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Abstract. The paper is motivated by the stochastic comparison of the reliability of non-repairable
k-out-of-n systems. The lifetime of such a system with nonidentical components is compared with the
lifetime of a system with identical components. Formally the problem is as follows. Let Ui, i = 1, ..., n,
be positive independent random variables with common distribution F . For λi > 0 and µ > 0, let
consider Xi = Ui/λi and Yi = Ui/µ, i = 1, ..., n. Remark that this is no more than a change of scale
for each term. For k ∈ {1, 2, ..., n}, let us define Xk:n to be the kth order statistics of the random
variables X1, ..., Xn, and similarly Yk:n to be the kth order statistics of Y1, ..., Yn. If Xi, i = 1, ..., n, are
the lifetimes of the components of a n+1-k-out-of-n non-repairable system, then Xk:n is the lifetime of
the system. In this paper, we give for a fixed k a sufficient condition for Xk:n ≥st Yk:n where st is the
usual ordering for distributions. In the Markovian case (all components have an exponential lifetime),
we give a necessary and sufficient condition. We prove that Xk:n is greater that Yk:n according to the
usual stochastic ordering if and only if (

n
k

)
µk ≥

∑
1≤i1<i2<...<ik≤n

λi1λi2 ...λik .
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1. Introduction

In reliability theory, a system of n identical independent components is usually said k-out-of-n when it is
functioning if and only if at least k of the components are functioning. In this case, there are n−k failures. Such
systems are getting more and more frequent in industrial processes. For example, a given parameter (presence
or not of a train, temperature, ...) might be controlled by several devices and the decision rule used to fix the
value of this parameter is of type k-out-of-n. This reliability notion is, in fact, the same as the order statistics
notion. If the lifetimes of the components are independent identically distributed (i.i.d.) random variables
X1, X2, ..., Xn, then the lifetime of the n+1-k-out-of-n system is exactly the kth order statistics (denoted Xk:n)
of the random variables Xi, i = 1, ..., n.
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Let us now describe the practical problem which motivated this paper. We consider a n+1-k-out-of-n system
where the n components have independent exponential lifetimes X1, ..., Xn, but not necessarily identically
distributed. We denote λ1, ..., λn the respective parameters of these exponential lifetimes. The problem is to
compare this system with an equivalent system with i.i.d. components. Practically, when we have to replace
many different components (from different factories) by identical components (from the same factory), we need
to guarantee the same quality.

Let us denote by Y1, ..., Yn, the random lifetimes of the identical components with the common parameter µ.
The problem of comparison is equivalent to the following one. What are the values of µ which characterize the
stochastic inequality Xk:n ≥st Yk:n, i.e. IP (Xk:n > t) ≥ IP (Yk:n > t), ∀t > 0 ?

A general result on the stochastic comparison of order statistics was obtained by Pledger and Proschan [6],
in connection with the Schur’s majorization (see Marshall and Olkin [4]). In our context, this result provides a
sufficient condition which can be written as follows:

µ =
λ1 + λ2 + ...+ λn

n
⇒ Xk:n ≥st Yk:n.

More recently, Khaledi and Kochar [3] studied the case k = n and proved that

µ = n
√
λ1λ2...λn ⇒ Xn:n ≥hr Yn:n,

where hr denotes the hazard rate ordering. See Shaked and Shantikhumar [7] for an overview of the different
notions of ordering.

Here we extend this results referring to stochastic ordering which gives the comparison of survival functions.
With the exponential assumption, we propose a necessary and sufficient condition on the parameters for the in-
equality Xk:n ≥st Yk:n, k = 1, 2, ..., n. More generally, we give sufficient conditions for the stochastic comparison
in the case where the distribution F is not exponential.

2. Elementary symmetrical functions

First, let us introduce some notations and recall some results about elementary symmetrical functions.
Let x = (x1, x2, ..., xn), n > 1 a vector with positive components. For j ∈ {1, 2, ..., n},

Sj(x) =
∑

1≤i1<i2<...<ij≤n
xi1xi2 ...xij (1)

is the jth elementary symmetrical function of the positive x1, x2, ..., xn.
As usual S0(x) = 1, and Sj(x) = 0, for j > n.
For p, q ∈ {1, 2, ..., n}, p �= q, we denote xp = (..., xp−1, xp+1, ...) ∈ (0,∞)n−1 and xp,q = (xp)q ∈ (0,∞)n−2.
Therefore

Sj(xp) =
∑

i1, ..., ij ∈ {1, ..., n} \ {p}
i1 < i2 < ... < ij

xi1xi2 ...xij (2)

is the jth elementary symmetrical function obtained without the component of number p and

Sj(xp,q) =
∑

i1, ..., ij ∈ {1, ..., n} \ {p, q}
i1 < i2 < ... < ij

xi1xi2 ...xij (3)
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is the jth elementary symmetrical function made without p and q. In the case where all coordinates of x are
equal to m, we have

Sk(x) =
(
n
k

)
mk. (4)

These functions satisfy the elementary relations:

Sj(x) = xpSj−1(xp) + Sj(xp) (5)

and
Sj(x) = xpxqSj−2(xp,q) + (xp + xq)Sj−1(xp,q) + Sj(xp,q). (6)

Moreover we define

mj(x) =

((
n
j

)−1

Sj(x)

) 1
j

=

⎛
⎝( n

j

)−1 ∑
|J|=j

∏
i∈J

xi

⎞
⎠

1
j

(7)

the jth symmetrical mean, j = 1, 2, ..., n. These different averages are classical and satisfy the well-known Mac
Laurin’s inequalities (see Hardy, Littlewood and Pólya [2]):

m1(x) ≥ m2(x) ≥ ... ≥ mn(x).

Two special cases are of interest. If j = 1 and j = n then m1(x) = x1+x2+...+xn

n and mn(x) = n
√
x1x2...xn

are the arithmetical and geometrical means. In order to compare the elementary symmetrical functions of two
different vectors, we shall use the following lemma.

Lemma 1. Let x = (x1, ..., xm) and y = (y1, ..., ym) be two vectors such that 0 < xi ≤ yi for all i = 1, ...,m. If
r ∈ {0, 1, ...,m− 1} then

Sr+1(x)
Sr(x)

≤ Sr+1(y)
Sr(y)

· (8)

Moreover, if there exists i0 so that xi0 < yi0 then the inequality (8) is strict.

Proof. Let r be an integer, 0 ≤ r < m. It is sufficient to prove that the symmetrical function γr : (0,∞)m →
(0,∞), γr(x) = Sr+1(x)

Sr(x) is strictly increasing in x1.
The property is clear for r = 0. Let us consider r > 0. Since Sr+1(x) = x1Sr(x1) + Sr+1(x1) and Sr(x) =

x1Sr−1(x1) + Sr(x1) we have
∂γr
∂x1

(x) =

(
Sr(x1)

)2 − Sr−1(x1)Sr+1(x1)

(Sr(x))2
·

The relation ∂γr

∂x1
(x) > 0 is equivalent to:

(
Sr(x1)

)2
> Sr−1(x1)Sr+1(x1),

for x1 = (x2, ..., xn). But this is an immediate consequence of the Newton inequalities (see Hardy, Littlewood
and Pólya [2]). �

In the sequel, we shall use the following consequence of Lemma 1.

Corollary 1. Let x = (x1, ..., xm) and y = (y1, ..., ym) be two vectors with m positive components such that
α ≤ yi

xi
≤ β, i = 1, 2, ...,m, where 0 < α < β. Then, for r ∈ {0, 1, ...,m− 1}, the next inequalities are true:

α
Sr(y)
Sr(x)

≤ Sr+1(y)
Sr+1(x)

≤ β
Sr(y)
Sr(x)

, (9)

and at least one of these inequalities is a strict inequality.



4 J.-L. BON AND E. PĂLTĂNEA

The assertion follows easily by replacing the pair (x,y) by (αx,y) and (y, βx) in the above lemma.

Remark. We give also an elementary result about the comparison of two fractions. The proof is omitted.
If a, b, c, d, e, f are positive with a

b ≤ c
d ≤ e

f and a
b <

e
f then

a+ c

b + d
<
c+ e

d+ f
· (10)

In order to prove our main results, we present a sufficient condition to recognize the minimum value of a
symmetrical function. This result is interesting by itself and, to the best of our knowledge, it is new.

Lemma 2. For n > 1, let ψ : (0,∞)n → (0,∞) be a symmetrical and continuously differentiable mapping, and
k an integer, 1 ≤ k ≤ n. Let us assume that, for any vector x = (x1, ..., xn) ∈ (0,∞)n, with xp = minxi and
xq = maxxi we have:

xp < xq ⇒
∂ψ
∂xp

(x)
∂Sk

∂xp
(x)

<

∂ψ
∂xq

(x)
∂Sk

∂xq
(x)

· (11)

Then, for any x = (x1, ..., xn) ∈ (0,∞)n, the following inequality holds:

ψ(x1, ..., xn) ≥ ψ(mk(x), ...,mk(x)︸ ︷︷ ︸
n times

). (12)

Proof. The case k = 1 is well-known (see, for example, Marshall and Olkin [4]).
Now we suppose k > 1. For a fixed vector x = (x1, ..., xn) ∈ (0,∞)n let consider a = minxi, b = maxxi, m =
mk(x) and m = (m, ...,m︸ ︷︷ ︸

n times

). Inequality (12) is an equality for a = b.

Let us assume a < b. Then m ∈ (a, b). We consider the compact subset K of (0,∞)n:

K = {t = (t1, t2, ..., tn) ∈ [a, b]n | mk(t) = m}.

Clearly, x and m belong to K. From Weierstrass’s theorem it follows that the continuous mapping ψ reaches
an absolute minimum on the compact K on some point u = (u1, u2, ..., un) ∈ K.

Now let us assume u �= m. In this case, there exists p, q ∈ {1, 2, ..., n} such that a ≤ up = min ui < maxui =
uq ≤ b. Rewriting condition mk(u) = m from relation (6), yields to

upuqSk−2(up,q) + (up + uq)Sk−1(up,q) + Sk(up,q) =
(
n
k

)
mk.

The equation Sk−2(up,q)z2 + 2Sk−1(up,q)z + Sk(up,q) =
(
n
k

)
mk has a positive solution in z which is de-

noted z1. Clearly up < z1 < uq. For t ∈ [up, z1), let us consider the function g(t) defined on [up, z1) by the
relation:

tg(t)Sk−2(up,q) + (t+ g(t))Sk−1(up,q) + Sk(up,q) =
(
n
k

)
mk.

We have g(up) = uq and more generally:

g(t) =

(
n
k

)
mk − tSk−1(up,q) − Sk(up,q)

tSk−2(up,q) + Sk−1(up,q)
∈ (z1, uq], ∀t ∈ [up, z1).
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Let us denote by u(t) the vector with the components up(t) = t, uq(t) = g(t) and ui(t) = ui for i ∈
{1, 2, ..., n} \ {p, q}. We have u(t) ∈ K and

Sk(u(t)) =
(
n
k

)
mk, ∀t ∈ [up, z1).

The continuously differentiable decreasing function g has the following derivative:

g′(t) = −
∂Sk

∂xp
(u(t))

∂Sk

∂xq
(u(t))

· (13)

Now let us consider the continuously differentiable function ϕ : [up, z1) → IR, ϕ(t) = ψ(u(t)).
From relation (13) we obtain:

ϕ′(t) =
∂ψ

∂xp
(u(t)) +

∂ψ

∂xq
(u(t)) · g′(t) =

∂Sk
∂xp

(u(t))

( ∂ψ
∂xp

(u(t))
∂Sk

∂xp
(u(t))

−
∂ψ
∂xq

(u(t))
∂Sk

∂xq
(u(t))

)
.

But, from assumption (11), it follows that ϕ′(up) < 0. Hence, there exists ε > 0 such that up + ε < z1 and
ϕ′(t) < 0, ∀t ∈ [up, up + ε). Therefore, ψ(u(t)) < ψ(u(up)) = ψ(u), for any t ∈ (up, up + ε). This gives the
contradiction. Then the unique minimum point of ψ on K is m and the relation (12) follows. �

Remark. The assumption (11) can be replaced by the following more restrictive assumption:

∀x ∈ (0,∞)n ∀i, j ∈ {1, ..., n} xi �= xj ⇒ (xi − xj)

(
∂ψ
∂xi

(x)
∂Sk

∂xi
(x)

−
∂ψ
∂xj

(x)
∂Sk

∂xj
(x)

)
> 0.

In the case k = 1, one obtains again a well-known sufficient condition of Schur convexity (see Marshall and
Olkin [4]).

3. The main results

This section is concerned with the characterizations of the comparison between a system with different lifetime
components (Xi) and a system with i.i.d. lifetime components (Yi).
Formally, let X and Y be two random variables with support IR+, having the survival functions FX = 1 − FX
and FY , respectively. FX and FY are assumed to be continuously differentiable.

The variable X is said stochastically larger than Y (denoted X ≥st Y ) when FX(t) ≥ FY (t), ∀t ≥ 0.

The following theorem provides sufficient conditions for the stochastic comparison between the same order
statistics in two sequences of independent random variables.

Theorem 1. Let U1, U2, ..., Un be i.i.d. positive random variables with the common distribution function F

having a positive non-increasing hazard rate h(x) = F ′(x)
1−F (x) , x ∈ (0,∞).

For a vector λ= (λ1, ..., λn) with positive components and k ∈ {1, ..., n},

mk(λ) =

⎛
⎝( n

k

)−1 ∑
|J|=k

∏
i∈J

λi

⎞
⎠

1
k
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is the kth symmetrical mean of λ. Let us define Xi = Ui/λi and Yi = Ui/mk(λ) for all i ∈ {1, ..., n}. Let
us denote by Xk:n (resp. Yk:n) the kth order statistics of (X1, ..., Xn) (resp. (Y1, ..., Yn)). If F (x)

x(1−F (x)) is an
increasing function on (0,∞), then

Xk:n ≥st Yk:n.

Proof. From the definition, the random variable Xi has the distribution function FXi (t) = F (λit), t ≥ 0, i =
1, 2, ..., n.

First, let us consider the case k = 1. The random variables X1:n and Y1:n have the survival functions
FX1:n(t) =

∏n
i=1 F (λit) and FY1:n(t) =

(
F (λ1+...+λn

n t)
)n

respectively. From
(
logF

)′
= −h with h a non-

increasing function, it follows that logF is a convex function. Thus, from Jensen’s inequality we get FX1:n(t) ≥
FY1:n(t), ∀t ≥ 0, and the conclusion is proved for k = 1.

Let us assume now k > 1. The survival function of Xk:n is:

FXk:n(t) =
k−1∑
j=0

∑
|J|=j

(∏
i∈J

F (λit)

)(∏
i′ /∈J

F (λi′ t)

)
=

n∏
i=1

F (λit)
k−1∑
j=0

∑
|J|=j

(∏
i∈J

F (λit)
F (λit)

)
. (14)

Let us consider the functions y : (0,∞) → (0,∞), y(x) = F (x)

F (x)
and ψ : (0,∞)n → (0, 1),

ψ(x1, ..., xn)) =

∑k−1
j=0 Sj(y(x1), ..., y(xn))∏n

i=1(1 + y(xi))
·

For t > 0 we have FXk:n(t) = ψ(λ1t, ..., λnt).
Similarly, FYk:n(t) = ψ(mk(λt), ...,mk(λt)︸ ︷︷ ︸

n times

). To obtain the conclusion Xk:n ≥st Yk:n, it is sufficient to prove

the following property of the symmetrical and continuously differentiable mapping ψ:

ψ(x1, ..., xn) ≥ ψ(mk(x), ...,mk(x)︸ ︷︷ ︸
n times

), ∀ x = (x1, ..., xn) ∈ (0,∞)n. (15)

For x = (x1, ..., xn) ∈ (0,∞)n, we use the notation y = y(x) = (y(x1), ..., y(xn)) and yi = y(xi). The function
ψ has the following partial derivatives:

∂ψ

∂xs
(x) =

y′(xs)
∏
i�=s(1 + yi)

{
(1 + ys)

∑k−1
j=1 Sj−1(ys) −

[
1 +

∑k−1
j=1 (ysSj−1(ys) + Sj(ys))

]}
∏n
i=1(1 + y(xi))2

= − y′(xs)
1 + y(xs)

Sk−1(ys)∏n
i=1(1 + yi)

= −h(xs)
Sk−1(ys)∏n
i=1(1 + yi)

, s = 1, ..., n. (16)

We denote xp = minxi and xq = maxxi. Let us assume that xp < xq.
For k < n, using relation (16), we get:

( ∂ψ
∂xp

∂Sk

∂xp

−
∂ψ
∂xq

∂Sk

∂xq

)
(x) =

1∏n
i=1(1 + yi)

(
h(xq)

Sk−1(yq)
Sk−1(xq)

− h(xp)
Sk−1(yp)
Sk−1(xp)

)

=
1∏n

i=1(1 + yi)

(
h(xq)

ypSk−2(yp,q) + Sk−1(yp,q)
xpSk−2(xp,q) + Sk−1(xp,q)

− h(xp)
yqSk−2(yp,q) + Sk−1(yp,q)
xqSk−2(xp,q) + Sk−1(xp,q)

)
· (17)
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Since x→ F (x)
x(1−F (x)) is assumed to be an increasing function on (0,∞), we have yp

xp
<

yq

xq
and

yp
xp

≤ yi
xi

≤ yq
xq
, ∀i ∈ {1, ..., n} \ {p, q}.

Corollary 1 can be applied for m = n− 2, r = k − 2, α = yp

xp
, β = yq

xq
and the following inequalities hold:

yp
xp

Sk−2(yp,q)
Sk−2(xp,q)

≤ Sk−1(yp,q)
Sk−1(xp,q)

≤ yq
xq

Sk−2(yp,q)
Sk−2(xp,q)

·

Moreover, at least one of these inequalities is strict. Hence, from relation (10) the next inequality follows:

ypSk−2(yp,q) + Sk−1(yp,q)
xpSk−2(xp,q) + Sk−1(xp,q)

<
yqSk−2(yp,q) + Sk−1(yp,q)
xqSk−2(xp,q) + Sk−1(xp,q)

·

But h is a positive non-increasing function. Thus, 0 < h(xq) ≤ h(xp). Therefore, from (17), we get:

∂ψ
∂xp

(x)
∂Sk

∂xp
(x)

<

∂ψ
∂xq

(x)
∂Sk

∂xq
(x)

·

Hence, inequality (15) may be deduced from Lemma 2 and the conclusion follows.
It is worth to note that equation (17) cannot be used for k = n. But, in this case, using equation (16), we get( ∂ψ

∂xp

∂Sk

∂xp

−
∂ψ
∂xq

∂Sk

∂xq

)
(x) =

1∏n
i=1(1 + yi)

∏
i�=p,q

yi
xi

(
h(xq)

yp
xp

− h(xp)
yq
xq

)
< 0.

And the conclusion follows from Lemma 2. �
One important field of application concerns the exponential distribution (see below). But the result is more

general. We give an example of a distribution function which satisfies the assumptions of Theorem 1.
Example. For a > 1, let us define the distribution function F (x) = 1 − 1

(1+x)a , x ≥ 0. We have h(x) =
F ′(x)

1−F (x) = a
1+x , x ≥ 0. The function g : (0,∞) → (0,∞), g(x) = F (x)

x(1−F (x)) = (1+x)a−1
x has the derivative

g′(x) = 1+(1+x)a−1(ax−1)
x2 . But v(x) = 1 + (1 + x)a−1(ax− 1) is a positive function on (0,∞), since v(0) = 0 and

v′(x) = a(a− 1)x(1 + x)a−2 > 0, ∀ x > 0. Therefore h is a decreasing function and g is an increasing function
on (0,∞).

Theorem 1 can be naturally applied to the comparisons of Markov systems in reliability. Let us consider
a system which is composed of n components and is considered failed when k components are failed. Let us
assume that the failure rates of the components are constant. With such properties, the system is a n+1-k-out-
of-n Markov system. If the system is starting as new, the lifetime of the system is nothing but the kth order
statistics of the exponential lifetimes of the components.

The next theorem gives a necessary and sufficient condition for the stochastic comparison of the lifetimes of
two n+1-k-out-of-nMarkov systems in kth order statistics language. This result supplements the known results
on this subject.

Theorem 2. Let Xi, i = 1, ..., n, be independent exponential random variables with respective parameters
λi > 0, i = 1, 2, ..., n. Let Yi, i = 1, 2, ..., n, be independent exponential random variables with the common
parameter µ > 0. For k ∈ {1, 2, ..., n}, let us denote by Xk:n the kth order statistics of the random variables
X1, X2, ..., Xn, and similarly let us denote by Yk:n the kth order statistics of the random variables Y1, Y2, ..., Yn.
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Then

Xk:n ≥st Yk:n if and only if µ ≥
⎛
⎝( n

k

)−1 ∑
|J|=k

∏
i∈J

λi

⎞
⎠

1
k

·

Proof. We shall denote by F (x) = 1 − e−x, x ≥ 0, the exponential distribution function with parameter 1.
At first, let us assume that Xk:n ≥st Yk:n, i.e. FXk:n(t) ≥ FYk:n(t), ∀t > 0. The survival function of the

random variable Xk:n can be written as:

FXk:n(t) = 1 − e−t
∑n

i=1 λi

n∑
j=k

Sj(eλ1t − 1, ..., eλnt − 1).

Using the Taylor’s expansion about 0, we obtain:

FXk:n(t) = 1 − Sk(λ1, ..., λn)tk + o(tk), t→ 0.

In the same way, we have:

FYk:n(t) = 1 −
(
n
k

)
µktk + o(tk), t→ 0.

Therefore, Sk(λ1, ..., λn) ≤
(
n
k

)
µk. This can be rewritten as µ ≥ mk(λ1, ..., λn).

Conversely, suppose that µ ≥ mk(λ1, ..., λn). Since the survival function of Yk:n is clearly decreasing in µ, it
suffices to prove the assertion FXk:n(t) ≥ FYk:n(t), ∀ t > 0, for µ = mk(λ1, ..., λn).

The exponential distribution function F has a constant hazard rate h(x) = 1, ∀ x ≥ 0. Moreover the function
F (x)

x(1−F (x)) = ex−1
x is increasing on (0,∞). Hence, the exponential distribution F satisfies the assumptions of

Theorem 1. Clearly, the distribution function of the random variable Xi is FXi(t) = F (λit), t ≥ 0, i = 1, ..., n.
Similarly, we have FYi(t) = F (µt), t ≥ 0. Then, applying Theorem 1 we get the conclusion Xk:n ≥st Yk:n. �

The practical interest of this result is to give precise production constraints on the components of a k-out-of-n
system. For example, in the case of replacing several components with well-known failure rates (λi)i by identical
components, the previous theorem gives an exact value mn+1−k(λ) for the characteristic of the new components
in order to preserve the reliability. This result was known for k = 2, it has been proved by Păltănea [5]. In
the same spirit, Bon and Păltănea [1] have obtained necessary and sufficient conditions about comparisons of
convolutions of exponential variables.

4. Numerical examples

The previous results can be illustrated as follows. Let us consider n exponential independent random variables
Xi with parameter λi and Xk:n(λ) the kth order statistics. Let us denote by Yk:n(mj(λ)) the kth order statistics
of n exponential independent random variables Yi with common parameter mj(λ), j = 1, ..., n.

The survival functions of Xk:n(λ) and Yk:n(mj(λ)), j = 1, ..., n are plotted in Figure 1. It can be clearly seen
that

FXk:n(λ) ≥ FYk:n(mj(λ)) ⇔ j ≤ k. (18)
In Figure 2, we give an example of a distribution which satisfies the assumptions of Theorem 1 such that this

ordering is true again:

F (x) = 1 − 1
(x+ 1)2

, x ≥ 0.

If we consider a distribution function with an strict increasing hazard rate (usually named IFR) then the
assumptions of Theorem 1 are not satisfied. Figure 3 refers to an IFR Weilbull distribution. It can be seen that
inequality (18) does not hold.
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Comparison of 3:6 order statistics in exponential samples

10−5 ≤ λi ≤ 10−2

m1(λ) = 0.0046
m2(λ) = 0.0042
m3(λ) = 0.0036
m4(λ) = 0.0027
m5(λ) = 0.0016
m6(λ) = 9e−04

F(x) = exp(− x)

Figure 1. The exponential case for n = 6 and k = 3.
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Comparison of  3:6 order statistics

10−4 ≤ λi ≤ 10−1

F(x) =
1

(x + 1)2

Figure 2. The case of the distribution function F (x) = 1 − (x + 1)−2 for n = 6 and k = 3.
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Comparison of  2:6 order statistics in Weilbull−IFR samples

10−4 ≤ λi ≤ 1

F(x) = exp(− (x 100)2)

Figure 3. The case of an IFR Weilbull distribution for n = 6 and k = 2.
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