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MODEL SELECTION FOR ESTIMATING THE NON ZERO COMPONENTS
OF A GAUSSIAN VECTOR

Sylvie Huet1

Abstract. We propose a method based on a penalised likelihood criterion, for estimating the number
on non-zero components of the mean of a Gaussian vector. Following the work of Birgé and Massart in
Gaussian model selection, we choose the penalty function such that the resulting estimator minimises
the Kullback risk.
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Introduction

The following regression model is considered:

X = m + τε, ε ∼ Nn(0, In),

where X = (X1, . . . Xn)T is the vector of observations. The expectation of X, say m = (m1, . . . , mn)T , and the
variance τ2 are unknown. Assuming that some of the components of m are equal to zero, our objective is to
estimate the number of zero components as well as their positions. We propose an estimation method based on
a model choice procedure.

We denote by J a subset of Jn = {1, 2, . . . , n} with dimension kJ , and we consider the collection J of all
subsets of Jn with dimension less than kn for some kn less than n:

J = {J ⊂ Jn, kJ ≤ kn} .

Let x = (x1, . . . , xn)T , then for each subset J ∈ J we denote by xJ the vector in R
n whose component i equals

xi if i belongs to J and 0 if not. We denote by ‖x‖2 the Euclidean distance in R
n and we set ‖x‖2

n = ‖x‖2/n.
For each subset J in the collection J , assuming that m = mJ , the maximum likelihood estimators of the

parameters (m, τ2) are (XJ , ‖XJc‖2
n), where Jc denotes the complement of J in Jn. We thus define a collection

of estimators, (XJ , ‖XJc‖2
n) and the problem is now to choose an estimator of (m, τ2) in this collection, or

equivalently, to choose the best J in J , say Ĵ , and to take (m̂, τ̂2) = (XĴ , ‖XĴc‖2
n). We associate to each

estimator in the collection a risk defined as

R(J) = E
{K(m,τ2)

(
XJ , ‖XJc‖2

n

)}
,

Keywords and phrases. Kullback risk, model selection, penalised likelihood criteria.

1 INRA, MIA, 78352 Jouy-en-Josas Cedex, France; huet@banian.jouy.inra.fr

c© EDP Sciences, SMAI 2006

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2006004

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2006004


NON ZERO COMPONENTS ESTIMATION BY MODEL SELECTION 165

where for all g ∈ R
n and σ positive, K(m,τ2)(g, σ2) denotes the Kullback-Leibler divergence:

K(m,τ2)

(
g, σ2

)
=

n

2

{
log

(
σ2

τ2

)
− 1 +

τ2 + ‖m− g‖2
n

σ2

}
.

The ideal subset J∗, defined as the minimiser of the risk over all the subsets in the collection,

R(J∗) = inf
J∈J

R(J),

is estimated by a model selection procedure. Namely, we propose to estimate J∗ by Ĵ that minimises a penalised
likelihood criterion defined as follows:

crit(J, pen) =
n

2
log

(‖XJc‖2
n

)
+ pen(kJ), (1)

where pen is a penalty function that depends on kJ . The calculation of the penalty function is based on the
following equality:

R(J) = K(m,τ2)

(
mJ , E‖X− mJ‖2

n

)
+ E

{K(mJ ,E‖X−mJ‖2
n)

(
XJ , ‖XJc‖2

n

)}
. (2)

The first term on the right hand side is analogous to a bias term: it represents the distance between the
expectation and the variance of X under the model J and the parameters (m, τ2). It is equal, up to some terms
that do not depend on J , to (n/2) log(E‖X− mJ‖2

n). The quantity E‖X− mJ‖2
n being estimated by ‖XJc‖2

n,
the second term on the right hand side is analogous to a variance term. The penalty function is calculated
so that it compensates both this variance term and the bias due to the estimation of log(E‖X − mJ‖2

n) by
log(‖XJc‖2

n).
In theorem 2.1 we show that, with probability close to one, K(m,τ2)

(
m̂, τ̂2

)
is smaller than the minimum

over the sets J of
K(J) = K(m,τ2)

(
mJ , E‖X− mJ‖2

n

)
+ pen(kJ )

as soon as the penalty function is larger than a function that can be written as follows:

pen(k) = n
{
c1 log

(n

k

)
+ c2

} k

n − k
(3)

for some constants c1, c2. From this result, we deduce in Corollary 2.2 that the expectation of K(m,τ2)

(
m̂, τ̂2

)
restricted to a set with probability close to 1, is smaller than the minimum of K(J) over the sets J .

This approach has already been proposed by Birgé and Massart [8] for the problem of variable selection in
the Gaussian regression model with known variance. In that context, the Kullback risk is the quadratic risk
and equals

Q(J) = E
(

1
2
‖XJ − m‖2

)
=

1
2

(
kτ2 + ‖mJ − m‖2

)
. (4)

Minimising the Kullback risk comes to realise the best compromise between the bias term ‖m−mJ‖2 and the
variance term τ2kJ . The difference with our work is that we consider the case of an unknown variance, and that
we propose a penalty function independent of the error variance. In Theorem 2.3 we show that the quadratic
risk associated with the penalised estimator Ĵ that minimises crit(J, pen) defined at equation (1) is bounded
above as soon as the penalty is larger than a function of the form given by equation (3).

We compare our penalty function to others for which asymptotic properties have been established, as the
AIC procedure and its generalisations. We also compare our estimating procedure to procedures based on the
penalisation of the residual sum of squares: the method proposed by Birgé and Massart [8] and the threshold
methods.
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1. The method

Let Ĵ(pen) be the subset in J that minimises crit(J, pen) defined in equation (1),

Ĵ(pen) = arg min
J∈J

crit(J, pen). (5)

The components of m that are not estimated by 0, correspond to the greatest absolute values of the components
of X. Let {�1, . . . , �n} be the order statistics, such that the X2

�i
are sortered in the descending order: X2

�1
≥

. . . ≥ X2
�n

, and let Jk be the subset of J corresponding to the k first order statistics, Jk = {�1, . . . , �k}. Then
for all subset J in J with dimension kJ = k, we have

n

2
log

(‖XJc
k
‖2

n

)
+ pen(k) ≤ n

2
log

(‖XJc‖2
n

)
+ pen(kJ ),

and the problem reduces to choose k, less than n, that minimises crit(Jk, pen), say k̂, and to take Ĵ = Jk̂.

2. Theorems

2.1. Control of the Kullback risk

We denote by Xk the distribution function of a X 2-variable with k degrees of freedom and by X−1
k the

quantile function.
For 1 < kn < n, let us define two collections of positive scalars say L0, L1, . . . , Lkn and ζ0, ζ1, . . . , ζkn satisfying

the following equalities:

Σ =
kn∑

k=0

(
n
k

)
exp(−kLk) (6)

ε =
kn∑

k=0

(
n
k

)
exp(−ζk), (7)

and such that
κ = ε +

3 + 4Σ
n

< 1, ζ0 <
n

4
, ζk ≥ − log {Xn−k(n)} . (8)

Theorem 2.1. Let Ĵ be defined at equation (5), and K(m,τ2)

(
m̂, τ̂2

)
the Kullback-Leibler divergence in (m̂, τ̂2) =(

XĴ , ‖XĴc‖2
n

)
. If for some constant C > 1, and each k = 0, . . . , kn,

pen(k) ≥ C

2
k

(
1 + 2

√
2Lk + 6Lk

) n

X−1
n−k(exp(−ζk))

, (9)

then

pr
[
K(m,τ2)

(
m̂, τ̂2

) ≤ 2C

C − 1
inf

J∈J
{K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
+ pen(kJ )

}
+ Kn(C)

]
≥ 1 − κ

where

Kn(C) =
(3C − 1)2

2(C − 1)2

(
2C(C + 1)
(C − 1)2

n

X−1
n−kn

(exp(−ζkn))
+ 1

)(√
5 +

√
log(n)

n

)2

log(n).

Let us comment the theorem and choose suitable values for the Lk’s and ζk’s such that κ is small and Kn(C)
of smaller order that the penalty.
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1-. Choice of the Lk’s, k = 0, . . . , kn. The Lk’s must be chosen large enough such that Σ is not too large.
Following the discussion in the paper by Birgé and Massart [8] when they consider the variable selection
problem in the Gaussian model, we can choose the Lk’s independent or dependent of k. This is what they call
constant or variable weights strategy.

• Constant weights strategy. If Lk = L for all k, then {1 + exp(−L)}kn < Σ < {1 + exp(−L)}n. Taking
L > log(n/c) for a positive constant c, we get Σ ≤ exp(c). If L does not increase with n, then Σ
explodes.

• Variable weights strategy. Using Lemma 6 of Barron et al. [6], we get

kn∑
k=0

(
n
k

)
exp(−kLk) ≤

kn∑
k=0

exp
[
k

{
1 + log

(n

k

)}
− kLk

]
. (10)

Then, if we choose Lk = 1 + log(2) + log(n/k), we get that Σ ≤ 2.

2-. Choice of the ζk’s, k = 1, . . . , kn. The ζk’s must be chosen large enough such that ε is small. From
Inequality (10) (with kLk replaced by ζk), we deduce that if for each k ≥ 1,

ζk = k
{
1 + 2 log

(n

k

)}
, (11)

then ζk satisfies the inequality (8) and

kn∑
k=1

(
n
k

)
exp(−ζk) ≤

kn∑
k=1

(
k

n

)k

≤ κ1

n
(see Lem. 7.5),

for some constant κ1. Therefore, if we choose ζ0 = κ2 log(n) for some constant κ2, we get ε ≤ (κ1 + κ2)/n.
3-. The terms X−1

n−k{exp(−ζk)}. If we choose ζk as above and kn = n/2, thanks to Lemma 7.3, we know
that X−1

n−k{exp(−ζk)} ≥ c1(n − k) for some constant c1. Therefore we can replace in the penalty function
X−1

n−k{exp(−ζk)} by (n−k) and the penalty is of order k log(n). In the same way, the term n/X−1
n−kn

{exp(−ζkn)}
appearing in Kn(C) is smaller than 2/c1. It follows that Kn(C) is of order log(n).

As explained in the introduction, see equation (2), the proof of the theorem lies on the control of the quantities
K(mJ ,E‖X−mJ‖2

n)

(
XJ , ‖XJc‖2

n

)
for all J ∈ J . In fact, we are able to control these quantities (see Lem. 4.3) if

we restrict the calculations to the set Ω defined as follows: Ω = Ω0 ∩ Ω1, where

Ω0 =
{
‖X‖2 ≥ nτ2

(
1 − 2

√
ζ0/n

)}
Ω1 =

{∀J ∈ J , kJ ≥ 1, ‖XJc‖2 ≥ τ2X−1
n−kJ

(exp(−ζkJ ))
} }

. (12)

In other words the theorem is shown when, simultaneously over all the subsets J ∈ J , the quantities τ2/‖XJc‖2
n

are bounded below by n/X−1
n−kJ

{exp(−ζkJ )} that appear in the penalty function. It follows that we easily deduce
from Theorem 2.1 an upper bound for the expectation of K(m,τ2)

(
m̂, τ̂2

)
restricted to the set Ω. Let us remark

that if the ζk’s are chosen as in equation (11) then pr(Ωc) ≤ ε ≤ (κ1 + κ2)/n. Indeed, we have the following
inequalities:

pr (Ωc
1) ≤

∑
J∈J

pr
{‖XJc‖2 ≤ τ2X−1

n−kJ
(exp(−ζkJ ))

}
≤

kn∑
k=1

(
n
k

)
pr

{‖XJc
k
‖2 ≤ τ2X−1

n−k {exp(−ζk)}} .
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Thanks to Lemma 7.2 and to the inequality (29) in Lemma 7.1, we can show that pr(Ωc
1) ≤

∑kn

k=1

(
n
k

)
exp(−ζk),

and pr(Ωc
0) ≤ exp(−ζ0). Therefore, pr(Ωc) ≤ ε. We can now state the corollary.

Corollary 2.2. Let Ω be defined at equation (12) with ζk as in equation(11). Under the assumptions of
Theorem 2.1,

E
[K(m,τ2)

(
m̂, τ̂2

)
�Ω

] ≤ 2C

C − 1

(
inf

J∈J
{K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
+ pen(kJ )

})
+ rn(C, Σ),

where

rn(C, Σ) =
κC

C − 1

[
(1 + Σ)C

C − 1
n

n − kn
+ 1

]
for some constant κ.

From a practical point of view, we want to have in hand a penalty function such that the risk associated with
the corresponding estimator is as close as possible to the minimum of the risks associated with the sets J in
the collection J . We will use the lower bound for the penalty function given at equation (9) in Theorem 2.1 as
the penalty function, taking Lk = log(n/k), neglecting the term

√
Lk and replacing X−1

n−k(exp(−ζk)) by n − k.
Though the results given in Corollary 2.2 are restricted to the set Ω we calculated the best constants c1, c2 that
occur in the penalty function of the following form:

pen(c1, c2) =
n

2

{
c1 log

(n

k

)
+ c2

} k

n − k
,

such that E
[K(m,τ2)

(
m̂, τ̂2

)]
is as close as possible to R(J∗). We find c1 = 2 and c2 = 4, see [14].

2.2. Control of the quadratic risk

Birgé and Massart [8] provided a general approach to model selection via penalisation for Gaussian regression
with known variance. If we assume that τ is known their result applies to our model. For each J ∈ J , the
Kullback risk for the maximum likelihood estimator of m when m = mJ equals Q(J) defined at equation (4)
and the likelihood penalised estimator is defined by Ĵ(pen) = arg minJ∈J crit(J, pen), where

crit(J, pen) =
n

2
‖XJc‖2

n + pen(kJ ). (13)

We call this estimator a RSS-penalised estimator and we denote the penalty function by pen to highlight that
the residual sum-of-squares is penalised, not its logarithm.

They showed that if

pen(k) ≥ Cτ2(1 +
√

2Lk)2
k

2
, for C > 1

then

E
(

1
2

∥∥∥m − XĴ(pen)

∥∥∥2
)

≤ C1 inf
J∈J

{
1
2
‖mJc‖2 + pen(kJ )

}
+ rn

where C1 is some constant that depends on C and rn a remainder term that is smaller than some constant.
Moreover they calculated an upper bound for the penalty term. Namely they showed [9] that, when n tends to
infinity and k is of order nα for 0 < α < 1, if

pen(k) ≤ τ2k

[
1
2

+ log
(n

k

)]
,
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then E
(∥∥∥m − XĴ(pen)

∥∥∥2
)

≥ Cτ2k log(n). The differences between their estimator and ours lie in the value of

the maximum likelihood and in the presence of the coefficient τ2.
The link between the penalised likelihood criterion estimator and the RSS-penalised estimator can be easily

done: minimising crit(J, pen) is equivalent to minimising crit(J, pen) with

pen(J) =
1
2
‖XJc‖2

(
exp

2
n

pen(k) − 1
)

. (14)

Using this relation, we calculate an upper bound for the quadratic risk associated with our penalised likelihood
criterion.

Let L0, . . . , Lkn and ζ0, . . . , ζkn satisfying equations (6) and (7).

Theorem 2.3. Let Ĵ(pen) be defined at equation (5) and let us assume that the penalty function pen satisfies
equation (9). Then,

E
(∥∥∥m − XĴ(pen)

∥∥∥2
)

≤ 4C(C + 1)2

(C − 1)3

(
inf

J∈J
{‖mJc‖2 + 2E(pen(kJ ))

}
+ (C + 1)τ2Σ

)
+ rn(m, ε),

where pen is given at equation (14) and

rn(m, ε) = ‖m‖2ε + ατ2knn1/4√ε,

for some constant α.

If the ζk’s satisfy equation (11), and kn < βn1/4, then rn(m, ε) is smaller than some constant.

3. Comparison with other criteria

3.1. The Akaike criterion and its generalisations

Several criteria have been proposed in the literature, the most famous ones being the Akaike and the Schwarz
criteria. Their properties have been studied in an asymptotic framework, namely, the number of non zero
components of m, denoted by k0, is fixed and n tends to infinity.

The Akaike criterion [2] with
penAIC(k) = k

is based on an asymptotic expansion of the Kullback-Leibler divergence calculated in the maximum likelihood
estimator of (m, τ2) on one subset J with dimension k. It can be shown that (n/2) log

(‖XĴc‖2
n

)
+ k is an

asymptotically unbiased estimator of E
[
K(m,τ2)(X̂J , ‖XĴc‖2

n)
]

(up to some terms that do not depend on k).
It appears that the penalty function proposed by Akaike can be deduced from the penalty function introduced

in Theorem 2.1 by neglecting the term n/Xn−k{exp(−ζk)} that is of order n/(n− k) and by choosing the Lk’s
independent of n and k, say Lk = L for a small value of L. As we have seen before, such a choice of the Lk’s
leads to very high values of the upper bound of the risk (Σ explodes). At the same time, the penalty function
is too small, leading to choose Ĵ equal to Jkn , where kn is the maximum dimension of the sets J ∈ J .

Several authors tried to correct the over-fitting tendency of the Akaike criterion. The corrected Akaike
criterion [15],

penAICc
=

n

2
n + k

n − k − 2
,

is based on an approximation of the risk function on one subset J . Let J0 be the subset of k0 indices on
which the components of m are different from 0, if J contains J0, the corrected Akaike criterion is an unbiased
estimator of R(J) (up to some terms that do not depend on J).
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Rewriting penAICc
as follows

penAICc
(k) =

n

n − k − 2
(k + 1) +

n

2
,

and noting that constants do not play any role in the penalty functions, it appears that the corrected Akaike
criterion intends to correct the over-fitting tendency of the Akaike criterion, at least for small sample.

The SIC criterion,

penSIC(k) =
1
2
k log(n), (15)

was proposed by Schwartz [22] and Akaike [3]. Schwartz derived its penalty function from Bayesian arguments
and asymptotic expansions. It is shown by Nishii [18] that if the penalty function is written as pen(k) = cnk

such that cn → ∞ and cn/n → 0, then Ĵcn = Ĵ(pen) converges to J0 in probability. Moreover the quadratic
risk function satisfies the following convergence property: E(‖m− XĴcn

‖2
n) tends to k0τ

2.
The AMDL (for approximate minimum description length) criterion proposed by Rissanen [20]

penAMDL(k) =
3
2
k log(n) (16)

was studied by Antoniadis et al. [4] for determining the number of nonzero coefficients in the vector of wavelet
coefficients.

More generally, the SIC criterion can be generalised by choosing a penalty function of the form pena1,a2
(k) =

k(a1 log(n) + a2) for some constants a1, a2. This criterion corresponds to a minimum Kullback risk criterion, in
the case where we adopt a constant weight strategy (namely Lk = log(n)) and where we neglect the correction
term n/(n − k).

3.2. Threshold estimators

Another important class of estimators is the class of threshold estimators. The estimator of m equals XĴ

where Ĵ is defined as the set of indices i in {1, . . . , n} such that the absolute value of Xi is greater than a
threshold t. This method is applied for detecting the non-zero coefficients in a vector of independent variables.
Precisely, it consists in choosing a decreasing sequence t(k) of positive numbers and comparing the order statistics
X2

�1
, . . . , X2

�n
to t2(1), . . . , t2(n). Then define

k̂ = 0 if X2
�k

< t2(k) ∀k ≥ 1
k̂ = maxk

{
X2

�k
≥ t2(k)

}
if not

}
, (17)

and choose t̂ = t(k̂). The link between threshold and penalised estimators is done as follows: k̂ is the location
of the right most local minimum of the quantity crit(Jk, pen) defined at equation (13) by taking the following
penalty function:

pen(0) = 0

pen(k) =
1
2

k∑
l=1

t2(l), if k ≥ 1.

Conversely the RSS-penalised estimator defined a threshold estimator by setting t2(k) = 2
(
pen(k) − pen(k − 1)

)
.

The link between the threshold estimator and a logRSS-penalised is done in the same way: the logRSS-penalised
estimator is a threshold estimator with

t2(k) = ‖XJc
k
‖2

(
exp

{
2
n

[pen(k) − pen(k − 1)]
}
− 1

)
.
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Conversely the threshold estimator defined a logRSS-penalised estimator by setting

pen(0) = 0

pen(k) =
n

2

k∑
l=1

log
(

1 +
t2(l)

‖XJc
l
‖2

)
, if k ≥ 1

in crit(Jk, pen) defined at equation (1).
For analysing un-replicated factorial and fractional factorial designs, several authors proposed threshold

estimators. See for example Box and Meyer [12], Lenth [21], and Haaland and O’Connell [19]. The idea is to
choose a threshold that should provide a powerful testing procedure for identifying non-null effects. Lenth [21]
proposed a threshold estimator based on constant t(k)’s.

Firstly, he proposed to estimate τ as follows:

τ̂ = 1.5 × median{|Xi| for |Xi| < 2.5s0},

where s0 = 1.5×median|Xi|. He showed that, when the effects are sparse (the number of non-zero components
is small, and n is large), τ̂ is a fairly good estimate of τ , that slightly overestimates τ . For small samples, a
simulation study was conducted to validate this choice. Several other estimators of τ have been proposed and
compared by Haaland and O’Connell [19].

Secondly he defined a simultaneous margin of error with approximately 95% confidence by taking

tSME = τ̂ T−1
(
γn,

n

3

)
, (18)

where γn = (1+0.951/n)/2 and T−1(γ, d) denotes the γ-quantile of a student variable with d degrees of freedom.
The choice d = n/3 comes from the comparison of the empirical distribution of τ̂2 to chi-squared distribution.
Haaland and O’Connell [19] calculated empirically the critical values of the test of H0 : mi = 0, i = 1, . . . , n
and showed that the Lenth’s procedure is conservative. The penalty function in the RSS-penalised estimator
associated with this threshold estimator is defined by pen

SME
(k) = k

2 t2SME . When n is large, pen
SME

(k) is of
order k log(n).

For the problem of testing simultaneously several hypotheses, Benjamini and Hochberg [7] proposed a pro-
cedure that controls the false discovery rate. Precisely, the procedure seeks to ensure that at most a fraction q
of the rejected null hypotheses corresponds to false rejections. It corresponds to a threshold estimator with

t(k) = τ̂Φ−1

(
1 − qk

2n

)
and tFDR = t(k̂), (19)

where k̂ is defined by equation (17). Abramovich et al. [1] showed that in case of sparse data, and letting q = qn

tending to zero when n tends to infinity, the procedure is asymptotically minimax. It is easy to see that for
large n, and small q, t(k) is of order

√
log(n/k). Therefore the penalty function pen

FDR
(k) associated with

tFDR is of order k log(n/k). More precisely, using the well known inequality Φ−1(1 − u) ≤ √−2 log(2u), it can
be shown that

pen
FDR

(k) ≤ τ̂2k

{
log

(n

k

)
− log (q) +

1
k

k∑
l=1

log
(

k

l

)}
.

Foster and Stine [13] compared the performances of adaptive variable selection to that obtained by Bayes expert
and proposed an approximate empirical Bayes estimator defined as a threshold estimator with

t(k) = τ̂

√
2 log

(n

k

)
and tFS = t(k̂), (20)



172 S. HUET

where k̂ is defined by equation (17). The penalty function pen
FS

(k) associated with tFS is the following:

pen
FS

(k) = τ̂2k

{
log

(n

k

)
+

1
k

k∑
l=1

log
(

k

l

)}
.

In a recent paper, Johnston and Silverman [16] propose a method for estimating the non-zero coefficients of the
wavelet transform of an unknown function f . Because the wavelet coefficients of a signal are generally sparse
at fine resolution scales and dense at the coarser scales, their method adapts the threshold level by level. It
is based on an empirical Bayes approach where the prior distribution of the wavelet coefficient estimators is a
mixture of a Dirac distribution at zero and an heavy-tailed distribution with an unimodal symmetric density.
They show that the procedure gives good theoretical and practical performances for estimating f .

3.3. Practical issues

The performances of all these criteria, when they are applied to real data set, are compared in an extensive
simulation study reported in [14]. We considered the following criteria:

• Criteria based on penalised logarithm of the residual sum of squares
– The SIC criterion defined at equation (15).
– The AMDL criterion defined at equation (16).
– The MKR criterion, that aims at minimising the Kullback risk, defined by

pen
BM

(k) = τ̂2
{
log

(n

k

)
+ 2

}
k.

• Threshold estimators or criteria based on penalised residual sum of squares. For these estimators we
chose to estimate τ using the estimator given by Lenth [21] that should generally perform well for
moderate to large numbers of non-null effects.

– The SME estimator defined at equation (18).
– The FDR estimator defined at equation (19) with q = 0.05.
– The FS estimator defined at equation (20).
– The estimator proposed by Birgé and Massart using the penalty function given in [14]:

pen
BM

(k) = τ̂2
{
log

(n

k

)
+ 2

}
k.

The conclusions are the following: the behaviour of AMDL and SIC methods depends on k0, and is very bad in
some cases. The FS method gives good results only when k0 = 0 and overestimates k0 in other cases. This was
already noticed by several authors, see for example [19]. The MKR, FDR and BM methods give similar results.
We note that the BM method tends to overestimate k0. When n is small (for example n = 20 or n = 100) and
k0 is small, the FDR method tends to overestimate k0.

4. Proof of Theorem 2.1

Proposition 4.1. Let k̂ be the dimension of Ĵpen. Then for all J ∈ J we get the following inequality: for all
ξ, η > 0, and 0 < θ < 1, with probability greater than 1 − ε − (3 + 4Σ) exp(−ξ)

(1 − θ)K(m,τ2)

(
XĴpen

, ‖XĴc(pen)‖2
n

)
≤ (1 + θ)K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
+

{
pen(kJ ) +

1
θ
kJLkJ − pen(k̂) + q(k̂, η, θ)

}
+

1
θ
c(ξ)C(kn, η),



NON ZERO COMPONENTS ESTIMATION BY MODEL SELECTION 173

where

q(k, η, θ) =
n

2
1 + η

θ

k

X−1
n−k(exp(−ζk)

(
1 + 2

√
2Lk + 6Lk

)
C(kn, η) = 2(1 + η−1)

n

X−1
n−kn

(exp(−ζkn))
+ 1

c(ξ) = ξ

(
5 +

√
ξ

n
+ 2

ξ

n

)
.

Using this proposition we show the theorem as follows. Taking pen(k) ≥ q(k, θ, η), it follows immediately that
q(k̂, η, θ) − pen(k̂) is negative and that

1
θ
kLk <

pen(k)
3(1 + η)

thanks to Lemma 7.3. Therefore

K(m,τ2)

(
XĴpen

, ‖XĴc(pen)‖2
n

)
≤ 1 + θ

1 − θ

{K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
+

3η + 4
3(1 + η)

1
1 + θ

pen(kJ ) +
c(ξ)C(kn, η)

θ(1 + θ)

}
,

is true with probability greater than ε + (3 + 4Σ) exp(−ξ).
Finally, the theorem is proved by taking θ = (C + 1)/(3C − 1), η = θC − 1, for some C > 1 and ξ = log(n).

4.1. Proof of Proposition 4.1

Let L(X,g, σ2) be the likelihood of X calculated in (g, σ2). By definition of Ĵpen, we have the following
inequality:

∀J ∈ J , dim(J) = kJ , −L(X,XĴpen
, ‖XĴc(pen)‖2

n) + pen(k̂) ≤ −L(X,XJ , ‖XJc‖2
n) + pen(kJ ).

Because L(X,XJ , ‖XJc‖2
n) is the maximum of the log-likelihood when m = mJ , we get

−L(X,XĴpen
, ‖XĴc(pen)‖2

n) + pen(k̂) ≤ −L(X,mJ , τ2 + ‖mJc‖2
n) + pen(kJ ). (21)

Let us define the function Φ as

Φ(g, σ2) =
‖X − g‖2

n

σ2
− E

(‖X − g‖2
n

σ2

)
.

By simple calculations, we get

−L(X, g, σ2) =
n

2
Φ(g, σ2) + K(m,τ2)(g, σ2) − E{L(X,m, τ2)},

and the inequality (21) is equivalent to{
K(m,τ2)(XĴpen

, ‖XĴc(pen)‖2
n) ≤ K(m,τ2)(mJ , τ2 + ‖mJc‖2

n) + pen(kJ ) − pen(k̂)
+n

2 Φ(mJ , τ2 + ‖mJc‖2
n) − n

2 Φ(XĴpen
, ‖XĴc(pen)‖2

n).
(22)
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Now, Φ(mJ , τ2 + ‖mJc‖2
n) − Φ(XĴpen

, ‖XĴc(pen)‖2
n) is split up into three parts:

Φ(mJ , τ2 + ‖mJc‖2
n) − Φ(XĴpen

, ‖XĴc(pen)‖2
n) = D1(Ĵpen) + D2(Ĵpen) − D2(J),

where

D1(J) = Φ(mJ , τ2 + ‖mJc‖2
n) − Φ(XJ , ‖XJc‖2

n)
D2(J) = Φ(m, τ2) − Φ(mJ , τ2 + ‖mJ‖2

n).

The two following lemmas give upper bounds for D1(Ĵpen) and D2(Ĵpen). They are shown in Sections 4.2
and 4.3.

Lemma 4.2. Let 0 < θ < 1, let (Lk, k = 0, . . . , kn) and Σ > 0 satisfying equations (6), then for all ξ > 0

pr
[
sup
J∈J

{
n

2
D2(J) − θK(m,τ2)(mJ , τ2 + ‖mJc‖2

n) − 1
θ
kJLkJ

}
≥ C2(ξ)

θ

]
≤ (1 + Σ) exp(−ξ),

where

C2(ξ) = ξ

(
2 +

ξ

n
+ 2

√
ξ

n

)
.

Lemma 4.3. Let 0 < θ < 1, η > 0, let (Lk, 0 = 1, . . . , kn) and Σ > 0 satisfying equations (6), let (ζk, k =
0, . . . , kn) and ε > 0 satisfying (7), and let Ω defined at equation (12). For each k = 0, . . . , kn, let q1(k) and
C1(ξ) be defined as

q1(0) = 0

q1(k) =
n

2
k

X−1
n−k(exp(−ζk))

(
1 + 2

√
2Lk + 4Lk

)
if k ≥ 1

C1(ξ) = ξ

(
5 +

ξ

n
+ 2

√
ξ

n

)
.

For all J ∈ J , let Z(J) be defined as follows:

Z(J) =
n

2
D1(J) − θK(mJ ,τ2+‖mJc‖2

n)(XJ , ‖XJc‖2
n) − 1 + η

θ
q1(kJ ).

Then for all ξ > 0,

pr

[
sup
J∈J

{Z(J)}�Ω ≥ 1 + η−1

θ

n

X−1
n−kn

{exp(−ζkn)}C1(ξ)

]
≤ (1 + 2Σ) exp(−ξ).

Now, applying these lemmas to equation (22), and noting that

K(m,τ2)(XJ , ‖XJc‖2
n) = K(m,τ2)(mJ , τ2 + ‖mJc‖2

n) + K(mJ ,τ2+‖mJc‖2
n)(XJ , ‖XJc‖2

n),
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we get that with probability greater than 1 − (2 + 3Σ) exp(−ξ),

K(m,τ2)

(
XĴpen

, ‖X
Ĵcpen

‖2
n

)
�Ω ≤ K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
�Ω

+
{
pen(kJ ) − pen(k̂)

}
�Ω

+θK(m,τ2)

(
XĴpen

, ‖XĴc(pen)‖2
n

)
�Ω

+
{

1 + η

θ
q1(k̂) +

1
θ
k̂Lk̂

}
�Ω

+

{
η + 1

η

nC1(ξ)
θX−1

n−kn
{exp(−ζkn)} +

C2(ξ)
θ

}
�Ω

−n

2
D2(J)�Ω.

Let us note that thanks to Assumption (8), X−1
n−k{exp(−ζk)} ≤ n. Therefore, we have the following inequalities:

q(k, η, θ) ≥ 1 + η

θ
q1(k) +

1
θ
kLk

C(kn, η)c(ξ) ≥ (1 + η−1)
n

X−1
n−kn

{exp(−ζkn)}C1(ξ) + C2(ξ),

and Proposition 4.1 is shown.

4.2. Proof of lemma 4.2

D2(J) = Φ(m, τ2) − Φ(mJ , τ2 + ‖mJc‖2
n)

=
‖ε‖2

n

τ2
− ‖mJc + ε‖2

n

τ2 + ‖mJc‖2
n

=
1
n

‖mJc‖2
n

τ2 + ‖mJc‖2
n

( n

τ2
‖ε‖2

n − n
)
− τ‖mJc‖n√

n

2
τ2 + ‖mJc‖2

n

√
n < mJc , ε >n

τ‖mJc‖n
· (23)

The proof is divided into two steps.

First step.
Let

d(J) = 2(
√

nξ + ξ)
1
n

‖mJc‖2
n

τ2 + ‖mJc‖2
n

+
τ‖mJc‖n√

n

2
τ2 + ‖mJc‖2

n

√
2(ξ + kJLkJ ),

we show that
pr (∃J/D2(J) ≥ d(J)) ≤ exp(−ξ)(1 + Σ). (24)

Using equations (28) of Lemma 7.1, we have that for all ξ > 0

pr
( n

τ2
‖ε‖2

n − n ≥ 2
√

nξ + 2ξ
)
≤ exp(−ξ).

Using the well-known inequality for a Gaussian variable:

∀x > 0, pr(Z ≥ x) ≤ exp(−x2/2) where Z ∼ N (0, 1), (25)
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we get that

pr
{√

n < mJc , ε >n

τ‖mJc‖n
≤ −

√
2(ξ + LkJ kJ )

}
≤ exp(−ξ − LkJ kJ ).

Equation (24) follows immediately.

Second step.
It remains to make the link with K(m,τ2)(mJ , τ2 +‖mJc‖2

n). Firstly we calculate an upper bound for K using
equation (33) in Lemma 7.4:

2
n

K(m,τ2)(mJ , τ2 + ‖mJc‖2
n) = − log

(
τ2

τ2 + ‖mJc‖2
n

)

≥ 1 − 1

1 + ‖mJc‖2
n

τ2

+
1
2

( ‖mJc‖2
n

τ2

1 + ‖mJc‖2
n

τ2

)2

≥ ‖mJc‖2
n

τ2 + ‖mJc‖2
n

+
1
2

( ‖mJc‖2
n

τ2 + ‖mJc‖2
n

)2

≥ τ2‖mJc‖2
n

(τ2 + ‖mJc‖2
n)2

+
1
2

( ‖mJc‖2
n

τ2 + ‖mJc‖2
n

)2

.

Secondly, using that for all θ > 0 2ab ≤ a2θ + b2/θ we get

d(J) ≤ θ
2
n

K(m,τ2)(mJ , τ2 + ‖mJc‖2
n) +

2
θ

LJkJ

n
+

1
θ

2ξ

n

(
2 +

ξ

n
+ 2

√
ξ

n

)
.

4.3. Proof of Lemma 4.3

For any vector g ∈ R
n, and σ2 > 0, let us define

ZJ(g, σ2) = Φ(mJ , τ2 + ‖mJc‖2
n) − Φ(gJ , σ2).

We have D1(J) = ZJ(X̂Ĵ , ‖XĴc‖2
n) and

ZJ(g, σ2) = Z1,J(σ2) + Z2,J(σ2) + Z3,J(g, σ2)

where

Z1,J(σ2) = τ2

√
2
n

(
1

τ2 + ‖mJc‖2
n

− 1
σ2

)
n‖ε‖2

nτ2 − n√
2n

Z2,J(σ2) = 2
τ‖mJc‖n√

n

(
1

τ2 + ‖mJc‖2
n

− 1
σ2

) √
n〈ε,mJc〉n
τ‖mJc‖n

Z3,J(g, σ2) = −2
τ‖mJ − gJ‖n√

nσ2

√
n〈ε,mJ − gJ〉n
τ‖mJ − gJ‖n

·

The proof is divided into three steps.
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First step.
We calculate an upper bound for D1(J). Let

d1(J) = 2
∣∣∣∣ 1
τ2 + ‖mJc‖2

n

− 1
‖XJc‖2

n

∣∣∣∣
{(√

ξ

n
+

ξ

n

)
τ2 +

√
2(ξ + kJLkJ )

n
τ‖mJc‖n

}

+2τ
‖mJ − XJ‖n

‖XJc‖2
n

{√
kJ

n
+

√
2(ξ + kJLkJ )

n

}
,

we show that for all ξ > 0

pr {∃J/D1(J) ≥ d1(J)} ≤ (1 + 2Σ) exp(−ξ). (26)

Let us study the processes Z1,J(σ2), Z2,J(σ2) and Z3,J(g, σ2). Using equation (28) in Lemma 7.1, we have that
for all ξ > 0

Z1,J(‖XJc‖2
n) ≤ τ2

√
2
n

∣∣∣∣ 1
τ2 + ‖mJc‖2

n

− 1
‖XJc‖2

n

∣∣∣∣
(√

2ξ +

√
2
n

ξ

)
,

with probability greater than 1 − exp(−ξ). Using equation (25), we have that

Z2,J(‖XJc‖2
n) ≤ 2

τ‖mJc‖n√
n

∣∣∣∣ 1
τ2 + ‖mJc‖2

n

− 1
‖XJc‖2

n

∣∣∣∣√2(ξ + kJLkJ )

with probability greater than 1 − exp(−ξ − kJLkJ ). Let us define

Z(g) =
√

n〈ε,mJ − gJ〉n
τ‖mJ − gJ‖n

·

Let us remark that if J = ∅, Z(g) = 0. Using the same proof as Birgé and Massart [8], we use a classical
inequality due to Cirel’son, Ibragimov and Sudakov [10] and we get that

sup
g∈Rn,g=gJ

Z(g) ≤
√

kJ +
√

2(ξ + kJLkJ ),

with probability greater than 1 − exp(−ξ − kJLkJ ). Therefore, we get

Z3,J(XJ , ‖XJc‖2
n) ≤ 2

τ‖mJ − XJ‖n√
n‖XJc‖2

n

(√
kJ +

√
2(ξ + kJLkJ )

)
.

Second step.
We calculate a lower bound for
K(mJ ,τ2+‖mJc‖n)(XJ , ‖XJc‖2

n).

2
n

K(mJ ,τ2+‖mJc‖n)

(
XJ , ‖XJc‖2

n

)
= − log

(
τ2 + ‖mJc‖2

n

‖XJc‖2
n

)
− 1 +

τ2 + ‖mJc‖2
n

‖XJc‖2
n

+
‖mJ − XJ‖2

n

‖XJc‖2
n

·

Applying Lemma 7.4 with

v =
‖XJc‖2

n

τ2 + ‖mJc‖2
n

− 1,
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we get

2
n

K(mJ ,τ2+‖mJc‖n)

(
XJ , ‖XJc‖2

n

) ≥
1
2

(
1

τ2 + ‖mJc‖2
n

− 1
‖XJc‖2

n

)2 (
τ2 + ‖mJc‖2

n

)
min

{‖XJc‖2
n, τ2 + ‖mJc‖2

n

}
+

‖mJ − XJ‖2
n

‖XJc‖2
n

.

Thanks to Assumption (8) on the ζk’s, it is easy to verify that for each J ∈ J ,

τ2 + ‖mJc‖2
n ≥ τ2

n
X−1

n−kJ
{exp(−ζkJ )}·

Moreover using Lemma 7.2,

pr
[ n

τ2
‖XJc‖2

n ≤ X−1
n−kJ

{exp(−ζkJ )}
]
≤ exp(−ζkJ ).

Therefore we get that on the set Ω, for all J ∈ J ,

min
{‖XJc‖2

n, τ2 + ‖mJc‖2
n

} ≥ τ2
X−1

n−kJ
{exp(−ζkJ )}

n

X−1
n−kJ

{exp(−ζkJ )}
n

τ2

‖XJc‖2
n

≤ 1

and finally

2
n

K(mJ ,τ2+‖mJc‖2
n)

(
XJ , ‖XJc‖2

n

) ≥ 1
2

(
1

τ2 + ‖mJc‖2
n

− 1
‖XJc‖2

n

)2 (
τ4 + τ2‖mJc‖2

n

) X−1
n−kJ

{exp(−ζkJ )}
n

+
τ2‖mJ − XJ‖2

n

‖XJc‖4
n

X−1
n−kJ

{exp(−ζkJ )}
n

·

Third step.
We make the link between the Kullback distance K(mJ ,τ2+‖mJc‖n)(XJ , ‖XJc‖2

n) and d1(J). Let J be a non
empty set in J and

Π(J) =
n

X−1
n−kJ

(exp(−ζkJ ))

⎧⎨⎩
(√

ξ

n
+

ξ

n

)2

+
2(ξ + kJLkJ )

n
+

(√
kJ

n
+

√
2(ξ + kJLkJ )

n

)2
⎫⎬⎭ .

Using the inequality 2ab ≤ a2θ + b2/θ for all θ > 0, we get that on the set Ω, for all J ∈ J ,

d1(J) ≤ θ
2
n
K(mJ ,τ2+‖mJc‖n)

(
XJ , ‖XJc‖2

n

)
+

1
θ
Π(J). (27)

Using successively that
√

a + b ≤ √
a +

√
b and (a + b)2 ≤ (1 + η)a2 + (1 + 1/η)b2 for all a, b, η > 0, we get that

Π(J) ≤ n

X−1
n−kJ

{exp(−ζkJ )}

{
ξ

n

(
5 +

ξ

n
+ 2

√
ξ

n

)
(1 + 1/η) +

kJ

n

(
1 + 4LkJ + 2

√
2LkJ

)
(1 + η)

}

and putting together the inequalities (26) and (27), we have the desired result.
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If J = ∅, the computation are simplified. The term Z3,J disappears and the term ‖mJ − XJ‖2
n/‖XJc‖2

n

disappears in the expression of K(mJ ,τ2+‖mJc‖n)(XJ , ‖XJc‖2
n). In place of equation (27) we get

d1(J) ≤ θ
2
n
K(0,τ2+‖m‖n)

(
z, ‖X‖2

n

)
+

1
θ

n

X−1
n {exp(−ζ0)}

ξ

n

(
3 +

ξ

n
+ 2

√
ξ

n

)
,

where 0 is the vector null.

5. Proof of Corollary 2.2

From the proof of Proposition 4.1 we get that

K(m,τ2)(XĴpen
, ‖X

Ĵcpen
‖2

n)�Ω ≤ 1
1 − θ

{K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
+ pen(kJ )

+
1
θ
C(kn, η)c(ξ) − n

2
D2(J)�Ω

}
,

is true except on a set with probability smaller than (2 + 3Σ) exp(−ξ). Consequently, there exists a positive
variate, U , such that

pr {U > c(ξ)} ≤ (2 + 3Σ) exp(−ξ),
and

K(m,τ2)

(
XĴpen

, ‖X
Ĵcpen

‖2
n

)
�Ω ≤ 1

1 − θ

{K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
+ pen(kJ)

+
1
θ
C(kn, η)U − n

2
D2(J)�Ω

}
.

It remains to calculate E(U) and E|D2(J)�Ω|.

E(U) =
∫ ∞

0

pr(U > u)du =
∫ ∞

0

pr(U > c(ξ))c′(ξ)dξ

≤ κ1(1 + Σ),

where κ1 is a positive constant. Noting that D2(J) has expectation 0 (see Eq. (23)), then

E {D2(J)�Ω} = −E {D2(J)�Ωc} ,

and

{E|D2(J)�Ωc |}2 ≤ E{D2(J)}2pr(Ωc)

≤ 2ε

n

‖mJc‖2
n

(
2τ2 + ‖mJc‖2

n

)
(τ2 + ‖mJc‖2

n)2
·

It follows that for all J ∈ J ,

E
{
K(m,τ2)(XĴpen

, ‖X
Ĵcpen

‖2
n)�Ω

}
≤ 1

1 − θ

{K(m,τ2)

(
mJ , τ2 + ‖mJc‖2

n

)
+ pen(kJ )

}
+

κ1

θ(1 − θ)
C(kn, η)(1 + Σ) +

1
1 − θ

√
nε

2
·

Finally, the corollary is proved by taking θ = (1/C + 1)/2, and η = θC − 1, for some C > 1.
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6. Proof of Theorem 2.3

The proof is divided into two steps. The first step is an application of the theorem proved by Birgé and
Massart in [8]. More precisely, under the assumptions of Theorem 2.3,

E
[∥∥∥m − XĴ(pen)

∥∥∥2

�Ω

]
≤ 4C(C + 1)2

(C − 1)3

(
inf

J∈J
{‖mJc‖2 + 2E(pen(kJ ))

}
+ (C + 1)τ2Σ

)
,

where Ω is defined at equation (12). This result is shown by verifying that on the set Ω

pen(k) >
C

2
τ2k

(
1 +

√
2Lk

)2

,

and by following the lines of the proof of Theorem 1 in [8].
The second step consists in showing that the expectation of the quadratic risk on the set Ωc is controlled.

From the following equality ∥∥m − XĴ

∥∥2 =
∥∥m − mĴ

∥∥2 +
∥∥mĴ − XĴ

∥∥2

we deduce that
E

(∥∥m − XĴ

∥∥2
�Ωc

)
≤ ‖m‖2 pr (Ωc) + τ2E

(∥∥εĴ

∥∥2
�Ωc

)
·

Calculation of E
(∥∥εĴ

∥∥2
�Ωc

)
. We first write that

E
(∥∥εĴ

∥∥2
�Ωc

)
≤ kn

√
E (max{ε2

i })2
√

pr (Ωc).

Using Formulae (4.2.6) given in [11],

E
((

max{ε2
i }

)2
)
≤ 3 + 4

√
6

n − 1√
2n − 1

≤ α2√n

for some α, leading to

E
(∥∥εĴ

∥∥2
�Ωc

)
≤ αknn1/4

√
pr (Ωc).

The theorem is shown because pr (Ωc) ≤ ε, as it was shown in Section 2.1.

7. Useful lemmas

Lemma 7.1. Let X be a X 2 variable with D degrees of freedom, then for all x > 0

P
(
X ≥ D + 2

√
Dx + 2x

)
≤ exp(−x), (28)

P
(
X ≤ D − 2

√
Dx

)
≤ exp(−x), (29)

and for all 0 < λ < 1,
P (X ≤ λD) ≤ {λ exp(1 − λ)}D/2

. (30)

Proof. Inequality (28) is shown by Laurent and Massart (Lem. 1) [17].
For proving Inequality (30), let us start with the Chernoff inequality:

∀x > 0, µ > 0, pr (X ≤ x) ≤ exp
[

inf
µ>0

{
µx + log

{
E

(
e−µx

)}}]
.
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If x < D, the function
g(µ) = µx + log

{
E

(
e−µx

)}
is minimum in µ = D/2x − 1/2 and

g

(
D

2x
− 1

2

)
= exp

{
D − x − D log(D) + D log(x)

2

}
.

�
Lemma 7.2. Let T be a χ2 variable with D degrees of freedom and let T ′ be a non central χ2 variable with
D degrees of freedom and non centrality parameter a > 0. Then for all u > 0

P (T ′ ≤ u) ≤ P (T ≤ u).

Proof. The proof of Lemma 7.2 can be found in [5], Lemma 1. �
Lemma 7.3. Let kn ≤ n/2 and, for each k = 0, . . . , kn let

ζk = k
{
1 + 2 log

(n

k

)}
.

Then there exist some constants, c1, c2, such that c1(n − k) ≤ X−1
n−k{exp(−ζk)} ≤ c2(n − k).

Proof. From equation (28) in Lemma 7.1, we get that

X−1
n−k{exp(−ζk)} ≤ (n − k)

[
1 + 2

√
− log(1 − exp(−ζk))

n − k
− 2

log{1 − exp(−ζk)}
n − k

]
.

Some simple calculation show that ζk ≥ 2 log(n) leading for n ≥ 2 to

− log{1 − exp(−ζk)}
n − k

≤ − 2
n

log
(

1 − 1
n2

)
≤ 0.3.

From equation (30), we get that X−1{exp(−ζk)} ≥ λ(n − k) if

{λ exp(1 − λ)}(n−k)/2 ≤ exp(−ζk). (31)

Let u ∈ [0, 1/2] and h(u) be defined by

h(u) = −2
u

1 − u
{1 − 2 log(u)}.

Solving Inequality (31) is equivalent to find 0 < λ < 1 such that

log(λ) + 1 − λ ≤ h(k/n).

It is easy to prove that such a λ exists: the function h decreases from 0 to h(1/2) and the function λ �→
log(λ) + 1 − λ increases from minus infinity to 0. �
Lemma 7.4.

log(1 + v) − 1 +
1

1 + v
≥ 1

2
v2

1 + v
if − 1 < v ≤ 0 (32)

≥ 1
2

v2

(1 + v)2
if v ≥ 0. (33)
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Proof. Let −1 < v ≤ 0 and

f1(v) = log(1 + v) − 1 +
1

1 + v

(
1 − 1

2
v2

)
.

f1(0) = 0 and f1(−1) = +∞.

f ′
1(v) = −1

2
v2

(1 + v)2

is negative, showing thus equation (32).
Let v ≥ 0 and

f2(v) = log(1 + v) − 1 +
1

1 + v
− 1

2
v2

(1 + v)2
.

f2(0) = 0 et f2(+∞) = +∞.

f ′
2(v) =

v2

(1 + v)3

is positive, showing thus equation (33). �

Lemma 7.5. For n ≥ 2 we have the following property:

n∑
k=1

(
k

2n

)k

≤ κ

n

where κ is some constant.

Proof. Let g be defined as g(x) = exp(nx log(x/2)) for 1/n ≤ x ≤ 1. Its derivative g′(x) = n log(ex/2)g(x) is
negative for x ≤ 2/e and positive for x ≥ 2/e. Let the integer k0 be such that k0 ≤ ne−1 ≤ k0 + 1. We get

n∑
k=1

(
k

2n

)k

≤
k0∑

k=1

(
k

2n

)k

+ n sup
x∈[e−1,1]

{g(x)}

≤ g

(
1
n

)
+ n

k0∑
k=2

1
n

g

(
k

n

)
+ n max

{
g

(
1
e

)
, g(1)

}

≤ g

(
1
n

)
+ n

∫ 1/e

1/n

g(x)dx + ng

(
1
e

)
.

Noting that

∫ 1/e

1/n

g(x)dx =
∫ 1/e

1/n

−g′(x)
n log(2/ex)

dx ≤ 1
n log(2)

∫ 1/e

1/n

−g′(x)dx ≤ 1
n log(2)

g

(
1
n

)
,

and that

g

(
1
n

)
=

1
2n

, g

(
1
e

)
= exp

{
−n

log(2e)
e

}
,

we get the desired result. �
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[9] L. Birgé and P. Massart, A generalized cp criterion for gaussian model selection. Technical report, Univ. Paris 6, Paris 7,

Paris (2001).
[10] B.S. Cirel’son, I.A. Ibragimov and V.N. Sudakov, Norm of gaussian sample function, in Proceedings of the 3rd Japan-URSS.

Symposium on Probability Theory, Berlin, Springer-Verlag. Springer Lect. Notes Math. 550 (1976) 20–41.
[11] H.A. David, Order Statistics. Wiley series in Probability and mathematical Statistics. John Wiley and Sons, NY (1981).
[12] E.P. Box and R.D. Meyer, An analysis for unreplicated fractional factorials. Technometrics 28 (1986) 11–18.
[13] D.P. Foster and R.A. Stine, Adaptive variable selection competes with bayes expert. Technical report, The Wharton School of

the University of Pennsylvania, Philadelphia (2002).
[14] S. Huet, Comparison of methods for estimating the non zero components of a gaussian vector. Technical report, INRA,

MIA-Jouy, www.inra.fr/miaj/apps/cgi-bin/raptech.cgi (2005).
[15] M.C. Hurvich and C.L. Tsai, Regression and time series model selection in small samples. Biometrika 76 (1989) 297–307.
[16] I. Johnston and B. Silverman, Empirical bayes selection of wavelet thresholds. Available from

www.stats.ox.ac.uk/ silverma/papers.html (2003).
[17] B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 (2000) 1302–1338.
[18] R. Nishii, Maximum likelihood principle and model selection when the true model is unspecified. J. Multivariate Anal. 27

(1988) 392–403.
[19] P.D. Haaland and M.A. O’Connell, Inference for effect-saturated fractional factorials. Technometrics 37 (1995) 82–93.
[20] J. Rissanen, Universal coding, information, prediction and estimation. IEEE Trans. Infor. Theory 30 (1984) 629–636.
[21] R.V. Lenth, Quick and easy analysis of unreplicated factorials. Technometrics 31(4) (1989) 469–473.

[22] G. Schwarz, Estimating the dimension of a model. Ann. Statist. 6 (1978) 461–464.


