by Leorato and
Orsingher [10], and by Lachal, Leorato and Orsingher [9] in the case of a minimal cyclic motion (n = d + 1)
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with exponential switching times. In that particular case, the joint distribution of the SZQ )5 can be evaluated
by invoking order statistics.

2. APPLICATION: A MULTI-FILES QUEUEING SYSTEM

Consider a queueing system constituted of n single parallel queues Q1,...,Q, and only one server. The
server successively treats the queues Q1,Q2,...,Qn,Q1,Q2,... and so on in a cyclic order according to the
following rule: for 1 < j < n — 1, the server treats v; customers waiting in queue @;, the duration TU) of the
service offered to each customer being exponentially distributed with rate A;, and then instantaneously passes
to next queue Q;4+1. As a byproduct, the duration of the service offered to queue @; is distributed as Erlang’s
law of parameters v; and ;. After completing the service of queue @, the server return to queue @)1 and the
process goes on similarly.

On the other hand, the authority of the system have to pay numerous charges: running costs, maintenance
expenses, refund of loans, supplies, taxes, insurances... The authority can also place its profits into a diversified
portfolio. Assume that there are d kinds of charge/profit which have c1, ..., cq as costs/values per time unit.
Consequently, the profit per time unit gained in queue ); must be divided into d parts according to different
percentages; so, it is convenient to write this profit per time unit as a d-dimensional vector (v1;,...,vq) in R4,
Precisely, component v;; will be the fraction of the profit per time unit won at queue @); placed into the asset
of value ¢; if v;; > 0, or devoted to paying charge ¢; if v;; < 0.

Globally, the quantity X (¢) represents the total amounts gained in the whole system intended to supply the
portfolio and to refund the various debts at time ¢.

Other rules may be appended to the foregoing situation:

e the time spent for the server to pass from a queue to the next one may be random and would possibly
generate a supplementary cost to the system. This is the so-called switchover time; see e.g. [1] for more
details about this situation;

e the server may leave a queue only when it is empty and then pass to the next one. In this case, the
duration of service T'U) is the busy time of the server in queue Q.

Let us point out that this last queueing model may be applied in reliability theory. Indeed, a machine can pass
cyclically by several stages from well-working to the failure through different intermediate working states. The
last state corresponds to the failure and the machine must be repaired before performing a new working cycle.
Each state generates a net profit and/or a maintenance cost which can be modeled by the system depicted
above.

3. EVALUATION OF THE MEASURE p;;(dx;?)

In this section, we evaluate the measure p;;(dx;¢). This study is essentially divided into two parts: the
first one deals with the singular component of the distribution probability of X (¢) which is related to the first
cycle (¢ = 0) with j directions, 1 < j < d. The other part concerns the absolutely continuous component
and corresponds to the case of ¢ complete cycles plus j directions with ¢ > 1 and 1 < 5 < n, or i = 0 and
d+1<j<n.

We suppose n > d+ 2. The case n = d+ 1 will be considered in Section 4 and the case n < d gives raise only
to a singular component which is similar to the case where n > d+2,i=0and 1 <j <d.

We split this section into four parts: in Section 3.1, we give a preliminary representation for the measure
pij(x;t); in Section 3.2, we achieve the computations of the singular component of p;;(x;t) while in Sections 3.3
and 3.4, we achieve those of the absolutely continuous component of p;;(x;t).
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3.1. A preliminary representation for p;;(dx;?)
We begin this study by providing a first integral representation for p;;(dx;t).
3.1.1. Thecasei=0and 1 <j<n

For i = 0 and j = 1, we plainly have X (t) = tvy for ¢t € [0,77) and then the probability distribution of X (¢)

is simply .
p01(dx;t) = P{X(t) S dX,t < Tl} = ]P{tVl € dX,t < Tl} = FT(1) (t) 5((‘1X — tVl)
0

where § denotes the usual Dirac distribution. For i = 0 and 2 < j < n, the probability distribution of X (t)

writes, in view of (1.3) and by using the independence of the To(k)’s, 1<k <y,

poj(dx;t) = P{X(t) e dx,T;—1 <t <T}}

- ]}»{le <t ZT(E’“) (Vi = v;) + tv; € dx, T > t — le}
k=1

t
=/ { -1 € ds, ZT (vip —vj) €dx — tv],T(§])>t—s}
0
Jj—1

/ {Z k (Vi — V) de—tv],ZT(k)eds} {To(j)>t—s}

1
t j—1
=/ Tm {ZT (Vi —vj) €dx — tv],ZT Eds}.
0 k=1
Similarly, using (1.4), the probability distribution of X (¢) can also be rewritten as

Jj—1

poj (dx; t)IP’{ 1 <t ZTO vi + (t —Tj-1)v; € dx, Té)>t7T] 1}
k=1

t .
:/P{ -1 € ds, ZT vkedx—(t—s)vJ,T(j)>t—s}

k=1
Jj—1 Jj—1
/ Tm (t—s) IP’{ To(k)vk edx — (t — s)vy, ZTO(k) € ds}.
k=1 k=1
In view of (3.1) and (3.2), we are led to introduce the linear maps ¢, ¢ : R7~! — R+ defined by

j—1

Jj—1 Jj— j—1
P(tr,... tj—1) = < (V1K — v15)tk, - - s (Udkvdj)tkaztk>a
k=1 =1 k=1

k
Jj—1 j—1 j—1
d(ty, ... tj—1) = <Zvlktkv . ~azvdktkvztk>-
k=1 k=1 k=1
We can rewrite (3.1) and (3.2) as

poj(dx;t) = _Téj) (t—) ]P’{ga(Tél), .. .,Téj_l)) € (dx —tv;) ds}

FTOm (t—s) IP’{(Z)(TO(U, . ,To(jfl)> € (dx — (t —s)v;) ds}.

S~ S~

(3.2)
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For computing the probabilities lying in (3.5) and (3.6), we shall use an elementary result concerning the
probability distribution of the linear image of a random vector; the details of that way are postponed to
Appendix A.

We shall use either (3.5) or (3.6) according as j < d+ 1 or j > d + 2. The reason for this is that when
2 <j<d+1, the map ¢ is injective whereas for d+ 3 < j < n, ¢ is surjective. When j = d + 2, ¢ is bijective.
In order the terminology be clear we recall the definitions of injective, surjective and bijective maps.

Definition 3.1. Let f : E — F be a map. This map is said injective (resp. surjective, bijective) when for
every point y € F, there exists at most (resp. at least, exactly) one point z € E such that y = f(x).

3.1.2. The caset >1
Suppose now that ¢ > 1. In order to reduce the sum Z] ! S(k)vk + Zk ] 1vk lying in expression (1.5)

to only one sum, we introduce the duration Si(j ) defined for 1 < k < n by
S _ S if1<k<j-1,
S® i <k <n.
In these settings, we simply have

Z S(k)v + ZS(k)lvk = zn:?(k)
k=j k=1

Observe also that

Ty 1_Zs(k)+zsk znzg(k)

k=j k=1

()’S 1 <k <n, we have

Using Tinyj = Tinyj—1 + Ti(j) and the fact that Ti( Dy is independent of the S
Dij (dX; t) = P{X( ) € dX in+j—1 < t < Tszr]}

:P{ i1 < 4, ZS”VH (t = Tinsj1)v; € dx, T >t — Ty s 1}

/ (J) IP’{ Zgi(jk)vk edx — (t — s)vy, Z?i(jk) € ds}. (3.8)
k=1

k=1

Let us introduce the linear map 1 : R” — R*! defined by

n n
Yty ..yt (Zvlktk;'-'azvdktk‘7ztk>' (3.9)
k=1 k=1
Formula (3.8) can be rewritten as

1 =(n
pi; (dx; ) / TQ) (SZ(]),...,SZ-(j)) € (dx—svj)(t—ds)}. (3.10)

For computing the probability lying in integral (3.10), we shall use again the results of Appendix A and more
specifically those of Appendix A.2 for the map v is surjective in this case.
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3.2. Singular component (i =0, 1 < j <d)
3.2.1. Some settings
We decompose the linear map ¢ defined by (3.3), as described in Appendix A.1, into

cp(tla s 7tj*1) - (<,01(t1, . '7tj71)a wg(tla cee 7tj71))~

The linear maps ¢, : R7=" — R/~ and ¢, : RI~! — R47+2 (corresponding to the dimensions p = j — 1 and
g =d+1 of Appendix A.1) are defined as

j—1 j—1
<,01(t1, s 7tj71) = (Z(vlk - vlj)tka ceey Z(vjflk - vjlj)bc)a

k=1 k=1

j—1 j—1 j—1
@2(751, . ,tj_l) = (Z(Ujk — Ujj)tk, RN Z(’Udk — Udj)tk, Ztk> .

k=1 k=1 k=1
Set also

Jj—1 j—1
(,52(t1, . ,Ifj_l) = <Z(Ujk — ’Ujj)tk, . ,Z(Udk — ’Udj)tk> .

k=1 k=1
By hypothesis, the solid polyhedron A; --- A, is not included in an affine subvariety of dimension (j — 1), so
at least one of its projections on the (j — 1)-dimensional spaces of coordinates has a non-vanishing (j — 1)-
dimensional volume. Let us suppose that, e.g., this condition is fulfilled for the first projection p : R¢ — R7~1
defined by p(z1,...,2q) = (21,...,2j-1). By means of a well-known formula, the oriented (positive or negative)
volume of the (j — 1)-polyhedron p(A4:)---p(4;) is given by

v11 ... U1y

(]71)' Vj—11 ---Vj—1j
|

We assume for instance that V;_; > 0. On the other hand, we remark that

v11 ... V14
V11 — V1 Vij—1 — V14

detp, = : : =] - S l=0G -V

. e . oy o Vj—11 --- Uj-1j
Vj—11 = Vj—1j5 --- Vj—14-1 = VUj-1j 1 1

So, the map ¢, is bijective and the map ¢ is injective. Invoking Lemma A.1, the probability lying in (3.5) is
given by

- 1
P{@(Tél), . ,Téj 1)) € (dx —tvj) ds} = G-V, §((dz; — tvjy, ..., dzq — tvg;, ds)
'V,_
— (902 o (pl_l)(xl —tvij,. .., Tj_1 — tUj_lj))
oRICTRT ) (o1 (@1 —tvy, oy @jog = tujon ) dag - ey,

(3.11)
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where f( ) stands for the joint pdf of the random variables Tél), . ,Téj -, By independence, we

.. 1D
have
f(Té”,...,ng*l)) = fro ® @ fro-n.

The symbol ® in the foregoing equality denotes the usual tensorial product of functions which is defined by
J
(L@@ f) (@, x) = ] falan).
k=1

In (3.11), the variables z1,...,2;_1,s must obey the constraint that all the coordinates of <p1_1(x1 — SU1jy .-,
xj_1 — Svj_1 ) are positive.

Let us introduce the coordinates ?,gj)(xl, co,mj—1), 1 <k < j—1, of the (j — 1)-uple o1z, .. ,Ti—1),
that is:

(pl_l(l‘l, . ,ZL’jfl) = (%fj)(:cl, N ,Z’jfl), N ,’7’;{)1(931, N ,Z’jfl)) . (312)
We also introduce the function ¥() defined by

Jj—1

ﬁ(j)(Il,...,.Z‘j_l):Z%]gj)(xl,...,l‘j_l) (313)
k=1

so that
((‘020 @fl)(Il, e a-rj—l) = ((‘52(~(j)(x1, e ,J)j_l), . ,%j(];)l(Il, e ,$j_1)),19(j)(I1, e ,J)j_l)). (314)

Notice that the ?,gj bs and 90 are temporal variables when the zj’s are spatial variables.

3.2.2. Deriving the singular component

With these settings at hand, we can write down the following equalities, in view to clarifying the Dirac
measure lying in (3.11):

(Ij — t’Ujj, e, g — t’Udj,S) — ((pQO gofl)(xl — t’Ulj, cee s L1 — t’Uj_lj)
= [(xj,...,xd,s) — (@20@1’1) (xl,...,xj_l)} —t[(vjj,...,vdj,O) — (@2ogpf1)(v1j,...,vj_1j)]
(2,0 ) — %(ﬂm(xl,,..,xH),...,%}J_)l(xl,...,xj,l))

—t[(%, ce 3045, 0) — %(ﬂ(])(mﬁ )y B (Vg ,Uj—lj))]

= (xj —Gg.j)(xl,...,xj_l;t),...,xd—9((;)(301,...,xj_l;t),s—t—i—r;j)(xl,...,xj_l;t))
where we set, in the last displayed equality, for j < k < d,
(Héj)(zl,...,xj,l;t),...,G((ij)(zl,...,:cj,l;t)) = ()52<’7'1(j)(931,...,.’L‘jfl),...,’7'_](];)1(331,...,"]3]',1))
+t[(vjj,...,vdj)—¢2<%1(”(v1j,...,v]-,lj),...,%j({)l(mj,...,vj,lj))} (3.15)

and
T;j)(Il,...,l‘j_l;t) = t|:1 +19(j)(’l)1j,...,’l}j_1j)} —ﬁ(j)(xl,...,xj_l). (316)
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These computations lead to the following expression for the Dirac measure in (3.11):

(5((d$1 —tvjj,...,dxg — t’Udj,dS) - ((,02 o (pl_l)(acl —tvij,.. ., Tj_1 — t’Uj_lj))

:5<d57t+7';j)(x1,...,:£j,1, )><H(S(dl’k790)(1'1,...,1']',1;15)). (3.17)
=j

On the other hand, for simplifying the arguments of the densities f, *) in (3.11), it is convenient to introduce
the following notation: for 1 <k <j —1,

Tlgj)(l'l, e ,.’L‘jfl;t) = ’T'Iij)(l‘l, . ,1']',1) — tT( )(’Ulj, e ,’Ujflj). (318)
Indeed, the argument in f ) is
0
(pl_l(Il — t’Ulj, ceey Lj—1 — t’Uj_lj) = (,01_1(.%1, e ,.Z‘j_l) — tgol_l(vlj, .. ’Uj_lj)
= (7‘1(])(301,...,xj_l;t),...,T](j)l(xl,...,xj_l;t)). (3.19)

Remark 3.2. We observe, using successively (3.18), (3.13) and (3.16), that

j—1
Z (]) (T1,...,xzj_15t) = Zré])(xl,...,xj_l;t)+T;])($1,...,xj_1;t)
k=1

= (])(l‘l,...,l‘j,h Z (]) 1’1,.. y Tj—1 7152 (]) Ulj,...,’l)jflj)
k=1

= (])(l‘l,...,l‘j,h ) 19( )(l‘l,...,l'jfl)ftﬁ( )(Ulj,...,’l)jflj) = t.

As a byproduct, we have proved the following relation which will be used later:

j
ST @, aiast) =t (3.20)
k=1

Remark 3.3. The T,gj)(:cl, oo xjo1;t)’s, 1 < k < j, which are defined successively by (3.16), (3.18), (3.12)
and (3.13), and which are related to the inverse of the map ¢, with matrix

V11 — V1y V1j—1 — Vi
A= )

Uj—11 = Uj—1j --- Vj=1j-1 = Uj-1;

can be more directly obtained by inverting the map ¢, whose matrix is
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The linear maps ¢, and ¢, are linked by the following relation:

¢1(t1,...,tj)

J J J
<Z’U1ktka---:Z'Uj—lktkaztk>
k=1
j—1 j—1 J
(Z(Ulk — v15)tk, - - ,Z Vji—1k — Uj—lj)tk;()) + <Ztk> (V1,5 v5-15,1)
k=1

k=1 k=1

MQ

= ((‘01(t1,.. ( ) vlj,...,vj_lj,l). (321)
k=1

We claim that the T,Ej) (x1,...,25-1;t)’s, 1 <k < j, are also characterized by the simple relation

qbfl(acl,...,xj_l,t) = (Tl(j)(xl,...,xj_l;t),...,T;j)(acl,...,xj_l;t)>. (3.22)

To prove this, we compute, using (3.21),

¢1< (])(:El,...,xj,l;t),... (J)(l‘l,...,l'jfl;t)) ((pl<7'1(j)(l‘1,...,I]ijl;t),... (J) (1’1,...,1']',1;15)),0)

J
+ (ZTIEJ)(Q% e 793j1;t)) (V35 0515, 1) (3.23)
k=1

But we have

501(7'1(])(1'1,. ..,Z’jfl;t),...,T](];)l(xl,...,l‘jfl;t))

= (pl(%l(j)(fl,. .. ,J)j_l) —t%l(j)(vlj,.. -7'Uj—1j)7-- <y 7:](1)1(.%1,.. .,.Z‘j_l) _t%j(i)l

('Ulj; ce avj—lj))
= 901(7_1(])(1'1; cee 71']'*1)a cee 7%](1)1(1'1a .. '7xj*1)) - tsﬁl( 7 )(vlja .. '71)]'*1]')7 e 7'7_;]—)1(7)1% cee 7vj*1]'))
:(xl,...,xj_l)—t(vlj,...,vj_lj). (324)
In the last above equality, we used the reciprocal formula (3.12). Now, putting (3.24) into (3.23) and using (3.20)
yield
Qﬁl(Tl(j)(xl, . ,.Z‘j_l;t), . ,T](j)(xl, . ,.Z‘j_l;t)) = (Il, . ,.Z‘j_l,O) —t (’Ulj, . ,’Uj_lj,O) + t (’Ulj, . ,Uj_lj, 1)

= (Il, e ,.Z‘j_l,t)
which proves (3.22).

Remark 3.4. In the same spirit as in the previous remark, the Gl(cj)(acl, o, xi—13t)’s, § <k <d, which are
defined by (3.15) and (3.14), and which are related to the map ¢, 0 ¢; ' with matrix

-1
Vj1 — Vjj -+. Vjj—1 — Vjj V11 — U1y V1j-1 — V14

A= : : X ; : ,

Vd1 — Udj --- Udj—1 — Vdj Vj—11 —Vj—15 --- Vj—15-1 —Vj—-1j
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can be more directly obtained with the aid of the map ¢, o (;51_1 whose matrix is

—1
v11 ... V14
Vi1 -.. Ujj

Vj—11 --- UVj—1j

v, .. V45
d1 & 1 .01

We just have introduced new linear maps ¢, : R — R’ and ¢, : R/ — R*7*! defined by

k=1
j J

Py(t1, ..., t5) = Zvjktk;-~'7zvdktk .
k=1 k=1

The linear maps ¢, and ¢, are linked by the following relation:

J J J
¢1(t17 ce 7tj) = (Zvlktka < 'azvjlktkaztk>a
k=1 k=1

<

¢)2(t1a' "7tj)

k=1 k=1

J
= @2(t1,...,tj,1)+ (Ztk> (vjj,...,vdj).
k=1

We claim that the Hlij)(xl, .o, xj—1;t)’s, 1 < k < j, are also characterized by the simple relation

(q§20q§1_1)(x1,...,xj_1,t) = (9§j)(ac1,...,xj_l;t),...,HEIj)(acl,...,xj_l;t)).

To prove (3.26), we compute, using successively (3.22), (3.25), (3.20), (3.18) and (3.15),

(¢20¢1_1)(x17" .,.Z'j_l;t) = ¢2<T1(j)(x17" .,.Z'j_l;t),- .. 7T;j)(x17-- 7x]—17t))

:@2(7.1@)(351,...,xj_l;t),...,T;Ql(xl,...,xj_l;t))
j .
+(Zﬁg])(.ﬁl,...,.Z'j_l;t)>(’()jj,...,Udj)
k=1
_ = (=) o ~(7) .
*502 1 (1’1,...,1'],1,15),...,Tj_l(xl,...,$j,1,t)

(Z(Ujk - ’Ujj)tk; ceey i(vdk - Udj)tk) + <Ztk> (vjja ceey Udj)
k=1

(3.25)

(3.26)

7t¢2(’7'1(])(1}1j,. ..,’Ujflj;t),. ..,’7’;'1)1(’1)1]',. ..,’Ujflj;t)) +t(’l)jj,...,’l)dj)

= (ej(j)(Il, ..,.Z'j_l;t),. .. ,Hglj)(Il,. .. ,J)j_l;t)>.

The Gl(cj)(xl, ...,xj—1;t)’s may be explicitly written as (see Appendix A.1.2)

. 1 j-1
el(cj)(xlv e ,.Z'j_lﬂf) = W (Z Apix; + Akjt>
Y/

=1
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with
vi1 ... U1y
Vi—11 --- Vi—1j v ... U1y
Vel  --- Ukj . . . . . .
Ay = k Molifl<i<j—1, Ayj = : : if | = j.
Vi411 -+ Vi41j Vj—11 -+ Vj—1j
: Vgl --. Ukj
Vj—11 --- Vj—1j
1 ... 1

Plugging now (3.17) and (3.19) into (3.11), we obtain

. ]_1 .
P{@(To(l), ... ,TO(J*I)) € (dx —tvy) ds} = ﬁ H fT(S’“) (T;i”(xh o ,:Uj_l;t)) dxg
T k=1

d
X 5(ds—t—i—r;j)(xl,...,xj_l;t)) X Hé(dxk —9,gj)($1,...,xj_1;t)>. (3.27)
k=j

Finally, multiplying (3.27) by FT[@ (t — s) and next integrating with respect to time s on (0,¢), we easily derive
expression (3.28) for po;(dx;t) in Theorem 3.5 below. Equality (3.20) entails that if T,gj)(:cl, .o,xj_1;t) >0 for
1 <k < j, then we have T;j) (1,...,2j-1;t) € [0,t]. This remark justifies the fact that the integration of (3.27)
with respect to s on [0, ¢] provides the term FTOU) (T;j)(l‘l, ..o, xj—1;t)) in (3.28).

On the other hand, some constraints on the variables 1,...,z;_1 must be added in the measure py;(dx;¢).
They stipulate that the arguments lying in the functions fTOm, ceey fT(gj—l) must be positive and that the argu-

ment lying in FT(]‘) must be in [0,¢]. We specify this point after the statement of the theorem.
0

Theorem 3.5. The singular component of the distribution of X(t) is given by the family of measures

(poj(dx;t))1<j<a defined by po1(dx;t) = FTél) (t) 6(dx —tvy) and for 2 < j <d:

1 _ )
pOj(dX;t) = m ]le(t) (1’1, e ,1']',1) FT(EJ‘) (T;J) (l‘l, . ,$j,1;t))
j—1 4 d ‘
X H fTék) (Tlgj)(l‘l, ceey T3 t)) dl‘k X H 5<d:ck — 91(3) (1‘1, sy Lj—1; t)) (328)
k=1 k=j
where the Tlgj) (x1,...,mj_1;t)’s and the Gl(cj)(xl, .., xj—1;t)’s are respectively defined by the matricial relations
-1
Tl(])(xl,...,xj_l;t) vir e ULy 11
. Vj—11 .- Vj—1j Tj—1
T (@) 1.1 ¢
Q(j)(x T 't) ) B (j)( oy
j 1y Lj—1; Vj1 ... Ujj T T1y.03 L5135 )

et(ij)(xh,..,mjfﬁt) Vd1 .- - Vdj T;j)(xl,...,l'j_l;t)



290 A. LACHAL

and
v11 ... V14

(.7_1)' Vj—11 -+ VUj—1j
1 ... 1

Di(t) = {(z1,...,2j-1) € RI! :T,Ej)(xl,...,xj_l;t) >0 for 1 <k<j}.

Remark 3.6. Expression (3.28) is made up of two terms: the factor

1 _ . j—1 .
m FT(,') (T;])(l‘l, e ,l‘jfl;t)) X H fTék) (Tlgj)(l‘l, e ,l‘jfl;t)) dl‘k
T k=1

0

is related to the location of the particle at time ¢ while the factor
d .
]1@].(,5)(1'1, e ,l‘jfl) X H (5(d£L’k — 91(3)(1'1, e ,Z’jfl;t))
k=j
refers to the support of the measure po;(dx;t) as it will be seen in the next subsubsection.

3.2.3. The support of poj(dx;t)

In view of (3.28), it emerges that the support of the measure po;(dx;t) is the intersection of the set of
constraints D;(t) and the affine subvariety H; of dimension (j — 1) defined by the equations
o =09 (21, st), j<k<d (3.29)
Our aim now is to describe this support in a simpler manner. See also Lemma A.3.

Introducing some parameters si,...,s; defined by (s1,...,s;) = o7 (.. xj—1,t), the implicit represen-
tation (3.29) of H; can be rewritten, by (3.26), as

(ij"axd) = (¢20¢1_1)(x17"'7l‘j—1;t) = ¢2(515"'78j)
J J

(Zvﬂsl,...,zvd181>. (330)
=1 =1

Concerning the variables z1,...,x;_1, we reciprocally have (z1,...,2;-1,t) = ¢,(s1,...,5s;), which implies

J J
(xl,...,xj_l): (Zvllsl,...,z:vj_usl>. (331)
=1 =1

Putting (3.30) and (3.31) together gives

J J
(Il,...,l‘d)z E ’Ullsl,...,g VdiSt |-
=1 =1

We therefore obtain the concise parametric representation for H;

J J
xk:ZUMsl for 1 <k <d with Zsl:t.
1=1 =1
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In this form, we recognize for H; the set of barycentric combinations Z{Zl 51A; with real coefficients s1,...,s;
satisfying Z{Zl s; =t, so H; is the affine subvariety containing the points (tA1),..., (tA4,).

On the other hand, the constraints T,gj)(xl, ..oyxj_1;t) > 0 for 1 < k < j are equivalent, because of (3.20),
to the constraints for the si’s: sy > 0 for 1 < k < j and Zizl sk = t. Consequently, the support of the measure
poj(dx;t), which is ﬁj (t) N"'H; where

T)](t) = {X € Rd : (1’1, e ,1']'71) € D](t)},
is also the set of points Zizl s Ay with positive coefficients s1, ..., s; satisfying the condition Zizl sp=t. It
is nothing but the convex hull P (t) of the set {tA;,...,tA;}.
J
Theorem 3.7. The support of the measure po;(dx;t) is the solid (j — 1)-dimensional polyhedron PJ(t)

Example 3.8. For instance, for j = 2, the matrices of ¢,, ¢, and ¢, o ¢)fl are respectively

V21 V22 V21 — V22 V11V22 — V21712

V11 V12 . . and 1
1) ’ ’ V11 — V21

Vd1 Vd2 Vd1 — Vd2 V11V42 — Vd1V12
So, the settings read

Tl — ’U12t 2 Ullt — 1
== Pt = ———

)¢, .
Vi =wvi —vie, 7 (213t) = ) '
V11 — V12 V11 — V12

0 ;1) = W =)L 0k mvivi )t g g g

V11 — V12
vt —x 1 — Vot
Dg(t){xleR: el >, B2 zo}.
V11 — V12 V11 — V12
Formula (3.28) writes

1 xr1 — ’Ulgt — ’Ullt — X1
dx;t) = —— 1 T —— | F, _—
p02( ) Y11 — U1z D2(t)( 1) fT0<1> (vu ~ v1o T0<2> V11 — V12

d

- - t

« day H 5<d£€k (v — vk2)z1 + (Vi1vk2 — V12Vk1) >
Pl V11 — V12

The measure pga(dx;t) is carried by the segment (tA;1)(tAsz).

Remark 3.9. When times To(k) are exponentially distributed with parameter A, formula (3.28) can be simplified
into

N1 i
poj(dx;t) = m Ip, ) (21, .-+ Tj-1) exp l—)\ (;Téj)(xl, .. ,xj_l;t)>1
=1

j—1 d
X H dzy, H 5(d:ck - 9,?)(11, . ,:Ej,l;t)).
k=1 k=j

The sum lying within the above exponential equals ¢, see (3.20). Hence,

N1 et

poj(dx;t) = (=
'V,

j—1 d )
Ip, (21, -, 75-1) H dxy, H 6(dack - ng])(xl, N I t)) (3.32)
k=1 k=j
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The total mass of this measure is

)\jfl ef/\t
poj(dx;t) = ————— / day - dzj_y.
/%) ’ (7 = D'Vj-1 Jp, ) ’

Because of the relation PJ(t) = D;(t) N H,, we see that the integral ij(t) dzy -+ -dz;—1 is nothing but the
(j — 1)-volume of the projection on R7™! of the face (tA1)--- (tA;):

/ dIl-"d$j_1 :\/}_1 =t
Dj(t)

Therefore,

O .
Poj (dX,t) = - e = ]P){Tj,1 <t< Tj}, (333)
P ® (j— 1)

the last above equality coming from the fact that the exponential times are related to Poissonian occurrences.
This relation is in good agreement with the definition of the density po;(x;t). Thus, dividing (3.32) by (3.33)
provides

1 j—1 d )
P{X(t) € dx | Tj,1 § t S Tj} = W ]le(t)(xla N ,l‘jfl) H dl‘k H 5<d:ck — 9](5)(931, . ,l‘jfl;t)).
1= k=1 k=3

In words, the location X (¢) of the particle conditioned on moving with the speed-vector 1_/; for the first time
(¢ = 0) is uniformly distributed on the (j — 1)-dimensional polyhedron P (t).

3.3. Absolutely continuous component: the case ¢ > 1, n > d + 2

In this subsection, we assume that ¢ > 1. We put, for having homogeneous settings, vg411 =+ = vg41n = 1.

3.3.1. Deriving the pdf

With the linear map ¢ : R — R4 defined by (3.9), we associate the maps ¢, : R — R¥*! and
(N R?~4=1 — R+ defined by, as described in Appendix A.2 (this case is related to the dimensions p = n
and ¢ =d+1),

d+1 d+1
wl(tl, . 7td+1) = (Zvlktk, RN Z Vd+1 ktk> ,
k=1 k=1

n n
¢2(td+2,...,tn):< Z ’Ulktk,..., Z Ud+1ktk>-

k=d+2 k=d+2

In this part, it is convenient to work with matrices. Let B; and Bz be the matrices of ¢, and 1.

V11 ... Vld+1 Vid+2 --- Uln
B1: 9 B2:

Vd+11 - -+ Vd+1d+1 Vd+1d+2 +-- Ud+1n
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Put Ay = det B;. The determinant A4 does not vanish (see Remark 3.10 below), thus ¢, is bijective and 1 is
surjective. Therefore, the conditions for applying Lemma A.4 are fulfilled. Set also

Y11 ... Vlip-1 Vip4+1 .-+ Vld+1
+
T (*1)10 ! VUg—11 -+ Ug—1p—1 Vg—1p+1 --- Ug—1d+1
i Ag | Vg1l - Uggip—1 Ugtiptl - Ugildl
Vd+11 --+ Vd+1p—1 Vd4+1p+1 -+ Vd4+1d+1
and
d+1
Apg = Ay g WpkUkg for 1 <p<d+1,d+2<qg<n.
k=1

The matrices of ¢, ' and ;' o 1, are given by

w1 ... Wid+1 1 Ay d+2 .- Aip
-1 . . —1p _
B, = : : , By Ba= A :
d
Wt11 -+ Wd1dt1 Agi1dy2 -+ Ddgin

Remark 3.10. Actually, the A,,’s are defined also for 1 < ¢ < d+1: in this case, we have A,, /A4 = 0pq since
the matrix of the (A,;/Aq4)’s, 1 < p,q < d+ 1, is nothing but the matrix B, 'B; = I. The quantities A4 and
Apg’s can be interpreted by means of volumes. Indeed, as already mentioned in Section 3.2.1, it is well-known
that, if V; = Vol(A; - - Ag41) denotes the oriented volume of the polyhedron Ay - -+ Ag41, then

V11 - .- Vid+1

- = d'V.
Vg1 .-+ Vdd+1
1 ... 1

Therefore Ay = d!'Vz. On the other hand, by hypothesis, the polyhedron A; --- Agz41 is not contained in any
hyperplane. So, its volume does not vanish. We assume for simplicity that V; > 0. Similarly, if V,qq =
Vol(Ay -+ Ap—1AgAp+1 -+ - Aat1) denotes the oriented (positive or negative) volume of the polyhedron deduced
from Ay --- Ag41 by replacing the point A, by A,, we have, by (A.1),

Vi1 --- Vip—1 Vig Vip+1 --- Vid+1
qu N : : : : = (! Vpgd-
Ud1 +-- Udp—1 Vdq Vdp+1 -+ Vdd+1
1 ... 1 1 1 ... 1

Remark 3.11. We can note that the sum Zig wpy vanishes if k¥ < d and equals 1 if £ = d + 1. Indeed, if
A = (aij)1<i,j<m 1S any matrix, AT = (@ji)1<i,j<m is its transposed matrix and A’ = (Aij)1<i,j<m is the com-
plementary matrix of A, i.e. the matrix of the co-factors of A, one has the well-known relation AA’T = (det A)I
which writes 7" | a;Ajr = (det A)d;;. If the last row of A is made up of 1, that is Vk € {1,...,m}, apr =1,

- 0 if j<m—
then >3, Ajk = (det A)omj = 3 4o 4 if; =m

which coincides with A;lB'lT, the last row of B; being made up of 1. Hence Ziii Wpk = 0d+1;. We then

1 . . .
. In our study, (w;j)1<s j<d+1 is the inverse matrix of By
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deduce that

d+1 V. d+1 /d+1 d+1 /d+1
kd
Z v Z<prqvqk> Z(Zwm>vqud+1k1,
p=1 Vi p=1 = q=1 \ p=1
or, equivalently,

d+1
D Vika=Vg for 1<k <d+1. (3.34)
p=1

We now introduce the coordinates 75, (x;t), 1 <k < d + 1, of the (d + 1)-uple ;' (x,t):

V@, t) = 07N (xst) = (T(xs 1), Tar (%5 1))
with, referring to the form of B *,

d
Tp(%;t) = prkack + wpgpit for 1 <p<d+1.
k=1

For evaluating (3.10), we use Lemma A.4. For this, we need to specify the coordinates of the point wfl(x -
sv;;t —s). Observing that

d+1 v,
pjd
(v; g WpkVkj = == 3.35
il pkVkj = Ay v, ( )
the coordinates 7,(x — sv;;t — s) are given by

Vpjid
pid.

Tp(x —svjit—s) = 1p(x3t) — s7p(vy3 1) = Tp(x;8) — \,

We also need to specify z/;fl 09, thanks to the form of B;lBQ,

n n

- Vv V.,
(1/)1101/)2)(Sd+2,...,8n)< Z \lfkdskwua Z %Sk>-

k=dt2 @ k=d+2

Applying Lemma A.4 to (3.10), we derive for the density p;;(x;t) = p;;(dx;t)/dx the integral representation
displayed in Theorem 3.12 below. Referring to Appendix A.2.3, we see that some constraints must be appended
to this representation. For taking into account these constraints, we introduce the set

n

V, V,,;
DJ(X;Sat) = {(Sd+2a"'78n)€(0ﬂ+oo)nd1 : Z pkd skSTp(X;t)*LdS f0r1§p§d+1}
k=d+2 Va Va

together with the set {s € [0,¢] : Dj(x;s,t) # 0} which will be proven later to be an interval [g;(x;t), o, (x;1)].
Theorem 3.12. Ifi>1 and 1 < j < n, the density p;j(x;t) is given, for x € B, (t), by

1 ot _ / 1I Vi d "~ Vi
(xit) = —— F_y(s)ds — Te(x;t J - ~ S
pig(xit) d'Vy /§j (x;t) " (#) D (x;5,t) kl_[1 f 5 Sl Va I=d+2 Va l

x H (f_(k) sk dsk) (3.36)

k=d-+2
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where Vg = Vol(A1 -+ Agy1), Viia = Vol(Ay -+ Ag—1A1Aks1 -+ - Agg1) and the 1i(x;t)’s are given by the ma-
tricial relation
-1

v ... U -+ X
’ v ) X

Remark 3.13. By definition, the 7,(x;¢)’s can be viewed as the expansion of a determinant:

Vi1l --- Vip—1 X1 Vip41 --- Vid+1
1 . .
Tp(x7t) = A
d Vg1 .- Vgp—1 Td Vdp+1 --- Vdd+1
1 ... 1 t 1 ... 1
V11 —V1d41 -+ V1p—1 — V1d+l 1 — 01441 Viptl —V1id+1 --- V1d — V1d+1 V1d+1
1
Ag Vdl — Vdd+1 -+ Vdp—1 — Vdd+1 Td — tVdd+1 Vdp+l — Vdd+1 --- Vid — Vdd+1 Vdd+1
0 0 0 0 0 1
1
= < det (AdHAl, o Ag Ay x — tAge1, Agr1 Apes, . ..,AdHAd).
d

The determinant lying in the last displayed equation is d! times the volume Vp4(x;t) of the polyhedron
Ay Ay (T M)Apiq -+ - Agg1 where M is the point with coordinates x. Then 7,(x;t) = V,a(x;t)/Vz. On
the other hand, the relation 7,(x;¢) = 0 is nothing but the equation of the affine hyperplane containing the
points (tAl), ey (tAp_l), (tAp+1)7 ceey (tAd+1).

Remark 3.14. Let us compute the sum of the 7,(x;t)’s:
d+1 d+1 d d d+1 d+1
ZTP(X; t) = Z <prk93k + w;ndJrlt) = Z (prk>ﬂ?k + (prdJrl)t.
p=1 p=1 \ k=1 k=1 \p=1 p=1

By Remark 3.11, the sum Ziii wpy, vanishes if £ < d and equals 1 if & = d + 1. Consequently, the following
relation which is the analogous of (3.20) holds:

d+1

Z Tp(x5t) = t. (3.37)

Remark 3.15. For the similar probabilities related to a particle subject to taking the r*" direction at time 0,
P (x;t) = P{X(t) € dx,i complete cycles and j directions | V(0) = V..}/dx,

the quantities 7,(x;t)’s should be replaced by

d
D (x;t) = Zw;?xk + wz(fgﬂt forr <p<r+d,
k=1
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where (wl(J7

— —
))lgi,deJrl is the inverse of the matrix of the (d + 1)-dimensional vectors << ‘{’” >, ( V’”lﬂ ) ey

1
the points A,, Ayy1,..., Ap—1,Aps1,. .., Arpq. Similarly, V; and the V,44’s should be replaced by the volumes

Vd(r) = Vol(A4, --- A;1q) and V;E(:c)l = Vol(Ar -+ Ap_14¢Aps1 -+ Arta)-

3.3.2. Two families of formulas for the pdf

Relation (3.36) recovers two families of formulas.
e Case 1 <j<d+1:
Referring to (3.7) and observing that Vijq = 0if k& # j (for 1 < j,k < d+ 1) and V4 = Vj,
formula (3.36) takes the form

—
( V""’d)). The relations T,ST) (x;t) =0, r < p <r+d, are the equations of the affine hyperplanes containing

j—1 n

1 feabsh Viia
() = F o (s)d [1 - S 2
Pig(x;1) d!'Va /<j(X;t) % (s /Dj(x;s,t) k=1 fSE’“) <Tk(x ) l Vi "

=d+2
d+1 n
X H fsﬁ’”( Z Vklds)

k=j+1 I=d+2
n n
Viia
X fgt), (Tj () — s — ~ 5 11 (fsﬁ)l (sk) dsk)~
I=dt2 k=d+2

In the above formula (and also below), we adopt the convention Hﬁ _, = 1if @ > 3. For instance,
[T,_) =1 when j =1 and Hii;ﬂ =1when j=d+1.

e Case d+2<j<n:
Formula (3.36) reads in this case

1 71050 e Vijd "~ Vi
il A J _ e
pij(x;t) = d'\{z/g( FTéj)(s)dSA-(x;s,t)kI;[lfok) (Tk(xﬂf) v, > 5 5l>

5 (x5t) I=dt+2 4
Jj—1 n
X ( H fgo (sk) H fs(k)l (Sk)> dsqyo - -dsp
k=d+2 k=

3.3.3. The set of integration and the support of the density in (3.56)

Thanks to (3.34) and (3.37), summing the inequalities Y p_, o V{’,—L’:d sk < Tp(x;t) — 1\2&’ s with respect to

the index p yields the inequality ZZ: d42 Sk < t —s. Therefore, the set D; (x; s,t) is convex, compact and is

included in the simplex
{(sd+2,...,sn) € (0, +o0)" 471 Z Sk <t—s}

k=d+2
Moreover, the set {s € [0,t] : D;(x;s,t) # (0} is a convex, compact subset of [0,t], so it is an interval:
[6j(x:), 0 (%3 1)].
If j <d+1,since Vpjg =0for 1 <p < d+1and p # j, and Vjj¢ = Vg, the conditions lying in the set
Dj(x;s,t) write

n

V,
>, osk<mlat) forl<p<dtlp#j )
k=dt2 ¢ k=d+2

n

Vika
A

sp < Tj(x;t) — s.
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We then have

n

Dj(x;0,t) = {(Sd+2, .oy 8n) € (0,+oo)"_d_1 : Z
k=d+2

Vpkd
Vi

sp < Tp(x;t) for1<p< d+1}
and

Dj(x;7(x;t),t) = {(sd+2, . 8n) € (0, 400)" 4T

n

V, W V7
Z %:dskgrp(x;t) for 1 <p<d+1andp#j, Z Jdes SO}.
k=d+2 k=d+2

For x € ’Pd+1(t), we have 7,(x;t) > 0 when 1 < p < d+ 1. So, the sets D,;(x;0,t) and D;(x; 7;(x;t),t) contain
the (n —d—1)-uple (0,...,0), they are non-empty. This entails the inclusion [0, 7j(x;t)] C [s;(x;1), 0, (x;t)], or,
equivalently, ¢;(x;¢) = 0 and 7;(x; t) < 0;(x;t) < ¢. If, in addition, we make the assumption that the polyhedron
Ay --- A, is convex (and then coincides with B, (t)), all the volumes Vjiq, 1 < j < d+1,d+1 <k < n, are
positive (with the reference Vz > 0). In this case, if s > 7;(x;t), the condition ZZ:(HQ v{,—:d sk < 1j(x5t) — s is
not fulfilled (for sg41,...,s, > 0), then D;(x;s,t) = 0. As a result, oj(x;t) = 7j(x;t).

We now consider the problem of the support of the density (3.36). Fix n > 0 and M = Y, _, sp Ak, with
S$1,...,8, > 0and >.}'_; si = ¢, a point in the interior of B, (t). Let us introduce the set V(M,n) of the points
P € B, (t) for which there exists positive coefficients (not necessarily unique) ¢4, ..., %, summing to ¢ such that
P=37_,txAr and |ty — sg| < nfor all k # j. For any P € V(M,n), since Y _,_, (tx — sx) = 0, we have that

—_— n _
MP = Z(tk — Sk)Ak = Z (tk — Sk)AjAk
k=1 1<k<n
k#j
and then
— —_—
IMP| < Y7 Jte = sl x |14, 4] < (n = 1)y diam(R, (1)) (3.38)
1<k<n
k#j

where diam(P, (t)) stands for the diameter of B, (¢). Indeed, for all indices k,l: ||ArA;| < diam(PB,(t)).
—
Fix now £ > 0 and choose ) = —yqmmm - Inequality (3.38) simply reads [[MP|| < e for any P €
n

V(M,n), hence proving the inclusion V (M, n) C B(M,e) where B(M, ¢) is the ball with center M and radius e.
So, we firstly get

P{X(t) € V(M,n), Tintj-1 <t < Tinyj} <P{X(t) € B(M,€), Tinyj-1 <t < Tinyj}- (3.39)
Secondly, we have by the definition of V/(M,n) and (1.5)

<@

P{X(t) € V(M,n), Tintjo1 <t < Tinyj} > P{sij elsi—msi+n,...,597Y

i € lsic1 —mysio1 ),
Sz(]J ) € [Si+1 —1,8i+1 + 77], o 7Si(]'n) c [Sn A 77]7
Tints1 S Tt - (3.40)
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ij oo

It can be easily checked that the distribution of the vector (S w ij

35_1)7?1.(;“), e, g-(-n)) admits for pdf

P{(5) ... V35 ) edn dtyadtyy -,

] ' Mg » i
Tingj—1 <t < Tipqj}/dty - -dtj_qdtjpq - - diy

=3 1<kh<n te n n
:/t . # T(n) Ztk H (k) tk dtj > 0.
i= = k=1

As a result, we deduce by (3.39) and (3.40) that
P{X(t) S B(M,E),Tim_i_j_l <t< nn—i-j} > 0.

In words, the probability of lying in a neighborhood of M for X (¢) does not vanish. Therefore each point
M € B, (t) is in the support of the distribution of X (t) subject to Tinqj—1 < t < Tjn4j, and then the support
of the measure p;;(dx;t) is the whole polyhedron P, (¢).

3.4. Absolutely continuous component: the case i =0, d+1<j<n

We now pay attention to the casei = 0, d+1 < j < n. Recall that the underlying linear maps ¢, ¢ : R~ —
R+ are defined by (3.3) and (3.4):

j—1 Jj—1 Jj—1
(p(tl,.. = (Z Vg — V1j Yy - - ,Z Vdk — Vdj tkaztk>
k=1 k=1
_ j—1
¢(t1,.. = (Zvlktk7" Zvdktk,ztk>

We split this study into three parts: the case d + 3 < j < n for which ¢ is surjective, the case j = d + 2 for
which ¢ is bijective and the case 7 = d + 1 for which ¢ is injective.

3.4.1. The case d+3<j<mn
The map ¢, associated with ¢, defined by

d+1 d+1 d+1 )

gf)l(tl,.. td+1 (Zvlktk;-uazvdktkaztk
k=1 k=1

is bijective. Introduce the coordinates 75, (x;t), 1 < k < d + 1, of ¢ (x;t), that is: o7 (x;t) = (r1(x;t),
., Ta+1(x;1t)). Applying (3.6) and Lemma A.4 yields the expression of the density po;(x;t) below.

Theorem 3.16. Ifd+ 3 < j < n, we have, for x € ’Pj(t),

1 a(j)(x;t)_ d+1 Vk]d j—1 Vkld
xX;t F_(s ds/ Tr(x;t — — s
poj(x;t) = d'\’:i/dj)(x;t) To()() DU)(xst)kl_[lfT(k) k(x;5t) — Vi z=zd;r2 AR
j—1
X( H fTék)(Sk)>d5d+2"'d5j1 (3.41)
k=d+2
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where
RV Vii
DY) (x;5,1) = {(sa42,.--,8j-1) € (0,400)I 7972 Z %Sz < T(x5t) — %S for 1 <k<d+ 1}
I=dt2 @ d
and

{s € [0,t] : DY (x;5,t) # @} = [g(j)(x;t),a(j)(x;t)} .

Note that the difference between expressions (3.41) and (3.36) lies in the number of variables s;’s and in the
last product which ends up at index n when ¢ > 1 and at index 5 — 1 when ¢ = 0.

3.4.2. The case j=d+2
For j = d + 2, the linear map ¢ : R¥*! — R*! defined by

d+1 d+1 d+1
¢(t17-- Ifd+1 <Zvlktk7"-7zvdktkaztk>
k=1 k=1
is bijective. Put ¢~1(x;t) = (11(x;1),...,7ar1(x;t)). In these settings, we have

67 (x — sVarait — ) = 67 (x;t) — 56 (Varai 1)

= (ri(xt) = s (Vara; 1), -+ Tar1(X51) — 8 Tar1(Vare; 1))
By (3.35), we have
Vidar2a
1
(Vd+2, ) \

The following expression for pgg+2(x;t) emerges from this together with a straightforward change of variables
n (3.6).

Theorem 3.17. If j = d + 2, we have, for x € 7701+2 (1),

1 o eit) att Vidi2d
t s)d t . 3.42
poar2(551) = Gy /<<d+2><x;t> e ()0 H Iago <T’“ 0Ty, 8) (342

In (3.42), the integration must be carried out on the s’s for which one has 7, (x;¢)— V’“{’,—;“ s>0forl <k <d+1.

Introducing the subsets I™ and I—, say, of indices k for which respectively Vi gi24 > 0 and Vigy24 < 0 and
using the notations of Remark 3.13, we see that

V, 1t V; 7
(42 (x: ) = max (max M, 0) and o+ (x;1) = min Via(x;t)
kel- Vigiod keIt Vigyod

3.4.3. The case j =d+1

For j = d + 1, the computations are quite similar to those of Section 3.2.2. Theorem 3.5 may apply in this
case with very slight modifications: the sole difference is that the measure pg441(dx;t) is absolutely continuous.
Set

-1
T1(d+1)(x;t) ’U%l s Vld+1 T
(d+1) . Vd1 - - Udd+1 Td
Tai1  (X3t) 1 ... 1 t
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The set of constraints Dd+1( ) ={xeR¢: ,idﬂ)(x;t) > 0 for 1 < k < d} is nothing but the hyper-hedron
(tA1) - (tAas1): Daga(t) = F, (1)

Theorem 3.18. If j = d+ 1, the density poas+1(x;t) writes, for x € Pd+1(t)’

Poasi(xt) = dllv eI (Téﬂ x; t) ) HfT<k>( (@+1) (. t)). (3.43)

3.4.4. Ezxponential switching times with equal parameters

We assume here that i = 0, d+1 < j < n and that times To(k) are exponentially distributed with parameter \.
‘We have

FT(EM (t) = ei)\t7 fTék) (t) = Ae

In this case, expression (3.43) simplifies into a remarkable formula.
o If j =d+ 1, we have for (3.43)

)\d d+1
Poa+1(x;t) = AV, exp l—)\ (ZTk(Xﬁ))} :
) k=1

By (3.37), the sum lying within the above exponential equals t. As a result,

d
—)\t

d'VZl forz e B ().

Pod+1(x;t) =

Let us compute the total mass of this density:

A CHEY
Poat1(x;t)dx = ——e " Vol(P (1)) = e = P{T; <t < Ty}
P v

We deduce that

P{X(t)edx|Tqg <t <Tyu}= (x)dx

SATRANG

which means that the position X (¢) of the particle conditioned on having ‘_/; as speed-vector for the first time
(i = 0) is uniformly distributed over the polyhedron 7, (¢).
o If j = d + 2, we have for (3.42)

Nd+1 o ) d+1
Podr2(x;t) = / exp l)\ (s + Z (1r(x;t) — s Tk (Vayo; 1)))] ds.

d'Vi Jetat2) (x;1) Pt
By (3.37), the sum lying within the above exponential simply equals ¢t — s and then, for x € 73d+2 (t),

)\d—i—l

poa+2(x;t) = av; e N {U(dw) (x;t) — §<d+2)(x§t)} :
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o If d+ 3 < j <n, formula (3.41) becomes

d+1

@ (x:
poj(x;t) = al / o ds/ exp |—A| s+ Z (Tk(x;t) _ Vijd s
d! 'V <@ (x;t) D) (x;s,t) Vi

k=1

i1y j—1
- $51> + Z sl>1 dsqqa---dsj—1.  (3.44)

I=dt2 @ I=d+2

With the aid of (3.34) and (3.37), we see that the sums lying in (3.44) simplify into

d+1 V.. -1y j—1
s—i—Z(Tk(x;t)— \k;ds— Z —\];ld sl> + Z s
k=1

d I=dt2 @ I=d+2
d+1 v d+1 j—1 d+1 v
B kjd . kld B
<1E Vd>s+g Ti(x;t) — E <1E —Vzl)slt.
k=1 k=1 I=d+2 k=1

Hence, (3.44) writes

M1 et
Ppoj(x;t =—/ ds/ dsgig---ds;_1.
0s(61) A"V S (xit) DIGkist) !

The integration seems to be difficult to carry out because of the complexity of the domain D) (x;s,t) and of
the bounds ¢\ (x;t) and o) (x;1).

4. PARTICULAR CASE: THE MINIMAL CYCLIC MOTION (n=d+1)

The minimal cyclic motion corresponds to the case where n = d + 1. The variables s449,..., s, in (3.36)
disappear; in fact the function 1 defined by

d+1 d+1 d+1 )
)

w(tl, . ,Ifd+1) = <Zvlktk; . 7zvdktk) Ztk
k=1 k=1 k=1

is bijective and the change of variable is quite easy to perform in this case. Let 7(x;t), 1 < k < d+ 1, be the
coordinates of ¢~ (x;t): =1 (x;t) = (11(x5t), ..., Tar1(x;t)). Observing that

w(O,...,O,l,O,...,O) = (’Ulj,...,vdj,l) = (Vj;l),

we get
w_l(xf svit—s) = w_l(x;t) — sw_l(vj;l) = w_l(x;t) -(0,...,0,s,0,...,0).

The term s in the above (d 4 1)-uple lies at the j** position.

On the other hand, the set D(t) = {x € R? : 7,(x;t) > 0 for 1 < k < d+ 1} coincides with P, (t). Indeed,

since the map 1 is bijective, for any point x € R9, there exists a unique (d + 1)-uple (t1,...,t441) such that
(x;t) = Y(t1,...,tq+1): the ¢’s are given by t = 71(x;t). So, we have xp, = 27211 vt for 1 < k < d and

t = Zld:ll t;, or, equivalently, x = Zld:ll t;v; and 27:11 t; = t. These considerations show that D(¢) is the

set of points x € R9 of the form 27:11 t;v; with positive parameters ¢1,...,t4+1 such that Zld:ll t; = t. Then

D(t) =T, (t). Therefore, the main result states as follows.
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Theorem 4.1. Fori>1 and 1 < j <d+1, then density p;j(x;t) is given, for x € 73d+1(t), by

1 j—1 d+1 Ti(x5t)
pij(X;t) = d'—% H fSEk) (Tk(X; t)) H fsii)l (Tk(X;t)) /0 FTéj)(S) fsgi)l (Tj(X; t) — S) dS (41)
k=1 k=j+1

Let us now turn our attention to some examples.

4.1. The telegraph process (d =1, n = 2)

— —
This situation corresponds to the case where V; and V5 have opposite directions and V; = ¢, Vo = v. The

matrices of 1 and 1! read here
_fc— 1 b fe—
B_(l 1)’ B _1)+c(1 1).

So,
vt + ct—x
1) = ) = Vi=v+e
Tl($7) ’U+C, T2(£7) U+C, 1 v+c
We retrieve the results of Di Crescenzo [2]. The notations of [2] are the following: D; = U is the upward
direction, Dy = D is the downward direction and the related densities are fia) = [(JZ'H), s = fg+1).
Moreover 71 (z;t) = 7 and 72(z;t) =t — 7*. For i > 1,
1 Tl(ﬂi;t)_
pa(zit) = — fo@ (Tz(fﬂ;t))/ Eroy(s) fgw (mi(zst) —s)ds
v+ ¢ "RPi-1 0 0 i—1
L @y ooy [T F (o) 10
= D(t—r)/o FU(s)fU (" —s)ds (4.2)
and
1 TQ(:v;t)_
piz(z;t) = PP f51§1>(7'1(303t))/0 Fpen (8) foe (Ta(2:t) — 5) ds
L @ (5 @)y =
:U——i-ch (™) T*FD(tfs) b (s —71%)ds. (4.3)

Our result related to the second case slightly differs from that of [2] because the particle starts downwards
instead of upwards.

Let us focus on the particular case of the historical Goldstein-Kac telegraph process which corresponds to
the situation where v = ¢ and the switching times Ti(] )
process is classically represented by

are exponentially distributed with parameter A. This

X(t) = V(0) /Ot(1)N<S> ds

where V(0) is a Bernoulli random variable taking the two values ¢ and —c with probability 1/2 and (N (¢))i>0
is a Poisson process of parameter A independent of V' (0). The quantity V(0) is the initial velocity and N (t)
describes the number of changes of directions within the laps of time [0,¢]. The underlying velocity process is
simply V' (t) = V(0)(—=1)NY®. Our aim is to retrieve the well-known distribution of X (¢) by using the results of
this part.
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First, notice that if N'(t) = 0 (this event occurs with probability e~*!), we then have X (t) = V(0)t € {—ct, ct}
and this case is related to the singular part of the distribution of X (t):

P{X(t) = ct} =P{X(t) = —ct} = %e—)\t

that is, for x € {—ct, ct},
1
P{X(t) € dz} = 3 e M [5(dw + ct) + d(dx — et)).

Second, let us turn our attention to the absolutely continuous part. For this, we introduce the following
conditional probabilities. For x € (—ct, ct) (in this case, N(t) > 1),

pl (z;t) = P{X(t) € dz,V(t) = ¢| V(0) = ¢} /dx
=P{X(t) € dae, N(t) is even > 2|V (0) = ¢} /dx,

py(z;t) = P{X(t) € dz,V(t) = —c|V(0) = ¢} /dx
=P{X(¢t) € de, N(t) is odd | V(0) = ¢} /dz,

pi (x;t) = P{X(¢) € dz,V(t) = —c|V(0) = —c}/dz
=P{X(t) € dz, N(t) is even > 2|V (0) = —c}/dz,

ps (x;t) = P{X(t) €dx, V(t) = c|V(0) = —c}/dx
=P{X(¢t) € dz, N(t) is odd |V (0) = —c}/duz.

It is easily seen that p; (z;t) = p;’(f:c;t) for j = 1,2. Next, we derive the density of X (t), for z € (—ct, ct),
according as

P{X(t) € dz}/dx = P{X(¢) € dz,V(t) = c¢}/dz + P{X(t) € dz, V (t) = —c}/dz
= P{V(0) = ¢} (p (1) + p3 (1)) + P{V(0) = —c} (p7 (z;1) + p3 (2;1))

= %(Pf(w;t) +py (23t) + p3 (231) + py (251)) (4.4)

= % (p1 (1) + P (=;t) + p3 (3 8) + p (—a31)). (4.5)

To make the connection with our work, we observe that the densities pf and pg are nothing but p;; and p;o
respectively given by (4.2) and (4.3). Indeed, on the event {N(¢) is even > 2} the particle performs a certain
number of cycles plus one direction while on the event {N(¢) is odd} the particle performs a certain number
of cycles (possibly zero) plus two directions, that is it performs a certain number — at least one — of complete
cycles.

Now, we evaluate the densities pf and p; In the settings of the beginning of this part, we have FU (t) =

F,(t) = e~ and the random variable SZ-(j) = ZZ:O T,gj) is distributed according to the Erlang law E(i + 1, \):

B )\it’i—l
e A AY

PO =150 = e,

The expression (4.2) of p;; becomes, for i > 1,

Ny (2 )™ e . i (@it) (11 (x5t) —s)t L
(o) = ) - (n(a,t>+m<x,t>>/ , 4
pulmt) = =5 G © 0 G-nr
AT ()i (s )Y

2cil(i — 1)1
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that is, explicitly,

A )Qi (ct + z)i(ct — )it

) =M [ L
pa(a;t) = e (20 i — 1)1

and similarly, for ¢ > 0,
3\ 2 (c2t2 _ $2)z‘
%) i

pia(zt) = e M (

Reminding that
pi1(z;t) = P{X(t) € dz,i complete cycles and 1 direction}/dz,

(with the assumption that the first direction is ‘_/;, that is here V(0) = c) the density p{ (x;t) we are looking
for is obtained by adding the p;; (x;t) with respect to i > 1:

pi(z;t) = P{X(t) € dz, V(t) = ¢| V(0) = ¢} /dz = Zpﬂ(:c;t)
at > A\ (ct + x)¥(ct — )i~ 1
= ;(2_0) (i — 1)

e Jot 4+ 1 & 1 A 2+l
= _ 2t2 _ 2
2 Z_Z_;i!(i—i—l)!( Ve x)

ct—x 2c
) —A
e t o fet 4+ I A o az) — (ct+x)e 9 L A )
2¢ ct—z c 2c2t ot c

In the last equality, the functions Iy and I; are the usual modified Bessel functions and we have used the relation
I} = I,. Similarly, the density pJ (z;t) is given by

pi(z;t) = P{X(t) € da, V(t) = —¢| V(0) = ¢} /dz = Zpig(:c;t)

N oAt oo 1 A 2 Ne— M A
_ Ae ZW <—</02t2x2) _ 2e IO< \/c2t2x2).
1

2¢c = 2¢c 2c c

Therefore, we have

— At )\
i (@;t) +pf (—3t) = = - I°<_ Ve - x2>
C C

ot

and

Ae M /A
pE(@it) + ps (—ait) = —— Iy (— Vet — x?).
C C

Finally, putting these two equalities into (4.5), the density of the Goldstein-Kac process emerges:

—At

P{X(t) € da}/dz = 62 {AIO (% \/m) + 9 (% m)] .

c ot

Hence, we retrieve formula (13) displayed in Orsingher [12] (see also Pinsky [20], p. 9).
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4.2. The case d=2,n=3

Di Crescenzo [3] considered a uniform cyclic motion on the plane with three directions forming an equilateral

triangle with vertices A; = c(‘é_, 1), Ay = c(—@, 1), A3 = ¢(0,—1). (Actually, the coordinates of A; and
As in [3] have been incidentally inverted, this provided non correct equations for the edges of the triangle
A1 As As; the correct equations are written down below). The velocity of the motion is constant all the time:
Vi=Wh=V;=c

e Suppose first that ¢ > 1. The matrices of 1 and 1~! read here

o _efi g (Vo1
-1

B = % % —c |, B 23— —\/glc

1 1 1 “\ o0 —2¢

So, Vo = 3024‘/5 and

1
—(=2y + ct).
3(;( y +ct)

1 1
Tz, yit) = —(V3z+y+ct), m(zyt) = 5(—\/§x+y+ct), 3(z,y;t) =

3c

In [3], the directions are denoted by D1 = U, Do = V, D3 = W and the related densities by fs(l) f(H_l),
fS<2> = (”1 , fs<3> = f(“r1 . Furthermore, the survival functions are denoted by FT(I) = F , F, T =F .
— J— 0
FTO(S) = FW and also 71 (x,y;t) = 71, 72(z,y;t) = 735, T3(z,y;t) =75 =t — 14 — 75,

We retrieve the results of Di Crescenzo [3]: for ¢ > 1,

1 Tl(x1y7t)_
pi(z,y;t) = N, f353>1 (T2(=,y;t)) fo’Bl (Ts(fﬂay;t))/o FT0<1>(3) fsl@l (ri(z,y;t) —s)ds

1 7 * 1 * Tf 1 * Enl
= 2—V2f‘(/)(7'2) xgv)(73)/0 f((])(Tl —S)FU(S)d&

1 T2(z,y5t)
pi2(z,y;t) = N fso (mi(@,y31)) fgo, (73(93731;15))/0 Epe (8) fgo (2(2,y31) — 5) ds
_ 1 (+1) (1 /
- 2V2 f W TS f (S) d57
1 T3(z,y5t)
pis(z,y;t) = 2V, fSu)(ﬁ(iﬂ Y; ))fsm (r2(@, y; ))/ FT(@(S) fslgajl(ﬁs(ﬂ%y;t) —s)ds
_ 1 (1) (e D) /
A (1 i Fyy(s)ds.

e Suppose now that ¢ = 0. We describe the measures po;(dz dy;t) for 1 < j < 3.
x For 7 = 1, we simply have

— — 1
por(dz dy;t) = F.o)(t) (dzdy — tvi) = F.o) (t) (5(dx - ? ct) (5(dy ~5 ct).

* For j = 2, referring to Example 3.8,

poz(dx dy; t) = \}, Ip, @ (x )fT(l)( (2) (x; t)) 7 (7'2(2) (ac;t)) dz 5(dy - 9%2) (x;t))



306 A. LACHAL

with
V3t 2 2 V3et —2a 2 ct
V:\/gca (Q)x,t = — ()I',t:i, 9()x,t:_
1 T ( ) 2\/50 To ( ) 2\/50 5 ( ) 5
and
DQ(t):{:EER:\/gct—2z207\/§ct+2z20}: [?Ct,éct}
Hence,

1 V3et+ 2z \ — V3t — 2z ct
dedy;t) = 1, ; Hn|——1| F —— |dxd(dy — = )
poz(dz dy;t) 5o -t (x)fT[p( WP ) Té2)< 3e ) T < Yy 2>
* For j = 3, by (3.43),

1 _
pos(z,y;t) = v, L o) (@, 9) fpew (Tl( )(fc,y;t)) fr@ (72(3)(36,9, )) F, <3>( & (a, yvt))

The settings are exactly identical to those of the case i > 1: Vy = % and

1 1 1
ng)(x,y;t):g(\/g:cherct), Té)(z,y;t):g(f\/g:cherct), T§3)(:E,y;t):§(ct72y).

Consequently,

pos(@,y; t) = 3\/5 . T(3)< 1C (Ct2y)) me(Sl (\/§z+y+ct)) fTO<2><§(\/§:c+y+ct)>.

Remark 4.2. Adding an extra point A4 = ¢(a, §) to the situation we are dealing with in this part (then d = 2
and n = 4) is of interest: for i =0 and j =4 = d + 2, e.g., we have

(4) 3
1 (zy5t)
o) = 5z [ Fgn s [ g (o) —smfeascii)

with

m (@ yit) — smileoneB1) = = (V32 +y+ct) — 3 > (VBa+8+1),

3¢
1
(@, t) = smo(casefil) = o= (—V3rty+et) - 2 > (—VBa+p+1),
1
T3(z,y;t) — s3(ca, ¢f;1) = 3 (—2y +ct) — 3 ( 26+ 1).
If, e.g., the solid quadrilateral A1 A3 A3Ay is convex, the reals numbers «, 8 verify the conditions

V3a+6+1>0, —V3a+p+1<0, —268+1>0.

Then, the constraints for s, 74 (x, y;t) — s 7 (ca, ¢0;1) > 0 for 1 < k < 3, read

1 <\/§x—y—ct 0) 1. <\/§x+y+ct ct—2y>

— max , < s < — min s
V3a—p—1 c V3a+p+1 1-28
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which produce the following bounds for s:

1 3z —vy—ct 1 3 t ct — 2
§(4)(I,y;t) = - max 7\/_36 y—¢ ,0], 0(4)(ac,y;t) = — min V3ztyte ,C Y .
c V3a—8-1 c V3a+p+11-2p

4.3. Erlangian switching times

4.3.1. Erlang distribution and Bessel functions with several variables

Consider the case where the switching times are distributed according to an Erlang law: we suppose that the
distributions of random times Ti(J ) are Erlang law E(v;, A;), that is

vi—1

» e

FT[)(j) (t) = ]PJ(I”L(J) > t) —e Ajt #
=0

Then, the random variable S(J) Zk —0 T(]) is distributed according to the Erlang law E((i + 1)v;, A;):

)\(‘i"rl)l’jt(i-{-l)l/j—l
J .
((G+1v; —1)!

Fan(t) = et

In this case, formula (4.1) becomes

_ i+1)vi % Vi — d+1 ive —
H o~ kT (%5E) )‘§:+ : ka(X; t)( ot H e~ MeTr(Xt) M
P ((i + vy — 1)! (v, — 1)!

k=j+1

pth

<\~

7 (x; vj—1 Wi (o) o)ivi—1
X s e NS Z ()‘js)l e~ i (T (x5t) =) )\j T(7(x;1) = 5) ds
1=0 J

The above integral can be easily evaluated:

75 (x;t) vi—1 AY i‘l’j A~ 1) — )i —1
/ o Nis Z (Ajs) 0N (3 (x5t)—s) A (1 (x3t) — s) ds
0

=0 l! (il/j — 1)'
vi—1 .
J . Ti(%5t) (1 (x: 1) — g)wi—l
AT (xst) )\'L'Vj“l’l/ S_ (T] (X7 ) 5) d
¢ Z i T (v — 1) s
X t wJJrl

(A5
7)\ 375 (x;5t) ]
Z (v +l

We then obtain

1 d+1 )\kq—k(x t))(i*'rl)l/kfl
pij(xit) = - Ap | e T AT (xit)
’ < légdﬂ H ((i + 1)y — 1)!

kZj

i1 i g —
3 Qumsan)! Tr Qemlt)™ !

(il/j + l)' k=j+1 (il/k — 1)'
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When summing this expression over all indices i, we get the probability
o0
t) = Zpij (x;t) = P{X (t) € dx, at least a cycle and j directions}/dx.

We explicitly have

l/j*l

j—1
1 _ d+1)\ e (x3t) 7 )\ka X t wg+2v—1
pj(x't)—< . e KTk
) d'Vy 1§§<d+1 =0 ;]};[1 ZVk + 2Vk — 1)
k#j
()\ T (X t))zl/;-l-w-i-l d+1 ()\ka(X;t))iyk—i-uk—l
(tvj +v; +1)! (ivg + v — 1)!

k=j+1
This probability can be expressed in terms of generalized Bessel with several arguments. Set
:E<1x1+kﬂ1 R

1,...,l‘n)zz (a1+kﬂl)'(an+kﬂn)'

k=0

TP ,Bn(

Ay, Qn

Theorem 4.3. The density of X (t) subject to having performed at least one complete cycle and to following
the jth direction can be expressed as

vi—1
]. d+1 A ( t) < . .
pj (xt) = av; Vv, < 1<kH<d+1 >\l> | Th (% Z I;ﬁh m;i“ (M7 (x5t), ...y Add417a+1(x5 1))
T k#j

where
2w —1ifl<k<j—1,
e =4 vi+1l if k=7,
vp—1 ifj+1<k<d+1.

Remark 4.4. The Bessel function can be related to hypergeometric function as follows: writing

1% k—1 B
(a+kB) = al[J(a+0) = o [T [J(a+iB+)
=1 i=0 j=1
k=1 B , a+
:a'ﬁkBHH( )_O"ﬁkﬁn( ﬂj)k

=0 j=1 j=1

with ap =a(a+1)---(a+ k — 1), we have

B1,....B at e an &
1 J— n
I (@, ) = Ty

So, invoking the hypergeometric function

= (e ()i 2
qu(al,...,Cbp;b17---abq;z):ZM_
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and putting v;; = “b—ﬂ for1 <i<mnandl<j<f;, we extract the relationship

xal e pQn 1 B T Bn
]ﬁl, Br(py, o oap) = 22— Fo 1im,. .., == R il .
,a"( 1 n) 041!"'0471! 1Ln Y11 YnBn 61 ﬂn

4.3.2. Erlang distribution with equal parameters Ay

When moreover all parameters Ay are identical to A, we have

d+1 d+1

Z)\ka(X;t) = )\ZTk(X;t) = M
k=1 k=1

and then

vi—1
pj(x;t) = d% e MY el (A (x5 t), -, Aaga (x5 t).
=0
4.4. Exponential switching times with equal parameters

If all parameters A\ are identical to A and all parameters v are identical to 1 in the Erlang distribution
E(vg, M), times Ti(J ) are exponentially distributed with parameter A and the Bessel function simplifies into (in
the lower indices below, there are j indices equal to 1 and n — j equal to 0)

k+1 kLK k 00

:c] Tigq T,

oo
1,...,1 _ o (IC1 .. IEn)
oo Z Fr Ol (bt DR xj)};)(k—i-l)!jkz!”—i

k=0

= (21 ) Jn(n\/xl “Tn,)

where i

o (z/n)"

T - g .
in2) 2RIkt )Y

In these settings, we obtain

Adﬂ — A\t : . d+1
pj(x;t) = v [[76st) | Tiasa| AMd+1)

4.4.1. Motion with constant velocity

We suppose in addition that all the speeds Vi are identical to ¢. In that case, Vg = ¢? Vd, V, being the
volume of the normalized (d + 1)-hedron A} --- A/, where A}, = 1 A;. We have

CWE1

Tr(x;t) = % hi(x;t) with  hg(x;t) = ct + Z oy
+1

and, furthermore,

J J

U X t HwdeHhk X t d+1)chkli[1hk(X;t)
with

a; = [Jd+ Dwkara].
k=1
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As a result, we obtain:

a;e M AN (L Ay, al
pi(x;t) = m <E> [T 7eGxst) | Zian - Ty aan 1 2e(xt)
P Vd k=1

k=1

4.4.2. Motion with directions forming a regular (d 4+ 1)-hedron

If moreover the (d+1)-hedron of the directions is regular, the inner products of the speed-vectors are constant
and their values are given by (see [9])

This yields

d
d Vki 1 d 1= 1
— — i+=l==—(=ViVi+=| =46
d+1<k§ 2 X%‘Ld) d+1(c2 i J+d> i
and then, the matrix of ¢! writes

2
w11 ... Wid+1 V11 ... V41 %
B! = . . _

Wd+11 - -+ Wd+1d+1 V1d41 -+ Vddi1 .

duyy,
So, wg; = (df# for 1 <d, wigy1 = a; =1 and

1
d+1°

d
Ulk
hi(x;t) = — .
k(X,t) Ct‘f’dz . X
I=1
In that case, we retrieve a formula by Lachal, Leorato and Orsingher [9]:

e—)\t A d+j J A .
(xit)=—— (2 [] )| Z; 2 a1
pi(xit) (d+ 1) dVg (c) kzlh’“(x’t) Jd+1)

A. APPENDIX: THE LINEAR IMAGE OF A RANDOM VECTOR

Let X = (X3,...,X,) be a random vector with pdf Jx» ®: RP — R? be a linear map, and Y = (X) =
(Y1,...,Y,). In this section, we express the probability distribution of Y in terms of Jx- We distinguish the
cases where ® is injective with p < ¢ (we shall call it ), and ® is surjective with p > ¢ (we shall call it ).

A.l. Injective case

Suppose @ injective and p < q. Let us introduce the matrix of the linear map (:

a11 Q1p
A — Gp1 - Gpp
Gp+11 Gp+1p
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Since ¢ is injective, the rank of the matrix A is p. So, we can extract from A an invertible matrix of type p X p.
Upon exchanging some rows of A, we can suppose that this extracted matrix is obtained by picking the p first
rows of A. This observation suggests us to split A into the two matrices A; and As defined by

ail ... Qip Qp411 --- Ap41p
A1 = . : and A2 = .

Gp1 -+ Qpp Qg1 ... QGgp

where A is the aforementioned invertible matrix. We finally introduce the linear maps ¢, : R — R? and
¢y 1 RP — R97P whose matrices are respectively A; and As. In these settings, we clearly have

<p(931, .. '73317) = (501(3317 oo 71'p)7 902(3317 cee 73:17))'
The above discussion entails that, in the foregoing decomposition, the map ¢, is bijective.

A.1.1. The distribution of Y

Lemma A.1. The random vector Y admits for probability distribution the singular measure

1 _ _
fy(dyl cedyy) = W(S((yp_;_l,...,yq) — (@20@1 1)(y1,...,yp)) (fX o] 1)(y1,...,yp)dy1 - dy,
1
1 _
= m (fx °¥; 1)(3/17 e Yp)dyr e dyp5(¢20¢;1)(y1,___7yp) (Adypt1 - dyg)-

The symbol o in the foregoing relations denotes the usual composition of functions.

Remark A.2. We emphasize that fy, (dy ---dy,) is not a density (we did not write it as fy, (y1,...,¥) dy1

-+ dyn) because of the presence of the generalized function or the Dirac measure 6. In the expression d(y — a),
0 stands for the generalized function such that [6(y—a)y(y) dy = ¢ (a) while in §4(dy), d, stands for the Dirac
measure with an atom lying at a: §4(A) = [, da dy = 14(a).

Proof. By applying the change of variables defined by the bijective map ¢,, we plainly derive for any Borel sets
FE of RP and F of R97P:

P(Y € B x F} = P{p,(X) € E,p,(X) € F} = P{X € 47} (B)ng; (F)}

/wll(E) ]1%1(}?)( ) x)dx = /11(E) ))fx( x) dx

1 _ _
— m/}ﬂﬂp((g%ogol 1)(y1,...,yp)) (fxo<p1 1)(y1,...,yp)dy1...dyp.

Let us mention that in the second above equality, the notations ¢ '(E) and ¢, *(F) (although ¢y is not
bijective) refer to the inverse images of the sets F and F by o1 and @3 respectively. We have

1r ((902 o (p;l)(y17 e ,yp)) = 5(¢20¢;1)(y1,___7yp)(F) = / 5(4p2o<p;1)(y1,...7yp)(dyp+1 ..dyg)

F

= /Fé((prru o g) = (00 ) (Was - up)) dypya - dyg.
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Then, putting y = (Y1, ..., Yp, Yp+15- - - » Yq)
1

PlYcEXF} = ——
e BxF) |det501| ExF

(5((yp+1,...,yq) — ((pQngfl)(yl,...,yp)) (fX oapl_l)(yl,...,yp)dy

which proves the result. (I
Lemma A.3. The support of the measure f,, (dy1 ---dy,) is the range of .
Proof. The support of the measure f, (dy1 - - - dyg) is the set characterized by the equations

Ypt1s- - 90) = (930017 W1, Yp)-
Introducing the parameters uq, ..., u, defined by (u1,...,up) = @fl(yl, ..., Yp), Wwe extract the relations
W1, up) = @ (ut, . up)  and  (Ypia,.. 5 Yq) = @otia, ..., up)
which write, in a more concise form,

W15 ¥q) = (Ut .. up), Ul,...,up €R.

This is a parametrical representation of the range of ¢ which is also the vectorial space spanned by the vectors
Sl aij€,1<j<p, where {€1,...,¢&} is the canonical basis of RY. O
A.1.2. Computation of ¢, o o7t

We specify the explicit form of ¢, o gpfl. For this, we use the matrices A, Ay, Az of the linear maps ¢, ¢,
Do Set A = det A; and introduce the co-factors A4;;, 1 <i,5 < g, of Ay defined by

air ... Qa1j-—1 14541 --- Qlp
i Aj—11 -+ Qj—15—1 A5—-14541 --. Aj—1
Aij _ (71)’L+j det(akl)lgk,zgp _ i i—1j i—1j+ i—1p
ki, l#] Q411 -+ AQi415—1 Q541541 - -+ Qi1p
ap1 ... Qpj—1 Qpj+1 -+ Gpp
. —1 . .
The matrix of the map ¢ * is then given by
1 A11 e Apl
—1 .
A = — .
1 A . .
Ay ... Ay
Let us perform some intermediate computations:
ailr ... Qip
a1 .. Q1k—1 A1k+1 --- Qlip
a - aj_11 Aj_1k—1 Gj—1k+1 aj_1 d—11 -~ Gi-1p
_ j+k j—11 «-- Gj—1k=1 Qj—1k+1 - Qj—1p | _
E Ajpxy = E (—1)7 g, 0 k1 G T T1 ... Tp
J ] -1 ¢y s Gg4lp ) .
k=1 k=1 ) ) ] ) Aj411 --- Qj41p
Ap1 --. Qpk—1 apk4+1 ... @
P D D PP
ap1 ... Qpp
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In the case where zp = aix, p+1 <4 < g, we get the matrix of the map ¢, o gal_lz

Aerll . Aerlp

1
-1
A2A " = A : :
Ap ... Ay
where
a1 ... Qip
p aj—11 --- Qj—1p
AijzzaikAjk: ai1 ... Qip forp+1<i<q, 1<5<p.
k=1 Aj+11 -+ Qj41p
Ap1 ... Qpp
A.1.3. Some constraints
In the case where all the random variables X1, ..., X}, are positive, the support of the measure f, (dy1 - - - dyg)
may be a little more specified. The coordinates of ¢ *(y1,... ,Yp) must be positive. Assuming for instance

A > 0, this generates the constraints that Zizl Ajryr > 0 for 1 < j < p. Hence the support is the intersection
of the range of ¢ and the subset D of R? given by

P
D= {(yh-..,yq)GRq:ZAjkykZOforléjép}-
k=1

A.2. Surjective case

Suppose 9 surjective and p > ¢. Let us assume that the vectors X; = (X1,...,Xy) and Xo = (Xg41,...,Xp)
are independent. We introduce the matrix of the linear map ):
b11 A blq b1q+1 e blp
B— . . . .

Dyt - - byg bggi1 - bap

Since v is surjective, the rank of the matrix B is q. So, we can extract from B an invertible matrix of type
q X q. Upon exchanging some columns of B, we can suppose that this extracted matrix is obtained by picking
the ¢ first columns of B. This observation suggests us to split B into the two following matrices B; and Bs:

b11 blq b1q+1 blp
B, = and By = :

byt - - byg Dygi1 - bap

where B is the invertible aforementioned matrix. We also introduce the linear maps ¢, : R? — R? and
thy : RP7? — R? whose matrices are respectively By and Ba. Actually, the maps ¢, and 1), are nothing but
the partial maps of v defined by

Y(w1, .., mg) = P(w1,...,04,0,...,0) and  Yy(wgy1,. .., 2p) = P(0,...,0, 2051, .., Tp).

From the above discussion the map 1, is evidently bijective.
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A.2.1. The distribution of Y
Lemma A.4. The random vector Y admits for pdf

1

fY(yla'~'7yq) = |d€tw1| —_—

fxl (wfl(yla cee 7yq) - (wfl © 7/12)(=Tq+1; s ’:E;D))

X fx, (@q+15- - Tp) gyt . dap.

Proof. First, observe that ¢ (x1,...,2p) =¥ (z1,...,2¢) +Vy(Tgt1,...,7p). Now, applying the change of vari-
ables defined by the bijective map ¢,, we plainly derive

P{Y € B} = P{Xy € 7 (E) — (1" 0,)(X2)}

= /]Rp—q P{Xl € ¢f1(E) - (1/){1 Owg)(xlﬂrla s 7‘7517)} fx2 (qurla s 71';0) dqurl .. 'dxp

/ o daydeg Fx, (1, mg) = (W7 0P ) (Tga1s -5 2p))

¥ (B) Rp—q

xfx, (Tgs1, - s Tp) dTger - .. dap

=#/dy1---dy / Fx, (W7 W, yg) — W7 0 ) (g, -5 p))
|det | Jp L RS ST v da 1 ) Tg+1s---5Tp

X fx, (@q+1s- - @p) dTgir ... dayp

which proves the result. (I

A.2.2. Computation of wfl o,

We specify the explicit form of 1/)1_1 o 9,. For this, we use the matrices B, By, By of the linear maps ¢, 9,
thy. Put A = det By and introduce the co-factors B;j, 1 <1i,j < g, of By:

b11 blj—l b1j+1 blq

i+ i+ b'—ll e b'_1 i—1 b‘_l i+l .. b'_1
B;i = (—1)"7 det bri) 1<ki<q = (—1 hi T =1t e
* ( ) ( )1&1',1;}1 ( ) bi+11 bi+1j—1 bi+1j+1 bi—i—lq

bql bqj—l bqj+1 bqq

We then have
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Let us perform some intermediate computations:

b11 e b1 i—1 b1 i+l e blq

- . itk bk—.ll bk—ii—l bk—ii-{-l bk—.lq
> Briwk = (=1)""
k=1 k=1

Sbkg11 - bhg1i—1 Okgiit1 --- Drtig
bq1 ce bq i—1 bqi—i—l e bqq
b11 N bli—l X1 b1i+1 N blq
=|: Do D =det(th, ..., Vi1, U, Vi, - -, Uy)
bq1 . bqifl Tq bqurl . bqq

where we set in the last displayed equality

q q
=Y z;& and U =Y byé; forl<k<gq.
j=1 j=1

Observe that the relation ZZZI Biixr, = 0 is the equation of the vectorial space spanned by the vectors

U1, ..., Ui—1, Vit1, .- ., Uq. In the case where x = bjr, ¢ +1 < j < p, we get the matrix of the map z/;fl 01y
1 A1q+1 Alp
BIIBQ —_ Z . .

Aggr1 - Dy

where, for 1 <i<gq,q+1<j<p,

b11 b1i71 blj b1i+1 blq

k=1 bql . bqifl bqj bqurl . bqq
= det(Ul,...,’171‘_1,17]‘,171‘_’_1,...,17(]). (Al)
We also have
A = det(vy,...,0,).
A.2.3. Some constraints
In the case where all the random variables X1, ..., X}, are positive, we specify a little more the domain over
which the integration in Lemma A.4 should be carried. For this, we see that we must have (z441,...,2p) €

(0, +00)P~ together with 7 (y1, ..., vs) — (1/)1_1 0 ,)(Tgs1,- -, xp) € (0,+00)9. Assume for instance A > 0.
The domain of integration then writes

q p
D= {(Iq_;,_l,...,l‘p) S (0,+00)p_q : ZBkiyk — Z Aijxj > 0 forl < ) < q}
k=1 Jj=q+1
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and the variables 1, ...,y, are subject to the condition that this set is non-empty. Notice that
P P a a P a
D A=Y | X Buibs | =D Bi| D biu | =) Bu,
Jj=q+1 j=q+1 \ k=1 k=1 j=q+1 k=1

where, in the last above equality, the z},’s are the components with respect to the canonical basis of R? of the

vector
q q p p q p
xhéel = brizi | €x = x; bri€r | = Vs
kCk — kjLj | €k = J kjCk | = JY-
k=1 k=1 \j=q+1 Jj=q+1 k=1 Jj=q+1
Thus
q p q p
E Briyr — E Ay =det( 0y,..., 01, E Y€k — E TjUj, Uit1s -5 Up
k=1 Jj=q+1 k=1 Jj=q+1
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