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LIMIT THEOREMS FOR U-STATISTICS INDEXED BY A ONE DIMENSIONAL
RANDOM WALK
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Abstract. Let (Sn)n≥0 be a Z-random walk and (ξx)x∈Z be a sequence of independent and identically

distributed R-valued random variables, independent of the random walk. Let h be a measurable,

symmetric function defined on R
2

with values in R. We study the weak convergence of the sequence
Un, n ∈ N, with values in D[0, 1] the set of right continuous real-valued functions with left limits,
defined by

[nt]∑

i,j=0

h(ξSi , ξSj ), t ∈ [0, 1].

Statistical applications are presented, in particular we prove a strong law of large numbers for
U -statistics indexed by a one-dimensional random walk using a result of [1].
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1. Introduction

In this paper, we focus on “U -statistics indexed by a one dimensional random walk”. Our problem concerns
the asymptotic behavior, as n→+∞, of partial sums of the form:

Un =
n∑

i,j=0

h(ξSi , ξSj ), n ∈ N.

Here h : R
2 →R is a measurable, symmetric function, (Xi)i≥1 is a sequence of centered, i.i.d. Z-valued random

variables and for n ≥ 1, Sn = X1 + . . . + Xn is the associated random walk starting at S0 = 0 and (ξx)x∈Z

is a sequence of i.i.d. real-valued random variables with probability measure µ, independent of the random
walk (Sn)n≥0. Let Zα be a one dimensional α-stable random variable with index 1 < α ≤ 2. We assume
that the X ’s belong to the domain of attraction of Zα, namely

(
1

n1/α Sn

)
n≥1

converges in distribution to Zα

as n→+∞. Let (D[0, 1],D) denote the set of right continuous real-valued functions with left limits endowed
with the Skorohod J1-topology D. In the case where Sn is a Z

m-valued random walk with m ≥ 2, Cabus and

Keywords and phrases. Random walk, random scenery, U -statistics, functional limit theorem.
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U-STATISTICS INDEXED BY A Z-RANDOM WALK 99

Guillotin [6] studied the weak convergence in (D[0, 1],D) of the sequence U[nt], t ∈ [0, 1], as n→+∞. In this
paper we solve the case m = 1.

“U -statistics indexed by a random walk” appear as a natural extension of widely studied random walks in
random scenery, namely, partial sums of the form

Zn =
n∑

k=0

ξSk
, n ≥ 0.

For m = 1, Kesten and Spitzer [12] proved that when X and ξ belong to the domains of attraction of different
stable laws of indices 1 < α ≤ 2 and 0 < β ≤ 2, respectively, then there exists δ > 1

2 such that
(
n−δZ[nt]

)

converges weakly as n → ∞ to a self-similar process with stationary increments, δ being related to α and β

by δ = 1 − α−1 + (αβ)−1. The case 0 < α < 1 and β arbitrary is easier; they showed then that
(
n− 1

β Z[nt]

)

converges weakly, as n → ∞, to a stable process with index β. Bolthausen [3] gave a method to solve the more
difficult case α = 1 and β = 2 and especially, he proved that when (Sn)n∈N is a recurrent Z

2-random walk,
(n log n)−

1
2 Z[nt] satisfies a functional central limit theorem. For an arbitrary transient random walk, n− 1

2 Zn

is asymptotically normal (see [19], p. 53). Maejima [14] generalized the result of Kesten and Spitzer [12] in
the case where (ξx)x∈Z are i.i.d. R

d-valued random variables which belong to the domain of attraction of an
operator stable random vector with exponent B. If we denote by D the linear operator on R

d defined by
D = (1 − 1

α )I + 1
αB, he proved that

(
n−DZ[nt]

)
converges weakly to an operator self similar with exponent D

and having stationary increments.
In general, in the theory of U -statistics (of order 2), the classical object for study is the sequence

1
n(n − 1)

∑

1≤i�=j≤n

h(ξi, ξj)

where (ξk)k≥1 is a sequence of independent and identically distributed random variables and we usually assume
that

E(h(ξ1, ξ2)) = 0 and E(h2(ξ1, ξ2)) < ∞.

When E(h(ξ1, ξ2)|ξ1) = 0, the U -statistic is called degenerate. U -statistics were introduced by Hoeffding (1948)
who obtained many properties of U -statistics and their generalizations, in particular their asymptotic normality.
Definitions, results and applications of U -statistics can be found in Serfling’s book [18] and also in the more
recent book of Lee [13]. The study of U -statistics permits us to construct statistical tests and to estimate
integral from samples ξi, i ≥ 1. Therefore the asymptotic study of the random variable Un is quite natural and
should give us information about the statistic of the sample (ξSk

)0≤k≤n, i.e. observations of a random landscape
by a random walker. A way of estimating functionals from a large sample of this sequence of random variables
with control of the error will be presented in the last section.

Moreover, let us also mention that the model we consider here should be of some relevance in the study
of a polymer represented by the random walk (Sk)k≥0 evolving in a disordered medium which creates ran-
dom electrical charges on the polymer. These random electrical charges correspond to the random variables
ξi, i ∈ Z

m. We are interested in the total electrical energy
∑

i,j h(ξSi , ξSj ) describing the interactions of the
polymer with itself. This physical model is quite realistic as the proteins considered are very long charged
molecules and their stereochemical shape is the one minimizing the total electrical energy. The results obtained
in this paper constitutes a first step for the study of this problem (see [5, 15]).

In this paper the kernel h is L4-integrable with respect to the product measure µ ⊗ µ:

h ∈ L4(µ ⊗ µ).

The first result concerns the case where h is degenerate, i.e.

E(h(x, ξ0)) = 0, ∀x ∈ R.
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100 N. GUILLOTIN-PLANTARD AND V. LADRET

Since h ∈ L2(µ ⊗ µ), it induces a Hilbert-Schmidt operator Th on L2(µ):

Th : L2(µ) → L2(µ)
f → Thf(x) = E(h(ξ0, x)f(ξ0)).

From the theory of compact hermitian operators, there exists an orthonormal sequence of eigenfunctions (φν)ν≥1

and eigenvalues (λν)ν≥1 such that

h(x, y) =
+∞∑

ν=1

λνφν(x)φν (y) in L2(µ ⊗ µ). (1)

We notice that since h is degenerate, and (φν)ν≥1 is an orthonormal sequence of L2(µ), we get that, for all
ν, σ ≥ 1,

E(φν(ξ0)) = 0, E(φν(ξ0)φσ(ξ0)) = δν,σ where δν,σ =
{

0 if ν �= σ
1 if ν = σ.

(2)

Since h ∈ L4(µ ⊗ µ), it implies, by Cauchy-Schwarz inequality, that for all ν ≥ 1,

E((φν(ξ0))4) < ∞. (3)

Moreover, let h̃ : R→R be the function defined by h̃(x) = h(x, x). We shall impose the following conditions
on h̃

h̃ ∈ L4(µ) and h̃(x) =
+∞∑

ν=1

λνφν
2(x) in L1(µ). (4)

Let δ = 1− (2α)−1 (δ > 1/2) and let (Y (t))t∈[0,1] denote an α-stable Levy process with right continuous sample
paths, such that Y (1) has the same distribution as Zα. Then there exists a version of the local time Lt(x)
of Y which is continuous in (t, x) [4, 10]. Let (B(i)

+ (x))x≥0 and (B(i)
− (x))x≥0, i ≥ 1, be a pair of sequences

of independent Brownian motions, independent of each other and of (Yt)t∈[0,1]. Then B
(i)
± (x), i ≥ 1, is also

independent of Lt(x). Now, since B
(i)
± (x) is a semimartingale the following stochastic integrals can be defined

as in Kesten and Spitzer [12]

∆(i)
t =

∫ ∞

0

Lt(x) dB
(i)
+ (x) +

∫ ∞

0

Lt(−x) dB
(i)
− (x). (5)

In order to simplify the notations, throughout the paper, these processes will be respectively denoted by
(B(x))x∈R and ∆t =

∫
R

Lt(x) dB(x).
For all i ≥ 1, the process (∆(i)

t )t∈[0,1] has the following two properties:

(i) ∆(i)
t has stationary increments.

(ii) ∆(i)
t is self-similar with index δ.

Moreover, the characteristic function of the process (∆(i)
t )t∈[0,1] is given by

E
(
eiθ∆

(i)
t

)
= E

(
e−

θ2
2

∫
R

L
(i)
t (x)2 dx

)
, θ ∈ R

(see Lem. 5 in [12]).
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We are interested in the behavior of
(
U[nt]

)
t∈[0,1]

as n→+∞. The first result is as follows.

Theorem 1.1. The sequence
(Un(t)

)
t∈[0,1]

=
(
n−2δU[nt]

)
t∈[0,1]

converges weakly as n→+∞ in
(
D[0, 1],D)

to
the process (Wt)t∈[0,1] defined by

Wt =
∞∑

i=1

λi

(
∆(i)

t

)2
.

Remarks.
1. We shall see from the proof of the theorem, that the convergence of the finite dimensional distributions still
holds if we remove the L4-integrability condition concerning both h and h̃. It is only used for showing the
tightness of the sequence Un .
2. Let Vn denote the number of self-intersections of the random walk (Sk)k≥0 up to time n,

Vn =
n∑

i,j=0

1{Si=Sj}. (6)

In the case where (Sn)n≥0 is a recurrent Z
2-random walk, Cabus and Guillotin [6] showed that if the covariance

matrix Q of X1 is nonsingular, then there exists a sequence
(
(B(i)

t )t∈[0,1]

)
i≥1

of independent Brownian motions
such that

(
π(det Q)1/2

n log n
U[nt]

)

t∈[0,1]

converges weakly in (D[0, 1],D) to

(
+∞∑

i=1

λi(B
(i)
t )2

)

t∈[0,1]

as n→+∞.

The proof mainly uses the fact that Vn

/
n log n converges almost surely to some constant (see [6]). When Sn is

Z-valued, there is no analogous result. That is why the proof of Cabus and Guillotin [6] does not apply in the
one-dimensional case.

The following result concerns the case where h is non degenerate. Here we only assume h ∈ L4(µ ⊗ µ) and
h̃ ∈ L4(µ), without assuming condition (4) concerning the decomposition of h̃ in L1(µ).

Theorem 1.2. Let m = E
(
h(ξ0, ξ1)

)
and let σ2 = E

(
h(ξ0, ξ1)h(ξ0, ξ−1)

)− m2. If h is non degenerate, then

(
U[nt] − m[nt]2

2tσn2−1/2α

)

t∈[0,1]

converges weakly, as n→+∞, in
(
D[0, 1],D)

to
(
∆t

)
t∈[0,1]

.

The paper is organized as follows: we first establish some results concerning the asymptotic behavior of the
occupation times of a recurrent one dimensional random walk. Then, we prove Theorems 1.1 and 1.2. Finally,
in the last section a method to estimate functionals of observations given by a random walker is described. In
particular, we give sufficient conditions for which a strong law of large numbers holds for U -statistics indexed by
a one-dimensional random walk. We also establish a link between the ergodic properties of the sequence (ξSn)n

(for instance, Bernoullicity, Weak Bernoullicity, ...) and the existence of a strong law of large numbers for Un.

2. Properties of occupation times

In order to prove Theorem 1.1, we need some preliminary results concerning the asymptotic behavior of
occupation times Nn(x) and self-intersections times Vn defined in (6), as n→+∞. Here Nn(x) is the number
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102 N. GUILLOTIN-PLANTARD AND V. LADRET

of visits of the random walk to the point x up to time n:

Nn(x) =
n∑

i=0

1{Si=x}.

Then,
Vn =

∑

x∈Z

Nn(x)2.

Throughout the paper,
Q(p)

n =
∑

x∈Z

Nn(x)p.

Kesten and Spitzer [12] proved that, for all x ∈ Z,

E
(
Nn(x)p

)
= O

(
np(1− 1

α )
)

(7)

and that for some C > 0,
E
(
Vn

) ∼ Cn2− 1
α , n→+∞.

Lemma 2.1. For all p ≥ 1 and all k ≥ 1,

E
(
(Q(p)

n )
k)

= O
(
nkp(1− 1

α )+ k
α

)
.

In particular (p = 2), for all k ≥ 1,
E
(
Vn

k
)

= O(
n2kδ

)
.

Proof. Let (Ω, Σ, P ) be the probability space on which all the random variables are defined. We denote by ||.||k
the Lk-norm on the space Lk(P ), i.e. ||X ||k = E

(|X |k) 1
k for all X in Lk(P ).

Q(p)
n =

∑

0≤i1,i2,...,ip≤n

1{Si1=Si2=...=Sip}

≤ p!
∑

0≤i1≤i2≤···≤ip≤n

1{Si1=Si2=...=Sip}.

Thus,

||Q(p)
n ||k ≤ p!

∑

0≤i1≤n

∥∥∥∥∥∥

∑

i1≤i2≤···≤ip≤n

1{Si1=Si2=...=Sip}

∣∣∣∣∣∣
k

. (8)

Now, i1 being fixed,

E








∑

i1≤i2≤...ip≤n

1{Si1=Si2=...=Sip}




k


 ≤ E




∑

i1≤i2,...,ik(p−1)≤n

1{Si1=Si2=...=Sik(p−1)+1
}



 .

Here the Markov property applies and it leads to

E








∑

i1≤i2,...,≤ip≤n

1{Si1=Si2=...=Sip}




k


 ≤ E
(
Nn(0)k(p−1)

)
.
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It follows from this inequality and (7) that

∥∥∥∥∥∥

∑

i1≤i2≤···≤ip≤n

1{Si1=Si2=...=Sip}

∥∥∥∥∥∥
k

= O
(
n(p−1)(1− 1

α )
)
. (9)

Finally we conclude the proof by combining (8) and (9). �

3. The degenerate case

We first show the convergence of the finite dimensional distributions.

Proposition 3.1. Any finite dimensional distribution of
(
n−2δU[nt]

)
t∈[0,1]

converges to the finite dimensional

distribution of
(
Wt

)
t∈[0,1]

.

Before we begin the proof of Proposition 3.1 we need to give details of one of the results of Maejima [14].
Let

(
ξx

)
x∈Z

be a collection of i.i.d. R
d-valued random vectors, independent of the random walk (Sn)n≥0. We

suppose that the
(
ξx

)
x∈Z

belong to the domain of attraction of a Gaussian vector Z1/2. Then, Maejima [14]
proved that for the linear operator D = (1 − 1

2α
)I,

n−D

[nt]∑

k=0

ξSk
converges in (D[0, 1],D) to the limit process Wt =

∫ ∞

−∞
Lt(x) dB(x)

where Lt(x) is the local time at the point x ∈ R of an α-stable Levy process
(
Y (t)

)
t∈[0,1]

with right continuous

sample paths, such that Y (1) has the same distribution as Zα, and
(
B(x)

)
x∈R

is a R
d-valued Brownian motion

independent of Y (.) such that the distribution of B(1) is the same as the one of Z1/2. Here

∫ ∞

−∞
Lt(x) dB(x) =

(∫ ∞

−∞
Lt(x) dB(1)(x), . . . ,

∫ ∞

−∞
Lt(x) dB(d)(x)

)

where, for each i = 1, . . . , d, the real valued process B(i)(x) denotes the i-th component of B(x). Each stochastic
integral can be rigorously defined as (5).

Now we are ready for the proof of Proposition 3.1.

Proof. Here and later in the proof we fix θ = (θ1, . . . , θm) ∈ R
m and 0 ≤ t1 < . . . < tm ≤ 1. First we choose

some arbitrary integer K ≥ 1 and we define the kernel hK(x, y) by

hK(x, y) =
K∑

ν=1

λνφν(x)φν (y). (10)

We denote by Un,K the corresponding U -statistic indexed by
(
Sn

)
n≥0

, i.e.

Un,K =
n∑

i,j=0

hK(ξSi , ξSj ).

Then we set
Un,K(t) = U[nt],K .
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104 N. GUILLOTIN-PLANTARD AND V. LADRET

Step 1. From the definition of hK (10), we derive the following expression

Un,K(t) =
K∑

ν=1

λν



 1
nδ

[nt]∑

i=1

φν(ξSi)




2

. (11)

For all x ∈ Z, we define the random vector ξ̃ (K)
x by

ξ̃ (K)
x =

(
φ1(ξx), . . . , φK(ξx)

) ∈ R
K

.

For each ν ∈ {1, . . . , K}, the sequence (φν(ξx))x∈Z
is a sequence of i.i.d. random variables. It follows from

(2) that, for each x ∈ Z, the components of ξ̃
(K)

x are uncorrelated random variables with expectation 0 and
variance 1. Hence the central limit theorem applies, i.e.

1√
n

n∑

x=1

ξ̃ (K)
x

L→ Z1/2,

where Z1/2 is a K-dimensional standard Gaussian vector.
For all n ≥ 1, let

Zn,K(t) =
[nt]∑

i=0

ξ̃ (K)

Si
.

Here, we apply the result of Maejima [14], i.e.

(Zn,K(t)
)

t∈[0,1]
converges weakly in D[0, 1], as n→+∞, to

(
∆(1)

t , . . . , ∆(K)
t

)
t∈[0,1]

, (12)

with

∆(i)
t =

∫ ∞

−∞
Lt(x) dB(i)(x), i = 1, . . . , K,

where Lt(x) is the local time at x ∈ R of the process Y (.) defined above and B(x) = (B(1)(x), . . . , B(K)(x)), x ∈
R is a K-dimensional Brownian motion, independent of Y (.), with independent components.

Now, let

L : R
K → R

(x1, . . . , xK) �→
K∑

ν=1

λνx2
ν .

Then, by (11),
Un,K = L(Zn,K). (13)

Since Zn,K(.) converges weakly to
(
∆(1)

t , . . . , ∆(K)
t

)
t∈[0,1]

as n goes to infinity and L is continuous, it follows
that, for all integer K ≥ 1,

(Un,K(t)
)

t∈[0,1]
converges in (D[0, 1],D) to

(
WK(t) :=

K∑

ν=1

λν

(
∆(ν)

t

)2

)

t∈[0,1]

, as n→+∞.

Hence, the finite dimensional laws of Un,K(.) converge to the finite dimensional laws of WK(.). If we denote by φK

and φn,K the characteristic functions of the random vectors (WK(t1), . . . , WK(tm)) and (Un,K(t1), . . . ,Un,K(tm))
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respectively, then for every θ ∈ R
m,

|φn,K(θ) − φK(θ)|→ 0, n→+∞. (14)

Step 2. Next we turn to the analysis of Rn,K defined by

Rn,K(t) = U[nt] − U[nt],K

=
∑

x,y∈Z

N[nt](x)N[nt](y)
(
h − hK

)
(ξx, ξy)

= R
(1)
n,K(t) + R

(2)
n,K(t)

with
R

(1)
n,K(t) =

∑

x �=y

N[nt](x)N[nt](y)
(
h − hK

)
(ξx, ξy)

and
R

(2)
n,K(t) =

∑

x∈Z

N2
[nt](x)

(
h − hK

)
(ξx, ξx).

Let h̃K(x) = hK(x, x), then
R

(2)
n,K(t) =

∑

x∈Z

N2
[nt](x)

(
h̃ − h̃K

)
(ξx).

First we focus on E
(
|R(1)

n,K(t)|2
)
. From the independence of

(
Sn

)
n≥0

and
(
ξx

)
x∈Z

and the fact that h is
degenerate, we get that

E
(
|R(1)

n,K(t)|2
)

=
∑

x �=y

E
(
N2

[nt](x)N2
[nt](y)

)
||h − hK ||2L2(µ⊗µ)

≤ E
(
V 2

[nt]

)||h − hK ||2L2(µ⊗µ). (15)

Then it follows from Lemma 2.1 that there exists a constant C1 > 0 such that for all n ≥ 1 and t ∈ [0, 1],

E




∣∣∣∣∣
R

(1)
n,K(t)
n2δ

∣∣∣∣∣

2


 ≤ C1||h − hK ||2L2(µ⊗µ). (16)

Now, we focus on R
(2)
n,K(t).

E
(∣∣R(2)

n,K(t)
∣∣
)
≤ E

(
∑

x

N2
[nt](x)

∣∣(h̃ − h̃K

)
(ξx)

∣∣
)

.

The independence of (Sn)n≥0 and (ξx)x∈Z implies that

E
(|R(2)

n,K(t)|) ≤ E
(
V[nt]

)||h̃ − h̃K ||L1(µ).

Thus, from Lemma 2.1 it follows that there exists a constant C2 > 0 such that for all n ≥ 1 and t ∈ [0, 1],

E

(∣∣∣∣∣
R

(2)
n,K(t)
n2δ

∣∣∣∣∣

)
≤ C2||h̃ − h̃K ||L1(µ). (17)
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106 N. GUILLOTIN-PLANTARD AND V. LADRET

Put C = max(
√

C1, C2) and set
Rn,K(t) = Rn,K(t).

By virtue of (16) and (17), we have that for all n ≥ 1 and for all t ∈ [0, 1],

E
(
|Rn,K(t)|

)
≤ C

(
||h − hK ||L2(µ⊗µ) + ||h̃ − h̃K ||L1(µ)

)
. (18)

Now set

Θn =
m∑

j=1

θjUn(tj), Θn,K =
m∑

j=1

θjUn,K(tj).

Let φn be the characteristic function of the random vector (Un(t1), . . . ,Un(tm)).
Then, for every θ ∈ R

m,

|φn(θ) − φn,K(θ)| = |E(eiΘn − eiΘn,K )|
≤ E|ei(Θn−Θn,K) − 1|
≤ E|Θn − Θn,K |

= E|
m∑

j=1

θjRn,K(tj)|.

By (18) we have that for all integer n ≥ 1,

|φn(θ) − φn,K(θ)| ≤ C
m∑

j=1

|θj |
(
||h − hK ||L2(µ⊗µ) + ||h̃ − h̃K ||L1(µ)

)
.

Hence, for all ε > 0 there exists a K0 > 0 such that for any K > K0,

sup
n≥1

|φn(θ) − φn,K(θ)| < ε. (19)

Step 3. Let

Wt =
+∞∑

ν=1

λν

(
∆(ν)

t

)2
.

We denote by φ the characteristic function of the random vector (Wt1 , . . . , Wtm).
Let us first prove that E(∆4

t ) < ∞. By Burkholder-Davis-Gundy’s inequality (see [17]),

E

((∫ +∞

0

L1(x) dB+(x)
)4

)
≤ C E

(〈∫ +∞

0

L1(x) dB+(x),
∫ +∞

0

L1(x) dB+(x)
〉2

)

≤ C E

((∫ ∞

0

L2
1(x) dx

)2
)

≤ C E

((∫ ∞

−∞
L2

1(x) dx

)2
)

,

for some constant C > 0. The same inequality holds for E
(( ∫ +∞

0
L1(−x) dB−(x)

)4
)
. From Kesten and

Spitzer [12], we know that the sequence Vn

n2δ weakly converges to
∫
R

L1(x)2 dx, hence,
(

Vn

n2δ

)2

weakly converges

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005004

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005004


U-STATISTICS INDEXED BY A Z-RANDOM WALK 107

to
( ∫

R

L1(x)2 dx
)2

,

(
Vn

n2δ

)2
L−→

(∫

R

L2
1(x) dx

)2

. (20)

Moreover, by Lemma 2.1,

sup
n≥1

E

((
Vn

n2δ

)4
)

≤ C,

where C > 0 denotes a constant.
So, the sequence

(
V 2

n /n4δ
)
n≥1

is uniformly integrable and Theorem 25.12 of Billingsley [2] applies:

E

((∫

R

L2
1(x)dx

)2
)

≤ C.

The self-similarity of ∆ (∆t
d= tδ∆1) implies that for all t ∈ [0, 1],

E(∆4
t ) = t4δE(∆4

1) ≤ C < ∞.

Now, we come back to the convergence of the finite dimensional distributions of WK,t to the finite dimensional
distributions of Wt.

We compute the following L2-norm:

∣∣∣
∣∣∣

m∑

j=1

θj(Wtj − WK,tj )
∣∣∣
∣∣∣
2
≤

m∑

j=1

|θj |.
∣∣∣
∣∣∣Wtj − WK,tj

∣∣∣
∣∣∣
2
. (21)

From the Cauchy-Schwarz inequality, it follows that

∣∣∣
∣∣∣Wtj − WK,tj

∣∣∣
∣∣∣
2

2
=

∞∑

ν=K+1

λ2
νE

(
(∆(ν)

tj
)4
)

+
∞∑

ν �=µ=K+1

λνλµE
(
(∆(ν)

tj
)2(∆(µ)

tj
)2
)

≤ tj
4δE

(
(∆1)4

)



∞∑

ν=K+1

λ2
ν +

( ∞∑

ν=K+1

λν

)2




≤ C




∞∑

ν=K+1

λ2
ν +

( ∞∑

ν=K+1

λν

)2


 .

From the theory of compact operators, we know that, since h ∈ L2(µ ⊗ µ),

∞∑

ν=1

λ2
ν = E(h(ξ0, ξ1)).

Moreover, the condition (4) implies that

∣∣∣∣∣

∞∑

ν=1

λν

∣∣∣∣∣ < +∞, with
∞∑

ν=1

λν = E(h̃(ξ0)).

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005004

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005004


108 N. GUILLOTIN-PLANTARD AND V. LADRET

Hence, the convergence of the series
∞∑

ν=1

λ2
ν and

∞∑

ν=1

λν implies the convergence in L2 of the sequence
m∑

j=1

θjWK,tj

to
m∑

j=1

θjWtj , as K goes to infinity. Thus,

|φ(θ) − φK(θ)|→ 0, K →+∞. (22)

Finally, by (19) and (22), given ε > 0 we can choose K1 large enough so that

sup
n≥1

|φn(θ) − φn,K1(θ)| < ε/3 and |φ(θ) − φK1(θ)| < ε/3.

By (14), it follows that we can find N such that for all n > N

|φK1(θ) − φn,K1(θ)| < ε/3.

Then, for all n > N ,

|φ(θ) − φn(θ)| ≤ |φ(θ) − φK1(θ)| + |φK1(θ) − φn,K1(θ)| + |φn(θ) − φn,K1(θ)| < ε

proving the convergence of the finite dimensional laws. �
We still have to show the tightness of the family

(Un(t)
)

t∈[0,1]
. By Theorem 15.6 of [2] it is enough to prove

the following

Proposition 3.2. There exists a strictly positive constant C and a constant γ = 4 − 2/α > 1 such that for
every 0 ≤ t1 < t < t2 ≤ 1,

E
((U[nt2] − U[nt]

)2(U[nt] − U[nt1]

)2
)
≤ C

(
t2 − t1

)γ
.

We first fix some notations. In what follows, for all s, t in [0, 1] and x, y in Z,

Ds,t(x, y) = N[nt](x)N[nt](y) − N[ns](x)N[ns](y) (23)

and
As,t(x) = N[nt](x) − N[ns](x), At(x) = A0,t(x) = N[nt](x). (24)

Proof of Proposition 3.2. The sequences (Sn)n≥0 and (ξx)x∈Z are independent, thus

E
(
(U[nt2] − U[nt])2(U[nt] − U[nt1])

2
)

=
1

n8δ

∑

(xi,yi)1≤i≤4

E

(
2∏

i=1

Dt,t2(xi, yi)
4∏

i=3

Dt1,t(xi, yi)

)

×E

(
4∏

i=1

h(ξxi , ξyi)

)

≤ 1
n8δ

∑

(xi,yi)1≤i≤4

E

(
4∏

i=1

Dt1,t2(xi, yi)

)
E

(
4∏

i=1

h(ξxi , ξyi)

)
. (25)

Put

α(x1, y1, . . . , x4, y4) = E

(
4∏

i=1

h(ξxi , ξyi)

)
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and denote by S the support of α,

S =
{
(x1, . . . , y4) | α(x1, . . . , y4) = 0

}
. �

Notations. In order to simplify the notation, we shall denote by both (xi, yi)1≤i≤4 and (x1, y1)(x2, y2)(x3, y3)(x4, y4)
the 8-tuple

(
x1, y1, . . . , x4, y4

)
. For all k ∈ {2, 3, 4}, (x, y)k will stand for (x, y) · · · (x, y)︸ ︷︷ ︸

k times

.

The fact that h is degenerate implies that α vanishes on the 8-tuples (x1, . . . , y4) in which one coordinate
appears only once. In consequence, all the elements of S contain each coordinate at least twice. Now we focus
on the following subsets of S:
for all i ∈ {3, . . . , 8},

Si =
{
(xj , yj)1≤j≤4 ∈ S | one of the coordinates appears exactly i times

}
,

and
S2 =

{
(xi, yi)1≤i≤4 ∈ S | all the coordinates appear exactly twice

}
.

We notice that S = ∪8
i=2Si. Here, as above, the argument of the degeneracy of h applies. And, even if it means

reordering the coordinates, it leads to
S8 =

{
(x1, x1)4

}
,

S2 =
{
(x1, x1)(x2, x2)(x3, x3)(x4, x4)} ∪ {(x1, x1)(x2, x2)(x3, y3)2} ∪ {(x1, y1)2(x2, y2)2

}
, (26)

S3 = S5 =
{
(x1, y1)3(x4, x4) with x1 �∈ {x4, y1}

}
, (27)

S4 =
{
(x1, x1)2(x2, x2)(x3, x3), (x1, x1)2(x2, x3)2, (x1, x1)(x1, x2)2(x3, x3), (x1, x2)2(x1, x3)2,

with x1 �∈ {x2, x3}
}
, (28)

S6 =
{
(x1, x1)3(x2, x2) with x1 �= x2} ∪ {(x1, x1)2(x1, x2)2 with x1 �= x2

}
. (29)

We put

C = max
{(xi,yi)1 ≤ i ≤ 4∈S}

E

(
4∏

i=1

h(ξxi , ξyi)

)
.

Since h ∈ L4(µ ⊗ µ) and h̃ ∈ L4(µ), C is finite.
Then, from (25), it follows that

E
((U[nt2] − U[nt]

)2(U[nt] − U[nt1]

)2
)
≤ C

n8δ

∑

(xi,yi)i≤4∈S
E

(
4∏

i=1

Dt1,t2(xi, yi)

)
. (30)

Now we still have to compute the terms

∑

(xi,yi)i≤4∈Sk

E

(
4∏

i=1

Dt1,t2(xi, yi)

)
, k = 2, 3, . . . , 8.

As the calculations of these quantities rely on the same basic arguments, we shall concentrate on the case where
k = 3.
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By the Cauchy-Schwarz inequality, by (27) and the fact that Dt1,t2 is non-negative, we get that

∑

(xi,yi)i≤4∈S3

E

(
4∏

i=1

Dt1,t2(xi, yi)

)
≤ E

(
∑

x1,y1

D3
t1,t2(x1, y1)

∑

x4,y4

Dt1,t2(x4, y4)

)

≤ E




(

∑

x1,y1

D3
t1,t2(x1, y1)

)2



1/2

E




(

∑

x4,y4

Dt1,t2(x4, y4)

)2



1/2

. (31)

First we focus on the second term equal to E
((∑

x4,y4
Dt1,t2(x4, y4)

)2)1/2

.

∑

x4,y4

Dt1,t2(x4, y4) =

(
∑

x4

N[nt2](x4)

)2

−
(
∑

x4

N[nt1](x4)

)2

= [nt2]2 − [nt1]2. (32)

Since 0 ≤ t1 < t2 ≤ 1,
[nt2]2 − [nt1]2 ≤ 2n([nt2] − [nt1]).

If 1 ≤ n(t2 − t1), then [nt2] − [nt1] ≤ n(t2 − t1) + 1 ≤ 2n(t2 − t1). Otherwise [nt2] − [nt1] = 0. Therefore,

[nt2]2 − [nt1]2 ≤ 4n2(t2 − t1). (33)

From (33), it follows that

E




(

∑

x4,y4

Dt1,t2(x4, y4)

)2



1/2

≤ 4n2(t2 − t1). (34)

Now we focus on the integral

E




(

∑

x1,y1

D3
t1,t2(x1, y1)

)2



1/2

. (35)

We recall from the definitions (23) and (24) of D and A that

Dt1,t2(x, y) = At1,t2(x)At1,t2(y) + At1(x)At1,t2(y) + At1(y)At1,t2(x).

In order to estimate (35) we shall focus on the L2-norm (denoted by ||.||2) of the following terms

α1 =
∑

x,y

A3
t1,t2(x)A3

t1,t2(y), α2 =
∑

x,y

A3
t1(x)A3

t1,t2(y), α3 =
∑

x,y

At1(x)A2
t1,t2(x)A3

t1,t2(y),

α4 =
∑

x,y

A2
t1(x)At1,t2(x)A3

t1,t2(y), α5 =
∑

x,y

A2
t1(x)At1,t2(x)At1 (y)A2

t1,t2(y).

We first evaluate ||α1||2:
||α1||2 =

∣∣∣
∣∣∣
(∑

x

(N[nt2](x) − N[nt1](x))3
)2∣∣∣

∣∣∣
2
.

It follows from the Markov property that

∑

x

(N[nt2](x) − N[nt1](x))3

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005004

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005004


U-STATISTICS INDEXED BY A Z-RANDOM WALK 111

has the same distribution as Q
(3)
[nt2]−[nt1]

. Thus, from Lemma 2.1,

||α1||2 =
∣∣∣
∣∣∣
(
Q

(3)
[nt2]−[nt1]

)2
∣∣∣
∣∣∣
2

= O
(
(n(t2 − t1))6−4/α

)
. (36)

Now we focus on ||α2||2:

||α2||2 =



E

(
∑

x

N3
[nt1]

(x)
∑

y

A3
t1,t2(y)

)2



1/2

.

Here the Markov property applies again:
∑

x N3
[nt1]

(x) and
∑

y A3
t1,t2(y) are independent and distributed as

Q
(3)
[nt1]

and Q
(3)
[nt2]−[nt1]

respectively. Thus,

||α2||2 =
∣∣∣∣Q(3)

[nt1]

∣∣∣∣
2

∣∣∣∣Q(3)
[nt2]−[nt1]

∣∣∣∣
2

= O
(
n6−4/α(t2 − t1)3−2/α

)
. (37)

In the calculation of the square of ||α3||2, the Markov property leads to

∣∣∣∣α3

∣∣∣∣2
2

= E

(
∑

x,y

At1(x)A2
t1,t2(x)A3

t1,t2(y)

)2

=
∑

x1,y1,x2,y2

E
(
At1(x1)At2(x2)

)
E
(
A2

t1,t2(x1)A2
t1,t2(x2)A3

t1,t2(y1)A3
t1,t2(y2)

)
. (38)

By the Cauchy-Schwarz inequality and (7) it follows that for all x1 and x2 in Z,

E
(
At1(x1)At1(x2)

)
= O(

n2−2/α
)
. (39)

Then, the Cauchy-Schwarz inequality still applies in the estimate of the left term

E




(

∑

x1,y1

A2
t1,t2(x1)A3

t1,t2(y1)

)2


 = E




(
∑

x1

A2
t1,t2(x1)

)2 (∑

y1

A3
t1,t2(y1)

)2




≤ ∣∣∣∣Q(2)
t1,t2

∣∣∣∣2
4

∣∣∣∣Q(3)
t1,t2

∣∣∣∣2
4
. (40)

Now, from (38), (39), (40) and Lemma 2.1, it follows that

||α3||2 = O
(
n6−4/α

(
t2 − t1

)5−3/α
)
. (41)

The same basic ideas apply in the computation of the two left terms ||α4||2 and ||α5||2. Thus it is easy to see
that

||α4||2 = O
(
n6−4/α(t2 − t1)4−2/α

)
, ||α5||2 = O

(
n6−4/α(t2 − t1)3−1/α

)
. (42)

Thus we derive, from (36), (37), (41), (42) that



E

(
∑

x,y

D3
t1,t2(x, y)

)2



1/2

= O
(
n6−4/α

(
t2 − t1

)3−2/α
)
. (43)
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Finally, using (43) and (34), (31) reads

∑

(xi,yi)i≤4∈S3

E

(
4∏

i=1

Dt1,t2(xi, yi)

)
= O

(
n8δ(t2 − t1)4−2/α

)
.

With the same techniques it is possible to compute the terms in the case where S3 is replaced by Si with
i = 2, 4, . . . , 8 and it can be checked that

∑

(xi,yi)i≤4∈Sk

E

(
4∏

i=1

Dt1,t2(xi, yi)

)
= O

(
n8δ

(
t2 − t1

)4−2/α
)
, k = 2, . . . , 6 (44)

and
∑

(xi,yi)i≤4∈S8

E

(
4∏

i=1

Dt1,t2(xi, yi)

)
= O

(
n8δ−2/α(t2 − t1)4−2/α

)
. (45)

Thus, if we put together (30), (44) and (45), it follows that there exist a positive constant C and a γ = 4− 2/α,
γ > 1, such that, for every 0 ≤ t1 ≤ t2 ≤ 1

E
((U[nt2] − U[nt]

)2(U[nt] − U[nt1]

)2
)
≤ C

(
t2 − t1

)γ
.

4. The non-degenerate case

From Hoeffding’s decomposition, we have, for x �= y,

h(ξx, ξy) = m + (g(ξx) − m) + (g(ξy) − m) + φ(ξx, ξy)

where g(ξx) = E(h(ξx, ξy)|ξx) and φ is a degenerate kernel.
Using this decomposition, we get:

U[nt] = m([nt] + 1)2 − mV[nt] +
∑

x∈Z

N[nt](x)2(h(ξx, ξx) − 2(g(ξx) − m))

+2([nt] + 1)
∑

x∈Z

N[nt](x)(g(ξx) − m) +
∑

x �=y

N[nt](x)N[nt](y)φ(ξx, ξy)

= m([nt] + 1)2 − mV[nt] +
∑

x∈Z

N[nt](x)2(h(ξx, ξx) − 2(g(ξx) − m))

+2([nt] + 1)
[nt]∑

k=0

(g(ξSk
) − m) +

∑

x �=y

N[nt](x)N[nt](y)φ(ξx, ξy).

Now, from Lemma 2.1,

E(Vn) = O(n2− 1
α )

so Vn

/
n2−1/2α converges in probability to 0 as n→+∞:

Vn

n2−1/2α

P→ 0.
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Using the results of the previous section, it is easy to prove that

1
n2− 1

2α




∑

x �=y

N[nt](x)N[nt](y)φ(ξx, ξy) +
∑

x∈Z

N[nt](x)2(h(ξx, ξx) − 2(g(ξx) − m))





converges in probability to 0 as n→∞.
Finally, from Kesten and Spitzer’s Theorem (see [12]),



 1
σn1− 1

2α

[nt]∑

k=0

(g(ξSk
) − m)





t∈[0,1]

D−→ (∆t)t∈[0,1],

and the theorem follows.

5. Statistical estimation of m

In this section we give some techniques to estimate functionals of the random scenery viewed by a random
walker. Consider the recurrent one-dimensional random walk (Sn)n≥0 and the random scenery (ξx)x∈Z as
defined in the introduction. The random walk is also assumed to be strongly aperiodic (see the definition in
[19]). Our problem is to estimate m = E(h(ξ0, ξ1)) from observations (ξSk

)0≤k≤n up to time n given by a
random walker. The distribution µ of the ξ’s is unknown as well as the paths of the random walker which are
assumed to belong to a domain of attraction of a stable law with index α. The hypotheses on the function h are
the ones given in the introduction. When h is non-degenerate, thanks to Theorem 1.2, the sequence of random
variables

1
n2

∑

1≤i,j≤n

h(ξSi , ξSj )

converges in probability to m as n→+∞. Moreover, Theorem 1.2 allows us to give a confidence interval of our
estimation since

Un − mn2

2σn2−1/2α
→∆1

where σ2 = E
(
h(ξ0, ξ1)h(ξ0, ξ−1)

)−m2. The expectation E
(
h(ξ0, ξ1)h(ξ0, ξ−1)

)
can be estimated by a realization

for large n of the sequence of random variables

1
n3

n∑

i,j,k=1

h(ξSi , ξSj )h(ξSj , ξSk
).

The distribution of the random variable ∆1 =
∫
R

L1(x) dB(x) can be simulated, for instance by using Kesten
and Spitzer’s theorem.

The next natural question is to know if the parameter m can be almost surely approximated by the U -statistic
sampled by the one-dimensional random walk. Due to the strong correlations of the sequence of observations, the
strong law of large numbers for U -statistics of i.i.d. observations due to Hoeffding [11] is clearly not applicable.
Aaronson et al. [1] proved a strong law of large numbers for U -statistics for ergodic stationary processes (see
Theorem U in [1]). Let us extend our random walk in the following natural way: let (Xi)i∈Z be a sequence of
centered, i.i.d. Z-valued random variables with distribution ρ. The associated Z-random walk (Sn)n∈Z is now
defined as

S0 = 0, Sn =
n∑

i=1

Xi for n ≥ 1
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and

Sn = −
0∑

i=n+1

Xi for n ≤ −1.

The sequence (Sn)n∈Z is assumed strongly aperiodic. Let us define the transformation

U : Ω × Ω′ → Ω × Ω′

(ω, ω′) → (σω, T ω1ω′)

where σ is the shift operator on the space Ω = Z
Z (the random walk) with the product measure ρ∞ and T is the

shift operator on the space Ω′ = R
Z (the random scenery) with the product measure µ∞. The transformation U

preserves the measure ρ ⊗ µ and is a K-automorphism (see Meilijson [16]). For every n ∈ Z, each random
variable ξSn can be written as f ◦Un where f is the composition of two (measurable) projections, so (ξSn)n∈Z is a
stationary and ergodic sequence. We can now apply Aaronson’s Theorem U as follows: Assume that the function
h : R

2 →R is measurable, symmetric and bounded by an µ-integrable product, i.e. |h(x1, x2)| ≤ f1(x1)×f2(x2)
for every (x1, x2) ∈ R

2 for some f1, f2 ∈ L1(µ).
If any of the following three conditions hold:

• µ is a discrete law;
• The function h is continuous at µ ⊗ µ-almost every point;
• (ξSn)n is weakly Bernoulli;

then
lim

n→+∞
1

n(n − 1)

∑

1≤i�=j≤n

h(ξSi , ξSj ) = m.

The weak Bernoullicity of the process (Xn, ξSn), n ∈ Z has been studied in great details in a collection of
nice papers [7–9] when the ξ′s take their values in a finite set. In particular, in [8], a necessary and sufficient
condition is given in order to get the weak Bernoullicity of this process. This condition is strongly related to the
intersection properties of the random walk. As it is mentioned in Section 8 of [9], the weak (or not) Bernoullicity
of the second coordinate of (Xn, ξSn), n ∈ Z can not be deduced from the fact that (Xn, ξSn), n ∈ Z is (or is
not) weak Bernoulli and to our knowledge, it is still an open problem. One way of proving it would be to find
a function h satisfying all the conditions of Theorem U from [1] but for which the strong law of large numbers
for the U -statistics indexed by the one dimensional random walk does not hold. Necessarily, this would imply
that the sequence ξSn , n ∈ Z is not weakly Bernoulli.

6. Conclusion

We have proved a functional limit theorem for U -statistics indexed by a one-dimensional Z-random walk and
solved the conjecture stated in [6]. We have also introduced statistics of a sequence of random variables indexed
by a one-dimensional random walk. More results on limit theorems for U -statistics indexed by a one-dimensional
random walk are expected as well as statistical applications. The case of a kernel h of order k with k ≥ 3 is
presently under investigation.
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