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HOW MANY BINS SHOULD BE PUT IN A REGULAR HISTOGRAM

LUCIEN BIRGE! AND YVES ROZENHOLC?

Abstract. Given an n-sample from some unknown density f on [0,1], it is easy to construct an
histogram of the data based on some given partition of [0, 1], but not so much is known about an
optimal choice of the partition, especially when the data set is not large, even if one restricts to
partitions into intervals of equal length. Existing methods are either rules of thumbs or based on
asymptotic considerations and often involve some smoothness properties of f. Our purpose in this
paper is to give an automatic, easy to program and efficient method to choose the number of bins
of the partition from the data. It is based on bounds on the risk of penalized maximum likelihood
estimators due to Castellan and heavy simulations which allowed us to optimize the form of the penalty
function. These simulations show that the method works quite well for sample sizes as small as 25.
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1. INTRODUCTION

Among the numerous problems that have been considered for a long time in Statistics, a quite simple one
is: “How many bins should be used to build a regular histogram?”’ Here, by regular histogram, we mean one
which is based on a partition into intervals of equal length. One can of course argue that this question is of
little relevance nowadays since the histogram is an old fashioned estimator and that much more sophisticated
and better methods are now available, such as variable bandwidths kernels or all kinds of wavelets thresholding.
This is definitely true. Nevertheless, histograms are still in wide use and one can hardly see any other density
estimator in newspapers. It is by far the simplest density estimator and probably the only one that can be
taught to most students that take Statistics at some elementary level. And when you teach regular histograms to
students, you unavoidably end up with the same question: “how many bins?”. The question was also repeatedly
asked to one of the authors by colleagues who were not professional mathematicians but still did use histograms
or taught them to students.

Unfortunately, when faced to such a question, the professional statistician has no definitive answer or rather
he has too many ones in view of the number of methods which have been suggested in the literature, none
of them being completely convincing in the sense that it has been shown to be better than the others. The
purpose of this paper is to propose a new fully automatic and easy to implement method to choose the number
of bins to be used for building a regular histogram from data. The procedure, which we derived from a mixture
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of theoretical and empirical arguments, is not based on any smoothness assumptions and works quite well
for all kinds of densities, even discontinuous, and sample sizes as small as 25. One could reasonably argue
that our binwidth selection method, which requires the computation of many histograms, is substantially more
complicated than the histogram itself and that its theoretical justifications are hard to explain to beginners.
This is definitely true, but, as explained by Wand [26] the main point is the simplicity of the estimator itself
so that any statistician or practitioner can understand the result. The binwidth selection procedure is typically
viewed as a black box hidden in the statistical package that should be fast and statistically efficient. As such,
our method has the advantage to be easy to implement and not time consuming.

One could also wonder why we restrict this study to regular histograms and we do not consider those based
on irregular partitions, which clearly have a smaller bias for the same number of bins. There are two reasons for
that. The first one is the search for practical efficiency. Optimizing the number of bins among regular partitions
is computationally easy and fast. Considering all possible partitions involves a much more difficult optimization
problem which requires much heavier and more delicate computations and sophisticated search procedures like
dynamic programming. The second reason is of a more theoretical and fundamental nature. While the use of
irregular partitions reduces the bias, the selection procedure involves a much larger number of choices which
dramatically increases the complexity of the selection problem. To be more specific, there is only one regular
partition of [0, 1] with D pieces, but the number of such partitions with endpoints on the grid {j/N,0 < j < N}
is ( g : i . This increase in the complexity results in a parallel increase of the random component of the risk,
which is typically multiplied by a factor log N, as shown by Proposition 2 of Birgé and Massart [4]. Therefore,
the benefit due to bias reduction is often destroyed by this increase of the other component of the risk. We shall
provide, at the end of this paper, a simulation study supporting these theoretical arguments. For this reason
one should definitely not use irregular partitions systematically and deciding when one should introduce them
or not is an even more delicate problem. Restricting to regular partitions appears to be a good compromise
between speed and statistical efficiency.

There have been many attempts in the past to solve the problem of choosing an optimal number of bins from
the data and we shall recall some of them in Section 4.1 below. Let us just mention here that, apart from some
rules of thumbs like Sturges’ rule (take approximately 1 4 log, n bins) or recommendations of the type: “one
should have at least k observations in each cell” (k depending on the author), the methods we know are based
on some asymptotic considerations. Rules of thumbs are very simple and do not aim at any optimality property.
More sophisticated rules are based on the minimization of some asymptotic estimate of the risk. This is the case
of methods like cross-validation or those based on the evaluation of the asymptotically optimal binwidth under
smoothness assumptions for the underlying density. Methods connected with penalized maximum likelihood
estimation, like Akaike’s criterion or rules based on stochastic complexity or minimum description length are also
derived from asymptotic considerations. It follows that the main drawback of all these rules is their asymptotic
nature which does not warrant good performance for small sample sizes. Moreover, many of them are based on
prior smoothness assumptions about the underlying density.

Our estimator is merely a generalization of Akaike’s. This choice was motivated by some considerations
about the nonasymptotic performances of penalized maximum likelihood estimators derived by Barron, Birgé
and Massart [2]. For the specific case of histogram estimators, their results have been substantially improved by
Castellan [5,6] and our study is based on her theoretical work. Roughly speaking, she has shown that a suitably
penalized maximum likelihood estimator provides a data-driven method for selecting the number of bins which
results in an optimal value of the Hellinger risk, up to some universal constant «. The proof does not require
any smoothness assumption and allows to consider discontinuous densities. Unfortunately, although Castellan’s
study indicates which penalty structure is suitable to get such a risk bound, theoretical studies are not powerful
enough to derive a precise penalty function that would minimize the value of xk for small or moderate sample
sizes.

In order to solve this problem, we performed an extensive simulation study including a large variety of
densities and sample sizes in order to determine by an optimization procedure a precise form of the penalty
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function leading to a small value of k. The resulting estimator is as follows. Assume that we have at disposal an
n-sample X1, ..., X,, from some unknown density f (with respect to Lebesgue measure) on [0, 1] and we want to
design an histogram estimator fp based on some partition {LL,...,Ip} of [0,1] into D intervals of equal length.
We choose for D the value D(X,..., X,) which maximizes L, (D) — pen(D) for 1 < D < n/logn, where

D n
Ln(D) = Njlog(DN;/n) with N; = > 1;,(X,), (1.1)

j=1 i=1
is the log-likelihood of the histogram with D bins and the penalty pen(D) is given by
pen(D) = D — 1+ (log D)*>5 for D > 1. (1.2)

This selection rule is simple enough to be explained to undergraduate students and easy to program, even by
beginners, since one merely has to compute, for each value of D, the penalized likelihood. The resulting estimator
f 5 will, from now on, be denoted f1 and a few simulation results describing its performances graphically are
given in Figure 1.

The previous construction is suitable for densities with a known compact support, which we may always
assume to be [0, 1] after a proper affine transform of the data. Often, the support of the density to estimate is
unknown and even possibly noncompact. We therefore have to estimate a “pseudo-support”. We adopt here
the simplest strategy, taking for our estimated support the range of the data and performing a proper rescaling
to change this range to [0, 1].

In order to test our procedure, we first conducted another simulation study involving a large family of
densities, sample sizes ranging from 25 to 1000 and different loss functions, to compare our method with a
number of existing ones and the “oracle” which serves as a benchmark. Then, following the suggestions of a
referee, we extended this comparison study to a few classical densities like the normal, exponential and uniform,
extending the sample size up to 10 000.

The conclusion of this large scale empirical study, which is given in Section 4, is that among all of them,
five estimators, fj, with 1 < j < 5 clearly outperform the others. Apart from our own estimator, these are
based on ILy and Kullback crossvalidation, Akaike AIC criterion and the minimization of a stochastic complexity
criterion. The final conclusion is that, on the average, our method essentially outperforms the others, although
one of them, namely the one based on Rissanen’s minimum complexity ideas (Rissanen [20]) and introduced, in
the context of histogram estimation, by Hall and Hannan [13], is almost as good, in many cases. This is not so
surprising since Rissanen’s method and our approach are based on similar theoretic arguments.

The next section recalls the theoretical grounds on which our method is based while Section 3 describes the
details of our simulation study. The results of the comparison with previous methods are given in Section 4.
The Appendix contains some additional technical details.

2. SOME THEORETICAL GROUNDS

2.1. Histograms and oracles

Let us first describe more precisely what is the mathematical problem to be solved. Let Xi,..., X, be an
n-sample from some unknown distribution with density f with respect to Lebesgue measure on some known
compact interval which we assume, without loss of generality, to be [0, 1]. The histogram estimator of f based
on the reqular partition with D pieces, i.e. the partition Zp of [0, 1] consisting of D intervals I3, ..., Ip of equal
length 1/D is given by

D n
. . D .
fD:fD(Xla---;Xn): g E Nj]l]j, with Nj = E ]lIJ(Xz) (2.1)
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FIGURE 1. 6 examples, the thin mixed line represents the true density while the thick contin-
uous line represents the estimator.

It is probably the oldest and simplest nonparametric density estimator. It is called the regular histogram with D
pieces and it is the maximum likelihood estimator with respect to the set of piecewise constant densities on Zp.
In order to measure the quality of such an estimator, we choose some loss function ¢ and compute its risk

Ru(f. fo,0) =By [¢(f, (X1, X)) | (2.2)
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From this decision theory point of view, the optimal value D°P* = DPt(f n) of D is given by R,(f, Front, l) =
infps1 Ru(f, fp,0).

Unfortunately, no genuine statistical procedure can tell us what is the exact value of D°P'(f,n) because it
depends on the unknown density f to be estimated. This is why the procedure fDom is called an oracle and
R, (f, f port, £) is the risk of the oracle. Obviously, an oracle is of no practical use but its risk can serve as a
benchmark to evaluate the performance of any genuine data driven selection procedure D(X 1yeeos Xp). If f b
denotes the histogram estimator based on the regular partition with D pieces, the quality of such a procedure
at f can be measured by the value of the ratio

Rn(faf[)ag) _ Rn(faff)’g) (23)

Ro(f, fpert,0)  infpsi Ru(f, fp,0)

provided that the denominator is positive which requires to exclude the case of f being the uniform density,
since, when f = Ijg ), D" =1, fi=fand R,(f, f1,¢) = 0.

Ideally, one would like this ratio to be bounded, uniformly with respect to f, by some constant C,, tending
to one when n goes to infinity, and that C,, — 1 stay reasonably small even for moderate values of n. This is
unfortunately impossible, as we just mentioned, since (2.3) is infinite when f = 1j0,1)- By a continuity argument,
R, (f, fl, ¢) may still be very small if f is very close to 1jo 1}, which requires to exclude densities which are too
close to the uniform — see the precise condition (3.1) below — from a comparison study based on the oracle
criterion (2.3). A more precise discussion of this problem in the context of Gaussian frameworks can be found
in Section 2.3.3 of Birgé and Massart [4].

2.2. Loss functions

Clearly, the value of D°P* and the performances of a given selection procedure D depend on the choice of the
loss function ¢. Popular loss functions include powers of L,-norms, for 1 < p < 400 or the Lo-norm, i.e.

Ufog)=If—glly or  Uf.9)=If— 9l

(with a special attention given to the cases p =1 and 2), the squared Hellinger distance

e 2
w9 =5 [ (VIW) - Vo) .
0
and the Kullback-Leibler divergence (which is not a distance and possibly infinite) given by

K(f,9) = /01 log (%) f(y)dy < +oc.

This last loss function is definitely not suitable to judge the quality of classical histograms since, as soon as
D > 2, there is a positive probability that one of the intervals I; be empty, implying that K(f, fD) = +4o00. A
similar problem occurs with K ( fD, f) when f is not bounded away from 0.

Since we want to be able to deal with discontinuous densities f, the Lo,-norm is also inappropriate as a
loss function since discontinuous functions cannot be properly approximated by piecewise constant functions
on fixed partitions in Lo,-norm. By continuity, large values of p should also be avoided and we shall restrict
ourselves hereafter to Hellinger distance and LL,-norms for moderate values of p.

The most popular loss function in our context is probably the squared Ls-loss for the reason that it is more
tractable. Indeed,

~ 2 _ ~ 112 _
Ey {HffDH ] =Ey {pr *fDH } +|IF - foll? (2.4)
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where fp denotes the orthogonal projection (in the Ly sense) of f onto the D-dimensional linear space generated
by the functions {1z, }1<j<p. In this case, the risk is split into a stochastic term and a bias term which may
be analyzed separately. This accounts for the fact that optimizing the squared Ls-risk of histogram estimators
has been a concern of many authors, in particular Scott [22], Freedman and Diaconis [11], Daly [7], Wand [26]
and Birgé and Massart [3].

Since the distribution of any selection procedure D(X 1,-..,Xp) only depends on the underlying distribution
of the observations, it seems natural to evaluate its performances by a loss function which does not depend on
the choice of the dominating measure. This is why some authors favour the systematic use of LLi-loss for its
nice invariance properties as explained by Devroye and Gyorfi [9], p. 2, and the preface of Devroye [8].

Although it is less popular, maybe because of its more complicated expression, we shall use here the squared
Hellinger distance as our reference loss function to determine a suitable penalty, this choice being actually based
on theoretical grounds only. First, as the LLi-distance, it is a distance between probabilities, not only between
densities. Then it is known that it is the natural distance to use in connection with maximum likelihood
estimation and related procedures, as demonstrated many years ago by Le Cam (see, for instance, Le Cam [18]
or Le Cam and Yang, [19]). Finally, the results of Castellan [5,6] that we use here are based on it.

Of course, the choice of a “nice” loss function is, for a large part, a question of personal taste. Hellinger
distance has already been used as loss function in the context of regular histogram density estimation by
Kanazawa [17] but other authors do prefer L,-losses and one should read for instance the arguments of Devroye
mentioned above or those of Jones [16]. Therefore, although we shall base our choice of the procedure D on
the Hellinger loss, we shall also use other loss functions, including squared Lo, to evaluate its performances and
compare it to other methods.

2.3. Hellinger risk

Before we consider the problem of choosing an optimal value of D we need an evaluation of the risk of regular
histograms fp for a given value of D to compute the ratio (2.3). There is actually nothing special with regular
histograms from this point of view and we shall consider arbitrary partitions in this section. Given an histogram
estimator fz of the form (2.5) below based on some arbitrary partition Z, its risk is given by E; [hQ (f, fz)}
Asymptotic evaluations of this risk are given by Castellan [5,6] and a nonasymptotic bound is as follows. Since
we were unable to find this result in the literature, we include the proof, which follows classical lines, in the
Appendix, for completeness.

Theorem 1. Let f be some density with respect to some measure p on X, X1, ..., X, be an n-sample from the
corresponding distribution and fr be the histogram estimator based on some partition T = {I1,...,Ip} of X,
i.e.
s 1 N; ) =
fr(X, X)) == L, with Nj =Y 17,(X). (2.5)
n = ;) P

Setting p; = [, fdu, we get
J

D
Ey [hQ(f, fz)} < h*(f, fr) + D2; L with fr=>" NZ') 1y, (2.6)
j=1 "
Moreover D1
Er [W2(f.f2)] = W01, Fr) + (1 + o(1)], (2.7)

when n(infi1<;<p p;) tends to infinity.

Remark. It should be noticed that fz minimizes both the Lo-distance between f and the space Hr of piecewise
constant functions on Z and the Kullback-Leibler information number K(f, g) between f and some element g
of Hz, but not the Hellinger distance h(f, Hz). In the case of a regular partition, fz = fp as in (2.4).
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2.4. Penalized maximum likelihood estimators

The theoretical properties of penalized maximum likelihood estimators over spaces of piecewise constant
densities, on which our work is based, have been studied by Castellan [5,6]. We recall that a penalized maximum
likelihood estimator derived from a penalty function D +— pen(D) is the histogram estimator fﬁ where D is
a maximizer with respect to D of L, (D) — pen(D) with L, (D) given by (1.1). Roughly speaking, Castellan’s
results say (not going into details in order to avoid technicalities) that one should use penalties of the form

2
pen(D) = e1(D — 1) (1 + CQ\/LD> with ¢; > 1/2, Lp >0, (2.8)
where co is a suitable positive constant and the numbers Lp satisfy

> exp[—(D —1)Lp] = ¥ < +o0. (2.9)

Let us observe that this family of penalties includes the classical Akaike’s AIC criterion corresponding to
pen(D) = D — 1 (choose for instance ¢; = 3/4 and Lp = L in a suitable way). Defining D(X,...,X,) as
the maximizer of L, (D) — pen(D) for 1 < D < D =TI'n/(logn)?, Castellan proves, under suitable assumptions
(essentially that f is bounded away from 0), that

Ey [hQ(fa f[))} < k(er) 1<iBf<D {K(f7 fp)+nt pen(D)} +n N Z 4+ 1)K/, (2.10)

where k, k” are positive constants, x depending on c;, £’ on the parameters involved in the assumptions. This
bound and (2.9) suggest to choose some non-increasing sequence (Lp)p>1 leading to some ¥ of moderate size,
which we shall assume from now on.

The asymptotic evaluations of Castellan also suggest to choose ¢; = 1 in order to minimize x(cy), at least
when D°P! goes to infinity. In this case, the penalty given by (2.8) can be viewed as a modified AIC criterion
with an additional correction term which warrants its good behaviour when the number of observations and
therefore the number of cells to be considered in the partition, are not large. Both criteria are equivalent when
D tends to infinity.

It is also known (see for instance Birgé and Massart [4], Lem. 5) that, when [log(f/fp)| is small, K(f, fp) is
approximately equal to 4h%(f, fp). Therefore, under suitable assumptions on f, setting ¢; = 1, one can show,
by the boundedness of the sequence (Lp)p>1, that

D—-1

Ey [h2(F.fp)| <ma i {hQ(f, fo)+ T} gt 2

) (2.11)
1<D<D

In view of Theorem 1, one can finally derive from (2.11) that, under suitable restrictions on f and for n large
enough,

Ey [12(f, f)] < Wy [B2(f, foom)] + K3/, (2.12)
3. FROM THEORY TO PRACTICE

3.1. Some heuristics

Although the asymptotic considerations suggest to choose ¢; = 1 (and this was actually confirmed by our
simulations), the theoretical approach is not powerful enough to indicate precisely how one should choose the
sequence (Lp)p>1 in order to minimize the risk. It simply suggests that ¥ should not be large in order to keep
the remainder term xo(X + 1)/n of moderate size when n is not very large. In order to derive a form of penalty
that leads to a low value of the risk, one needs to perform an optimization based on simulations and, at this
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stage, some heuristics will be useful. In particular we shall pretend that the asymptotic formula (2.7) is exact,
and use the approximation

By [13(f, fo)| = h2(f, fp) + (D = 1)/(8n),
which implies that Ey [hQ(f, fD)} Z (8n)~! for D > 2. Together with (2.12), this implies that

Ey {hQ(f’ fﬁ)} < rgky [hQ(ﬁ fDom)} for D" > 1.
If D°Pt = 1, this bound still holds provided that
8nh?(f, lIpp,1) > 1, (3.1)

since f; = 1jo,1), whatever f, which means that f is not too close to the uniform. This restriction confirms the
arguments of Section 2.1.
If ¢y =1, (2.8) can be written

pen(D) = D — 1+ c5(D — 1) (2\/E+ CQLD) .

On the one hand, the constant ¢y is only known approximately and (2.9) requires that (D — 1)Lp tends to
infinity with D. On the other hand, the risk bound (2.10) includes a term proportional to n~! pen(D), therefore
Lp should not be large. A natural trade-off leads to consider penalties of the form pen(D) = D — 1+ g(D)
where the function g tends to infinity with D but not too fast. In order to keep the simulation time finite, we
had to consider only some specific functions g and we actually restricted our search to three parametric families
exhibiting various behaviours, namely:

arf, 0<pB<1; ax(l+logz)™”, B>0 and a(logz)®, B>1, (3.2)

with @ > 0 in all three cases. We tried, through heavy simulations, to determine the best shape and some
“optimal” values for ae and 3. These were found by successive discretizations of the parameters using finer grids
at each step. We also replaced the restriction 1 < D < D with D = I'n/(logn)? with some constant I' > 0 of
Castellan’s Theorem by the simpler condition D = n/logn which did not lead to any trouble in practice.

3.2. The operational procedure

We proceeded in two steps. The first one was an optimization step to choose a convenient value for the
function g, the second one was a comparison step to compare our new procedure with more classical ones. In
both cases, we had to choose some specific densities to serve as references, i.e. for which we should evaluate the
performances of the different estimators. For the optimization step, we chose densities of piecewise polynomial
form. To define them we used either the partition with a single element which leads to continuous densities,
or some regular or irregular partitions with several elements. Both the partitions and the coefficients of the
polynomials given by their linear expansion within the Legendre basis were drawn using a random device which
ensured positivity. We then removed from the initial family some elements which were too redundant and also
added some special piecewise constant densities which were known to be difficult to estimate. We finally ended
up with the set of 30 different densities which are shown in Figure 9 in the Appendix. Some of these densities
are not smooth and this choice was made deliberately. Histograms are all purpose rough estimates which should
cope with all kinds of densities. Testing their performances only with smooth densities like the normal or beta
is not sufficient, from our point of view. When the densities were chosen, we selected a range of values for n,
namely n = 25,50, 100,250,500 and 1000 and this resulted in a set F of 176 pairs (f,n) after we excluded
those for which the value of the oracle would be too close to zero, i.e. four pairs which did not satisfy the
requirement (3.1) for the reasons explained in Section 2.1.
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For the comparison step, we compared the performances of a selected set of other methods to the oracle,
using again F as our test set. We then tested the other methods against ours on a few classical and possibly
noncompactly supported densities, in this case estimating a pseudo-support as explained in Section 1.

In both steps of our simulation study (optimizing the penalty and comparing the resulting procedure with
others), we had to evaluate risks R, (f, 1, ¢) for various procedures f. There are typically no closed form
formulas for such theoretical risks and we had to replace them by empirical risks based on simulations. We
systematically used the same method: given the pair (f,n) we generated on the computer 1000 pseudo-random
samples X7,..., X}, 1 < j <1000 of size n and density f. We then performed all our computations replacing
the theoretlcal dlstrlbutions of losses of the procedures f at hand: Prle(f, f(Xl, ..., Xn)) < t] by their empirical

counterparts
1000

w (£ 500, X)) <t = 10002110t](( Fxi,.x0))

In particular we approximated the true risk R, (f, f ,£) by its empirical version

1000
1

Ru(f.f.0) 100026(ffo,.- XD).

and the upper 95% quantile of the distribution of £(f, f(Xl, ..., X,)) by the corresponding upper 95% quantile
Q(O 95)(n 1, f ¢) of the empirical distribution P,,. Note here that such computations required the evaluations of

quantities of the form ¢(f, f), namely h2(f, f) or || f — ng. Since both f (piecewise polynomial) and f (piecewise
constant) were piecewise continuous, we could compute the losses by numerical integration separately on each of
the intervals where both functions were continuous. The precise details of the procedures and the corresponding
MATLAB functions can be found on the WEB site http://www.proba. jussieu.fr/ rozen.

3.3. The optimization

In this step, we wanted to compare the performances of the various penalized maximum likelihood estimators
with penalties of the form pen(D) = D — 1+ g(D) according to the possible values of g over the testing class F.
The performance of a selection procedure b(g) based on the penalty involving some function g was evaluated
by a comparison of its empirical risk with the empirical optimal risk corresponding to D = D°P!. For a given
procedure f , a loss function ¢ and a testing pair (f,n) we denote the corresponding empirical risk ratio by

7 r _ En(fv fa E) .
Mn(f7f7€) B infDZl En(fa fDag) (33)

Ideally, one would like to minimize M, (f, f[)(g), h?), with respect to g for all pairs (f,n) € F. Of course

the optimal strategy depends on the pair and we looked for some uniform bound for M, but it appeared that,
roughly speaking, M,, behaves as a decreasing function of D°P!(f, n) so that we tried to minimize approximately

SU.p Mn(fafﬁ(g))h2)a
{(f;n) | Dopt(f,n)=Fk}

with respect to g for all values of k simultaneously. Again, this is not a well-defined problem and, of course, no
specific function g was found uniformly better than the others for all densities and all sample sizes so that some
compromises were needed for the final choice. We just looked for a function g the performances of which were
always reasonably close to the best ones for all densities in our test set and all values of n. This ruled out most
parameter values («, 3) because most rules were found bad on some density or those which were good for small
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samples became bad for larger ones. We ended with only a few parameter values that were acceptable and a
close inspection of the long lists of risk values determined our final choice g(x) = (logz)?®, although some other
close parameter values were found to lead to almost equivalent results.

3.4. The performances of our estimator

In order to evaluate the performances of f1, we compared its risk with the oracle for all pairs (f,n) € F and
various loss functions. We actually considered, for all our comparisons, four typical loss functions, which are
powers of either the Hellinger or some LL,-distances. More precisely we set pg = p2 =2, p1 =1, p3 =5 and

gO(faf/):h’po(fafl) and gz(faf/):Hf*f/

be fori=1,2,3.

In order to facilitate comparisons between the different loss functions and to balance the effect of the differences
in the powers p;, we expressed our results in terms of a normalized version M Z of M,, setting, for any density

f and estimator f,

— - — - 1/pi

M (f F 6) = [Ma(f . 6)]

The results of the comparisons are summarized in Table 1 below. For each n, we denote by F,, the set of
densities f such that (f,n) € F. For n > 100, F,, contains all 30 densities we started with, but four of them
(three for n = 25 and one for n = 50), which are too close to the uniform, had to be excluded since they do
not satisfy (3.1). Table 1 gives the values of sup s M (f, f1,4;) for the different values of n and i. We see
that all values of M;( £, f1, h?) are smaller than 1.5 and not much larger for the L;- and La-losses, although

our procedure was not optimized for those losses. Not surprisingly, the results for L5 are worse for small values
of n but improve substantially for n > 500.

TABLE 1. Maximum normalized mean ratio: sup ez, M; (f, f1, 4;).

[i\n] 25] 50] 100] 250 500 ] 1000 |
0 [140[1.33]143]1.30]1.30] 1.26
1 [ 148 1.541.49 [ 1.34 [ 1.33] 1.26
2 | 1.84]1.64]1.49 | 1.48 | 1.42] 1.38
3 | 2.94]2.89 285255 1.62] 1.53

We also give below in Figure 2 the values of log, [M;(f, fl,&-)] for all pairs (f,n) € F and 0 < i < 3. In
each case we ordered our set F in increasing order of the empirical risk of the oracle infp>; R.(f, fD,&-) for
the corresponding loss function. The binary logarithm of this risk is printed as a grey dashed line on the same
graphic with its scale on the right side. This means that the right-hand side of the graph corresponds to those
densities which cannot be estimated accurately, even by the oracle, with the given number of observations. It
is interesting to notice that some values of M;( 1, fl, ¢;), when n is large and f is a “nice” density, are actually
smaller than one, which means that, under favorable circumstances, our estimator “beats” the oracle. This is
an additional illustration of a known fact: the oracle has a fixed number D°P* of bins (the one which minimizes
the risk, i.e. the average loss) independently of the sample, while a good selection procedure tries to optimize
the number of bins for each sample and can therefore adjust to the peculiarities of the sample. This means that
the very notion of an oracle is questionable as an absolute reference. It nevertheless remains a very convenient
benchmark.
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FIGURE 2. Normalized binary logarithm of the ratio between the risk of our method and the
oracle (black line with scale reference on the left side) for all pairs (f,n) € F sorted in increasing
order of the normalized binary logarithm of the risk of the oracle (grey dashed line with scale
reference on the right side) for the relevant losses.

4. COMPARISON WITH PREVIOUS METHODS

4.1. Choosing some reference procedures

4.1.1. Some historical remarks

The following discussion is supposed to give only a brief summary of the set of methods in use to build
histograms and does not pretend to be exhaustive in any way. We just selected a number of methods that, from
our point of view, reflected the various approaches to binwidth selection and, as such, could make up a suitable
set of reference procedures with which we could compare our method.

The first methods used to decide about the number of bins were just rules of thumbs and date back to
Sturges [23]. According to Wand [26] such methods are still in use in many commercial softwares although they
do not have any type of optimality property. Methods based on theoretical grounds appeared more recently
and they can be roughly divided into three classes.

If the density to be estimated is smooth enough (has a continuous derivative, say), it is often possible, for a
given loss function, to evaluate the optimal asymptotic value of the binwidth, the one which minimizes the risk,
asymptotically. Such evaluations have been made by Scott [22] and Freedman and Diaconis [11] for the squared
Lo-loss, by Devroye and Gyérfi [9] for the LL;-loss and by Kanazawa [17] for the squared Hellinger distance.
Unfortunately, the optimal binwidth is asymptotically of the form e¢n~'/3 where ¢ is a functional of the unknown
density to be estimated and its derivative. Many authors suggest to use the Normal rule to derive c. One can
alternatively estimate it by a plug-in method as in Wand [26].

Methods based on cross-validation have the advantage to avoid the estimation of an asymptotic functional
and directly provide a binwidth from the data. An application to histograms and kernel estimators is given in
Rudemo [21]. Theoretical comparisons between Kullback cross-validation and the AIC criterion are to be found
in Hall [12].



HOW MANY BINS SHOULD BE PUT IN A REGULAR HISTOGRAM 35

The third class of methods includes specific implementations for the case of regular histograms of general
criteria used for choosing the number of parameters to put in a statistical model. The oldest method is
the minimization of Akaike’s AIC criterion (see Akaike [1]). Akaike’s method is merely a penalized maximum
likelihood method with penalty pen(D) = D—1 in our case. In view of (1.2), our criterion is just a generalization
of AIC criterion tuned for better performance with small samples. Taylor [24] derived the corresponding
asymptotic optimal binwidth (under smoothness assumptions on the underlying density) which turns out to
be the same as the asymptotically optimal binwidth for squared Hellinger risk, as derived by Kanazawa [17].
Related methods are those based on minimum description length and stochastic complexity due to Rissanen
(see for instance Rissanen [20]). Their specific implementation for histograms has been discussed in Hall and
Hannan [13].

Somewhat more exotic methods have been proposed by Daly [7] and He and Meeden [14], the second one
being based on Bayesian bootstrap.

4.1.2. The selected methods

Following the previous historical review, we selected 13 different estimators fg, ey f14 to compare with our
own and evaluate the performances of our method. The precise description of these estimators and of their
implementation can be found in the Appendix. Let us just briefly mention that fo and f3 are respectively
L, and Kullback-Leibler cross-validation methods, fs is the minimization of AIC, fs and fs are based on
stochastic complexity and minimum description length respectively, f7 to f10 are estimators based on asymptotic
evaluations of an optimal binwidth according to various criteria, fi; is Sturges’rule, f5 is due to Daly and fi3
to He and Meeden. For completeness, we added fi4 which is due to Devroye and Lugosi and described in
Section 10.3 of Devroye and Lugosi [10]. It does not look for the optimal regular partition but only for the
optimal partition among dyadic ones.

We actually also studied the performances of modified versions of some of those estimates, as described by
Rudemo [21], Hall and Hannan [13] and Wand [26]. Since the performances of the modified methods were found
to be similar to or worse than those of the original estimators, we do not include them here.

4.2. Our first comparison study

We first computed, for all 176 pairs (f,n) € F, all estimators fk, 1 < k < 14 and the four selected loss
functions, the values of M;( 1, fr, ¢;). This resulted in a large set of data which had to be summarized. Therefore,
for each n, £ and k we considered the set S(n, £, k) of the |F,| values of M, (f, fi,?) for f € F,. A preliminary
and rough comparison of the estimates can be based on the boxplots of the different sets S(n, ¢, k). Here, the
box provides the median and quartiles, the tails give the 10 and 90% quantiles and the 6 additional points
(three on each side of the box) give the values which are outside this range.

Figure 3 shows the boxplots corresponding to all methods for n = 25,100 and 1000, squared Hellinger and
L2 losses. It is readily visible from these plots that estimators fG to f14 are not satisfactory for n > 100 as
compared to the others. We also used as a secondary index of performance the normalized ratio

Q0.95) (1, f f.6:) 1 e
)

Qnif, f.b) = -
Qn(f f Z) [infD21 Rn(f7 fD,E,L
of the empirical version of the 95% quantile of the distribution of f to the corresponding risk of the oracle
and drawn the corresponding boxplots. The results are quite similar to those of Figure 3. The complete set of
results (not included here to avoid redundancy) shows that the performances of the estimators f6 to fia for the
other values of n and loss functions are not better.

For each of the four “good” estimators fj, 2 < j < 5 and each loss function ¢;, we provide hereafter in
Figure 4 (one line for each loss function, one column for each f;) the values of log, M (f, i, )M (f, f1,6)]
(i.e. the binary logarithms of the normalized ratio of the risks of the best four methods to the risk of our method
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FIGURE 3. Boxplot of Hellinger? (left column) and L3 (right column) binary logarithm of the
normalized ratio between the risk of the estimators and that of the oracle for n = 25,100, 1000.

for the loss ¢;), for all pairs (f,n) € F. As for Figure 2, we ordered our set F in increasing order of the empirical
risk of the oracle for the corresponding loss function and added this risk as a grey dashed line to serve as a
reference. On these graphs, our method appears to be most of the time superior to the others, especially for the
pairs (f,n) with a small value of the risk of the oracle, i.e. on the left side of the graphs. Some other methods
do perform better on the extreme right of the graphs, for the pairs with numbers superior to 150. Such pairs
correspond to densities that cannot be well estimated by any method with the number of available observations
because the risk of the oracle is quite large for those densities.

We actually also drew the same graphics for the remaining estimators f] with j > 6 and the results confirmed
what we already derived from the boxplots, namely that these estimators are clearly outperformed by the five
first ones. To save space, we do not include these additional graphics.

As we previously noticed, some methods, corresponding to estimators f~] with 6 < j < 14 were found to
behave rather poorly on our test set, especially for large n. This is actually not surprising for Sturges’rule ( fn)
which is a rule of thumbs, for f12 since the theoretical arguments supporting Daly’s method are not very strong
and for f13 since the decision theory arguments used by He and Meeden involve a very special loss function
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F1GURE 4. Comparison between fg, fg, f4, f5 and our method using Hellinger?, L, L3, L2
losses. The black line gives the binary logarithm of the normalized ratio between the risks of f]
and f, for all (f,n) € F sorted in increasing order of the binary logarithm of the normalized
risks of the oracle (grey dashed line with scale reference on the right side).

different from our criteria. That all the methods ( f7 to f~10) which define an asymptotically optimal binwidth
from a smoothness assumption on the underlying density do not work well for estimating discontinuous densities
is natural as well. Since f14 only chooses dyadic partitions, this tends to result in an increased bias.
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FIGURE 5. Stochastic complexity and Minimum Description Length (viewed as penalized
likelihood methods) and our method — Comparison of penality terms.

Actually, all the methods that work reasonably well are either based on cross-validation or some complexity
penalization arguments. It was therefore rather surprising for us to notice that the two estimators studied by
Hall and Hannan [13], which are asymptotically equivalent and have similar performances for moderate sample
sizes according to the authors, appear to behave quite differently in our study, the estimator based on stochastic
complexity being much better than the one based on minimum description length. This is probably due to the
fact that this equivalence is really of an asymptotic nature and that the testing densities in Hall an Hannan
are very smooth (normal and beta) while ours are not. Rewriting the three estimators f] with 7 = 1,5,6 as
ij where D; is the maximizer of L, (D) — m;(D), we compared the behaviours of 71,75 and g for different
simulated examples. Note that here 7 (D) = pen(D) as defined by (1.2). The examples show that m; and
75 are rather close while 7g tends to be much smaller leading to larger values for 156. An illustration of the
phenomenon is shown in Figure 5.

4.3. An additional comparison study

Since we partly used the same set of densities for both the optimization and comparison steps of our study,
the results of the simulation study could be biased by the fact that we optimized our estimator for this special
set of densities. A referee, that we thank for his many useful comments, suggested that we also test our method
against the others on some very classical densities like the normal. He was also interested in seeing how our
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FIGURE 6. Boxplot of the binary logarithms of the normalized ratio between the risks of fg
to f5 and f1 for n = 10000.

method would perform on larger samples. Since the computation of oracles is extremely time-consuming (their
computation time is of order Cn?, where n is the sample size and C' a large constant), it was not realistic to
compute oracles for samples of size 10000 and in this part of our study, we contented ourselves to evaluate the
risks of the 14 procedures and computed the binary logarithm of the ratios between the Hellinger risk of method

j and ours, i.e. log, M;(f,f},ﬁo)/M;(f, fl,ﬁo)]

4.3.1. Larger samples

We first conducted the study of Section 4.2 on our initial set F with samples of size 10000 and computed
the logarithm of the ratios between the risk of methods 2 to 5 and ours with Hellinger risk log, [M; (f, fi  to)/
M;( fs f1,€0)]- The resulting boxplots are given in Figure 6. Not surprisingly, AIC’s based method f; and
our method give very similar results for large samples since the corresponding penalties are asymptotically
equivalent.

4.3.2. Some classical densities

We selected six smooth, but not necessarily compactly supported densities g;, 1 < j < 6 namely the standard
normal g;, two Gaussian mixtures go and g3, respectively (1/4)A(0,1) + (3/4)N(2,1/16) and (3/4)N(0,1) +
(1/4)N(3,1/9), the exponential with parameter one g4, the Student with 3 degrees of freedom g5 and the
uniform gg. Then we tested the different methods on them. For each sample (apart from the uniform case),
we estimated the support by the interval between the smallest and the largest observation, performed an affine
transform to change it to [0; 1] and applied the various methods as usual, then going back to the initial scale
to compute the loss, integrating it over the unbounded support of the true density, not only on the estimated
support. We give in Figure 7 the plots of log, [M;(gj, f},éo)/MZ(gj, fl,ﬁo)] for each of our 6 test densities g;
and n = 25,100, 250, 1000 and 10000, each dotted line corresponding to a sample size (given on the left-hand
side of the figures) and the “+” to the different methods in order of their numbers from 2 to 14. For each sample
size, the baseline corresponds to 0, i.e. the performance of our estimator and the value of its risk is indicated
on the right-hand side of the figure. The results confirm that our method performs quite well on those classical
densities. Apart from the uniform distribution, which appears to be a special case, the results are relatively
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FicUre 7. Comparison of the performances of the test estimators for various sample sizes
and 6 classical densities.

homogeneous. It appears that f~3 does not behave so well here. The situation for the uniform is special. For
small sample sizes and although not specially designed for this case which was not included in our test set, our
method surprisingly outperforms all the others apart from fi3. For larger samples, the estimators based on
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stochastic complexity and minimum description length, which penalize more and tend to choose smaller values
of D, become substantially better than the others although our method still outperforms the remaining ones.

4.4. About irregular histograms

To conclude our study, let us illustrate the fact, mentioned in our introduction, that a model selection
method based on irregular histograms, although intuitively more attractive, is not necessarily systematically
better than ours because of its definitely higher complexity. Not only it looses the computational simplicity and
speed connected with the use of regular histograms, but, more seriously, the bias reduction due to the use of a
huge number of partitions instead of the much smaller set of regular ones, is often compensated by an increase
of the stochastic error due to the difficulty of selecting a model among a large number of potential ones.

It has actually been shown (Birgé and Massart [4]) in a different, but related stochastic framework, namely
variable selection for Gaussian regression, that penalization methods do require a heavier penalty when one
selects among a very large family of models. In particular, complete variable selection (which is the analogue
of selection among irregular partitions in our case) requires logn factors for the penalty which results in an
increased value of the stochastic component of the risk, as compared to ordered variable selection (which is the
analogue of selection among regular partitions).

To support these arguments, we added to our comparison study a recent method, f15, based on wavelet
thresholding, since such estimators are considered as very powerful and therefore rather fashionable nowadays.
In order to have a fair comparison in terms of bias, we used the Haar wavelet basis to get histogram-like
estimators, in connection with a method from Herrick, Nason and Silverman [15] which appeared to be the best
among the different wavelet methods for density estimation we tried. Note that the resulting estimator is not
a regular histogram since wavelet thresholding amounts to selecting a partition among irregular dyadic ones.

The graphs of log, [MZ(f, fis. &-)/M;(f, f1, &-)}, based on the same set of densities and provided by Figure 8,

show that this estimator, although selecting among many irregular partitions, does not, one the whole, perform
better than the others.
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5. APPENDIX

5.1. Proof of Theorem 1
Since the risk R,, of fz is given by

Ry =E [W(f, fr)| = ZE 1/ (m NJ’}) dp(x) | (5.1)

it suffices to bound each term in the sum. The generic term can be written, omitting the indices, setting
l=p(I), p= [, fdu and denoting by N a binomial B(n, p) random variable, as

R(I) = E ;/@m—@) ()
- %(/}f@)du(x)m[gb K l\/g /I\/@du@s)

Introducing fl; = [~'pl; and h? = h2(f1;, f1;), we notice that

%/j(m\@fdu@)p\/z‘o[@du(w%
\/E]hQ]E \/E +p<1]E
np np

The conclusion then follows from the next lemma and (5.1).

Lemma 1. Let N be a binomial random variable with parameters n and p, 0 < p < 1, then
| N 1- 1- 1
—]>1 and E :1——p[1+0(—)}
np 2np np

8np
Proof. Setting Z = N — np, we write E [ N/(np)} =E [ 1+ Z/(np)} The first inequality follows from the

fact that, for u > —1, V1+u > 1+ u/2 —u?/2, E[Z] = 0 and Var(Z) = np(1 — p). To get the asymptotic
result, we use the more precise inequality

which implies that

RI)=p—(p—h*)E

N

E -
np

u  u? u? 5ut ud
oW WM - Aru<i4i_ v
R R e TR, tu + 8+16

together with the moments of order three and four of Z:

E[Z°] =np(1 —p)(1 = 2p); E[Z*] =np(1 - p)[1 - 6p+6p* + 3np(1 - p)] . -
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FIGURE 9. The used densities.
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Each of the estimators fi, 1 < k < 14, that we consider in our study (see Sect. 4.2) is based on a specific
, Xn), which derives the number of bins from the data, resulting in fi, = fﬁk with

selection method, ﬁk(Xl, .
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fD given by (2.1). For definiteness, we recall more precisely in this section the definitions of the various methods
involved, adjusted to our particular situation of a support of length one. In the formulas below N;, as defined
n (1.1), denotes the number of observations falling in the jth bin.

The 6 first methods we considered are based on the maximization of some specific criterion with respect to
the number D of bins. We recall that our estimator fl is based on the maximization of

D
> NjlogN; +nlogD — [D — 1+ (log D)**].
j=1

For Ly and Kullback cross-validation rules D, and D3, the functions to maximize are given respectively
(Rudemo [21], p. 69 and Hall [12] p. 452) by

Dn+1) & D
— > N7-2D  and ) Njlog(N; —1)+nlogD,
—~ :

while AIC criterion D, (Akaike [1]) corresponds to the maximization of Zle NjlogN; + nlogD — (D —

1). The estimators fg, and fG, respectively based on stochastic complexity and minimum description length
considerations, involve the maximization (Hall and Hannan [13]) of

D
s p—Y D+n—1 ]-_-[

and

D
> (N; = 1/2)1og(N; — 1/2) = (n — D/2)log(n — D/2) + nlog D — (D/2)logn.
j=1
Estimators f7 to f10 are all based on data driven evaluations ik, 7 < k < 10 of the bi{lwidth. Since such
evaluations do not lead to an integer number of bins when the support is [0, 1], we took for Dy the integer which

was closest to [,;1 For k = 7,8,9, the respective suggestions for I, by Taylor [24] or Kanazawa [17], Devroye
and Gyorfi [9] and Scott [22] are

2.29&2/3n_1/3; 2.72&n_1/3; and 3.49&n_1/3,

where 62 denotes some estimator of the variance. We actually used for 62 the unbiased version of the empirical
variance. The previous binwidth estimates are actually based on the assumption that the shape of the underlying
density is not far from a normal N (u,0?) distribution. There are various alternatives to this so-called Normal
rule, including the oversmoothing method of Terrell [25] and a plug-in method of Wand [26], p. 62. We actually
implemented Wand’s method for the evaluation of 110, using the one-stage rule that he denotes by hy with
M =400 in his formula (4.1).

For fn, we merely used Sturges’rule with D11 the integer closest to 1+ log, n. Daly [7] suggests to take D1y
as the minimal value of D such that

D+1 D n2
(D+1)Y N} (D+1)-D> N}(D) < T
j=1 j=1

where N;(D) denotes the number of observations falling in the jth bin of the regular partition with D bins.
We implemented for fi3 the method given by He and Meeden [14], without the restriction they impose that
the number of bins should be chosen between 5 and 20 since such a restriction leads to poor results for small
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sample sizes. It was replaced by the less restrictive D > 1. We also computed f14 according to the method
given in Chapter 10 of Devroye and Lugosi [10]. More precisely we used the histograms build by data splitting
as described in their Section 10.3 with a maximal number of dyadic bins bounded by 2n (in order to avoid an
algorithmic explosion) and a value of m set to the integer part of n/2. We actually also experimented smaller
values of m but did not notice any improvement.

The last estimator f15 we used for the comparison is not a regular histogram but a piecewise constant function
derived from an expansion within the Haar wavelet basis, the construction following the recommendations of
Herrick, Nason and Silverman [15] with the use of the normal approximation with p-value 0.01 and a finest
resolution level set to log, U where U is the minimum of n? (to avoid an algorithmic explosion) and the inverse
of the smallest distance between data.
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