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ON THE LONG-TIME BEHAVIOUR OF A CLASS OF PARABOLIC SPDE’S:
MONOTONICITY METHODS AND EXCHANGE OF STABILITY

Benjamin Bergé1 and Bruno Saussereau2

Abstract. In this article we prove new results concerning the structure and the stability properties
of the global attractor associated with a class of nonlinear parabolic stochastic partial differential
equations driven by a standard multidimensional Brownian motion. We first use monotonicity methods
to prove that the random fields either stabilize exponentially rapidly with probability one around one
of the two equilibrium states, or that they set out to oscillate between them. In the first case we can
also compute exactly the corresponding Lyapunov exponents. The last case of our analysis reveals a
phenomenon of exchange of stability between the two components of the global attractor. In order to
prove this asymptotic property, we show an exponential decay estimate between the random field and
its spatial average under an additional uniform ellipticity hypothesis.
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1. Introduction and preliminaries

Consider a filtered probability space (Ω,F , (Ft)t∈R+ ,P) on which is defined a standard r-dimensional
Brownian motion (Wt)t∈R+ = (W 1

t , . . . ,W
r
t )t∈R+ . We denote by D ⊂ R

d a bounded connected open subset,
satisfying the cone property and ∂D is its boundary.

Our work is devoted to the long-time behaviour of the solution of the following class of parabolic SPDE’s






du(x, t) =
(

div
(
k(x, t)∇u(x, t)

)
+ g(u(x, t))

)
dt

+
r∑

j=1

hj(u(x, t)) dW j
t , (x, t) ∈ D × (0,+∞),

u(x, 0) = ϕ(x) ∈ (u0, u1), x ∈ D,

∂u(x, t)
∂n(k)

= 0, (x, t) ∈ ∂D × [0,+∞),

(1.1)
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where ∇ denotes the gradient vector, ∂
∂n(k) is the conormal derivative relative to k(·, ·) and u0, u1 are reals such

that u0 < u1.
These kinds of SPDE’s stand for a possible stochastic extension of deterministic phenomena: nerve pulse

propagation, flame propagation or population dynamics (see Aronson and Weinberger [2]). For instance, the
evolution of gene densities of a migrating species may be modelled by solution of (1.1). The second order
differential operator enables us to take into account space- and time-dependant diffusions in the domain D
(see Murray [14]). Moreover, the drift term g and the noise terms hj all vanish at u0 = 0 and u1 = 1. In
the simplest and classical cases of logistic type nonlinearities, g is of the form g(u) = u(1 − u). This leads to
the KPP equation (see Kolmogorov et al. [12]), also studied in recent articles (see for instance Manthey and
Mittmann [13], Øksendal et al. [15] and Øksendal et al. [16]). If we start from the constant initial condition
u0 (resp. u1) then the random field uϕ(x, t, ω) = u0 (resp. uϕ(x, t, ω) = u1) solves the SPDE (1.1). So an
interesting question is to ask if those two equilibrium states u0 and u1 are attractor or not.

In Chueshov and Vuillermot [6] and Chueshov and Vuillermot [7], the authors give a complete answer to
this question when r = 1 and the drift and the noise terms are proportional. If the stochastic integration
is interpreted in the sense of Stratonovitch, they show that two behaviours are possible. First, one of the
two steady states is globally asymptotically stable in probability and the second is unstable in probability.
The second behaviour unveils a recurrence phenomenon. In Itô’s case Chueshov and Vuillermot [7], they prove
slightly different results if the drift term is larger than the noise: an exchange of stability between the two steady
states appears. Bergé et al. [3] extend the results of Chueshov and Vuillermot [7] in a multidimensional white
noise frame, and taking different drift and noise terms. The signs of the coefficients g and h remain constant but
are not necessarily equal. In their work (as in Chueshov and Vuillermot [7]), the recurrence phenomenon does
not appear. In this article, we improve all these results to the case of a general drift, especially not necessarily
with constant sign. Of course, this allows us to write the SPDE (1.1) in the Stratonovitch or in the Itô sense.
So in this work, the asymptotic behaviour exhibits all the possible behaviours encountered in the preceding
articles. In Hetzer et al. [9], the authors study the asymptotic behaviour of positive solutions for stochastic
parabolic equations of Fisher type which is also a generalization of results by Chueshov and Vuillermot [6]. We
compare their results with ours in the last section.

Just below, we give the precise meaning of the SPDE’s (1.1) and state our hypotheses. In Section 2 we recall
the comparison principle with respect to the initial data which is the main tool of the first part devoted to the
application of monotonicity methods for long-time behaviour. These methods are widely used in the theory of
monotone random systems (see Hetzer et al. [5]). The alternative behaviours we met are essentially the same
that the ones occuring in the theory of stochastic ordinary differential equations (see Sect. 6.6.2 of Hetzer et
al. [5]). We prove that under a subordination condition on the drift term relative to the noise, the global
attractor is exactly one of the two equilibrium states of (1.1) (see Th. 2.6 below). We also compute Lyapunov’s
exponents. Under another hypothesis, we prove that the random field is set out to oscillate between the two
steady states in a recurrent way (see Th. 2.12). We stress that the technics involved in Section 2 are essentially
the same that the ones used in Bergé et al. [3] and Chueshov and Vuillermot [7]. However, we synthetize and
generalize the results of these works. We also explain the limits of these technics.

In the last possible case of hypotheses on g and hj ’s, the monotonicity methods fail. We overcome this diffi-
culty in Section 3 using a comparison between the random field and its spatial average thanks to an exponential
decay estimate. Actually, under an additional hypothesis on the ellipticity constant of the divergence operator,
we focus on the spatial average of the random field. The long-time behaviour of the spatial average process is
obtained thanks to similar methods encountered in classical results on stochastic differential equations (in short
SDE’s). Finally, we construct a Bernoulli random variable with values in the set of the steady states of the
problem (1.1), which is the global attractor of the solution of the SPDE (see Th. 3.5).

Our main results are stated in Theorems 2.6, 2.12 and 3.5. They improve and partially include those of Bergé
et al. [3], Chueshov and Vuillermot [6] and Chueshov and Vuillermot [7]. Section 4 is devoted to the proofs of
auxiliary results stated in Section 3.

We give concluding remarks in Section 5 and focus on comparisons with previous works.
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Now we state our hypotheses and give the notion of solution we choose.
(K) The symmetric matrix-valued function k is such that there exist three positive constants k1, k2 and C

such that, for all q ∈ R
d and all (x, t) ∈ D × R

+,

k1|q|2 � 〈k(x, t)q, q〉Rd � k2|q|2

where 〈·, ·〉Rd denotes the canonical inner product of R
d, with the associated norm | · |. In addition, for

all i, j ∈ {1, . . . , d} and all s, t ∈ R
+, we have

sup
x∈D

|ki,j(x, t) − ki,j(x, s)| � C|t− s|.

(G) The function g belongs to C2([u0, u1],R) and g(u0) = g(u1) = 0.
(H) The functions hj belong to C2([u0, u1],R). We note h = (h1, . . . , hr) and we assume that h(u0) =

h(u1) = 0. In addition, we assume that |h(u)| > 0 on the open set (u0, u1), and that |h′(u0)| > 0 and
|h′(u1)| > 0.

(I) The initial condition is non-random and satisfies

u0 < ess inf
x∈D

ϕ(x) � ϕ(x) � ess sup
x∈D

ϕ(x) < u1.

We write ‖ · ‖2 for the usual L2(D)-norm and C((0, T );L2(D)) for the space of all continuous mappings from
the interval (0, T ) into L2(D) when T ∈ R

+. Among all the possible ways to define a notion of solution to
Problem (1.1) (see Sanz-Solé and Vuillermot [17]) we choose the following.

Definition 1.1. We say that the L2(D)-valued, measurable random field (uϕ(·, t))t∈R+ defined on
(
Ω,F ,

(Ft)t∈R+ ,P
)

is a solution-random field to Problem (1.1) if the following conditions hold:
(1) (uϕ(·, t))t∈R+ is adapted to the filtration (Ft)t∈R+ ;

(2) for every T ∈ R
+ we have uϕ ∈ L2

(
(0, T )× Ω;H1(D)

) ∩ L2
(
Ω; C(

(0, T );L2(D)
))

and consequently

E

∫ T

0

‖uϕ(·, s)‖2
2 + ‖∇uϕ(·, s)‖2

2 ds < +∞;

(3) we have uϕ(x, t) ∈ (u0, u1) (dx⊗ P)-a.e. for every t ∈ R
+ and, for every T ∈ R

+, the relation
∫

D

v(x)uϕ(x, t) dx =
∫

D

v(x)ϕ(x) dx

−
∫

D

∫ t

0

〈∇v(x), k(x, s)∇uϕ(x, s)〉Rd ds dx+
∫

D

v(x)
∫ t

0

g(uϕ(x, s)) ds dx

+
r∑

j=1

∫

D

v(x)
∫ t

0

hj(uϕ(x, s)) dW j
s dx

holds P-a.e. for every v ∈ H1(D) and every t ∈ [0, T ].

According to the results of Bergé et al. [3], there is a unique solution (uϕ(·, t))t∈R+ of (1.1).

2. Monotonicity methods for stability and Lyapunov exponents

2.1. Generalities on the asymptotic behaviour

The monotonicity methods we will develop below are based on the following comparison principle related to
the initial data (see Bergé et al. [3]).
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Theorem 2.1. Let ψ1 and ψ2 be two functions satisfying Hypothesis (I). Let (uψ1(·, t))t∈R+ (resp. (uψ2(·, t))t∈R+)
be the solution of the SPDE (1.1) with initial condition ψ1 (resp. ψ2). In addition, we assume that

ψ1(x) � ψ2(x)

dx-a.e. Then we have
uψ1(x, t) � uψ2(x, t)

dx⊗ P-a.e. for all t ∈ R
+.

The key point is to find initial conditions ψ for which the investigation of the random field (uψ(·, t))t∈R+

is simpler than (uϕ(·, t))t∈R+ . The simplest ones are those starting from a constant initial condition. That
is the reason why we apply the comparison principle with constant initial conditions ϕ1 = ess inf

x∈D
ϕ(x) and

ϕ2 = ess sup
x∈D

ϕ(x). Obviously, the corresponding random fields solution of the SPDE’s (1.1) are in fact solution

of the SDE’s

v1(t) = ϕ1 +
∫ t

0

g(v1(s)) ds+
r∑

j=1

∫ t

0

hj(v1(s)) dW j
s , (2.1)

v2(t) = ϕ2 +
∫ t

0

g(v2(s)) ds+
r∑

j=1

∫ t

0

hj(v2(s)) dW j
s (2.2)

for t � 0. We deduce from the comparison theorem that

u0 � v1(t) � uϕ(x, t) � v2(t) � u1 (2.3)

dx⊗ P-a.e. for all t ∈ R
+.

We first state that equilibrium points u0 and u1 are non attainable in finite time.

Proposition 2.2. We suppose (K),(G), (H) and (I). Then we have

P
{∃ t > 0, ‖uϕ(·, t) − uj‖∞ = 0

}
= 0

for j = 0, 1.

Proof. We start by proving the result for j = 0. Thanks to the inequalities (2.3) it is sufficient to prove the
result for the process (v1(t))t∈R+ . Let ε be in (0, 1) and (rn)n∈N be a sequence of radii decreasing to 0. For each
n ∈ N, fn is a twice-differentiable function on [u0, u1] such that fn(u) = (u − u0)−ε if u � u0 + rn.

If ϕ1 > u0 + rn, we define the sequence of increasing stopping times Tn = inf{t > 0 : |v1(t) − u0| = rn}.
Now we apply Itô’s formula to e−βtfn between 0 and t ∧ Tn, β to be fixed later. We obtain

e−β(t∧Tn)fn(v1(t ∧ Tn)) = fn(ϕ1) −
∫ t∧Tn

0

βe−βsfn(v1(s)) ds+
∫ t∧Tn

0

e−βsf ′
n(v1(s))g(v1(s)) ds

+
∫ t∧Tn

0

1
2
e−βsf ′′

n (v1(s))|h(v1(s))|2 ds+
r∑

j=1

∫ t∧Tn

0

e−βsf ′
n(v1(s))hj(v1(s)) dW j

s .

Taking expectation, this leads to

E

[
e−β(t∧Tn)fn(v1(t ∧ Tn))

]
= fn(ϕ1)

+ E

[∫ t∧Tn

0

e−βs
(

f ′
n(v1(s))g(v1(s)) +

1
2
f ′′
n (v1(s))|h(v1(s))|2 − βfn(v1(s))

)

ds

]

. (2.4)
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But for s ∈ [0, t ∧ Tn] we have

f ′
n(v1(s))g(v1(s)) +

1
2
f ′′
n (v1(s))|h(v1(s))|2 = −ε(v1(s) − u0)−ε−1g(v1(s))

+
1
2
ε(1 + ε)(v1(s) − u0)−2−ε|h(v1(s))|2

= ε(v1(s) − u0)−ε
[

− g(v1(s))
v1(s) − u0

+
1 + ε

2
|h(v1(s))|2

(v1(s) − u0)2

]

� K(v1(s) − u0)−ε, (2.5)

where K is a bound of the function

u �→ − g(u)
u− u0

+
1 + ε

2
|h(u)|2

(u − u0)2
·

Therefore, if we choose β > K, and using (2.5), the relation (2.4) becomes

E

[
e−β(t∧Tn)fn(v1(t ∧ Tn))

]
� fn(ϕ1).

Since

e−β(t∧Tn)fn(v1(t ∧ Tn))�{Tn<+∞} −→
t→+∞ e−βTnfn(v1(Tn))�{Tn<+∞} = e−βTnr−εn �{Tn<+∞},

Fatou’s lemma implies

E
[
e−βTn�{Tn<+∞}

]
� (ϕ1 − u0)−εrεn, (2.6)

where we have used v1(Tn) = rn + u0. Defining T = lim
n→+∞Tn (P-a.s.) and letting n tend to infinity in (2.6),

we have by the monotone convergence theorem,

E[e−βT�{T<+∞}] = 0.

Consequently, P{T = +∞} = 1 and the result follows.
The proof of the result for j = 1 is omitted. We use the same arguments with the random process (v2(t))t∈R+

and a suitable sequence of functions (fn)n∈N. �

In the above proof, (v1(t))t∈R+ and (v2(t))t∈R+ , which solves respectively the SDE (2.1) and (2.2), play an
important role that will increase in the following. We recall that the Feller function is a useful tool used to
investigate the long-time behaviour of SDE’s. This function is defined as a solution of the ordinary differential
equation

1
2
|h(u)|2F ′′(u) + g(u)F ′(u) = 0, (2.7)

for u ∈ (u0, u1). We have to study the local behaviour of F near u0 and u1 (see Ikeda and Watanabe [11],
p. 362). So we write that

F (u) =
∫ u

ν

exp
(

−2
∫ y

µ

g(z)
|h(z)|2 dz

)

dy (2.8)

where µ and ν are two arbitrary points of (u0, u1).
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We precise the behaviour of the Feller function around u0 and u1 in the next proposition.

Proposition 2.3. For the function F , we have those four following cases.
(A) If 2g′(u0) < |h′(u0)|2 and if 2g′(u1) � |h′(u1)|2 then

lim
u→u0

F (u) > −∞ and lim
u→u1

F (u) = +∞.

(B) If 2g′(u0) � |h′(u0)|2 and if 2g′(u1) < |h′(u1)|2, then

lim
u→u0

F (u) = −∞ and lim
u→u1

F (u) < +∞.

(C) If 2g′(u0) � |h′(u0)|2 and if 2g′(u1) � |h′(u1)|2, then

lim
u→u0

F (u) = −∞ and lim
u→u1

F (u) = +∞.

(D) If 2g′(u0) < |h′(u0)|2 and if 2g′(u1) < |h′(u1)|2, then

lim
u→u0

F (u) > −∞ and lim
u→u1

F (u) < +∞.

Remark 2.4. It is worth noting that, since the function g may vanish, these four cases are possible. In Chueshov
and Vuillermot [6], the case (C) may occur, but not the case (D) whereas in Bergé et al. [3] and in Chueshov
and Vuillermot [7], the case (D) appears but not the case (C). This shows that our framework encompasses all
the cases of Bergé et al. [3], Chueshov and Vuillermot [6] and Chueshov and Vuillermot [7].

Proof. We essentially use the same arguments as in Bergé et al. [3]. It is easy to check that there exist c1 and
c2 such that for u ∈ (u0, u1),

c1

∫ u

ν

(y − u0)
−2

g′(u0)
|h′(u0)|2 (u1 − y)−2

g′(u1)
|h′(u1)|2 dy � F (u) � c2

∫ u

ν

(y − u0)
−2

g′(u0)
|h′(u0)|2 (u1 − y)−2

g′(u1)
|h′(u1)|2 dy.

The behaviour of F around u0 and u1 is then driven by the integrability of the function

y �→ (y − u0)
−2

g′(u0)
|h′(u0)|2

around u0 and by the integrability of the function

y �→ (u1 − y)−2
g′(u1)

|h′(u1)|2

around u1. This implies cases (A), (B), (C) and (D). �
We begin with the simplest cases (A) and (B), where the global attractor is exactly one of the two equilibrium

states.

2.2. Global asymptotic stability: the cases (A) and (B)

In cases (A) and (B), we investigate in details the long-time behaviour of the random field (uϕ(·, t))t∈R+ and
are able to compute the Lyapunov exponents.

Let A be the function defined for u ∈ (u0, u1) by

A(u) =
∫ u

µ

dz
(z − u0)(u1 − z)

·
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The function A is useful in the computation of Lyapunov’s exponents. The straightforward following lemma
shows that the function A diverges logarithmically around u0 and u1.

Lemma 2.5. Let c ∈ (0, u1 − u0) be a real. Then
(i) there exist two constants c1 and c2 such that, for all y ∈ (u0, u1 − c),

c1 +A(y) � 1
u1 − u0

ln(y − u0) � c2 +A(y);

(ii) there exist two constants c3 and c4 such that, for all y ∈ (u0 + c, u1),

c3 +A(y) � 1
u1 − u0

ln(u1 − y) � c4 +A(y).

The following theorem states that the global attractor is non random and consists of the two stationary states u0

and u1. It is worth noting that in the cases (A) and (B), the roles of u0 and u1 are inverted. In both cases,
we can exactly determine the corresponding Lyapunov exponents. This result is a direct consequence of the
comparison Theorem.

Theorem 2.6. In the case (A), the following relation holds

P

{

lim
t→+∞ ‖uϕ(·, t) − u0‖∞ = 0

}

= 1 (2.9)

and we explicitly compute the Lyapunov exponent

lim
t→+∞

1
t

ln ‖uϕ(·, t) − u0‖∞ = g′(u0) − 1
2
|h′(u0)|2 < 0 P-a.s. (2.10)

In the case (B), the following relation holds

P

{

lim
t→+∞ ‖uϕ(·, t) − u1‖∞ = 0

}

= 1 (2.11)

and we explicitly compute the Lyapunov exponent

lim
t→+∞

1
t

ln ‖uϕ(·, t) − u1‖∞ = g′(u1) − 1
2
|h′(u1)|2 < 0 P-a.s. (2.12)

Proof. We only prove the case (A) (the proof of (B) is similar and omitted). We deduce from (2.3) that

P

{

lim
t→+∞ |v2(t) − u0| = 0

}

� P

{

lim
t→+∞ ‖uϕ(·, t) − u0‖∞ = 0

}

.

A direct application of classical results on the asymptotic behaviour of SDE’s (see Ikeda and Watanabe [11],
Th. 3.1, p. 362) and Proposition 2.3 yield

P

{

lim
t→+∞ v2(t) = u0

}

= lim
b↑u1
a↓u0

F (b) − F (ϕ2)
F (b) − F (a)

= 1

hence the relation (2.9) holds. The further argument is the same as in Bergé et al. [3]. �
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In order to give more precise properties of the two steady states, we recall three definitions related to stability
in a random framework. Analogous notions of stability for ordinary stochastic differential equations are used to
study random dynamical systems generated by ordinary Itô equations (Arnold [1], Gihman and Skorohod [8],
Hasminskii [10]).

Definition 2.7. We say that u0,1 ∈ {u0, u1} is stable in probability if the relation

lim
‖ϕ−u0,1‖∞→0

P

{

sup
t∈R+

‖uϕ(·, t) − u0,1‖∞ > ε

}

= 0 (2.13)

holds for every ε > 0.

Definition 2.8. We say that u0,1 ∈ {u0, u1} is globally asymptotically stable in probability if relation (2.13)
holds and if we have

P

{

lim
t→+∞ ‖uϕ(·, t) − u0,1‖∞ = 0

}

= 1 (2.14)

for every initial condition ϕ satisfying hypothesis (I).

Definition 2.9. We say that u0,1 is unstable in probability if relation (2.13) does not hold.

To achieve our study of the asymptotic behaviour of the process (uϕ(·, t))t∈R+ in the cases (A) and (B), we
give the stability properties of the equilibrium states.

Theorem 2.10. Assume that (K), (G), (H) and (I) hold. In the case (A), u0 is globally asymptotically stable
in probability and u1 is unstable in probability.
In the case (B), u1 is globally asymptotically stable in probability and u0 is unstable in probability.

Remark 2.11. Intuitively the theorem claims that in the case (A), u0 attracts the random field whereas u1

repels it. In the case (B), the roles of u0 and u1 are inverted.

Proof. In the case (A), we first prove that for all ε > 0, and all δ1 > 0, there exists δ2 ∈ (0, δ1) such that for all
ϕ satisfying ‖ϕ− u0‖∞ � δ2, then

P
{‖uϕ(·, t) − u0‖∞ > δ1 for some t > 0

}
< ε.

Actually, as we have

P
{‖uϕ(·, t) − u0‖∞ > δ1 for some t > 0

}
� P

{|v2(t) − u0| > δ1 for some t > 0
}
< ε,

it suffices to prove the second inequality. Let F0 be the solution of the differential equation





1
2 |h(u)|2F ′′(u) + g(u)F ′(u) = 0

lim
µ→u0

F (µ) = 0

F ′(ν) > 0 given.

(2.15)

The hypothesis 2g′(u0) < |h′(u0)|2 ensures that F (u0) exists (we take µ = u0 in formula (2.8)). As F0 is strictly
increasing, we have F0(u) > 0 for all u ∈ (u0, u1). Let τ be the stopping time defined by τ = inf{t > 0 : v2(t) >
δ1 + u0}. Applying Itô’s formula between 0 and τ ∧ n for all n ∈ N, we have

F0(v2(τ ∧ n)) = F0(ϕ2) +
∫ τ∧n

0

1
2
|h(v2(s))|2F ′′

0 (v2(s)) + g(v2(s))F ′
0(v2(s)) ds

+
r∑

j=1

∫ τ∧n

0

hj(v2(s))F ′(v2(s)) dW j
s .
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Since F0 satisfies relations (2.15) and ϕ2 > u0, taking expectation yields

E[F0(v2(τ ∧ n))�{τ<+∞}] � EF0(v2(τ ∧ n)) = EF0(ϕ2) = F0(ϕ2) > 0. (2.16)
Applying Fatou’s lemma to (2.16) we find

E[F0(v2(τ))�{τ<+∞}] � F0(ϕ2).

Since F0(v2(τ))�{τ<+∞} = F0(δ1), we have

P{τ < +∞} � F0(ϕ2)
F0(δ1)

� F0(δ2)
F0(δ1)

· (2.17)

We choose δ2 such that F0(δ2) = εF0(δ1). This choice is possible because the function F0 is strictly increasing,
F0(u0) = 0 and F0(u) tends to ∞ when u tends to u1. With this choice for δ2 in (2.17), we obtain P{τ <
+∞} � ε. Since {τ < +∞} = {∃t > 0, v2(t) � δ1} we have the result.

To the end, it remains to prove the unstability of the state u1 in the case (A). Actually, we prove the following
stronger result:

∀ε > 0 lim
‖ϕ−u1‖∞→0

P

{

sup
t∈R+

‖uϕ(·, t) − u1‖∞ � ε

}

= 1.

Thanks to the inequalities (2.3), we deduce that

P

{

sup
t∈R+

|u1 − v2(t)| � ε

}

� P

{

sup
t∈R+

‖uϕ(·, t) − u1‖∞ � ε

}

,

so it remains to prove that

lim
|ϕ2−u1|→0

P

{

sup
t∈R+

‖v2(t) − u1‖∞ � ε

}

= 1. (2.18)

Let ε > 0 be fixed and b a real such that u1−ε � ϕ2 � b < u1. We note τu1−ε,b = inf{t ∈ R
+ : v2(t) �∈ (u1−ε, b)}

the first exit time of the interval (u1 − ε, b). We have

P

{

sup
t∈R+

|u1 − v2(t)| � ε

}

� P{v2(τu1−ε,b) = u1 − ε}

� F (b) − F (ϕ2)
F (b) − F (u1 − ε)

, (2.19)

where the last inequality comes from classical arguments Ikeda and Watanabe [11]. The relation (2.18) is a
direct consequence of letting b tends to u1 in the relation (2.19) combining with the result of Proposition 2.3.

To prove the stability of u1 for the case (B), we have to show that for all ε > 0, for all 0 < δ1 < u1−u0 there
exists δ2 ∈ (0, δ1) such that if u1 − δ2 � ϕ1 < u1, we have

P
{∃ t > 0, v1(t) < u1 − δ1

}
< ε.

The proof is analogous. Instead of the function F0, we work with F1, solution of the problem





1
2 |h(u)|2F ′′(u) + g(u)F ′(u) = 0

lim
µ→u1

F (µ) = 0

F ′(ν) < 0 given

and note that F1 is non-positive, increasing, and F1(u) tends to −∞ when u tends to u0. �
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2.3. Recurrence properties: the case (C)

In this section, we deal with the case (C). This situation is more chaotic and an oscillation phenomenon sets
in for large times. Indeed, we will see in the following theorem that uϕ travels back and forth between the two
stationary states u0 and u1 in a recurrent way in the sense that it can reach every point within (u0, u1) almost
surely in finite time.

Theorem 2.12. In the case (C), the following assertions are true:
(i) lim sup

t→+∞
ess sup
x∈D

uϕ(x, t) = lim sup
t→+∞

ess inf
x∈D

uϕ(x, t) = u1 P-a.s.;

(ii) lim inf
t→+∞ ess sup

x∈D
uϕ(x, t) = lim inf

t→+∞ ess inf
x∈D

uϕ(x, t) = u0 P-a.s.

Proof. Using the relations (2.3), we obtain

u0 � lim sup
t→+∞

v1(t) � lim sup
t→+∞

ess inf
x∈D

uϕ(x, t) � lim sup
t→+∞

ess sup
x∈D

uϕ(x, t) � lim sup
t→+∞

v2(t) � u1,

dx ⊗ P-a.e. and for all t ∈ R
+. To prove (i), it remains to show that lim sup

t→+∞
v1(t) = u1 P-a.s., but this is a

direct consequence of Ikeda and Watanabe [11], p. 362. Since

u0 � lim inf
t→+∞ v1(t) � lim inf

t→+∞ ess inf
x∈D

uϕ(x, t) lim inf
t→+∞ ess sup

x∈D
uϕ(x, t) � lim inf

t→+∞ v2(t) � u1,

dx⊗ P-a.e., the proof of (ii) is similar. �

Corollary 2.13. Let L be a linear, positive, continuous functional on L2(D) such that L(�D) = 1, and let

τy = inf{t > 0 : L(uϕ(·, t)) = y}

be the first time that the process (L(uϕ(·, t)))t∈R+ reaches y (with convention inf ∅ = +∞). Then, for all
y ∈ (u0, u1) we have

P{τy < +∞} = 1.

Remark 2.14. An interesting application of this corollary is the choice of L as an average operator over any
small ball strictly included in D. Let x0 ∈ D and ε > 0 be such that the ball B(x0, ε) ⊂ D. We define

Lεx0
(u) =

1
|B(x0, ε)|

∫

B(x0,ε)

u(x) dx.

The theorem claims that we can reach in finite time all the values for the spatial mean for the process
(Quϕ(·, t))t∈R+ .

Proof. With the hypotheses on L, we have, for all t ∈ R
+,

v1(t) � L(uϕ(·, t)) � v2(t)

P-a.s. We fix y ∈ (u0, u1). By the proof of Theorem 2.12, for almost all ω ∈ Ω, and for all n ∈ N
∗, there exist

sn(ω) such that v2(sn(ω), ω) = u0 +
1
n
< y

and
tn(ω) such that v1(tn(ω), ω) = u1 − 1

n
> y.
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Then
L(uϕ(·, sn(ω), ω)) � u0 +

1
n

and
L(uϕ(·, tn(ω), ω)) � u1 − 1

n
·

By continuity of the process (L(uϕ(·, t)))t∈R+ , there exists t ∈ [tn(ω) ∧ sn(ω), tn(ω) ∨ sn(ω)] such that

L(uϕ(·, t)) = y. �

Theorem 2.15. In the case (C), both steady states u0 and u1 are unstable in probability.

Remark 2.16. In this case, the steady states u0 and u1 repel the random field simultaneously away.

Proof. We prove that u1 is unstable in probability. Since

sup
t∈R+

|v2(t) − u1| � sup
t∈R+

‖uϕ(·, t) − u1‖∞ P-a.s.,

for any ε > 0 we have

P

{

sup
t∈R+

‖uϕ(·, t) − u1‖∞ > ε

}

� P

{

sup
t∈R+

|v2(t) − u1| > ε

}

.

Let b be a real such that u1 − ε < ϕ2 � b < u1. Let τu1−ε,b be the exit time from the interval (u1 − ε, b) for the
process (v2(t))t∈R+

τu1−ε,b = inf{t � 0 : v2(t) �∈ (u1 − ε, b)}.
We use Ikeda and Watanabe [11], page 362, and Proposition 2.3 in order to obtain

P

{

sup
t�0

|v2(t) − u1| > ε

}

� P
{
v2(τu1−ε,b) = u1 − ε

}

� F (b) − F (ϕ2)
F (b) − F (u1 − ε)

−→
b→u1

1.

Hence u1 is unstable in probability and analogous computations show that u0 is also unstable in probability. �

2.4. Stability in probability in the case (D)

Before studying the case (D) in details in the next section, the following theorem states the properties of
stability in probability of the two steady states u0 and u1. The proof is similar to the proof of Theorem 2.10,
and it is again a consequence of monotonicity methods.

Theorem 2.17. In the case (D), both steady states u0 and u1 are stable in probability.

3. Purely random attractor

The main result of this section is that the random field (uϕ(·, t))t∈R+ converges to a Bernoulli random variable
with values in {u0, u1} (see Th. 3.5 below). This kind of behaviour appears only in the more difficult case (D)
and this ends the monotonicity methods. Indeed, if we use the same technics as in the previous section, we can
only have the following estimates:

P

{

lim
t→+∞ ‖uϕ(·, t) − u0‖∞ = 0

}

� F (u1) − F (ϕ2)
F (u1) − F (u0)

> 0 (3.1)



MONOTONICITY METHODS AND STABILITY EXCHANGE FOR SPDE’S 265

and

P

{

lim
t→+∞ ‖uϕ(·, t) − u1‖∞ = 0

}

� F (ϕ1) − F (u0)
F (u1) − F (u0)

> 0. (3.2)

Unfortunately the sum of the two above probabilities is equal to 1 if and only if ϕ1 = ϕ2, which is out of interest.
From now on, we give up the monotonicity methods and we will be able to solve our problem only when the
ellipticity constant k1 is large enough (see Hypothesis (K)). This restriction appears in the exponential decay
estimate (see Prop. 3.1) between the random field and its spatial average.

We introduce the positive linear continuous operator Q defined on L2(D) by

Qf =
1
|D|

∫

D

f(x) dx.

We note Qh for the vector (Qh1, . . . , Qhr).
It is worth noting that all the information about the limit of (uϕ(·, t))t∈R+ will be contained in the process

(Quϕ(·, t))t∈R+ , which satisfies

Quϕ(·, t) = Qϕ(·) +
∫ t

0

Qg(uϕ(·, s)) ds+
r∑

j=1

∫ t

0

Qhj(uϕ(·, s)) dW j
s . (3.3)

The above relation is a SDE when we choose ϕ = ϕ1 or ϕ = ϕ2 as initial conditions. In that case, we obtain
equations (2.1) and (2.2).

Proposition 3.1. Assume (K), (G), (H) and (I) hold. Then, if k1 � CD
(|g′|∞ + 2|h′|2∞

)
= k∗, there exists a

constant α > 0 such that for all t ∈ R
+,

E‖uϕ(·, t) −Quϕ(·, t)‖2
2 � exp(−αt)‖ϕ−Qϕ‖2

2. (3.4)

Here, CD denotes the constant appearing in Poincaré-Wirtinger’s inequality (see Brézis [4]) and it only depends
on the geometry of the domain D.

Remark 3.2. This result means that the random field stabilizes almost surely for large times around a spatially
homogeneous random process.

Remark 3.3. The above result implies that for all γ ∈ (0, 1], we have

E

∫ +∞

0

‖uϕ(·, s) −Quϕ(·, s)‖2γ
2 ds < +∞. (3.5)

The proof is quite similar of the one given in Chueshov and Vuillermot [7]. Nevertheless, we give it for the
convenience for the reader.

Proof. We first prove that there exists k∗ such that for all k1 � k∗, there exists α ∈ R
+ such that

d
dt

(
E‖uϕ(·, t) −Quϕ(·, t)‖2

2

)
+ αE‖uϕ(·, t) −Quϕ(·, t)‖2

2 � 0, (3.6)
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for all t ∈ R
+. The process (uϕ(·, t) −Quϕ(·, t))t∈R+ satisfies






d
(
uϕ(x, t) −Quϕ(·, t)) = div

(
k(x, t)∇(uϕ(x, t) −Quϕ(·, t))) dt

+
(
g(uϕ(x, t)) −Qg(uϕ(·, t))) dt+

r∑

j=1

(
hj(uϕ(x, t)) −Qhj(uϕ(·, t))) dW j

t , (x, t) ∈ D × R
+
∗ ,

uϕ(x, 0) −Quϕ(·, 0) = ϕ(x) −Qϕ ∈ (u0 − u1, u1 − u0), x ∈ D,

∂
(
uϕ(x, t) −Quϕ(·, t))

∂n(k)
= 0, (x, t) ∈ ∂D × R

+.

We apply Itô’s formula. Taking expectation yields

E‖uϕ(·, t) −Quϕ(·, t)‖2
2 = ‖ϕ−Qϕ‖2

2 − 2E

∫ t

0

∫

D

〈∇uϕ(x, s), k(x, s)∇uϕ(x, s)〉Rd dxds

+2E

∫ t

0

∫

D

(
uϕ(x, s) −Quϕ(·, s))(g(uϕ(x, s)) −Qg(uϕ(·, s))) dxds

+E

∫ t

0

∫

D

|h(uϕ(x, s)) −Qh(uϕ(·, s))|2 dxds. (3.7)

Thanks to Poincaré-Wirtinger’s inequality (see Brézis [4]), there exists a universal constant CD > 0 such that

E‖∇uϕ(·, t)‖2
2 � 1

CD
E‖uϕ(·, t) −Quϕ(·, t)‖2

2. (3.8)

Using the ellipticity assumption (see Hypothesis (K)) and (3.8), (3.7) becomes

E‖uϕ(·, t) −Quϕ(·, t)‖2
2 � ‖ϕ−Qϕ‖2

2 − 2E

∫ t

0

k1
1
CD

‖uϕ(·, s) −Quϕ(·, s)‖2
2 ds

+2E

∫ t

0

∫

D

(
uϕ(x, s) −Quϕ(·, s))(g(uϕ(x, s)) −Qg(uϕ(·, s))) dxds

+E

∫ t

0

∫

D

∣
∣h(uϕ(x, s)) −Qh(uϕ(·, s))∣∣2 dxds. (3.9)

We estimate the second term of the right-hand side of relation (3.9). We have

2E

∫

D

(
uϕ(x, t) −Quϕ(·, t))(g(uϕ(x, t)) −Qg(uϕ(·, t))) dx =

2E

∫

D

(
uϕ(x, t) −Quϕ(·, t))(g(uϕ(x, t)) − g(Quϕ(·, t))) dx

+ E

∫

D

(
uϕ(x, t) −Quϕ(·, t))(g(Quϕ(·, t)) −Qg(uϕ(·, t))) dx,

for all t ∈ R
+. Note that g(Quϕ(·, t)) and Qg(uϕ(·, t)) do not depend on x. So the second term of the right-hand

side vanishes thanks to the definition of Q. Finally we obtain

2
∣
∣
∣
∣E

∫

D

(
uϕ(x, t) −Quϕ(·, t))(g(uϕ(x, t)) −Qg(uϕ(·, t))) dx

∣
∣
∣
∣ � 2|g′|∞E‖uϕ(·, t) −Quϕ(·, t)‖2

2. (3.10)
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Now we estimate the last term of the right-hand side of the relation (3.9), we have,

E

∫

D

|h(uϕ(x, t)) −Qh(uϕ(·, t))|2 dx � 2E

∫

D

|h(uϕ(x, t)) − h(Quϕ(·, t))|2 dx

+ 2E

∫

D

|h(Quϕ(·, t)) −Qh(uϕ(·, t))|2 dx

� 2|h′|2∞E‖uϕ(·, t) −Quϕ(·, t)‖2
2 + 2E

∫

D

|h(Quϕ(·, t)) −Qh(uϕ(·, t))|2 dx.

(3.11)

We write

E

∫

D

|h(Quϕ(·, t)) −Qh(uϕ(·, t))|2 dx = |D|E
∣
∣
∣
∣

1
|D|

∫

D

h(Quϕ(·, t)) − h(uϕ(x, t)) dx
∣
∣
∣
∣

2

� |h′|2∞E‖uϕ(·, t) −Quϕ(·, t)‖2
2

and we replace it into (3.11) to obtain

E

∫

D

|h(uϕ(x, t)) −Qh(uϕ(·, t))|2 dx � 4|h′|2∞E‖uϕ(·, t) −Quϕ(·, t)‖2
2. (3.12)

Finally, injecting relations (3.10) and (3.12) in the relation (3.9), we get

d
dt

E‖uϕ(·, t) −Quϕ(·, t)‖2
2 �

(

−2k1

CD
+ 2|g′|∞ + 4|h′|2∞

)

E‖uϕ(·, t) −Quϕ(·, t)‖2
2

� −αE‖uϕ(·, t) −Quϕ(·, t)‖2
2 (3.13)

if we choose α > 0 so that − 2k1
CD

+2|g′|∞ +4|h′|2∞ < −α < 0 with k1 � k∗ := CD(|g′|∞ +2|h′|2∞
)
, relation (3.13)

is exactly (3.6). Integrating relation (3.13) between 0 and t gives the result, namely (3.4). �
The asymptotic behaviour of (uϕ(·, t))t∈R+ is then quite close to the asymptotic behaviour of the random

process (Quϕ(·, t))t∈R+ . We specify its long-time behaviour in the following theorem.

Theorem 3.4. Assume Hypotheses (K), (G), (H) and (I) hold. In addition, we assume that k1 � k∗ (see
Prop. 3.1). Then, in the case (D), there exists a real number Z such that

P

{

lim
t→+∞Quϕ(·, t) = u0

}

=
F (u1) − F (Qϕ)
F (u1) − F (u0)

− Z

F (u1) − F (u0)
(3.14)

and

P

{

lim
t→+∞Quϕ(·, t) = u1

}

=
F (Qϕ) − F (u0)
F (u1) − F (u0)

+
Z

F (u1) − F (u0)
(3.15)

where F is a Feller function (see Relation (2.8)).

The technics used in the proof of this result are similar to those used in the classical theory of SDE’s. The
proof is quite long and postponed in the following section.

We now give the main result of this section. This theorem shows that the random field converges to a random
variable taking its values in {u0, u1}.
Theorem 3.5. Assume that (K), (G), (H) and (I) hold. In addition, we assume that the ellipticity constant
k1 � k∗ (see Prop. 3.1) and that the coefficients satisfy the relation of the case (D) (see Prop. 2.3). Let ξ be
the random variable defined by

ξ = u0�Ω0 + u1�Ω1
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where Ω0 =
{

lim
t→+∞Quϕ(·, t) = u0

}

and Ω1 =
{

lim
t→+∞Quϕ(·, t) = u1

}

. Then we have

E‖uϕ(·, t) − ξ‖2
2 −→
t→+∞ 0. (3.16)

More precisely, there exists a real number Z (the constant appearing in Th. 3.4) and a sequence (tn)n∈N which
tends to +∞ such that

P

{

lim
n→+∞ ‖uϕ(·, tn) − u0‖2 = 0

}

=
F (u1) − F (Qϕ)
F (u1) − F (u0)

− Z

F (u1) − F (u0)
(3.17)

and

P

{

lim
n→+∞ ‖uϕ(·, tn) − u1‖2 = 0

}

=
F (Qϕ) − F (u0)
F (u1) − F (u0)

+
Z

F (u1) − F (u0)
· (3.18)

Remark 3.6. This theorem is a improvement of Theorem 2.7 of Chueshov and Vuillermot [7]. Indeed the
authors investigate only the case when the sign of the drift coefficient g is constant. This result specify one
of the alternative behaviour described in Hetzer et al. [9]. Unfortunately, we are not able to get rid of the
assumption on the ellipticity constant.

Proof. Using the relation (3.1) and the definition of ξ, we have

E‖uϕ(·, t) − ξ‖2
2 � 2E‖uϕ(·, t) −Quϕ(·, t)‖2

2 + 2E‖Quϕ(·, t) − ξ‖2
2

� 2e−αt‖ϕ−Qϕ‖2
2

+2|D|E|(Quϕ(·, t) − u0)�Ω0 |2 + 2|D|E|(Quϕ(·, t) − u1)�Ω1 |2.

Thanks to Theorem 3.4 and the dominated convergence theorem, we infer that (3.16) holds.
Now we write

‖uϕ(·, t) − u0‖2
2 � 2‖uϕ(·, t) −Quϕ(·, t)‖2

2 + 2‖Quϕ(·, t) − u0‖2
2.

We deduce there exists a sequence (tn)n∈N −→
n→+∞ +∞ such that

lim
n→+∞ ‖uϕ(·, tn) − u0‖2

2 � lim
n→+∞ 2‖uϕ(·, tn) −Quϕ(·, tn)‖2

2 + 2 lim
n→+∞ ‖Quϕ(·, tn) − u0‖2

2.

Using (3.14), we get

P

{

lim
n→+∞ ‖uϕ(·, tn) − u0‖2

2 = 0
}

� F (u1) − F (Qϕ)
F (u1) − F (u0)

− Z

F (u1) − F (u0)
·

In a similar way, we can show that

P

{

lim
n→+∞ ‖uϕ(·, tn) − u0‖2

2 = 0
}

� F (Qϕ) − F (u0)
F (u1) − F (u0)

+
Z

F (u1) − F (u0)
·

Since the sum of these two probabilities is 1, it is clear that we have (3.17) and (3.18). �

4. Asymptotic behaviour of the spatial average

In this section we prove Theorem 3.4 stated in the previous one. We need several auxiliary results. We begin
with a simple remark about the functions g and hj ’s.
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Remark 4.1. Let G the function defined for all u ∈ [u0, u1] by G(u) = c(u− u0)(u1 − u) where c is a constant

such that |g(u)|+
r∑

j=1

|hj(u)| � G(u). Using the concavity of G and Jensen’s inequality, we have, for all s ∈ R
+,

|Qg(uϕ(·, s)) − g(Quϕ(·, s))| � |Qg(uϕ(·, s))| + |G(Quϕ(·, s))|
� |QG(uϕ(·, s))| +G(Quϕ(·, s))
� 2G(Quϕ(·, s)). (4.1)

The same holds with the functions hj ’s. It is clear that the left-hand side of (4.1) is bounded. This estimation
clarify the local behaviour of Qg(uϕ(·, s)) − g(Quϕ(·, s)) when Quϕ(·, s) is close to u0 or u1.

Lemma 4.2. Assume hypothesis (G) (resp. (H)). Then there exists a constant C such that for all t > 0,

|Qg(uϕ(·, t)) − g(Quϕ(·, t))| � C‖uϕ(·, t) −Quϕ(·, t)‖2
2 (4.2)

almost surely (resp. hj instead of g).

Proof. We only prove the result for the function g. Using a Taylor expansion around the point Quϕ(·, t) there
exists a measurable function λ ∈ (0, 1) depending on x, t and ω such that for all t > 0

Qg(uϕ(·, t)) − g(Quϕ(·, t)) =
1
|D|

∫

D

g(uϕ(x, t)) − g(Quϕ(·, t)) dx

=
1
|D|

∫

D

g′(Quϕ(·, t))(uϕ(x, t) −Quϕ(·, t)) dx

+
1
|D|

∫

D

g′′
(
λuϕ(x, t) + (1 − λ)Quϕ(·, t)

)(
uϕ(x, t) −Quϕ(·, t))2 dx

almost surely. Since the first term of the right-hand side is zero by the definition of the operator Q, we have
the result with C = |g′′|∞

|D| · �

For u0 < a < b < u1 and ϕ satisfying hypothesis (I) and a < Qϕ < b, let us define

τa,b = inf{t > 0 : Quϕ(·, t) �∈ [a, b]}

the first exit time from the interval [a, b]. Arguing as in Ikeda and Watanabe [11], we first compute the
probability that the process (Quϕ(·, t))t∈R+ leaves the interval (a, b) by the left side (namely the point a) and
the probability that the process goes out from this interval by the point b. In order to do this, we need that
τa,b is almost surely finite which is the purpose of the Proposition 4.5 below.

Proposition 4.3. Assume hypotheses (K), (G), (H) and (I) hold. In addition we assume that k1 � k∗ (see
Prop. 3.1) and that the coefficients satisfy the relation of the case (D). Then there exists a random variable
R(a, b) ∈ L1(Ω) such that

P{Quϕ(·, τa,b) = a} =
F (b) − F (Qϕ)
F (b) − F (a)

− ER(a, b)
F (b) − F (a)

(4.3)

and

P{Quϕ(·, τa,b) = b} =
F (Qϕ) − F (a)
F (b) − F (a)

+
ER(a, b)

F (b) − F (a)
· (4.4)
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Proof. The proof will be divided into several steps. We first introduce an auxiliary random process. We apply
Itô’s formula to a Feller function F and we obtain for all t > 0

F (Quϕ(·, t)) = F (ϕ) +
∫ t∧τa,b

0

F ′(Quϕ(·, s))Qh(uϕ(·, s)) dWs

+
∫ t∧τa,b

0

F ′(Quϕ(·, s))Qg(uϕ(·, s)) +
F ′′(Quϕ(·, s))

2
|Qh(uϕ(·, s))|2 ds.

So the random process (R(t; a, b))t∈R+ defined by

R(t; a, b) =
∫ t∧τa,b

0

1
2
F ′′(Quϕ(·, s))|Qh(uϕ(·, s))|2 + F ′(Quϕ(·, s))Qg(uϕ(·, s)) ds (4.5)

arises naturally. We now focus on it.

Step 1. For all t1, t2 ∈ R
+, we define ∆(t1, t2; a, b) = R(t2; a, b)−R(t1; a, b) and we show that there exist c > 0

and γ ∈ (0, 1] such that almost surely

|∆(t1, t2; a, b)| � c

∫ t2∧τa,b

t1∧τa,b

‖uϕ(·, s) −Quϕ(·, s)‖2γ
2 ds. (4.6)

Indeed, replacing F ′′ from relation (2.7) into (4.5), we have for all t1, t2 ∈ R
+,

∆(t1, t2; a, b) =
∫ t2∧τa,b

t1∧τa,b

− g(Quϕ(·, s))
|h(Quϕ(·, s))|2F

′(Quϕ(·, s))|Qh(uϕ(·, s))|2 + F ′(Quϕ(·, s))Qg(uϕ(·, s)) ds.

=
∫ t2∧τa,b

t1∧τa,b

∆1(s) + ∆2(s) ds (4.7)

P-a.s. with

∆1(s) = F ′(Quϕ(·, s))(Qg(uϕ(·, s)) − g(Quϕ(·, s))) (4.8)

and

∆2(s) = F ′(Quϕ(·, s))
(

g(Quϕ(·, s)) − g(Quϕ(·, s))
|h(Quϕ(·, s))|2 |Qh(uϕ(·, s))|2

)

=
F ′(Quϕ(·, s))g(Quϕ(·, s))

|h(Quϕ(·, s))|2
(|h(Quϕ(·, s))|2 − |Qh(uϕ(·, s))|2). (4.9)

We first estimate ∆1. We have for γ ∈ (0, 1) to be fixed later,

|∆1(s)| = |F ′(Quϕ(·, s))||Qg(uϕ(·, s)) − g(Quϕ(·, s))|1−γ |Qg(uϕ(·, s)) − g(Quϕ(·, s))|γ
� 2c|F ′(Quϕ(·, s))|G(Quϕ(·, s))1−γ‖uϕ(·, s) −Quϕ(·, s))‖2γ

2

where we have used (4.1) and (4.2). We show that the continuous function u �→ 2F ′(u)G(u)1−γ is bounded.
The problem lies around u0 and u1. But in a neighborhood of u0 we have the following equivalence

2F ′(u)G(u) ∼u0 c(u− u0)
−2

g′(u0)
|h′(u0)|2 (u− u0)1−γ .
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So, if g′(u0) < 0 then − 2g′(u0)
|h′(u0)|2 > 0 and the function is bounded (we fix γ = 1). But if not, keeping in mind

that we are in the case (D), we may choose 0 < γ < 1− 2g′(u0)
|h′(u0)|2 and the function is bounded around u0. Similar

arguments are valid around u1. So we choose γ such that

∆1(s) � c‖uϕ(·, s) −Quϕ(·, s)‖2γ
2 (4.10)

P-a.s. Now we look at ∆2 closer. Using (4.1) and (4.2), we estimate |∆2(s)|,

|∆2(s)| =
r∑

j=1

|F ′(Quϕ(·, s))||g(Quϕ(·, s))|
|h(Quϕ(·, s))|2

∣
∣hj(Quϕ(·, s)) +Qhj(uϕ(·, s))∣∣

×∣
∣hj(Quϕ(·, s)) −Qhj(uϕ(·, s))∣∣

�
r∑

j=1

2c
|g(Qu(·, s))|

|h(Quϕ(·, s))|2G(Quϕ(·, s))|F ′(Quϕ(·, s))|

×|hj(Quϕ(·, s)) −Qhj(uϕ(·, s))|1−γ‖uϕ(·, s) −Quϕ(·, s)‖2γ
2 .

Around u0, the function u �→ |g(u)|
|h(u)|2 2G(u) is equivalent to

2
(u− u0)|g′(u0)|
|h′(u0)|2(u− u0)2

G′(u0)(u − u0),

so it is bounded. Similar arguments are valid around u1. If we choose the same γ as in (4.10) we obtain that

|∆2(s)| � c‖uϕ(·, s) −Quϕ(·, s)‖2γ
2 (4.11)

P-a.s. for all s ∈ R
+. Using (4.10) and (4.11), we obtain (4.6) and the step 1 is proved.

Step 2. There exists a random variable R(a, b) ∈ L1(Ω) such that

R(t; a, b) −→
t→+∞ R(a, b) in L1(Ω).

Indeed, using the dominated convergence theorem and (3.5) we get

E|∆(t1, t2; a, b)| � cE

∫ t2∧τa,b

t1∧τa,b

‖uϕ(·, s) −Quϕ(·, s)‖2γ
2 ds

−→
t1,t2→+∞ 0.

Then it is sufficient to take R(a, b) as the strong limit of R(t; a, b) in L1(Ω).

Step 3. We prove (4.3) and (4.4). We admit for the moment that τa,b is finite almost surely (this will be proved
in Prop. 4.5 below). Since F is a bounded continuous function (in the case (D)), the following relation holds
almost surely

F (Quϕ(·, τa,b ∧ t)) −→
t→+∞ F (Quϕ(·, τa,b)).

The dominated convergence theorem yields

EF (Quϕ(·, τa,b ∧ t)) −→
t→+∞ EF (Quϕ(·, τa,b)) = F (a)P

{
F (Quϕ(τa,b)) = F (a)

}
+ F (b)P

{
F (Quϕ(τa,b)) = F (b)

}
.
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Taking expectation in (4.5) and letting t tend to +∞, we obtain

EF (Quϕ(·, τa,b)) = F (Qϕ) + ER(a, b).

Since F is one-to-one, we infer that

F (a)P
{
Quϕ(τa,b) = a

}
+ F (b)P

{
Quϕ(τa,b) = b

}
= F (Qϕ) + ER(a, b).

Since P{τa,b < +∞} = 1 (see Prop. 4.5), it holds that P
{
Quϕ(·, τa,b) = a

}
+ P

{
Quϕ(·, τa,b) = b

}
= 1 and the

result is proved. �
Remark 4.4. If the sign of the coefficient g is constant, then the limit of R(t; a, b) as t → ∞ can be easily
deduced from monotone arguments. This is one of the reason why this proposition seemed to be less important
in Chueshov and Vuillermot [7] and was totally useless in Chueshov and Vuillermot [6] and Bergé et al. [3].
Actually, in Chueshov and Vuillermot [6], Chueshov and Vuillermot [7] and Bergé et al. [3], the asymptotic
behaviour of (Quϕ(·, t))t∈R+ follows trivially from a martingale convergence theorem.

It remains to prove the following proposition.

Proposition 4.5. Assume hypotheses (G), (H), (K) and (I) hold. We assume again that k1 � k∗ (see Prop. 3.1)
and that the coefficients satisfy the relation of the case (D). Then we have

Eτa,b < +∞ (4.12)

in particular P{τa,b < +∞} = 1.

Remark 4.6. In Chueshov and Vuillermot [7], the exit time τa,b is trivially almost surely finite since the authors
first prove that the limit of the process (Quϕ(·, t))t∈R+ takes its values in {u0, u1}. Thus the process leaves each
intervals (a, b) in finite time. However, they need the finiteness of this exit time in a similar way.

Proof. We first introduce the function H , solution of the following differential equation

1
2
|h(u)|2H ′′(u) + g(u)H ′(u) = |h(u)|. (4.13)

Simple computations allow us to write the function H explicitly

H(u) = −
∫ u F (s)w(s)

F ′(s)
ds+ F (u)

∫ u w(s)
F ′(s)

ds+ c1 + c2F (u)

where w(s) = 2
|h(s)| and F is the Feller function (Relation (2.7)).

We have
H ′(u) = F ′(u)

∫ u w(s)
F ′(s)

ds

which is equivalent around u0 to −2(u − u0)
−2

g′(u0)
|h′(u0)|2 (u − u0)

2
g′(u0)

|h′(u0)|2 −1+1. So it is a bounded function on
[u0, u1] (the study near u1 is similar). Since H ′ is bounded, H is also bounded.

We turn to the proof of the relation (4.12). We apply Itô’s formula to (Quϕ(·, t))t∈R+ with the function H .
This yields

H(Quϕ(·, t ∧ τa,b)) = H(Qϕ) +
∫ t∧τa,b

0

1
2
H ′′(Quϕ(·, s))∣∣Qh(uϕ(·, s))∣∣2 +H ′(Quϕ(·, s))Qg(uϕ(·, s)) ds

+
∫ t∧τa,b

0

H ′(Quϕ(·, s))Qh(uϕ(·, s)) dWs.
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We use the relation (4.13) and we obtain

EH(Quϕ(·, t ∧ τa,b)) = H(Qϕ) + E

∫ t∧τa,b

0

|Qh(uϕ(·, s))|2
|h(Quϕ(·, s))| ds

+E

∫ τa,b

0

H ′(Quϕ(·, s))
(

Qg(uϕ(·, s)) − g(Quϕ(·, s))
|h(Quϕ(·, s))|2 |Qh(uϕ(·, s))|2

)

ds

= H(Qϕ) + E

∫ t∧τa,b

0

|Qh(uϕ(·, s)| ds+ E

∫ t

0

∆(s) ds (4.14)

with

∆(s) =
|Qh(uϕ(·, s))|2 − |h(Quϕ(·, s))|2

|h(Quϕ(·, s))| +H ′(Quϕ(·, s))
(

Qg(uϕ(·, s)) − g(Quϕ(·, s)) |Qh(uϕ(·, s))|2
|h(Quϕ(·, s))|2

)

= H ′(Quϕ(·, s))(Qg(uϕ(·, s)) − g(Quϕ(·, s)))

+
|h(Quϕ(·, s))|2 − |Qh(uϕ(·, s))|2

|h(Quϕ(·, s))|
(
H ′(Quϕ(·, s))g(Quϕ(·, s)) − |h(Quϕ(·, s))|).

Here we are in the frame of (4.8) and (4.9) with the function H ′ instead of F . Since H ′ is bounded, we may do
the same computation as in the step 1 of the proof of Proposition 4.3 and obtain that

E

∫ t∧τa,b

0

|∆(s)| ds � c E

∫ t∧τa,b

0

‖uϕ(·, s) −Quϕ(·, s)‖2
2 ds � c E

∫ +∞

0

‖uϕ(·, s) −Quϕ(·, s)‖2
2 ds.

Using (3.5), we deduce that

lim
t→+∞ E

∫ t∧τa,b

0

|∆(s)| ds � E

∫ +∞

0

‖uϕ(·, s) −Quϕ(·, s)‖2
2 ds < +∞. (4.15)

Using (4.14) and Fatou’s lemma we get

0 � E lim inf
t→+∞

∫ t∧τa,b

0

|h(Quϕ(·, s))| ds

� lim inf
t→+∞ E

∫ t∧τa,b

0

|h(Quϕ(·, s))| ds

= lim inf
t→+∞

(

−H(Qϕ) + EH(Quϕ(·, t ∧ τa,b)) − E

∫ t∧τa,b

0

∆(s) ds
)

< +∞

thank to (4.15) and the boundedness of H . Consequently,

+∞ > E lim inf
t→+∞

∫ t∧τa,b

0

|h(Quϕ(·, s))| ds �
(

min
u∈[a,b]

|h(u)|
)

Eτa,b.

By hypothesis (H), min
u∈[a,b]

|h(u)| > 0, then Eτa,b is finite for all a, b ∈ (u0, u1). �

Proof of Theorem 3.4. We put u0 < a < a∗ < ϕ < b∗ < b < u1. It is clear that τa∗,b∗ � τa,b P-a.s. We recall
that

R(a, b) =
∫ τa,b

0

1
2
F ′′(Quϕ(·, s))|Qh(uϕ(·, s))|2 + F ′(Quϕ(·, s))Qg(uϕ(·, s)) ds.
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Following the same arguments we carried out in the proof of Proposition 4.3 step 1, there exists γ ∈ (0, 1] such
that

|R(a, b) −R(a∗, b∗)| � c

∫ τa,b

τa∗,b∗
‖uϕ(·, s) −Quϕ(·, s)‖2γ

2 ds

� c

∫ +∞

0

‖uϕ(·, s) −Quϕ(·, s)‖2γ
2 ds

which belongs to L1(Ω) by (3.5). Moreover,

R(a, b) −R(a∗, b∗) −→
a,a∗↘u0
b,b∗↗u1

0

P-a.s., since the exit times are almost surely finite. By the dominated convergence theorem, we have

E|R(a, b) −R(a∗, b∗)| −→
a,a∗↘u0
b,b∗↗u1

0.

Thus there exists a random variable R ∈ L1(Ω) such that R(a, b) −→
a↘u0
b↗u1

R in L1(Ω). We take the limit in (4.3)

and (4.4) in order to get

P

{

lim
t→+∞Quϕ(·, t) = u0

}

= lim
a↘u0
b↗u1

P
{
Quϕ(·, τa,b) = a

}

=
F (u1) − EF (Qϕ)
F (u1) − F (u0)

− ER

F (u1) − F (u0)
·

The above probability is well defined since F (u1) and F (u2) are finite in the case (D). We put Z = ER. So (3.14)
is proved and similar computations yield (3.15). �

5. Stratonovitch’s case and concluding remarks

We end this work with concluding remarks which allow us to compare our results with those of Chueshov
and Vuillermot [6], Chueshov and Vuillermot [7], Bergé et al. [3] and Hetzer et al. [9].

Remark 5.1. In order to compare our results with those of Chueshov and Vuillermot [6], we rewrite the
equation (1.1) under the Stratonovitch sense (the ”◦” symbol). More precisely, we introduce the following
SPDE 





duS(x, t) =
(

div
(
k(x, t)∇uS(x, t)

)
+ gS(uS(x, t))

)
dt

+
r∑

j=1

hSj (uS(x, t)) ◦ dW j
t , (x, t) ∈ D × (0,+∞),

uS(x, 0) = ϕ(x) ∈ (u0, u1), x ∈ D,

∂uS(x, t)
∂n(k)

= 0, (x, t) ∈ ∂D × [0,+∞),

(5.1)

where gS belongs to C2([u0, u1]; R), hS = (hS1 , . . . , h
S
r ) belongs to C3([u0, u1]; Rr) and satisfy g(u0) = g(u1) =

hS(u0) = hS(u1) = 0. We denote by (uSϕ(·, t))t∈R+ the random field solution of SPDE (5.1) starting from ϕ.
As in Chueshov and Vuillermot [6], we assume that |hS(u)| > 0 for all u ∈ (u0, u1), |(hS)′(u0)| > 0 and
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|(hS)′(u1)| > 0. Then rewriting the equation of (uSϕ(·, t))t∈R+ in Itô’s sense yields exactly the SPDE (1.1) with
g = gS +

∑r
j=1 h

S
j (hSj )′ and h = hS .

Hence all the results of Chueshov and Vuillermot [6] are included in the results of Section 2.
Moreover, we can also observe an exchange of stability phenomenon when we write the equation in Stratonovitch’s

sense (see Sect. 3). This case does not appear in Chueshov and Vuillermot [6] because of their restriction on
the sign of the coefficient gS .

Remark 5.2. Whereas we recover all the results of Chueshov and Vuillermot [6] in the Stratonovitch case,
we did not recover all the results of Bergé et al. [3]. On one hand, if the constant of ellipticity k1 is small,
this article does not provide the exchange of stability noticed in Bergé et al. [3] when the sign of g is constant.
On the other hand, if k1 is large enough, we improve their results since we compute the probabilities (3.17)
and (3.18). In Bergé et al. [3], the authors were only able to give a lower bound of these probabilities as those
given in (3.1) and (3.2). Moreover we have no longer any restriction on the sign of g.

Remark 5.3. In the cases (A) and (B), the random field uϕ has the same asymptotic behaviour as its spatial
average, namely

E ‖uϕ(·, t) −Quϕ(·, t)‖2
2 −→
t→+∞ 0. (5.2)

Indeed, in the case (A), we write

E ‖uϕ(·, t) −Quϕ(·, t)‖2
2 � 2E ‖uϕ(·, t) − u0‖2

2 + 2E ‖Quϕ(·, t) − u0‖2
2 . (5.3)

Thanks to (2.9) and the dominated convergence theorem, the first term of the right-hand side of (5.3) tends
to 0. Let us have a closer look at the second one. It is clear that we have almost surely the estimate

u0 � Quϕ(·, t) � v2(t).

Moreover in the case (A), v2(t) tends to u0 almost surely with t. So we have (5.2).
Using v1(t) instead of v2(t), the same computations are valid in the case (B) where the roles of u0 and u1

are inverted. Hence (5.2) is also true in the case (B).

Since the random field (uϕ(·, t))t∈R+ converges to its spatial average, it is quite natural to ask if ‖∇uϕ(·, t)‖2
2

goes to 0 with t. In Chueshov and Vuillermot [6], Chueshov and Vuillermot [7] and Bergé et al. [3] the authors
gave a result in this way. The following remark specifies the asymptotic behaviour of the gradient of uϕ.

Remark 5.4. We assume that the hypotheses (K), (G), (H) and (I) hold. In cases (C) and (D) we moreover
assume that the ellipticity constant k1 � k∗ (see Prop. 3.1). Then we have

lim
t→∞ E‖∇uϕ(·, t)‖2

2 = 0. (5.4)

Proof. A straightforward adaptation of the proofs of Lemmas 3.9–3.11 of Chueshov and Vuillermot [6] yields
that the estimate

E‖∇uϕ(·, t)‖2
2 � c

(

E ‖uϕ(·, t− 2) −Quϕ(·, t− 2)‖2
2 +

∫ t

t−2

E ‖uϕ(·, s) −Quϕ(·, s)‖2
2 ds

)

holds for a constant c > 0 and all sufficiently large t > 0. Then we use
• the relation (5.2) in cases (A) and (B);
• the exponential decay estimate (3.4) in cases (C) and (D);

and the result follows thanks to a dominated convergence argument. �
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Remark 5.5. In Hetzer et al. [9], the authors study the asymptotic behaviour of stochastic parabolic equations
of Fisher type: 





du =
(
∆u+m(x, u)g(u)

)
dt+ g(u) ◦ dWt, x ∈ D,

∂u

∂n
= 0, x ∈ ∂D.

There are not many differences between the two formulations: on one hand, our evolution operator is more
general than in the Laplacian operator and on the other hand, their drift coefficients may depend on the space
variable.

The authors also proved that three alternatives are met. The two first ones are the convergence towards
one of the trivial equilibrium, or oscillation between them. The last alternative says that every solution is
neither bounded away from the trivial equilibrium nor converges to them. This result is essentially contained
in Theorem 2.17 and in the estimations (3.1) and (3.2) appearing in our case (D). Moreover, in our work, we
give a more precise description of this asymptotic behaviour in terms of the attraction towards a Bernoulli law.

Acknowledgements. We are grateful to an anonymous referee who inform us about the existence of Hetzer et al.’s article [9].
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[17] M. Sanz-Solé and P.A. Vuillermot, Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous

stochastic partial differential equations. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 703–742.


