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DETECTING ATYPICAL DATA IN AIR POLLUTION STUDIES BY USING
SHORTH INTERVALS FOR REGRESSION
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Abstract. To validate pollution data, subject-matter experts in Airpl (an organization that maintains
a network of air pollution monitoring stations in western France) daily perform visual examinations of
the data and check their consistency. In this paper, we describe these visual examinations and propose
a formalization for this problem. The examinations consist in comparisons of so-called shorth intervals
so we build a statistical test that compares such intervals in a nonparametric regression model. This
allows to detect atypical data. A practical application of the test is given.
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1. Introduction

This paper and its companion (Durot and Thiébot [2]) are motivated by a problem raised by “Air Pays de
la Loire” (Airpl in the sequel), an organization that maintains a network of air pollution monitoring stations in
western France.

It is now well known that there exist relationships between air pollution, human health and environmental
matters so study of pollution is of a great importance. That is the reason why studies of air pollution are daily
carried out by Airpl. The main task of Airpl is to detect when air pollution achieves a critical level in the Loire
valley and if necessary, to inform people and industries. If air pollution exceeds a critical level then for instance,
procedures for limiting polluting waste have to be set up in polluting industries, and it is recommended to avoid
the use of personal cars.

Pollution studies performed by Airpl are based on measures of the concentration in the ambient air of several
pollutants, and the first problem with these pollution data concerns their validity. In some cases indeed,
collected data are invalid. This may happen for instance following the failure of monitoring device. Beyond
failure problems, it may also happen that pollution data are well measured by monitoring device but are not
representative of the area where they are collected: this happens for instance if a car which motor is in operation
is parked for a long time just near a pollution sensor in a urban site. Validity of pollution data thus have to
be checked before the data are used to perform air pollution studies. Until now, validation of data was daily
performed by subject-matter experts, mainly through visual examination of the data. Because this job took
a long time every day, Airpl wished to implement statistical tests that would aid experts to validate pollution
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data. It is the goal of this paper and its companion to build such statistical tools. To be more specific, a
nonparametric statistical model is investigated in the companion paper and is applied in the present paper to
the problem of validating pollution data.

The paper is organized as follows. In Section 2, the problem of validation of pollution data is more precisely
described and our statistical goal is defined. Statistical model and testing procedure are given in Sections 3
and 4 respectively. Some simulations are reported in Section 5 and a practical application of the method is
given in Section 6. We conclude the paper with remarks on possible generalizations of the method in Section 7.

2. Validation of pollution data

To understand the problem of validation, a description of the network maintained by Airpl is informative.
This is given in the following paragraph. We then describe experts validation and we define our statistical goal.

Airpl network

Airpl network is composed of eight subnetworks spread out over the Loire valley, each subnetwork being in turn
composed of several monitoring sites. At each site, monitors continuously measure the level (in micrograms
per cubic metre) of a given pollutant in ambient air. Pollutant which level is measured could be for instance
ozone, nitrogen monoxide or carbon dioxide (twelve pollutants are studied by Airpl in total). Between four to
twenty measures are collected by a given monitor per minute, depending on the considered pollutant. Each
fifteen minutes, the monitor computes the mean of the measures collected during the preceding fifteen min-
utes and transmits this mean to a database. Only these means are saved so, in the sequel, we refer to them
as concentration measures. At the end of a day d, the database thus contains sets of observations, each of
them consisting of the ninety-six concentration measures computed that day for a given pollutant p at a given
site s. Such a set of concentration measures is called a profile and is denoted by (p, d, s) in the sequel. In
most cases, sites are not equipped to measure all of the twelve pollutants and are only equipped to measure
some of them. However, numerous profiles (about 125) are collected per day by Airpl, see Figures 3 and 4 for
examples of such profiles. These data are subjected to validation as described below and studied in order for
instance to detect oversteppings of an alarm threshold. Moreover, when validated, concentration measures are
averaged in order to obtain hourly average concentrations that are spread to people, see http://www.airpl.org.

Experts validation

Validation of pollution data is an intricate task. On the one hand, monitoring devices are often checked so
that possible failure is detected. On the other hand, examination of the data is carried out by subject-matter
experts in order to check consistency of the data. Concentration measures are first considered individually.
At this stage, a concentration measure could be invalidated for instance if it exceeds a given threshold or if
it is significantly greater than the other concentration measures in the profile. Profiles are then considered as
a whole and visually compared with other profiles to check consistency of the measures. Other examinations
that take into account medium and long term trends are carried out. Many kinds of examinations are daily
performed by experts of Airpl, and it is not the aim of this paper to explain all of them: we refer to Thiébot
[4] for more details. In this paper, we are only interested in one kind of examination that we explain now.

Profiles of some pollutants (such as nitrogen or carbon monoxides) are characterized by a peak that corre-
sponds to the period of the day when pollution is maximal. We are concerned here with comparisons of such
profiles. More precisely, we are interested in a criterion for validation that is based on the fact that the peak
of a given profile (p, d, s) should occur at the same period as peaks of other profiles do. For instance, peak of
(p, d, s) should occur at the same period as that of (p, d, s′), where s′ denotes a neighbouring site to s (spatial
consistency). It should also occur at the same period as that of (p, d′, s), where d′ denotes a well chosen date
(temporal consistency). Likewise, if s is a urban site then peaks of (p, d, s) and (p′, d, s) should occur at the
same period if p and p′ denote for instance nitrogen monoxide and nitrogen dioxide respectively (chemical con-
sistency). It is worth noticing that several comparisons are performed to check spatial, temporal and chemical
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Figure 1. Profile of nitrogen dioxide (in micrograms per cubic metre) on December 24th, 1998,
in the urban site called Théâtre Graslin (Nantes). An interval [µ − r, µ + r] that satisfies (1)
with η = 0.25 is also drawn.

consistency, and that a profile is not rejected as soon as one of the consistency criterion is in fault. For instance,
a profile may be temporally inconsistent and chemically consistent if it was collected on a day when the weather
was atypical. In that case, the profile is called temporally atypical but is not invalidated by the expert. Beyond
comparisons of profiles, experts thus have to decide whether lack of consistency from one or several criterion
should invalidate the profile in question.

Let us describe more precisely the way Airpl experts daily carry out comparisons of peaks. Thanks to a
software package implemented by Airpl, the profile in question is drawn on a computer screen together with
several other profiles to be chosen by the expert. Since observation times are equally spaced, each profile is
represented by the points (ti, h(ti)) and linear interpolation, where for every i ∈ {1, . . . , 96}, ti = i/96 and h(ti)
is the ith concentration measure in the profile, see Figure 1 for an example. Thanks to the software package,
the expert plots an interval [µ − r, µ + r] such that the surface of the area delimited by the restriction of h to
[µ − r, µ + r] is a proportion η of the surface of the area delimited by h, that is

∫ µ+r

µ−r

h(t)dt = η

∫
h. (1)

The most common value considered for η is 0.25 and the interval has to be chosen as short as possible so that
it localizes the peak of the profile (an example of such an interval is drawn in Fig. 1). The profile in question
is consistent with another profile if the two associated intervals are (approximately) equal.

Statistical goal

Our goal in this paper is to formalize the visual comparisons that are performed by subject-matter experts,
that is to build a statistical test for comparing the peaks of two given profiles. This allows to detect profiles
that are atypical from a given criterion. Recall however that this does not suffice to validate data: validation
of pollution data requires a further study that is out of the scope of this paper, see comment 4 in Section 3.

3. Statistical model and null hypothesis

Consider a profile P = (p, d, s) consisting of n = 96 concentration measures and fix η ∈ (0, 1) (the most
common value considered for η is 0.25). Abstractly, we may view concentration measures as random variables,
so we denote by yP

i a random variable that represents the ith concentration measure in profile P . Observation
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times are fixed and equally spaced so the ith observation time is (possibly changing scale and origin) ti = i/n.
Each concentration measure is obtained as the mean of at least sixty measures on a given period, see Section 2,
so we assume yP

1 , . . . , yP
n to be independent Gaussian variables. We assume furthermore that they possess the

same standard deviation that we denote by σP . The statistical model we consider is then a semiparametric
regression model with fixed design:

yP
i = fP(ti) + εPi , i = 1, . . . , n,

where ti = i/n, fP is an unknown regression function defined on [0, 1] and the εPi ’s are independent and
identically distributed Gaussian variables with mean zero and (unknown) standard-deviation σP > 0. The
model is semiparametric since we assume the εPi ’s common distribution to be known up to one parameter but
we do not assume that fP belongs to a given parametric set of functions. We only assume here that fP is
smooth, positive (recall fP(t) is the expectation of a random variable that represents a concentration measure)
and possesses a peak. More specifically, we assume that

(a) fP is twice differentiable on [0, 1] with bounded second derivative,
(b) inft∈[0,1] f

P(t) > 0,
(c) there exists a unique shortest interval [µP − rP , µP + rP ] ⊂ (0, 1) that satisfies

∫ µP+rP

µP−rP
fP(s)ds � η

∫ 1

0

fP(s)ds,

(d) f ′P(µP − rP ) > f ′P(µP + rP), where f ′P denotes the first derivative of fP .
The so-called η-shorth interval [µP − rP , µP + rP ] then localizes the peak of the profile P and our objective is
to build statistical tests that compare η-shorth intervals associated to two different profiles P0 and P1. We thus
wish to build a statistical test for the null hypothesis

H0 : “µP0 − rP0 = µP1 − rP1 and µP0 + rP0 = µP1 + rP1”, (2)

where P0 and P1 are two profiles that satisfy the above conditions. The profiles P0 and P1 are furthermore
assumed independent from each other.

Comments

1. In applications, the η-shorth interval localizes a peak so fP′(µP − rP ) > 0 > fP′(µP + rP ) and assump-
tion (d) holds.
2. The η-shorth interval does not depend on the vertical scale choice. This scale invariance is a minimum
requirement since in applications, we compare profiles that are not necessarily defined at the same scale. Con-
sider for instance two neighbouring urban sites s and s′, where s is located in the centre of the town and s′ is
not. Then for given p and d, peaks of (p, d, s) and (p, d, s′) should occur at the same period, but concentration
measures are certainly greater in s than in s′.
3. Regression models are frequently used for pollution data, see e.g. Bell et al. [1]. In many cases, one wishes
to predict pollution or to explain pollution in terms of given factors such as maximum temperature on a given
day or force of the wind. In those cases, one has to consider a regression model with covariables. The pollution
measure is then modeled by a random error plus an unknown function of these covariables. The main difficulty
with this kind of models lies in the choice of the covariables and the choice of a model for the regression mean
(one may assume for instance that the regression mean belongs to a given parametric set of functions). On the
contrary, our aim in this paper is to describe profiles, which allows to consider more flexible models. We thus
chose a regression model that does not involve covariables, and where the regression mean is only assumed to
be smooth.
4. In order to validate a given profile using our method, one has to perform several tests: at present, a
subject-matter expert of Airpl performs about twelve comparison tests to check spatial, temporal and chemical
consistency of a given profile. Moreover it can be seen on the first example in Section 6 that a profile could be
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valid even if it is atypical from a given criterion, that is, even if some of the comparison tests reject the null
hypothesis. Thus in order to invalidate profiles using our method, one has to work out a strategy for combining
the results of the tests and getting a decision. In particular, one has to calibrate the level of the tests. This
problem heavily relies on the network of air pollution monitoring stations and is out of the scope of this paper.

4. Testing procedure

Fix η ∈ (0, 1) and assume we are given two independent profiles P0 and P1 that satisfy conditions of the
preceding section. We wish to test the null hypothesis H0, see (2). We need some more notations. For every
real-valued function H defined on [0, 1] let rH and µH be defined by

rH = inf
{

r � 0 : sup
µ
{H(µ + r) − H(µ − r)} � ηH(1)

}

and
µH = argmax

µ
{H(µ + rH) − H(µ − rH)}.

For P ∈ {P0,P1}, let FP be defined by FP(t) =
∫ t

0
fP(s)ds for every t ∈ [0, 1] and let define FP

n by

FP
n (t) =

1
n

∑
i�nt

yP
i , t ∈ [0, 1].

Then, rP = rFP , µP = µFP and for notational convenience, we denote rFP
n

and µFP
n

by rPn and µP
n respectively.

Let K be the quartic function:

K(x) =
15
16

(1 − x2)21I[−1,1](x).

Finally, let gPn be the first derivative of GP
n , the smoothed version of FP

n given by

GP
n (t) =

∫ 1

−1

FP
n (t − xhP

n )K (x) dx, t ∈ [0, 1], (3)

where hP
n is a smoothing parameter to be fixed (see Sect. 5 for calibration) and where we set FP

n (t) = 0 for
every t � 0 and FP

n (t) = FP
n (1) for every t � 1. The effective construction of a statistical test for H0 is

as follows. Fix α ∈ (0, 1), the asymptotic level of the test. For P ∈ {P0,P1}, compute rPn , µP
n , µGP

n
, rGP

n

and a consistent estimator σ̂P
n

2
of (σP)2 (see e.g. Hall et al. [3] for examples of such estimators). Condition

on (yP
1 , . . . , yP

n ), generate bootstrap residuals (εP∗
1 , . . . , εP∗

n ) as i.i.d. Gaussian variables with mean zero and
standard deviation σ̂P

n and compute µGP∗
n

and rGP∗
n

, where

GP∗
n (t) =

1
n

∑
i�nt

gPn (ti) +
1
n

∑
i�nt

εP∗
i , t ∈ [0, 1].

Repeat the last step S times (where S is some positive integer to be fixed, see Sect. 5 for calibration) in order
to get, conditionally on (yP

1 , . . . , yP
n ), S independent copies of the bootstrap estimators µGP∗

n
and rGP∗

n
. For

β ∈ {α/4, 1 − α/4}, compute the empirical β-quantile q∗β,n,S obtained from the S copies of

(
µ

G
P0∗
n

+ r
G

P0∗
n

− µ
G

P0
n

− r
G

P0
n

)
−

(
µ

G
P1∗
n

+ r
G

P1∗
n

− µ
G

P1
n

− r
G

P1
n

)
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and the empirical β-quantile s∗β,n,S obtained from the S copies of

(
µ

G
P0∗
n

− r
G

P0∗
n

− µ
G

P0
n

+ r
G

P0
n

)
−

(
µ

G
P1∗
n

− r
G

P1∗
n

− µ
G

P1
n

+ r
G

P1
n

)
.

Finally, reject H0 if either
(µP0

n + rP0
n ) − (µP1

n + rP1
n ) �∈ [q∗α/4,n,S , q∗1−α/4,n,S ]

or
(µP0

n − rP0
n ) − (µP1

n − rP1
n ) �∈ [s∗α/4,n,S , s∗1−α/4,n,S].

It follows from Theorems 2.1 and 2.2 of the companion paper Durot and Thiébot [2] that this test has asymptotic
level α as S and n go to infinity.

5. Simulations

The testing procedure described in Section 4 involves two parameters to be chosen in a somewhat arbitrary
way: the bandwidth hP

n involved in the bootstrap step and the number of bootstrap replications S. The aim of
this section is to provide, via simulations, values for S and hP

n that can be used when applying the method to
profiles of pollutants. To run the testing procedure, we need a consistent estimator for (σP )2. In this section
and the following one, we consider a difference-based estimator (see Hall et al. [3]) that takes the form

σ̂P
n

2
=

1
n − m

n−m∑
k=1


 m∑

j=0

djy
P
j+k




2

.

We fixed m = 5 and we chose (d0, . . . , d5) to be the optimal difference sequence (see Tab. 1 of Hall et al. [3]),
that is

(d0, . . . , d5) = (0.9064,−0.2600,−0.2167,−0.1774,−0.1420,−0.1103).
Number of bootstrap replications

Concerning the number of bootstrap replications S, it is known that it should be greater than the number of
observations n. On the other hand, S should not be too large since computation cost increases with S. We
thus carried out simulations as described below with various values for S. We observed that results obtained
with S > 250 are identical to that obtained with S = 250 (which, roughly speaking, means that asymptotic
is achieved when S = 250) and are in some cases different from that obtained with S � 200. Number of
replications S = 250 thus seems relevant here.

Bandwidth

Our objective now is to provide values for hP
n such that the distributions of variables

AP
n = n1/3(µP

n + rPn − µP − rP ) and BP
n = n1/3(µP

n − rPn − µP + rP) (4)

are close to the distributions of their bootstrap versions

AP∗
n = n1/3(µGP∗

n
+ rGP∗

n
− µGP

n
− rGP

n
) and BP∗

n = n1/3(µGP∗
n

− rGP∗
n

− µGP
n

+ rGP
n
) (5)

for a given profile P . Indeed, the testing procedure described in Section 4 is based on the fact that AP
n and AP∗

n

(resp. BP
n and BP∗

n ) possess the same asymptotic distribution: it is proved in Durot and Thiébot [2] that
these random variables converge in distribution to CPτ , where τ is the location of the maximum of a standard
two-sided Brownian motion with parabolic drift and CP is some positive constant that only depends on the
regression mean and on the error variance. The testing procedure thus performs well if the distribution of AP

n
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Figure 2. Simulated distances. The solid curve is d̄ and for each hn ∈ Shn , the line segment
through the points (hn, m(hn)) and (hn, M(hn)) is drawn.

is close to that of AP∗
n and the distribution of BP

n is close to that of BP∗
n for each P ∈ {P0,P1}. For notational

convenience and because we consider only one profile at once, we omit superscript P in the sequel. Moreover,
for the sake of simplicity, we only describe in the sequel simulations related to the distributions of An and A∗

n

(results obtained about distributions of Bn and B∗
n are similar).

In order to calibrate hn, we carried out simulations as follows. We fixed η = 0.25, n = 100 and S = 250 (recall
that, when studying profiles of pollutants, experts consider profiles consisting of 96 concentration measures and
the most common value they consider for η is 0.25). We fixed f , σ and we set Shn = {0.01, 0.02, . . . , 0.75} and
L = 130. For every l ∈ {1, . . . , L}, we performed Step l in the following way:

• Step l − Draw a n-sample sl from the Gaussian distribution with mean zero and variance σ2. Compute
the yi’s, An and σ̂2

n. Draw independent n-samples s∗1,l, . . . , s
∗
S,l from the Gaussian distribution with

mean zero and variance σ̂2
n. For every fixed hn ∈ Shn , compute A∗

n in each sample s∗1,l, . . . , s
∗
S,l and

compute the empirical distribution function F
(hn,l)
A∗

n
from the S independent copies of A∗

n thus obtained.

These L steps being performed, we got L independent copies of An from which we computed the empirical dis-
tribution function FAn . We then computed for every hn ∈ Shn and l ∈ {1, . . . , L} the L2-distance between FAn

and F
(hn,l)
A∗

n
, which is denoted in the sequel by d(hn, l). Finally, we computed

m(hn) = min
1�l�L

d(hn, l), M(hn) = max
1�l�L

d(hn, l) and d̄(hn) =
1
L

L∑
l=1

d(hn, l).

Our aim is to provide values for hn where m(hn), M(hn) and d̄(hn) are minimum.
Let us describe more precisely the results we obtained for a given regression function f and a given standard

deviation σ. Fix σ = 0.1 and let f be defined by

f(t) =
4√
2π

exp
(−8(t − 0.5)2

)
, t ∈ [0, 1]. (6)

Performing simulations just described, we obtained results summarized in Figure 2. It is seen in Figure 2 that
the most relevant values for hn belong to [0.06, 0.3] when σ = 0.1 and f is given by (6). This means that the
procedure is not very sensitive to the choice of the bandwidth hn: one can choose hn in a quite large interval
so that the distance between the distributions of An and A∗

n is (approximately) minimal.
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Table 1. Belonging to bootstrap confidence intervals. We reported the proportion of steps
when µ+r belongs to (7) on line ∈, the proportion of steps when µ+r < µn +rn−n−1/3q∗1−α/2

on line < and proportion of steps when µ + r > µn + rn − n−1/3q∗α/2 on line >.

1 − α 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.85 0.80
< 0.012 0.019 0.022 0.026 0.030 0.036 0.040 0.046 0.054 0.084 0.110
∈ 0.981 0.970 0.962 0.953 0.946 0.938 0.928 0.917 0.906 0.858 0.813
> 0.007 0.011 0.016 0.021 0.024 0.026 0.032 0.037 0.040 0.058 0.077

We repeated simulations just described with various f and σ that are close to regression means and error
variances we observe on typical profiles. It emerges from these simulations that the optimal choice for hn depends
on the ratio f/σ. We drawn from these simulations a criterion for choosing hn: choose hn = 0.22

√
σ̂n/Fn(1) if

σ̂n/Fn(1) � 0.15 and hn = 0.32
√

σ̂n/Fn(1) otherwise.
To illustrate this choice for hn, we reported here another simulation study. We considered the regression

function (6) and we fixed η = 1/4, σ = 0.1, n = 100, S = 500. Since σ/F (1) � 0.15, we chose hn once and for
all to be 0.22

√
σ/F (1), that is hn = 0.07. We repeated 1000 times the following step.

• Step − Draw a n-sample from the Gaussian distribution with mean zero and variance σ2. Compute
the yi’s and σ̂2

n. Draw independent n-samples s∗1, . . . , s
∗
S from the Gaussian distribution with mean zero

and variance σ̂2
n. Compute the empirical (1−α/2) quantile q∗1−α/2 and the empirical α/2 quantile q∗α/2

of the S copies of A∗
n obtained from these S samples.

We reported on Table 1, line “∈”, the proportion of steps when µ + r belongs to

[
µn + rn − n−1/3q∗1−α/2, µn + rn − n−1/3q∗α/2

]
. (7)

Interval (7) is an asymptotic (1 − α)-confidence interval for µ + r as S and n go to infinity, so it is expected
that the proportion of steps when µ + r lies in (7) is approximately 1−α. It is seen on Table 1 that it is indeed
the case.

6. Some applications

We illustrate the proposed testing procedure through examples of checks on spatial consistency. We consider
here three urban sites in the town of Nantes. These sites are called Théâtre Graslin, Sainte Luce and Bellevue
and we refer to them as Tgra, Stel and Bell in the sequel. The site Tgra is located in the centre of the town and
is more submitted to urban pollution than the two other sites. Sites Stel and Bell are located respectively at
the north-eastern and the western peripheries of Nantes. The three sites are subjected to industrial pollution
generated by sites located to the west and to the north-west of Nantes. Data that were available to us are
profiles from September 1993 until February 1999, so we consider here profiles that were collected on December
1998.

Consider first the profiles of nitrogen dioxide collected on December 24th 1998, in the sites Tgra, Stel and
Bell. These profiles are drawn in Figure 3 together with the associated estimated η-shorth intervals (we fixed
here η = 0.25, as experts do). When comparing the η-shorth intervals of Stel and Tgra, we obtained a p-value
equal to 0.98, so the null hypothesis that the two η-shorth intervals are equal is validated and the two profiles
are consistent with each other. On the other hand, we obtained a p-value equal to 0.01 (respectively 0.01) when
comparing η-shorth interval associated to Bell to the one associated to Tgra (respectively Stel). Therefore,



238 C. DUROT AND K. THIÉBOT
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Figure 3. Profile of nitrogen dioxide on December 24th, 1998, in Bell (up left), Tgra (up right) and
Stel (down).

profile in Bell is atypical and has to be submitted to experts. Note that the profile in Bell was not invalidated
by experts: the difference between this site and the others was explained by a sudden change in the wind
direction (it changed from north-west to west/south-west) which led to a delay of the peak in Bell.

Consider now the profiles of nitrogen monoxide collected on December 4th 1998, in the sites Tgra and Bell.
These profiles are drawn in Figure 4 together with the associated estimated η-shorth intervals (we fixed again
η = 0.25). When comparing the η-shorth intervals we obtained a p-value equal to 0.00, so profiles are not
consistent with each other. Performing other comparison tests, it appears that the profile in Tgra is atypical
and have to be submitted to experts. The profile in Tgra was indeed invalidated by experts: data collected
between times 0.2 and 0.3 were not valid following a momentary failure of monitoring device.

7. Concluding remarks

In this section, we discuss possible improvements and generalizations of the method.

Null hypothesis

The more relevant null hypothesis to be considered for comparing two profiles is the one given in (2). However,
our method can easily be adapted to tests for other null hypotheses using the fact that for a given profile P ,
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Figure 4. Profile of nitrogen monoxide on December 4th, 1998, in Bell (left) and Tgra (right).

the variables AP
n and BP

n have approximately the same distributions as their bootstrap versions AP∗
n and BP∗

n ,
see (4) and (5). Assume for instance we are interested in a single profile P and we whish to test the null
hypothesis “µP − rP � c” for a given c ∈ (0, 1). Let t∗1−α be the empirical (1 − α)-quantile obtained from S

copies of n−1/3BP∗
n . Then the test that rejects the null if µP

n − rPn − c > t∗1−α has asymptotic level α.

Bootstrap

The bootstrap method involved in this paper rests on the assumption that the error terms εP1 , . . . , εPn in each
profile P are i.i.d. Gaussian so one may wonder whether the method is robust against departures from either
normality or homoscedasticity. It can be shown that it is indeed the case, provided the bootstrap residuals
εP∗
1 , . . . , εP∗

n are generated with an adequate bootstrap method, see Durot and Thiébot [2]. To give examples,
let us omit subscript P and set ε̂i = yi − f̂n(ti), where f̂n is a proper estimator of f (one can consider for
instance the first derivative of Gn, see (3)). If the error terms are assumed i.i.d. but not necessarily Gaussian
then one can generate the bootstrap residuals as a random sample of size n from the distribution that puts,
conditionally on the yi’s, mass 1/n at each point ε̃1, . . . , ε̃n with ε̃i = ε̂i −

∑
j ε̂j/n. If the error terms are

not assumed homoscedastic then one can generate bootstrap residuals as ε∗i = ε̂iVi, where V1, . . . , Vn are i.i.d.
random variables with zero mean that are independent of y1, . . . , yn. Both these bootstrap methods lead to
tests with prescribed asymptotic level under appropriate assumptions.

Bandwidth

One may wonder whether the bandwidth hn could be calibrated from real data rather than from simulations.
We think this is possible if we have at hand a sufficiently large history of profiles together with a classification
such that the estimators µP

n −rPn (resp. µP
n +rPn ) have approximately the same distribution for all profiles P of a

given class. In such a case, we can perform simulations as in Section 5 with the following slight changes: n = 96,
L is the number of profiles in a given class C and in Step l, yi is the ith concentration measure in the l-th profile
of C. Then we can choose a value hC

n for hn where d̄(hn), m(hn) and M(hn) are (almost) minimal. Now in order
to study a new profile P , one has to determine the class C that better represents P and then to apply the method
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of Section 4 with the smoothing parameter hC
n. However, we do not known how to draw such a classification of

profiles. According to Theorem 2.1 in Durot and Thiébot [2], a possible requirement is that all the profiles in
a given class possess the same parameters µP , rP , fP(µP + rP)/σP and (f ′P(µP − rP ) − f ′P(µP + rP ))/σP .
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